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New method of determining F� on the lattice
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We derive the two-point spectral correlation function of the Dirac operator with a specific external
source in the � regime of QCD. This correlation function has a unique and strong dependence on F�, and
thus provides an novel way to extract F� from lattice simulations. We test the method in a quenched lattice
simulation with staggered fermions.
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I. INTRODUCTION

One of the outstanding challenges to lattice gauge theory
is the computation of physical observables that depend
strongly on having very small quark masses in QCD.
Here we exploit the fact that the low-lying spectrum of
the Dirac operator in finite volume is particularly sensitive
to the observables of spontaneously broken chiral symme-
try. It is well established [1] that the chiral condensate � �
jh �  ij can be extracted from measurements of the low-
energy Dirac spectrum. We carry this program one step
further to determine the next low-energy constant, the
pseudoscalar decay constant F�, with similar high preci-
sion. We show that a certain spectral correlation function of
the Dirac operator depends on F� in a unique and quite
spectacular way. Based on this dependence we propose and
demonstrate a novel method for measuring F� in lattice
gauge theory simulations. The method is general for sys-
tems with spontaneous breaking of symmetries, and indeed
the universal finite-volume scaling formulas have wide
application in the context of condensed matter physics as
well [2].

Conventionally, measurements of F� on the lattice are
carried out in the so-called p regime using the 2-point
function of the axial current. One then aims at lattices
large enough that the Compton wavelength of the
Goldstone bosons is much smaller than the lattice size
while still performing an extrapolation to the chiral limit
of very light u and d quarks [3]. The method we propose
avoids such issues by going to the � regime.

The low-energy effective Lagrangian of the � regime in
QCD [4,5] is dominated by the zero-momentum modes of
the pseudo-Goldstone bosons. In the absence of external
sources, the leading term in the associated � expansion is
proportional to the quark massm. It has been supposed that
F� needs to be computed either from the tiny perturbative
correction to the leading-order result for � [6,7] or from an
appropriate space-time correlation function [8]. Quenched
Monte Carlo simulations have demonstrated that such a
procedure is feasible, but numerically challenging [9].
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Once external currents are included, the leading-order
effective Lagrangian of the � regime depends not only on
�, but also on F�. We shall introduce an external vector
source that can be interpreted either as an imaginary
chemical potential for isospin [10,11] or as twisted bound-
ary conditions for the gauge potentials [7]. The advantage
of an imaginary isospin chemical potential is twofold.
First, the associated Dirac operator has a positive definite
determinant and thus becomes amenable to numerical
simulations. In addition, with an imaginary isospin poten-
tial, the Dirac operator is anti-Hermitian and thus its ei-
genvalue spectrum lies entirely on the imaginary axis.

For nonzero baryon chemical potential, the
F�-dependent spectral correlation functions in the � re-
gime [12–14] can be used to glean information about chiral
symmetry breaking [15]. However, the spectrum of the
associated Dirac operator is complex, which makes the
numerical determination of F� more demanding.
Quenched results in that direction have recently been
presented [16].

We consider instead the correlation function
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between the densities of eigenvalues i�n of the anti-
Hermitian operator D�, where

D� n � �D6 �A� � i�iso�0� n � i�n n; (2)

and the eigenvalues i~�m of the likewise anti-Hermitian
operator D�, defined by

D� ~ n � �D6 �A� � i�iso�0� ~ n � i~�m ~ n: (3)

Here D6 �A� is the Dirac operator associated with the gauge
potential A�. Considering the operators D� and D� as
acting on two separate flavors leads to a theory in which the
u quark has chemical potential �i�iso, while the d quark
-1 © 2005 The American Physical Society
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has chemical potential �i�iso. Using the effective low-
energy theory for QCD in the � regime we will calculate
the correlation function (1) in the microscopic limit where
both m�V and �2

isoF
2
�V are held fixed as the four-volume

V is taken to infinity. We can measure � very accurately
from the distributions of the smallest eigenvalues of D6
[17]. Then the spectral correlation function (1) for eigen-
values of the order 1=��V� provides, as we shall see, a
parameter-free determination of F� in the chiral limit.
Computationally, all that is required is the determination
of a modest number (typically, the first 10–20 will suffice)
of smallest eigenvalues of the Dirac operators D	. As an
additional check, one can verify that the dependence is
through the combination �2

isoF
2
�V only.

As will become clear below, the eigenvalue correlation
functions of D� by itself (or of D�) are independent of
�iso in the microscopic limit. Thus the simplest quantity
that can yield information about F� is the correlation
function (1) between the two.

In this paper we will provide formulas and numerical
results relevant to quenched QCD. Shortcomings of
quenching are well known, and we use this approximation
for illustrative purposes only. The case of dynamical
quarks will be presented elsewhere.

II. THE CORRELATION FUNCTION IN THE
�-REGIME

The first step is to derive the quenched susceptibility,
defined as
091501
��m1; m2; i�iso� � lim
n!0
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(4)

where the limit n! 0 indicates use of the replica method
[18]. In terms of the eigenvalues � and ~� the susceptibility
is
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The spectral correlation function (1) then follows from the
discontinuity across the imaginary axis of both m1 and m2,
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The QCD partition function Zn�m1; m2; i�iso� entering
Eq. (4) contains 2n fermions, half of which have mass
m1 and chemical potential i�iso while the other half have
massm2 and chemical potential�i�iso. In the � regime the
leading term in the partition function is [11]
Zn�m1; m2; i�iso� �
Z
dU det�U�	e1=4VF2

��2
isoTr�U;B��Uy;B��1=2�VTr�MyU�MUy� (7)

at fixed gauge field topology 	. The integration is over the Haar measure of U�2n�, and we have defined

B �
1 0
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� �
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� �
: (8)

For n � 1 the partition function (7) reduces to
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and from this all partition functions for n 
 2 can be
obtained [13] via

�m1m2�
n�n�1�Zn�m1; m2; i�iso�

� Dn det��m1@m1
�k�m2@m2

�lZ1�m1; m2; i�iso��: (10)

Here Dn is a normalization factor and k; l � 0; 1; ::; n� 1.
Recently it has been realized [19,20] that to obtain the

correct replica limit n! 0 in Eq. (4) one can make use of
the integrability relations satisfied by the partition func-
tions. Equation (10) has the structure of a 
 function,
implying that the Zn satisfy the Toda lattice equation,
1
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(11)

where Dn fixes the coefficient on the left-hand side [13].
Taking the n! 0 limit of Eq. (11) and comparing to
Eq. (4) we find

��m1; m2; i�iso�

V4�4

� 4m1m2Z1�m1; m2; i�iso�Z�1�m1; m2; i�iso�: (12)
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The n! 0 limit in Eq. (12) has naturally brought in the
partition function with n � �1, i.e., two quarks of bosonic
statistics [20]. Like its fermionic analogue, the bosonic
partition function is determined by the symmetries of the
underlying QCD Lagrangian. In the bosonic case, more-
over, one must take care to ensure convergence of the
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FIG. 1. The correlation function with one eigenvalue fixed at
~�2 � 4, for F��iso

����
V
p
� 0:0717 (full) and for �iso � 0

(dashed). The � function peak at �1 � ~�2 for �iso � 0 has not
been shown.
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partition function. As the purely imaginary chemical po-
tential does not affect the Hermiticity of the Dirac operator
this does not lead to additional constraints (as opposed to
the case of a real chemical potential [13,14]). The result for
the bosonic partition function is
Z�1�m1; m2; i�iso� � e2VF2
��
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1
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The quenched susceptibility now follows from Eq. (12),
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Taking the discontinuity as in Eq. (6) we obtain the desired correlation function,
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where we have defined the scaling variables �1 � �1�V
and ~�2 � ~�2�V. The spectacular change in this correlation
function when �iso is made nonzero can be seen in Fig. 1.
A fit to Monte Carlo data with �iso � 0 using Eq. (15) will
then readily produce a measurement of F�.

The pronounced effect of�iso � 0 in the region where �
is close to ~� is not difficult to explain. For �iso � 0 both �
and ~� are eigenvalues of D6 , and this leads to a � function
contribution to the correlation function stemming from the
noncompact integral in the bosonic partition function (13),
which diverges for �iso � 0 at �1 � ~�2. In this way we
recover from Eq. (15) the known result [21],
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The � function is not shown in the�iso � 0 curve in Fig. 1.
When �iso is nonzero, � is an eigenvalue of D� while ~� is
an eigenvalue of D�; the effect of �iso is therefore to
smooth out the � function into a pronounced peak for �
near ~�.
III. NUMERICAL SIMULATIONS

To test the method, we have performed simulations of
quenched QCD using staggered fermions for V � 84

(�iso � 0:01) and V � 124 (�iso � 0:002). We have
chosen to work with the standard Wilson plaquette action
at � � 5:7 and with conventional, unimproved Dirac op-
erators. In this way we are sure to have no ambiguities in
the identification of the coset space of spontaneous chiral
symmetry breaking, which here is U�2n�. The analysis
presented above is based on the coset space SU�2n�. We
can account for the extra U�1� factor here by setting 	 � 0
in the formulas and comparing to numerical results without
fixed topology (see, for example, the first paper of
Ref. [6]). Simulation at weaker coupling or the use of
improved actions and Dirac operators will induce a cross-
over from 	 � 0 behavior to an explicit dependence on
-3
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FIG. 3. The integrated correlation function (17) with ~�min � 4
and ~�max � 43 . The value F��iso
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V
p
� 0:0717 is the best fit.
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topological index [22], but it is not our purpose to explore
that aspect here.

We include a chemical potential on the lattice in the
standard way [23]. For an imaginary chemical potential
this amounts to including a constant Abelian gauge field
with nonvanishing timelike component � only. It leaves
the Hermiticity properties of the Dirac operator un-
changed, allowing the computation of the lowest-lying
eigenvalues with the Ritz variational algorithm [24].

When extracting physical observables we must keep in
mind that the continuum theory describes 4 tastes of quark.
In our simulation the staggered Dirac matrix is 4 times
larger than that of a single continuum quark. The statistical
properties of the eigenvalue spectrum of that matrix behave
as in a theory of one species in a volume 4 times as big.
Therefore, to determine the values of F� and � from the
staggered eigenvalue spectrum we replace V in the ana-
lytical predictions by 4V.

First we measure �. We can do that by fitting individual
eigenvalue distributions to the analytical expressions [17].
It is a nontrivial prediction that k-point correlation func-
tions of D� and D� separately are independent of �iso in
the microscopic limit. This follows from Eq. (7) by taking
B proportional to the unit matrix, and it ensures, in par-
ticular, that individual eigenvalue distributions are
�iso-independent in this limit [25]. Alternatively, one can
use the 2-point correlation functions of either D� or D�.
As follows from the argument above, these 2-point func-
tions are �iso-independent, and they can provide indepen-
dent determinations of � [26]. Using the latter approach
for our 124 data, a best fit gives in lattice units the bare
value � � 0:0634�3� with �2=dof � 0:55. This is consis-
tent with what we find by fitting either individual eigen-
value distributions or the overall flat eigenvalue plateau.
We can then determine F� by a fit of the measured corre-
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FIG. 2. The correlation function with fixed ~�2 � 4 measured
on our 84 lattice. The curves correspond to (15) with
F��iso

����
V
p
� 0:159 (full) and �iso � 0 (dashed).

091501
lation function (1) to the analytical result (15). In Fig. 2 we
show the data for V � 84 and compare them to the ana-
lytical curves using the best fit to F� from the 124 data, as
explained below. On V � 84 with � � 5:7 only the first
few eigenvalues have distributions in agreement with the
predictions of the � regime. For this reason we base our
measured values of � and F� on our 124 lattice
simulations.

Requiring that the eigenvalue ~�2 fall within one bin
around a fixed value (here ~�2 � 4) means that a large
fraction of the lattice configurations is obviously not
used. In order to improve the statistics we consider the
integrated correlation function

�int�x; i�iso� �
Z ~�max

~�min

d ~���x� ~�; ~�; i�iso�: (17)

In Fig. 3 we show this integrated correlation function as
measured on our 124 ensemble.

The best fit gives us F� � 0:1245�18� in bare lattice
units with a �2=dof � 0:33. This value is consistent with
the result F� � 0:118�7� of Ref. [27], which uses the same
action and gauge coupling � � 5:7 (but of course a differ-
ent method for extracting F�).

It is well known that the unimproved staggered action
leads to serious scaling violations. To quote a result in
physical units would, at this value of �, require the use
of improvement methods to reduce lattice artifacts. This is
beyond the scope of this paper.
IV. SUMMARY

We have proposed and tested a new method to measure
F� in lattice gauge theory simulations, using the pro-
nounced F� dependence of a specific 2-point correlation
function of the Dirac operator in the � regime.
-4
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We have performed quenched lattice simulations that
demonstrate excellent agreement with our analytical pre-
dictions. Our study illustrates the ease with which this
method can be implemented, and the high precision that
can be achieved.

ACKNOWLEDGMENTS

P. H. D., U. M. H. and K. S. would like to thank the Kavli
Institute of Theoretical Physics for its hospitality and NSF
091501
Grant No. PHY99-07949 for partial support. The work of
B. S. was supported in part by the Israel Science
Foundation under Grant No. 222/02-1. The bulk of our
numerical simulations were carried out on an SGI Origin
2800 computer operated by the High Performance
Computing Unit of the Israel Inter-University
Computation Center. Our computer code is based on the
public lattice gauge theory code of the MILC
Collaboration [28].
[1] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A560,
306 (1993); M. E. Berbenni-Bitsch et al., Nucl. Phys. B,
Proc. Suppl. 63, 820 (1998); P. H. Damgaard, U. M. Heller,
and A. Krasnitz, Phys. Lett. B 445, 366 (1999).

[2] See e.g. K. B. Efetov, Supersymmetry in Disorder and
Chaos (Cambridge University Press, Cambridge,
England, 1997).

[3] For a recent study see C. Aubin et al., Phys. Rev. D 70,
114501 (2004).

[4] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987);
Phys. Lett. B 188, 477 (1987); H. Leutwyler and A.
Smilga, Phys. Rev. D 46, 5607 (1992).

[5] H. Neuberger, Phys. Rev. Lett. 60, 889 (1988); Nucl. Phys.
B300, 180 (1988).

[6] P. H. Damgaard, Nucl. Phys. B608, 162 (2001); P. H.
Damgaard, M. C. Diamantini, P. Hernandez, and K.
Jansen, Nucl. Phys. B629, 445 (2002).

[7] T. Mehen and B. C. Tiburzi, Phys. Rev. D 72, 014501
(2005).

[8] F. C. Hansen, Nucl. Phys. B345, 685 (1990); P. H.
Damgaard et al., Nucl. Phys. B656, 226 (2003).

[9] W. Bietenholzet al., J. High Energy Phys. 02 (2004) 023;
L. Giusti et al., J. High Energy Phys. 04 (2004) 013; H.
Fukaya, S. Hashimoto, and K. Ogawa, Prog. Theor. Phys.
114, 451 (2005).

[10] J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett.
B 464, 183 (1999); D. T. Son and M. A. Stephanov, Phys.
Rev. Lett. 86, 592 (2001); K. Splittorff, D. Toublan, and
J. J. M. Verbaarschot, Nucl. Phys. B620, 290 (2002); Nucl.
Phys. B639, 524 (2002).

[11] D. Toublan and J. J. M. Verbaarschot, Int. J. Mod. Phys. B
15, 1404 (2001).

[12] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004).
[13] K. Splittorff and J. J. M. Verbaarschot, Nucl. Phys. B683,

467 (2004).
[14] G. Akemann, J. C. Osborn, K. Splittorff, and J. J. M.
Verbaarschot, Nucl. Phys. B712, 287 (2005).

[15] J. C. Osborn, K. Splittorff, and J. J. M. Verbaarschot, Phys.
Rev. Lett. 94, 202001 (2005).

[16] J. Osborn and T. Wettig, hep-lat/0510115.
[17] P. H. Damgaard and S. M. Nishigaki, Phys. Rev. D 63,

045012 (2001).
[18] See for example: P. H. Damgaard and K. Splittorff, Phys.

Rev. D 62, 054509 (2000).
[19] E. Kanzieper, Phys. Rev. Lett. 89, 250201 (2002).
[20] K. Splittorff and J. J. M. Verbaarschot, Phys. Rev. Lett. 90,

041601 (2003); Nucl. Phys. B695, 84 (2004).
[21] A. V. Andreev, B. D. Simons, and N. Taniguchi, B432, 487

(1994); D. Toublan and J. J. M. Verbaarschot, Nucl. Phys.
B603, 343 (2001).

[22] P. H. Damgaard, U. M. Heller, R. Niclasen, and K.
Rummukainen, Phys. Rev. D 61, 014501 (2000); E.
Follana, A. Hart, and C. T. H. Davies, Phys. Rev. Lett.
93, 241601 (2004); S. Durr, C. Hoelbling, and U. Wenger,
Phys. Rev. D 70, 094502 (2004); K. Y. Wong and R. M.
Woloshyn, Phys. Rev. D 71, 094508 (2005); E. Follana, A.
Hart, C. T. H. Davies, and Q. Mason, Phys. Rev. D 72,
054501 (2005).

[23] P. Hasenfratz and F. Karsch, Phys. Lett. B 125, 308 (1983).
[24] T. Kalkreuter and H. Simma, Comput. Phys. Commun. 93,

33 (1996).
[25] G. Akemann and P. H. Damgaard, Phys. Lett. B 583, 199

(2004).
[26] The 2-point function for �iso � 0 was first measured by

M. E. Berbenni-Bitsch et al., Phys. Rev. Lett. 80, 1146
(1998).

[27] R. Gupta, G. Guralnik, G. W. Kilcup, and S. R. Sharpe,
Phys. Rev. D 43, 2003 (1991).

[28] Available from http://www.physics.utah.edu/~detar/milc/
-5


