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Comment on ‘‘Damping of tensor modes in cosmology’’
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We provide an analytic solution to the short wave length limit of the integro-differential equation
describing the damping of the tensor modes of gravitational waves.
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In a recent paper [1], Weinberg gives an integro-
differential equation for the propagation of cosmological
gravitational waves. In particular he writes an equation for
the perturbation to the metric hij�x; t� and then defines
��u� as

hij�u� � hij�0���u�; (1)

where u is the conformal time multiplied by the wave-
number

u � k
Z t dt0

a�t0�
: (2)

��u� satisfies an integro-differential equation which for
short wavelengths (wavelengths which entered the horizon
while the universe was still radiation dominated) is given
by [1,2]

u2�00�u� � 2u�0�u� � u2��u�

� �24f��0�
Z u

0
dUK�u�U��0�U�: (3)

The fraction of the energy density in neutrinos is f��0� �
0:40 523 and the kernel K will be discussed in detail below.
The initial conditions are

��0� � 1; �0�0� � 0: (4)

In the absence of free-streaming neutrinos the right-hand
side of Eq. (3) is zero and ��u� � sin�u�=u. The suppres-
sion of these modes is due to the presence of the neutrinos
where the solution of Eq. (3) approaches, for u >>1,

��u� ���! A sin�u� ��=u; (5)

and the value of A2 is the quantitative measure of that
suppression. After deriving the above Weinberg says ‘‘A
numerical solution of Eqs. (22) and (23) [our Eqs. (3) and
(4)] shows that ��u� follows the f� � 0 solution pretty
accurately until u � 1, when the perturbation enters the
horizon, and thereafter rapidly approaches the asymptotic
form (Eq. (5)), with A � 0:8026 and � very small.’’
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Our purpose here is to provide an analytic solution of
Eqs. (3) and (4) so that readers can verify the quoted
statement for themselves.

The importance of these results is shown by the remain-
der of the quote ‘‘This asymptotic form provides the initial
condition for the later period when the matter energy
density becomes first comparable to and then greater than
that of radiation, so the effect of neutrino damping at these
later times is still only to reduce the tensor amplitude by
the same factor A � 0:8026. Hence, for wavelengths that
enter the horizon after electron-positron annihilation and
well before radiation-matter equality, all quadratic effects
of the tensor modes in the cosmic microwave background,
such as the tensor contribution to the temperature multi-
pole coefficients C‘ and the whole of the ‘‘B-B’’ polariza-
tion multipole coefficients C‘B, are 35:6% less than they
would be without the damping due to free-streaming
neutrinos.’’

A solution to Eq. (3) is a series of spherical Bessel
functions [3]

��u� �
X1
n�0

anjn�u�: (6)

Inserting Eq. (6) in the left-hand side of Eq. (3) and using
the differential equation for spherical Bessel functions
leaves

X1
n�0

n�n� 1�anjn�u�: (7)

The right-hand side of Eq. (3) requires more work. The
kernel is itself a sum of spherical Bessel functions

K�u� �
1

16

Z 1

�1
dx�1� x2�2eixu (8)

� �
sinu

u3 �
3 cosu

u4 �
3 sinu

u5
(9)

�
1

15

�
j0�u� �

10

7
j2�u� �

3

7
j4�u�

�
; (10)

and the derivative of ��u� is given by
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�0�u� �
X1
n�0

anj0n�u� (11)

�
X1
n�0

an
�njn�1�u� � �n� 1�jn�1�u��

�2n� 1�
: (12)

So the right-hand side of Eq. (3) is �CI�u� with C �
1:6f��0� � 0:648 368 and I�u� given by

I�u� �
X

m�0;2;4

dm
X1
n�0

an
�2n� 1�

In;m�u� (13)

where

In;m�u� �
Z u

0
dUjm�u�U��njn�1�U� � �n� 1�jn�1�U��:

(14)

The dm are given by Eq. (10) where we have factored out a
1=15. Evaluating In;m is an exercise in using Abramowitz
and Stegun [4](AS). First, use the fact that the Fourier
transform of a Legendre polynomial is a spherical Bessel
function (AS 10.1.14)

jn�x� �
��i�n

2

Z 1

�1
dseixsPn�s� (15)

to replace both Bessel functions in Eq. (14). This makes the
integral over U trivial and we have

In;m�u� �
��i�n�m

4

Z 1

�1
ds
Z 1

�1
dt
eitu � eisu

t� s
Pm�s�

	 �nPn�1�t� � �n� 1�Pn�1�t��: (16)

Now use the definition of the Legendre function of the
second kind,

Qn�z� �
1

2

Z 1

�1
dx�z� x��1Pn�x�; (17)

(AS 8.8.3), to evaluate the integral in Eq. (16) over the
variable that does not appear in the exponent (s in the first
term, t in the second) to obtain

In;m�u� �
��i�n�m

2

Z 1

�1
dteitufQm�t��nPn�1�t�

� �n� 1�Pn�1�t�� � Pm�t��nQn�1�t�

� �n� 1�Qn�1�t��g: (18)

Next, by replacing the remaining exponential with the
familiar expression from quantum mechanical scattering,

eitu �
X
‘

�2‘� 1�i‘j‘�u�P‘�t�; (19)

the expression for In;m�u� becomes
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In;m�u� �
X
‘

�2‘� 1�

2
��i�n�m�‘j‘�u�

�Z 1

�1
dtP‘�t�Qm�t�

	 �nPn�1�t� � �n� 1�Pn�1�t��

�
Z 1

�1
dtP‘�t�Pm�t��nQn�1�t�

� �n� 1�Qn�1�t��
�
: (20)

Equation (20) can be simplified using (AS 8.6.19),

Qm�x� �
1

2
Pm�x� ln

1� x
1� x

�Wm�1�x�; (21)

where

Wm�1�x� �
X��m�1�=2�

k�0

2m� 4k� 1

�2k� 1��m� k�
Pm�2k�1�x�; (22)

and the formula

P‘�x�Pm�x� �
X‘�m

L�j‘�mj

jh‘; 0; m; 0jL; 0ij2PL�x� (23)

to express P‘�x�Pm�x� in terms of PL�x�’s and, with the aid
of Eq. (21), P‘�x�Qm�x� in terms of QL�x�’s as

P‘�x�Qm�x� �
X‘�m

L�j‘�mj

�jh‘; 0; m; 0jL; 0ij2�QL�x�

�WL�1�x��� � P‘�x�Wm�1�x�: (24)

Finally, the terms in Eq. (20) involving the products of
Pn�x�’s and Qm�x�’s cancel using (AS 8.14.10),

Z 1

�1
dx�QL�x�Pm
1�x� � PL�x�Qm
1�x�� � 0; (25)

and In;m�u� reduces to

In;m�u� �
X
‘

2‘� 1

2
��i�n�m�‘j‘�u�

	

�Z 1

�1
dt

X‘�m
L�j‘�mj

jh‘; 0; m; 0jL; 0ij2WL�1�t�

	 �nPn�1�t� � �n� 1�Pn�1�t��

�
Z 1

�1
dtP‘�t�Wm�1�t��nPn�1�t�

� �n� 1�Pn�1�t��
�

(26)

The contributions to the coefficient of each j‘�u� in
Eq. (26) can be straightforwardly evaluated; those in the
sum by directly using orthogonality and the remaining
terms by expressing the product of two P‘’s as a sum of
P‘’s and again using orthogonality. The orthogonality of
the Legendre functions means that the ‘ which is summed
over in Eq. (26) can only take on the values n� 2k where
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k � 0; 1; 2; � � � so we replace

X
m�0;2;4

dm
2n� 1

In;m�u�

with

X1
k�0

cn;kjn�2k�u�;

i.e., the sum over ‘ in In;m�u� is replaced by a sum over k
and each cn;k is the sum of the contributions from the three
terms in the kernel, m � 0; 2; 4. Setting Eq. (7) equal to
�CI�u� we have

X1
n�0

n�n� 1�anjn�u� � �C
X1
n;k�0

ancn;kjn�2k�u�; (27)

where the cn;k are known numbers and we can find the
expansion coefficients, an, recursively by equating the
coefficients of each order Bessel function in Eq. (27).

The coefficients of j1�u� in Eq. (27) give

2a1 � �Cc1;0a1; (28)

where cn;0 is equal to 1� �n;0 so c1;0 is 1. The only
solution of this equation is a1 � 0. This ensures that the
second of the initial conditions, Eq. (4), is satisfied. The
equality of the coefficient of j3�u� shows that a3 is propor-
tional to a1. Similarly a5 is a linear combination of a1 and
a3, a7 a linear combination of a1, a3, and a5; � � � . Thus the
coefficients of all the odd order Bessel functions in Eq. (6)
are zero. There is no mixing between the coefficients of the
odd order Bessel functions and those of even order because
the Clebsch-Gordan coefficients ha; 0; b; 0jc; 0i are zero if
a� b� c is an odd number.

Thus the only nonzero an in Eq. (6) are those with even
n. a0 does not appear in Eq. (27) but is determined by the
first of the initial conditions of Eq. (4), which fixes it to be
unity. The cn;k necessary to find a2; � � � ; a12 are shown in
Table I.
TABLE I. The coefficients needed for Eq. (27) to evaluate
Eq. (6) up to n � 12.

n cn;0 cn;2 cn;4 cn;6 cn;8 cn;10 cn;12

0 0 � 5
2 � 3

2 � 13
60

17
735 � 1

168
125

58 212

2 1 � 3
4 � 13

21 � 17
168

1
84 � 5

1512

4 1 � 143
210 � 221

420 � 41
504

425
45 738

6 1 � 255
392 � 17

35 � 93 575
1 280 664

8 1 � 19
30 � 25

54

10 1 � 575
924

12 1
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The equations for these an can be read off from Eq. (27).
Using a0 � 1, we have

a2 � �C
c0;2

6� C

a4 � �C
c0;4 � a2c2;2

20� C

..

.

a2n � �
C
Pn�1
k�0 a2kc2k;2n�2k

2n�2n� 1� � C
:

(29)

Numerically we find that the an decrease very quickly

a0 � 1:0 a2 � 0:243 807 a4 � 5:28 424	 10�2

a6 � 6:13 545	 10�3 a8 � 2:97 534	 10�4

a10 � 6:16 273	 10�5 a12 � �4:78 885	 10�6:

For large argument, all of the even order Bessel func-
tions go as 
 sinx=x so the A in Eq. (5) is

A �
X5

n�0

��1�na2n � 0:80 313: (30)

Since there are no odd order Bessel functions in the ex-
pansion, the phase � in Eq. (5) is zero.

The extent to which ��u� departs from the f��0� � 0
solution j0�u� and approaches the asymptotic solution
0:80 313j0�u� is illustrated in Fig. 1 We see that ��u� is
FIG. 1 (color online). The solution ��u� to Eq. (3) (solid) is
compared to the f� � 0 solution j0�u� (dot-dashed) and the
asymptotic solution 0:80 313j0�u� (dashed).
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discernibly different from j0�u� by u � 1:5� 2 and that it
is essentially identical to 0:80 313j0�u� by u � 5.

We wish to thank S. Weinberg for his comments and S.
Radford for a careful reading of the manuscript. This
research was supported in part by the National Science
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Note added in proof.—After submitting this manuscript
for publication, we were made aware of a paper by S.
Bashinsky, astro-ph/0505502, in which a first order ap-
proximation to the damping factor is derived.
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