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48University of Mississippi, University, Mississippi 38677, USA
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Data samples corresponding to the isospin-violating decay D��s ! D�s �
0 and the decays D��s ! D�s �,

D�0 ! D0�0 and D�0 ! D0� are reconstructed using 90:4 fb�1 of data recorded by the BABAR detector
at the PEP-II asymmetric-energy e�e� collider. The following branching ratios are extracted: ��D��s !
D�s �

0�=��D��s ! D�s �� � 0:062� 0:005�stat:� � 0:006�syst:� and ��D�0 ! D0�0�=��D�0 ! D0�� �
1:74� 0:02�stat:� � 0:13�syst:�. Both measurements represent significant improvements over present
world averages.

DOI: 10.1103/PhysRevD.72.091101 PACS numbers: 13.25.Ft, 12.39.Fe, 13.40.Hq
The decay of any higher-mass c�s meson into D�s �0 [1]
violates isospin conservation, thus guaranteeing a small
partial width. The amount of suppression is a matter of
large theoretical uncertainty according to most models of
charm-meson radiative decay [2]. One such model [3]
suggests that the decay D��s ! D�s �

0 may proceed via
�0-� mixing. Even including such considerations, the
radiative decay D��s ! D�s � is still expected to dominate.
The existence of isospin-violating decay modes such as
D��s !D�s �0 is particularly relevant given the recent ob-
servations of two narrow new D�s meson states [4,5]. In
particular, in contrast to the D��s meson, there is no ex-
perimental evidence for the electromagnetic decay of the
DsJ�2317��; current measurements place the branching
ratio to D��s � at less than 18% at 90% confidence level
(CL) [6].

Besides the D�s �0 and D�s � final states, no other decay
modes of the D��s have been observed and none are ex-
pected to occur at a significant level. Only one previous ob-
servation of the decay D��s !D�s �

0 is recorded in the lit-
erature, yielding a value of 0:062�0:020

�0:018�stat:��0:022�syst:�
for the branching ratio ��D��s ! D�s �

0�=��D��s ! D�s ��
[7]. The analysis presented here confirms this observation
and provides a more precise measurement of this branching
ratio.

The decay D�0 ! D0�0, in contrast to D��s ! D�s �0,
does not violate isospin conservation and the world average
for the branching ratio is ��D�0 ! D0�0�=��D�0 !
D0�� � 1:625� 0:20 [8]. As for the D��s meson, the �0

and � decay modes are expected to saturate the decay
width of the D�0 meson.

The results presented here are based on data recorded by
the BABAR detector at the PEP-II asymmetric-energy
e�e� storage rings. The data sample, corresponding to
an integrated luminosity of 90:4 fb�1, was recorded at
and approximately 40 MeV below the ��4S� resonance.
Because of the unequal beam energies, the e�e� center-of-
mass system is boosted relative to the laboratory frame
with �� � 0:55. The BABAR detector and trigger are
described in detail elsewhere [9]. Charged particles are
Università di Perugia, Dipartimento di Fisica,

Università della Basilicata, Potenza, Italy
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detected and their momenta measured by a silicon vertex
tracker (SVT) consisting of five layers of double-sided
silicon strip sensors and a cylindrical 40-layer drift cham-
ber (DCH), both operating within a 1.5 T solenoidal mag-
netic field. Charged particle identification is provided by
energy loss measurements in the SVT and DCH and by
Cherenkov light detected in an internally reflecting ring
imaging detector (DIRC). Photons are identified and their
energies measured by an electromagnetic calorimeter
(EMC) composed of 6580 CsI(Tl) crystals.

In the following paragraphs, the D��s measurement is
described first. The D�0 analysis, which uses similar pro-
cedures for signal extraction, is described afterward in less
detail.
D�s mesons are reconstructed via the decay sequence

D�s ! ���, �! K�K�. Kaons are identified by com-
bining the energy deposited in the SVT and DCH with the
information from the DIRC. Tracks not identified as kaons
according to the particle identification criteria are consid-
ered to be pions. All K�K��� candidates are required to
fit successfully to a common vertex. Only combinations
with a K�K� invariant mass within 8 MeV=c2 of the
nominal � mass [8] are retained.

In e�e� annihilation to charm quarks, the c �c fragmen-
tation process is characterized by the production of high-
momentum (leading) charm hadrons. This property is ex-
ploited in order to reduce substantially the combinatorial
background by retaining only those ��� candidates with
scaled momentum xp greater than 0.6, where xp is defined
as xp�D�s � � p��D�s �=p

�
max�D

�
s � and p��D�s � is the mo-

mentum of the D�s candidates in the e�e�center-of-mass

frame with p�max�D�s � �
�����������������������������������
E�2beam �m�D

�
s �

2
q

as its maxi-
mum value.

The longitudinal polarization of the � meson in the D�s
rest frame is used to reduce background by requiring that
the absolute value of the cosine of the helicity angle,
defined as the angle between the � momentum direction
in the D�s rest frame and the momentum direction of either
of the kaons in the � rest frame, is 0.3 or greater.

The resulting K�K��� invariant mass distribution is
shown in Fig. 1. This distribution can be modeled by the
sum of two Gaussian functions (to represent the signal) and
a third-order polynomial (to represent the background).
The resulting binned �2 fit yields 73 500� 300 events
(statistical errors only). A D�s candidate is retained if its
-4
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FIG. 2. The D��s signals: (a) m�K�K����0��m�K�K����;
(b) m�K�K����� �m�K�K����. The dots represent data
points. The solid curve shows the fitted function. The dashed
curve indicates the portion of the fit associated with background.
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FIG. 1. The K�K��� mass distribution. The dots represent
data points with error bars corresponding to statistical uncertain-
ties (these uncertainties are small enough that the error bars are
difficult to distinguish). The solid curve shows the fitted func-
tion. The dashed curve indicates the background. D�s candidates
are defined by the region between the vertical dotted lines.
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invariant mass is within 12 MeV=c2 of the nominal D�s
mass [8].

A �0 candidate is reconstructed by combining two
photon candidates that fulfill the following requirements.
Each photon candidate is identified by a calorimeter cluster
that is not associated with a charged track and has an
energy in the laboratory frame of at least 45 MeV.
Additionally, to help remove the background from had-
ronic showers, the fractional lateral width [10], which
describes the shape of the shower in the calorimeter, is
required to be less than 0.55. The fiducial acceptance of
photon candidates is restricted by the angular range of the
EMC (� 0:92 & cos� & 0:89, where � is the polar angle
in the center-of-mass frame [9]).

A �0 candidate is retained if it has a momentum p� in
the e�e� center-of-mass frame greater than 150 MeV=c.
Furthermore, the absolute value of the cosine of the decay
angle ��, which is defined as the angle between the direc-
tion of one of the photons in the �0 rest frame and the
direction of the �0 candidate in the center-of-mass frame,
is required to be less than 0.85. For �0 ! �� decay, the
cos�� distribution is uniform, while it peaks near �1 for
random �� combinations.

Only �� pairs within a specified mass interval are
retained. This interval is defined by the values of mass at
which the �0 signal portion of a function fitted to the ��
mass distribution falls below 0.2 times its maximum value.
This requirement accommodates the asymmetric shape of
the �� mass distribution and takes into account variations
in detector calibration. A kinematic fit is applied to the
surviving �� pairs to constrain their mass to the nominal
�0 mass.
091101
After combining the D�s and �0 candidates in a search
for the decay D��s ! D�s �

0, a fit is applied to the distri-
bution of the mass difference �m�D�s �0� �
m�K�K����0� �m�K�K����. The fit function is the
sum of a double Gaussian function to represent the signal
and the function
f1��m� � N
�
1� exp

�
�

�m�m��0�

�

��

	 ��m2 � a�m� b�; (1)
where m��0� is the �0 mass, and N, �, a, and b are free fit
parameters to describe the background. The exponential
term models the kinematic threshold; this threshold term
has little influence on the background shape near the signal
region. The result of this fit is shown in Fig. 2(a). A signal
event yield of 560� 40 (statistical error only) is obtained.

For the reconstruction of the decay D��s ! D�s �, a
calorimeter cluster that is not associated with a charged
track is considered a photon candidate if it fulfills the
following requirements: the energy must be 50 MeV or
greater in the laboratory frame and 100 MeV or greater in
the e�e� center-of-mass frame and the fractional lateral
width must be less than 0.8. To reduce the background due
to photons from �0 decay, a photon candidate is discarded
if it forms a �0 candidate with any other photon candidate
in the same event. In this case, a �� combination is
considered a �0 candidate if the invariant mass is in the
range 115<m����< 155 MeV=c2 and if the total energy
is at least 200 MeV in the e�e� center-of-mass frame.

To obtain the D��s ! D�s � signal event yield, a fit is
applied to the distribution of the mass difference
�m�D�s �� � m�K�K����� �m�K�K����. The fit
function is a sum of a third-order polynomial to model
the background plus a function first introduced by the
Crystal Ball collaboration [11] for the signal
-5
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FIG. 3. The measured values of
(a) ��D��s !D�s �

0�=��D��s !D�s �� and
(b) ��D�0!D0�0�=��D�0!D0�� in intervals of center-of-
mass momentum p�. The error bars indicate the associated
statistical error. The solid line (dashed line) is the result of a
fit to a constant (first-order polynomial). The dotted line is the
result from the entire sample integrated over p�.

TABLE I. A summary of the relative systematic uncertainties
in the branching ratio measurements.

Relative Uncertainty (%)
Sources ��D��s !D�s �0�

��D��s !D�s ��
��D�0!D0�0�
��D�0!D0��

Background shape 4.8 0.1
Monte Carlo statistics 5.0 5.4
Signal model 3.6 3.8
p� dependence 6.8 2.8

Quadrature Sum 10.2 7.2
whereN,�,	, n, and
 are free fit parameters and A and B
are chosen such that the function and its first derivative are
continuous at ��m���=	 � 
. The fit result is shown in
Fig. 2(b). A signal yield of 15 600� 200 events (statistical
error only) is obtained.

The reconstruction efficiencies are determined using a
Monte Carlo simulation based on 30 000 events for each
D�s decay mode. The simulated events are analyzed using
the same procedure as for real data. By calculating the ratio
of the number of reconstructed to generated events, effi-
ciencies of ��D�s �

0� � 0:041� 0:002 and ��D�s �� �
0:071� 0:002 are found for the two D��s decay modes.
The efficiency ratio is ��D�s �0�=��D�s �� � 0:58� 0:03
(statistical error only).

Various sources of systematic uncertainties are studied.
To verify that the Monte Carlo events model the data
correctly, � decays with one or two �0 mesons in the final
state are studied to obtain energy-dependent Monte Carlo
efficiency corrections for �0 mesons and photons.
Although this procedure indicates that no correction is
necessary, the errors on the correction functions represent
uncertainties in the Monte Carlo model and contribute a
systematic uncertainty of 3.6%.

To test for uncertainties in the background shape of the
mass difference distributions, upper and lower sidebands in
the K�K��� and �� mass distributions are considered.
Positive signal yields are expected in these sidebands from
either misreconstructed or unassociated �0 candidates. To
measure these yields, the same fit functions used to deter-
mine the signal yields are applied to the mass difference
distributions of the sideband samples. Any discrepancy in
yield so obtained from data and Monte Carlo simulation is
considered a systematic uncertainty (4.8%). Most of this
uncertainty is attributed to the relatively large background
in the D�s �0 decay mode.

The measurement of ��D��s ! D�s �
0�=��D��s !

D�s �� is repeated for the subsamples of candidates within
various p� intervals. By fitting either a constant function or
a first-order polynomial to the branching ratio as a function
of p�, it is possible to verify that the measured branching
ratios are independent of p� (see Fig. 3). Nevertheless, it is
assumed conservatively that any p� dependence arises
from unknown momentum dependencies of the efficiencies
that may not cancel in the branching ratios. The difference
(6.8%) between the branching ratio represented by the
constant function and the integral of the first-order poly-
nomial is therefore reported as a systematic uncertainty.

The systematic uncertainties are summarized in Table I.
Combining all contributions in quadrature, a total system-
091101
atic uncertainty of 10.2% is derived for the measurement of
��D��s ! D�s �0�=��D��s ! D�s ��.

The ratio ��D�0 ! D0�0�=��D�0 ! D0��, where
D0 ! K���, is measured using the same selection criteria
for the�0 and photon candidates as in the reconstruction of
D��s ! D�s �

0 and D��s ! D�s �. To be included in the
D0 ! K��� sample, a candidate K� and�� combination
must yield an acceptable fit to a common vertex and the
scaled momentum xp of the resultingD0 candidate must be
0.6 or greater. Fitting the sum of a double Gaussian func-
tion and a third-order polynomial to the resulting K���

invariant mass distribution (not shown) produces �996:0�
1:5� 	 103 signal events (statistical error only). A K���

combination is retained if its mass differs by less than 17
MeV=c2 from the nominal D0 mass [8].

The D0 candidates are combined with all �0 candidates;
the resulting mass difference �m�D0�0� �
m�K����0� �m�K���� is shown in Fig. 4(a). A fit
using a double Gaussian for the signal and the function
shown in Eq. (1) for the background yields 69 000� 450
signal events (statistical error only).

The D0 candidates are then combined with all photon
candidates producing the distribution of the mass differ-
ence �m�D0�� � m�K����� �m�K���� shown in
Fig. 4(b). In this case, the peak corresponding to D�0!
D0� signal is close to a large bump arising from the
-6



TABLE II. Summary of the results. The first errors are statis-
tical; the second represent systematic uncertainties.

��D��s ! D�s �
0�=��D��s ! D�s �� 0.062 0.005 0.006

B�D��s ! D�s �
0� 0.059 0.004 0.006

B�D��s ! D�s �� 0.942 0.004 0.006

��D�0 ! D0�0�=��D�0 ! D0�� 1.74 0.02 0.13
B�D�0 ! D0�0� 0.635 0.003 0.017
B�D�0 ! D0�� 0.365 0.003 0.017
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FIG. 4. The D�0 signals: (a) m�K����0� �m�K���� and
(b) m�K����� �m�K����. The dots represent data points.
The solid curve shows the fitted function. The dashed curve
indicates the portion of the fit associated with background.

MEASUREMENT OF THE BRANCHING RATIOS. . . PHYSICAL REVIEW D 72, 091101 (2005)

RAPID COMMUNICATIONS
reflection ofD�0 ! D0�0 in which one photon is produced
by �0 decay (the same reflection appears in D��s decay but
with a lower rate and less distinctive shape). Most of this
bump is avoided by limiting the analysis to �m> 95
MeV=c2. The remainder of the background is modeled
using the function

f3��m� � N
�
1� exp

�
�

�m�m��0�

�

��

	 ��m2 � a�m� b�: (3)

[Note that this function is similar to that of Eq. (1), but
differs in the sign of the exponential term.] The signal is
modeled by the Crystal Ball function [Eq. (2)]. The result-
ing fitted signal consists of 67 880� 670 events (statistical
errors only).

Efficiencies and systematic uncertainties are determined
using the procedures described for ��D��s !
D�s �

0�=��D��s ! D�s ��. Efficiencies of ��D0�0� �
0:037� 0:002 and ��D0�� � 0:064� 0:002 and an effi-
ciency ratio of ��D0�0�=��D0�� � 0:58� 0:03 are found.
The latter is consistent with the value of
��D�s �0�=��D�s ��. The ratio ��D�0 ! D0�0�=��D�0 !
D0�� � 1:74� 0:02�stat:� � 0:13�syst:� is obtained.

The branching ratio measurements are summarized in
Table II. By assuming that the D��s meson decays only to
D�s �

0 and D�s �, and that the D�0 meson decays only to
D0�0 and D0�, it is possible to calculate the branching
fractions, which are also listed in Table II.

In summary, the branching ratio ��D��s !
D�s �0�=��D��s ! D�s �� � 0:062� 0:005�stat:� �
091101
0:006�syst:� has been measured and is consistent with the
previous measurement [7], but has higher precision. Also
determined is the ratio ��D�0 ! D0�0�=��D�0 ! D0�� �
1:74� 0:02�stat:� � 0:13�syst:�. This result is in agree-
ment with, but is more precise than, the world average [8].

It has been proposed that the decay D��s ! D�s �
0 pro-

ceeds via �� �0 mixing and calculations based on Chiral
perturbation theory [3] predict B�D��s ! D�s �0� �
1%–3% based on current measurements of B�D�� !
D��� � 1:6� 0:4% [8]. Newer theoretical estimates in a
relativistic quark model [2] predict B�D��s ! D�s �0� �
13%, somewhat larger than our measurement.
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