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Spacetime realization of �-Poincaré algebra
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We study a Hamiltonian realization of the phase space of �-Poincaré algebra that yields a definition of
velocity consistent with the deformed Lorentz symmetry. We are also able to determine the laws of
transformation of spacetime coordinates and to define an invariant spacetime metric, discussing some
possible experimental consequences.
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Doubly special relativity (DSR) is a class of models
which aim to give an effective description of quantum
gravity effects on particle kinematics at energies near the
Planck scale, �� 1019 GeV, by postulating a nonlinear
(deformed) action of the Lorentz group on momentum
space [1]. In spite of the recent advances in the under-
standing of this proposal, some problems are still open, as
for example what should be the realization of the theory in
position space. Related to this is the problem of defining
the velocity and the dynamics of a particle in a way
consistent with the deformed Lorentz transformations.

In a recent paper [2], we have proposed a method for
introducing a Hamiltonian structure for DSR models in
such a way that the velocity of a particle, defined classi-
cally in terms of the proper-time derivatives of the coor-
dinates as v � _xi= _x0, coincides with the definition
proposed in Ref. [3], based on the observation that the
velocity can be viewed as the parameter of the (deformed)
boosts. The formalism of Ref. [2] also induces in a natural
way a realization of the deformed Lorentz symmetry in
position space.

Our prescription worked well for the model of Ref. [4],
but led to inconsistencies in the case of the �-Poincaré
model of Ref. [5]. In particular, the expression for the
velocity derived in [2] did not transform in the correct
way and consequently it was not possible to define an
invariant line element. In [6] it was noticed that this prob-
lem can be solved in general by imposing further con-
straints on the symplectic structure.

In this note we wish to show how the results of [6] can be
applied also to the case of the �-Poincaré model. We refer
to [2,6] for further motivations and technical details. For
simplicity, we work in 1� 1 dimensions. We denote
the position and the momentum of a particle as qa and
pa, a � 0, 1.

The �-Poincaré model [5] is defined by the following
nonlinear transformation law for the momentum of a par-
ticle under a boost of parameter � � tanhv:
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In infinitesimal form the transformation law (1) reads
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The Hamiltonian for a free particle can be identified
with the Casimir invariant
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The physical mass M of the particle, i.e. its energy at rest,
is related to m by m � � sinh�M=��.

The Hamiltonian is not uniquely defined. For example,
in Ref. [7] it was chosen as

~H �
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�2

�
; (5)

which is related to ours by H � � ~H2 � �2�=2m.
It is well-known that in DSR models the momentum pa

can be related by a nonlinear transformation to an unphys-
ical momentum �a that transforms linearly under de-
formed Lorentz transformations [8]. In our case,
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�
; �1 � ep0=�p1:

(6)

According to Ref. [3], the definition of the velocity v
compatible with its role of parameter of the Lorentz trans-
-1 © 2005 The American Physical Society
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1In view of the previous argument, this seems to be the most
natural choice for the line element. If one simply requires
invariance under deformed Lorentz transformations, one may
multiply d�2 by any function of m. An especially interesting
choice is for example d�2 � e2�p0�M�=�, which reduces to the
proper time in the rest frame of the particle (see below).

2We adopt this approximation in order to simplify the dis-
cussion, but one can of course always use the exact formula.
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formations is then

v �
�1

�0
�

2p1=�

1� e�2p0=� � p2
1=�

2
: (7)

If one postulates the standard �-Poincaré symplectic
structure [2,7]

!00 � 1; !01 � �
p1

�
; !10 � 0;

!11 � �1;
(8)

with!ab � fqa; pbg, this expression for the velocity can be
obtained from the basic definition v � _q1= _q0, where _qa �
dqa=d� are the derivatives of the coordinates with respect
to the time parameter � that follow from the Hamilton
equations.

However, one may choose different Poisson brackets
leading to the same expression for the velocity. In particu-
lar, in [6] it was shown that in order for the velocity to
transform in the correct way under deformed boosts, one
must impose some further conditions on the !ab. When
these conditions hold, it is also possible to define a
(momentum-dependent) metric invariant under deformed
Lorentz transformations. In the present case, the conditions
of [6] are not satisfied by (8), but rather by
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Given the symplectic structure (9), the Jacobi identities
imply that the coordinates obey nontrivial Poisson brackets
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and transform as
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Moreover, the Hamilton equations arising from (4) and
(9) read
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from which one can recover the velocity (7). From (12),
making use of (4), one can also derive an expression for the
differential of the time parameter d� in terms of the dqi:

d�2 �
16e�2p0=�

�1� e�2p0 � p2
1=�

2�4
�dq2

0 � dq
2
1�: (13)

It is easy to check that d�2 is invariant under the infinitesi-
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mal deformed Lorentz transformations (3) and (11), and
can therefore be interpreted as the line element of the
geometry.1 Contrary to other known cases [2,6], it depends
on both components of pa, and not on the energy only.
However, comparing with (5), one may write (13) in the
simpler form

d�2 �

�
1�

m2

�2

�
�2
e2p0=��dq2

0 � dq
2
1�: (14)

It should be noticed that in our interpretation the invariant
parameter �must not be identified with the physical proper
time, but rather considered as an auxiliary variable, analo-
gous to the external evolution parameter, or fifth coordi-
nate, of Ref. [9].

The transformations (11) that, combined with (1), leave
(13) invariant can also be written in finite form as

q00 �
q0 cosh�� q1 sinh�

�
;

q01 �
q1 cosh�� q0 sinh�

�
:

(15)

Hence the coordinate transformations take the form of a
product of standard Lorentz transformations with a func-
tion of the momentum.

The transformations (15) imply a modification of the
relativistic formula for time dilation. For example, reason-
ing as in special relativity, it is easy to see that the relation
between the coordinate time T measured in the laboratory
and the coordinate time T0 measured in the rest frame of a
particle is given by

T �
�
�0
T0; (16)

where � � cosh� � �1� v2��1=2 and

�0 � ��p1 � 0� �
1

2
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2
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(17)

Hence T becomes a function both of the velocity and the
momentum, or equivalently the mass, of the particle, giv-
ing rise to corrections of order p0=� to the relativistic
formula for the measured lifetime of high-velocity parti-
cles, which in principle may be susceptible of experimental
verification. In fact, one has in first approximation in M=�,
T � ��1� M

� ��� 1��T0. If �� 1, with �M=�	 1, this
reduces to T � ��1� p0

� �T0.2 In this approximation, the
size of the corrections is given by the ratio of the energy of
-2
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the particle and the Planck energy. If one takes for � the
standard value of the Planck energy, 1019 GeV, this would
be an extremely small correction, not detectable experi-
mentally even for particles of energy of order 10 GeV.
However, in the context of some higher-dimensional theo-
ries, the effective four-dimensional Planck energy �� could
be lowered up to 103 GeV [10], and in this case corrections
might be observable.

To our knowledge, the relativistic formula for time delay
has been checked for pions with �� 2:4, with a confidence
of 0.4% [11]. This fixes a lower limit for �� to 100 GeV.
Improving the experimental limits could give evidence for
a modification of the time delay formula, only if �� is not
much greater than this value.
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We conclude by remarking that the line element (13)
may also take the role of the metric in a formulation of a
�-Poincaré extension of general relativity on the lines of
the gravity rainbow formalism of Ref. [12]. In the present
case, the metric would depend not only on the energy, but
also on the space component of the momentum (or equiv-
alently on the mass) of the particle. It must be also pointed
out that in the present framework the speed of light is
independent of the energy, contrary to the case of Ref. [12].
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