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Quasinormal modes for nonextremeDp-branes and thermalizations of super-Yang-Mills theories
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The nonextreme Dp-brane solutions in type II supergravity (in the near-horizon limit) are expected to
be dual to �p� 1�-dimensional noncompact supersymmetric Yang-Mills theories at finite temperature. We
study the translationally invariant perturbations along the branes in those backgrounds and calculate
quasinormal frequencies numerically. These frequencies should determine the thermalization time scales
in the dual Yang-Mills theories.
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I. INTRODUCTION

As with any dualities, gauge/gravity dualities or anti-de
Sitter space/conformal field theory (AdS/CFT) dualities
are interesting in two respects. On one side, supergravities
give information of dual Yang-Mills theories in strong
coupling regimes such as confinement.

On another side, Yang-Mills theories give information of
supergravities. Finite temperature gauge/gravity duals are
particularly interesting in this respect. The original finite
temperature gauge/gravity duality is the duality between
N � 4 finite temperature super-Yang-Mills theory (SYM)
and type IIB string theory in the Schwarzschild-AdS5

(SAdS5) �S5 background [1]. Thus, finite temperature
gauge/gravity dualities should address long-standing puz-
zles in gravity, such as the singularity problem [2,3] (and
references therein), the information paradox [4,5], and the
Gregory-Laflamme instability [6,7].

Unfortunately, finite temperature gauge/gravity dualities
have been less studied compared with the zero-temperature
AdS/CFT. First, many evidences of finite temperature
gauge/gravity dualities remain qualitative. Most well-
known evidences are
(1) T
he existence of the confinement-deconfinement
transition (the Hawking-Page transition in gravity
side [8])
(2) T
he large-N dependence of the partition function in
each phase
but quantitative understandings are still far. (The lack of
supersymmetry for finite temperature is obviously the main
obstacle.) Second, backgrounds other than SAdS5 have
been less studied compared with the zero-temperature
cases.1
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This paper provides one step toward these directions.
The original AdS/CFT duality is motivated by the near-
horizon limit of the extreme D3-brane. But the similar
dualities are expected for the other Dp-branes (if p < 5)
[11]. They are expected to dual to �p� 1�-dimensional
SYM. Some qualitative features have been known for these
dualities, but there are less quantitative studies. (Various
Wilson loops have been computed, e.g., see Ref. [12] and
references therein. At the zero temperature, the correlation
functions are computed in Ref. [13].)

Our aim is to compute the quasinormal frequencies (QN
frequencies) in these backgrounds. It is an important con-
cept in black hole physics and has been widely discussed in
the literature. Moreover, the QN frequencies of an AdS
black hole have an interpretation in the dual gauge theory.
Such a black hole corresponds to a thermal state in the
gauge theory. The QN frequencies measure how perturba-
tions of black holes decay. In the dual theory, this corre-
sponds to the process where a perturbation of the thermal
state decays and the system returns to the thermal equilib-
rium. Thus, QN frequencies give the prediction of the
thermalization time scale for the strongly-coupled gauge
theory [14–19].2 It has been also argued that these modes
govern the behavior of gauge theory plasmas. (See, e.g.,
Refs. [20–24] and references therein.)

The plan of the present paper is as follows. First, in the
next section, we review gauge/gravity dualities for
Dp-branes. In Sec. III, we present the perturbed equations
which are translationally invariant along the brane, and
briefly review a simple numerical method [14] to obtain
QN frequencies. In Sec. IV, we discuss the numerical
results. We conclude in Sec. V with a summary of our
results. In the appendix, we briefly review quasinormal
modes (QNMs) for readers not having sufficient back-
ground in them.
2As with all dualities, gravity and gauge theories do not have
an overlapping region of validity. Our results should be regarded
as the strong-coupling prediction of gauge theories (in the region
where D-brane description is valid. See Sec. II B.)
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3It is not known if there is a confinement/deconfinement
transition in these theories. The dual geometry seems to suggest
that there is no such a transition in these theories as well, namely,
the specific heat is always positive for (2.6), so there is no sign of
thermal instability.
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II. GAUGE/GRAVITY DUALITIES FOR
Dp-BRANES

A. Bulk geometry

In this section, we quickly review gauge/gravity dual-
ities for Dp-branes. The relevant part of type II supergrav-
ity action is given by

S �
1

�2��7l8s

Z
d10x

��������
�G
p �

e�2��R� 4�r��2�

�
1

2�p� 2�!
F2
p�2

�
: (2.1)

The nonextreme Dp-branes are written as

ds2 � Z�1=2
p ��hdt2 � d~x2

p�

� Z1=2
p �h�1dr2 � r2d�2

8�p�;

g2
se�2� � Z�p�3�=2

p ;

(2.2)

where gs � e�1 and the harmonic functions are given by

Zp�r� � 1�
�rp
r

�
7�p

; r7�p
p � gsNl

7�p
s ; (2.3)

h�r� � 1�
�
r0

r

�
7�p

: (2.4)

Let us take the ‘‘decoupling’’ limit or the ‘‘near-
horizon’’ limit. In order to take the limit, we assume r�
r0 � rp. Then, Zp � 1� �rp=r�7�p ! �rp=r�7�p.

Introducing a new coordinate ~r,

r
rp
�

�
2

5� p

�
2=�5�p�

�
~r
rp

�
2=�5�p�

; (2.5)

the metric becomes

ds2 ’

�
2

5� p

�
2
�
r
l

�
�p�3�=2

�
� ~H�~r�dt2 �

�
~r
l

�
2
d~x2

p

�
d~r2

~H�~r�
�

�
5� p

2
l
�

2
d�2

8�p

�
; (2.6)

where l � rp. ~H and � are rewritten as

~H�~r� �
�

~r
l

�
2
�

�
~r0

l

�
2�7�p�=�5�p�

�
~r
l

�
�4=�5�p�

;

g2
se
�2� �

�
5� p

2

l
~r

�
�7�p��p�3�=�5�p�

:

(2.7)

It is clear that the metric is conformal to AdSp�2 � S8�p

asymptotically if p < 5. Solutions with p 	 5 do not have
a positive specific heat, so we consider p < 5. We shall use
such an ‘‘AdS-frame’’ to calculate QN frequencies.

As is well known, the above metric is not the SAdS
solution even if p � 3. The SAdS5 solution is given by
086012
ds2 � �

�
~r2

l2
� 1�

~r4
0

l2~r2

�
dt2 �

�
~r2

l2
� 1�

~r4
0

l2~r2

�
�1
d~r2

� ~r2d�2
3: (2.8)

SAdS5 has the horizon with the topology of Sp, whereas
the metric (2.6) has the horizon with the topology Rp. We
call such solutions ‘‘planar black holes.’’ The p � 3 planar
black hole corresponds to the large black hole limit of
SAdS5. In order to reach the planar black hole from
SAdS5, rescale the coordinates

t! t=�; ~r! �~r; and ~r0 ! �~r0: (2.9)

Then, the S3 radius is proportional to �, so �2d�2
3 �P

d~x2
p for large �. This limit, the planar SAdS5 black

hole, is invariant under the above scaling.
We consider such planar black holes from the following

reasons. First, AdS black hole solutions with Sp topology
are not known when the dilaton is nontrivial. Second, in the
SYM description, SAdS corresponds to a compact SYM on
Sp, and a planar black hole corresponds to a noncompact
SYM on Rp. The motivation to consider a compact SYM in
Ref. [1] is to break the scale invariance (2.9). Without
breaking the scale invariance, one cannot see the confine-
ment/deconfinement transition in gauge theory. Here, there
is no scale invariance due to the dilaton. So, it is not clear
whether one should consider a compact SYM.3

B. Validity of supergravity descriptions

To discuss the validity of supergravity description (2.6),
it is convenient to introduce SYM variables. The SYM
coupling in terms of string variables are (See, e.g.,
Ref. [25])

g2
YM � �2��

p�2gsl
p�3
s ; (2.10)

where gYM is the �p� 1�-dimensional SYM coupling con-
stant. The effective (dimensionless) coupling of SYM
theories is

g2
eff � g2

YMN
�
r

l2s

�
p�3

: (2.11)

The SYM perturbation theory can be trusted in the
region

geff � 1: (2.12)

On the other hand, one can trust supergravity solutions if
both the curvature (in string metric) and the dilaton are
small. Since

e� � g�7�p�=2
eff =N; l2sR� 1=geff ; (2.13)
-2



QUASINORMAL MODES FOR NONEXTREME Dp-BRANES . . . PHYSICAL REVIEW D 72, 086012 (2005)
these conditions imply

1� g2
eff � N4=�7�p�: (2.14)
Clearly, the perturbative SYM and supergravity descrip-
tions do not overlap. For p < 3, this gives the following
range of r (not the AdS-like coordinate ~r):

�g2
YMN�

1=�3�p�N�4=�3�p��7�p� � r=l2s � �g
2
YMN�

1=�3�p�:

(2.15)
(Forp > 3, replace the� signs by
 signs.) The left-hand
side and the right-hand side of these inequalities come
from the dilaton and the curvature, respectively. They
have a diverging dilaton at r � 0 and a curvature singu-
larity at r � 1. One necessary condition to satisfy the
above condition is N 
 1.

When the radial coordinate r is outside the region,
different theories (such as M-theory) take over the type II
descriptions. The radial coordinate has the gauge theory
interpretation as the energy scale. The phase diagrams are
discussed in Ref. [11]. For type IIA-branes, the M-brane
description take over at small radius. As argued later, the
M-brane description often reduces to a SAdS black hole,
and there have been extensive works on the subject; this
limit is relatively well known. The other limit is the per-
turbative SYM description at large radius; again this limit
is rather well known. Therefore, we focus on the inter-
mediate energy scale where type II supergravity is a valid
description.

In order to calculate QN frequencies, one places bound-
ary conditions both at the horizon and at infinity. We
henceforth consider the case where the horizon radius
lies inside the region (2.15).4 In the large-N limit (N !
1 and gYM ! 0 with a fixed large g2

YMN), one can enlarge
this region as large as one wishes. The type II description is
not a good description at infinity as well. One might put a
boundary condition at a large radius but within the region
of the validity. We here assume that such a boundary
condition at large radius does not affect the results signifi-
cantly. We return to the issue of the validity and discuss
how different boundary conditions may affect our results in
Sec. IV C.
4As a matter of fact, our results are valid even for black holes
with smaller horizon (for p < 3). This is because the change of a
supergravity description (e.g., from the type IIA supergravity to
the 11-dimensional supergravity) does not change the results. On
the other hand, the horizon must be sufficiently smaller than the
right-hand side of Eq. (2.15). This is because the supergravity
description must be valid not only at the horizon, but also in the
region where QNMs decay. These issues are discussed in
Sec. IV C.
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III. NUMERICAL APPROACHES FOR QN
FREQUENCIES

A. Basic equations

After the conformal transformation of the metric (2.2),

d~s2 �

�
5� p

2

�
2
�gse���1=�7�p�ds2 � ~GMNdxMdxN;

(3.1)

the action (2.1) is transformed as

S �
Z
d10x

��������
� ~G

p �
e2a�� ~R� 4b�~r��2�

�
�2�p�1�e�2a�

2�p� 2�!
~F2
p�2

�
; (3.2)

up to a constant, where

a �
p� 3

7� p
; b �

�p� 1��p� 4�

�7� p�2
;

� �
5� p

2
g1=�7�p�
s :

(3.3)

Since we are not interested in the perturbation on S8�p

sphere, we assume an ansatz for the metric:

d~s2 � g
��
�x��dx�dx� � �

5� p
2

l�2d�2
8�p; (3.4)

where � � � 1
l2
�9�p��7�p�
�5�p�2

and greek indices run from 0 to

p� 1. After the compactification, one gets a �p�
2�-dimensional action [26]

S �
Z
dp�2x

�������
�g

p
e2a��R� 2�� 4b�r��2�; (3.5)

up to a constant. The p � 0 case reduces to two-
dimensional gravity coupled to a scalar, so the system
locally has no dynamical degrees of freedom. Hereafter,
we focus on 1 � p � 4.

For simplicity, we shall only consider the perturbations
which are translationally invariant along the brane. Then,
one can set the metric as

ds2
�p�2� � g

��
dx�dx� � �2�gab�x

c�dxadxb � e2��xa�d~x2
p;

(3.6)

where xa � �t; ~r�. And the action (3.5) becomes

S �
Z
d2x

������������
��2�g

q
e 2

�
�2�
R� 2��

p�p� 3�2

9� p
��2�r 1�

2

�
4

9� p
��2�r 2�

2

�
; (3.7)

where

 1 �
5� p

�7� p��p� 3�
2�� �;  2 � 2a�� p�;

(3.8)
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The system is two-dimensional gravity coupled to two
scalars,  1 and  2, and there is only one dynamical degrees
of freedom. We need to find the dynamical degrees of
freedom and obtain its perturbative equation around the
background solutions given by Eqs. (2.6) and (2.7).
Fortunately, since the background solution for  1 is con-
stant, it is easy to show that its perturbation 	 1 is gauge
invariant at the perturbative level [27], and the equation of
motion is given by5

0 � @a�
������������
��2�g

q
ab�2�gabe 2@b	 1; (3.9)

where the bold face letters are background quantities.
One can show that this equation is invariant under the

scaling (2.9) with l fixed. By the same argument as in
Ref. [14], this scale invariance means that QN frequencies
are proportional to ~r0, or the black hole temperature T /
~r0=l

2. Hence, it is convenient to introduce dimensionless
coordinates 
 � ~r0t=l2 and � � ~r=~r0, and

Z � e 2=2	 1: (3.10)

Then, Eq. (3.9) is rewritten by

�@2

Z � ��@2

�� � V�Z � ��H@��H@�� � VZ; (3.11)

where

H � �2�1� ��q�; V � �H��� 1� ���q�;

(3.12)

� �
9� p

2�5� p�
; q �

2�7� p�
5� p

; (3.13)

and the tortoise coordinate �� is defined by

�� �
Z
d�=H: (3.14)

The potential V is monotonically increasing function of �
and Vj��1 � 0, so the potential V is positive-definite out-
side the horizon (�> 1).

B. A numerical method to obtain QN frequencies

Following Horowitz and Hubney’s method [14], let us
calculate the QN frequencies for D1, D2, and D4-branes.6

For the later convenience, we shall define  as

Z � e�i!̂
�1� ��q��i!̂=q ���; (3.15)

and introduce a new coordinate x � ��2�=�5�p�, where
� � 1 for p � even and � � 2 for p � odd. When p <
5, the horizon and the infinity correspond to x � 1 and x �
0, respectively. Then, one gets a Fuchs-type differential
5This equation is equivalent to the massless scalar field mini-
mally coupled to ten-dimensional Einstein metric.

6For p � 3, the QN frequencies for the planar black hole
correspond to the frequencies for the large black hole limit of
SAdS5, which were calculated in Refs. [14,22].

086012
equation:

s�x�
d2

dx2  �x� �
t�x�
x� 1

d
dx
 �x� �

u�x�

�x� 1�2
 �x� � 0;

(3.16)

where

s�x� �
�
x
x�7�p�=� � 1

x� 1

�
2
; (3.17)

t�x� �
x

2�
x�7�p�=� � 1

x� 1
�5� 2�� p� f9� 2�� p

� 2i�5� p�!̂gx�7�p�=�; (3.18)

u�x����
5�p
2�
�2��!̂� i��2x2�7�p�=���1�2i�!̂�x�7�p�=�

�!̂2x�5�p�=������1�: (3.19)

We solve these equations by expanding  around the
horizon (x � 1). For the power expansion of  about x � 1
to be applicable up to the asymptotic infinity (x � 0), the
radius of convergence must reach x � 0. Let us examine
the singularity structure of Eq. (3.16) on the complex
x-plane. Equation (3.16) has regular singular points when
x � 0 and x�7�p�=� � 1, namely x � e2�i�m=�7�p���m �
1; 2; � � � ; 7� p� for p � even and x � e2�i�2m=�7�p���m �
1; 2; � � � ; 7�p

2 � for p � odd. So, the nearest singular point of
x � 1 is x � 0 and the power expansion of  about x � 1
is applicable up to the asymptotic infinity (x � 0).

The QNMs are the solutions of Eq. (3.16) with the
following boundary conditions:
(i) T
-4
he scalar wave is purely ingoing near the horizon,
Z� e�i!̂�
����.
(ii) T
he scalar wave decays at infinity, Z�
e�i!̂
�����1�. (Another mode diverges.)
The purely ingoing mode is expressed near the horizon as

Z�e�i!̂
e�i!̂�� �e�i!̂
e�i!̂
R
d�=H�e�i!̂
���1��i!̂=q

�e�i!̂
�1���q��i!̂=q; (3.20)

which is just the same prefactor in front of  in Eq. (3.15).
So, the solution satisfying the condition (i) has the form

 �x� �
X1
n�0

an�x� 1�n; (3.21)

where a0 is a nonzero constant. Then, the coefficients an
are obtained by the following recursion relation:

an � �
1

n�n� 1�s0 � nt0

Xn�1

k�0

�k�k� 1�sn�k

� ktn�k � un�kak; (3.22)

where sn, tn, and un are the nth order coefficients of the



TABLE I. QN frequencies for p � 1, p � 2, and p � 4. !̂R
and !̂I are real and imaginary parts of !̂, respectively.

p � 1 p � 2 p � 4
Mode !̂R=T̂ !̂I=T̂ !̂R=T̂ !̂I=T̂ !̂R=T̂ !̂I=T̂

0 7.747 �11:158 8.710 �10:260 10.488 �5:472
1 13.242 �20:594 14.775 �18:509 16.232 �8:709
2 18.700 �30:023 20.780 �26:743 21.805 �11:889
3 24.149 �39:450 26.770 �34:972 27.319 �15:051

-10

 0

ωI /T

QUASINORMAL MODES FOR NONEXTREME Dp-BRANES . . . PHYSICAL REVIEW D 72, 086012 (2005)
expansions around x � 1, e.g., s�x� �
P
1
n�1 sn�x� 1�n.

Since the equations are linear, the coefficient a0 is a free
parameter (we set a0 � 1).

In order to find the QN frequencies, we need to find the
solution satisfying the latter boundary condition (ii):

 �0� �
X1
n�0

an��1�n � 0; (3.23)

which gives a polynomial equation of !̂.
Before we solve the above equation of !̂ for p � 1, 2,

and 4 numerically, we comment on some general proper-
ties of QN frequencies:
(i) Q

-20

7For
N � 10
the num
Leaver
the one
N frequencies are symmetrically distributed with
respect to the imaginary axis of the complex
!̂-plane, i.e., there is a symmetry !̂$ �!̂�.
-30
(ii) T
he imaginary part of the QN frequency is negative
so that the system in our interests is stable.
-50

-40

-60 -40 -20  0  20  40  60

ωR /T

FIG. 1 (color online). QN frequencies for D1 (� ), D2 ( � ),
D3 (4 ) and D4-branes (� ). Each straight line is determined
by the least-square fitting.
The former statement is proved as follows: Consider any
QNM, Z!̂ with a QN frequency !̂. Then, �Z!̂�� is also a
solution of Eq. (3.11) with the frequency !̂! �!̂�.
Furthermore, its asymptotic form is �Z!̂�� �
e�i��!̂

���
���� near the horizon, and �Z!̂�
� �

e�i��!̂
��
�����1� near the infinity. This means that �Z!̂��

is also a QNM whose QN frequency is �!̂�.
As usual, the latter statement is proved by the ‘‘energy

integral’’ [14], thanks to the positivity of the potential V
outside the horizon, �> 1.
IV. DISCUSSION OF RESULTS

To solve Eq. (3.23) numerically, we find zeros of a
partial sum  N �

PN
n�0 an��1�n for a large N using

MATHEMATICA. To obtain an accurate value of QN frequen-
cies, we need to compute on the order of N � 100.7

We present the QN frequencies for p � 1, p � 2, and
p � 4 cases in Table I, and their distribution on the com-
plex !̂-plane in Fig. 1. The numerical values of QN
frequencies are normalized by the dimensionless
Hawking temperature T̂ � �1=4��dH=d�j��1 � q=4�.
As is apparent from Fig. 1, the QN frequencies for each
p are distributed on the straight line. The QN frequencies
are approximately given by the modes n (n � 0; 1; 2; � � � )
of the formula below:

!̂ n=T̂ � �pn� p; (4.1)

where
example, for p � 2, the N � 90 results differ from the
0 results by about 10�5. As a check, we have also applied
erically stable continued fraction method presented by

[28] and checked that the numerical values coincide with
s obtained by MATHEMATICA with a good accuracy.
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�p �

8>>><
>>>:

5:45� 9:43i for p � 1
6:00� 8:23i for p � 2
6:32� 6:29i for p � 3
5:52� 3:16i for p � 4

;

p �

8>>><
>>>:

7:80� 11:17i for p � 1
8:76� 10:27i for p � 2
9:88� 8:66i for p � 3
10:66� 5:53i for p � 4

:

(4.2)

This property that the QN frequencies are approximately
evenly spaced with n is numerically observed for the
scalar, vector, and gravitational perturbations on the
SAdS4 black holes [17] and on the SAdS5 black holes
[22–24]. The property is analytically shown for a
minimally-coupled massive scalar [19] and the vector per-
turbations [23] on the SAdS5 black hole. For highly
damped QNMs, one can make a comprehensive research
analytically [29]. However, its origin and significance are
far from obvious.

A. p � 1 and p � 4

For both p � 1 and p � 4, the dilaton gravity action
(3.5) is simply written by

S�
Z
dp�2x

�������
�g

p
e2a��R� 2��: (4.3)
-5
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So, under the metric ansatz:

ds2
�p�3� � ds2 �

�
5� p

2

�
2
�
e�

gs

�
4�5�p�=�7�p��p�3�

dz2 (4.4)

one can embed the �p� 2�-dimensional action (4.3) into
the �p� 3�-dimensional action:

S�
Z
dp�3x

�����������������
�g�p�3�
p

��p�3�R� 2��: (4.5)

For p � 4, the embedding can be understood as the M-
theory embedding (M5-brane) of the D4-brane, and this
M5-brane reduces to the planar SAdS7 black hole (in the
near-horizon limit).

For p � 1, D1-brane does not have a M-theory embed-
ding because it is a type IIB object. However, various dual-
ities relate the D1-brane to the M2-brane. Under the four-
dimensional pure gravity theory, the metric (4.4) becomes

ds2 � ��~r2 � ~r0
3=~r�dt2 � �~r2 � ~r0

3=~r��1dr2

� ~r2�dx2 � dz2�; (4.6)

where we set l � 1 for simplicity. This metric corresponds
to the planar SAdS4 metric. So, one can compare our p �
1 results with the ones for the SAdS4 in the large black hole
limit. Table II is the comparison with the results by
Cardoso et al. [17] corresponding to the ‘ � 2 gravita-
tional perturbations (even parity) of a large SAdS4 black
hole (l � 1 and ~r0 � 100). Their results are normalized
with respect to the Hawking temperature T � �q=4���
�~r0=l2�. One can easily see that our results agree well with
the SAdS4 results in the large black hole limit.

B. p � 2

On the other hand, the p � 2 case is not related to a
higher-dimensional SAdS, contrary to the p � 1 and p �
4 cases. Obviously, one can always embed type IIA objects
into M-theory. However, the resulting geometries are not
SAdS black holes, and QN frequencies for such geometries
are unknown.

The D2-brane is embedded as a M2-brane, but the
embedding of the geometry (2.6) is not the SAdS4. This
is because the embedding corresponds not to the standard
M2-brane, but rather corresponds to the so-called
‘‘smeared M2-brane.’’ In a sense, we have obtained QN
frequencies of the ‘‘smeared M2-brane’’ via the D2-brane.
TABLE II. QN frequencies corresponding to ‘ � 2 gravita-
tional perturbations (even parity) of a large Schwarzschild-AdS
black hole with ~r0 � 100 and l � 1.

Ours Cardoso, et. al
Mode !̂R=T̂ !̂I=T̂ !R=T !I=T

0 7.747 �11:158 7.748 �11:157
1 13.242 �20:594 13.244 �20:591
2 18.700 �30:023 18.703 �30:020
3 24.149 �39:450 24.153 �39:446
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Even the smeared M2-brane description is not valid at
lower energy. The smeared M2-brane becomes unstable at
lower energy due to the Gregory-Laflamme instability and
decays into the M2-brane on a circle. Then, the SAdS4

calculation suffices for such a small black hole [11].

C. Sensibility on the boundary condition

We placed the Dirichlet condition at infinity to compute
QN frequencies. However, supergravity description often
breaks down at infinity. So, strictly speaking, one must
place an ultraviolet cutoff and put a boundary condition at
the large finite radius. Here, we discuss how such a bound-
ary condition may change our results.

First of all, it is not clear what boundary condition one
must impose. The outgoing wave certainly leaks out to the
asymptotic infinity. So, a simple Dirichlet condition at the
cutoff does not suffice. However, an appropriate boundary
condition is not clear, so here we use a Dirichlet boundary
condition for illustration to see if our results are sensitive to
the boundary condition.

Figure 2 is the result of QN frequencies (for p � 1) by
imposing the Dirichlet condition at various radii xb �
�r0=rb�2. (Here, rb is the location of the boundary condi-
tion in the original D-brane coordinate r.) As the figure
shows, the result begins to converge for a sufficiently large
boundary radius (xb < 0:02 or rb > r0=

���������
0:02
p

). For the
boundary condition placed in the plateau region, the result
is effectively the same as the one with the boundary
condition at infinity. In other words, the result is insensitive
to the boundary condition.

Let us reinterpret the result in terms of SYM variables.
The D1 description is valid for gYMN1=6 � r=l2s �
�g2

YMN�
1=2 in SYM variables. Actually, gravity description

is valid even inside the infrared cutoff. The type IIB fun-
damental string description takes over (via type IIB S-
duality), but the gravity computation is the same as the
D1 case. Supergravity descriptions are valid as long as
gYM � r=l2s � �g

2
YMN�

1=2.
The theory has two independent parameters gYM and N.

The infrared cutoff can be controlled by gYM whereas the
ultraviolet cutoff can be controlled by N. Thus, the condi-
tion xb < 0:02 must be satisfied for a large enough N. This
is indeed true.

In order for the QN frequency to be insensitive to the
boundary condition, rb must lie within this region. This
implies gYM � r0=l

2
s � �0:02g2

YMN�
1=2. This condition

has a solution if N 
 50.8
8If one chooses a boundary condition different from the
Dirichlet boundary condition, the conclusion could be totally
changed (even the existence of the plateau region). So, one
should not take the conclusion seriously. Our point here is that
there exists at least one boundary condition, where the Dirichlet
condition at infinity gives a sufficient accuracy.
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FIG. 2 (color online). The dependence of the lowest QN frequency on the location of the boundary condition xb. The left figure
(right figure) is the real (imaginary) part of the QN frequency.
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V. SUMMARY

We have computed the scalar QN frequencies for
asymptotically AdS black holes (in appropriate frame),
which correspond to the decoupling limit of nonextreme
Dp-branes (for p < 5). We consider the translationally
invariant perturbations along the branes. The dual gauge
theory is described by �p� 1�-dimensional super-Yang-
Mills theories at finite temperature.

As discussed in Sec. IV, one can embed the system into
higher dimensions for p � 1 and p � 4. Then, the bulk
geometries become just SAdS black holes. Thus, these
cases can be reproduced by QN frequency calculations of
standard SAdS black holes. (However, they correspond to
different region of the validity, so one must be careful to its
interpretation. For example, the p � 4 case reduces to the
M5-brane, but this must be interpreted as the recovery of
conformality at high energy.) This gives a nice check of our
approach since our perturbations are more involved com-
pared with the standard cases. (Only the minimally-
coupled scalars are often considered to calculate QN fre-
quencies.) We explicitly checked that our results coincide
with the SAdS results.

On the other hand, the p � 2 case is not obtained from a
higher-dimensional SAdS black hole. Thus, the embedding
of p � 2 case does not help to simplify the calculation.9

The fact that QN frequencies are evenly spaced had been
observed for pure gravity black holes. Our p � 2 result
may indicate that this is true even for some dilatonic AdS
black holes.

It is difficult to calculate the thermalization time scale in
the gauge theory. But Ref. [14] pointed out that the time
scale is likely to be independent of the ’t Hooft coupling. A
free field theory never thermalizes and at weak coupling
the time scale should be very long. So, clearly the time
scale depends on the coupling at weak coupling. However,
9This fact also applies to the p � 0 case. The D0-brane is a M-
theory Kaluza-Klein state, so this corresponds to the near-
horizon limit of a pp-wave.
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in the strong coupling, the relaxation time scale is expected
to be the order of the thermal wavelength.

In the dual supergravity description, this means that
the QN frequencies depend only on the Hawking tempera-
ture. This expectation is indeed true for SAdS black holes
[14], and we found that it is also true for Dp-branes.
(Table I shows that QN frequencies are linear in temp-
erature.)

Finite temperature gauge/gravity dualities deserve fur-
ther study. To qualitatively check the duality, one wishes to
check the time scale in the dual theory. Currently, it is
difficult to calculate the time scale in gauge theories. Such
a calculation has not been carried out even in the SAdS
cases. But gauge theory understanding is essential to solv-
ing the long-standing puzzles such as the singularity prob-
lem, the information paradox, and the Gregory-Laflamme
instability.
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APPENDIX: REVIEW OF QUASINORMAL MODES

We briefly review quasinormal modes (for a comprehen-
sive review, see [30]).

Let us consider the initial-value problem of a linear
wave equation for a scalar field �

���� V�x����x� � 0: (A1)

As is well known, we can formally solve the initial-value
problem using the retarded Green function GR as [31]

��x� �
Z

�0

d��z���n�@z�GR�x; z����z� �GR�x; z�

� �n�@z���z��; (A2)

where d��z� is the infinitesimal surface element of the
initial surface �0 and n� is future-directed unit normal
vector to �0.

The retarded Green function GR�x; z� in �d�
1�-dimensional spacetime is the solution of the inhomoge-
neous wave equation

���x � V�x��GR�x; z� � �	�d�1��x� z�=
�������������
�g�x�

q
;

(A3)

satisfying the causal condition, GR�x; z� � 0 for x =2
J��z�.

For static spacetimes, ds2 � N2�x���dt2 �
�ij�x�dxidxj�, so the Green function is time-translationally
invariant, GR�x; z� �: GR�t; x; 
; z� � GR�t� 
; x; 0; z�,
and it is convenient to use the ‘‘frequency-domain Green
function’’ ~gR defined by

~g R�x; zjs� � �N�x�N�z��d�1�=2
Z 1

0�
dte�stGR�t; x; 0; z�;

(A4)

which is simply the Laplace transform of GR (with the
weight N�d�1�=2 inserted for convenience). If there exists
such a Laplace transform ~gR, an abscissa of convergence �
exists and ~gR is well defined for <�s�>�. Then, ~gR
satisfies the equation,

�s2 ��x � � � �~gR�x; zjs� � �	�d��x� z�=
����������
��x�

q
; (A5)

where � is the Laplacian with respect to the metric �ij and
the dots denote the terms by the ‘‘effective potential.’’
After solving Eq. (A5) with a suitable boundary condition,
GR is obtained by

GR�t; x; 0; z� � �N�x�N�z��1�d�=2

�
Z ��i1

��i1

ds
2�i

est~gR�x; zjs�: (A6)

One can define ~gR for <�s�<� by the analytical con-

tinuation from <�s�>�. Provided that jsest~gRj ���!jsj!10 for
<�s�<�, the contribution to GR in Eq. (A6) comes from
086012
the singularities of ~gR in <�s�<�. The pole singularities
of ~gR, fsngn�0;1;2;���, contribute to GR as

GR�t; x; 
; z� � �N�x�N�z��1�d�=2

�
X
n

esn�t�
�Res�~gR�x; zjs�; sn � � � � ;

(A7)

and the corresponding frequency for each pole !n � isn
(=�!n�<�) is called a quasinormal frequency. So, a
quasinormal frequency is given by a pole of the retarded
Green function in the frequency domain, ~gR�x; zjs�.

In order to obtain ~gR, one must pay attention to the
boundary conditions for Eq. (A5). We consider two cases
separately.
(i) F
-8
or asymptotically flat black hole spacetimes, there
are two asymptotic regions, the near-horizon region
and spatial infinity. Equation (A5) often has simple
forms in these regions:

�s2 � @2
r� �~gR�x; zjs� � 0; (A8)

where we consider a massless scalar field for sim-
plicity. The tortoise coordinate of x, r�, is defined
such that the spatial infinity (the horizon) corre-
sponds to r� ! 1��1�. There are two independent
solutions e�sr� in each asymptotic region.
Recalling that ~gR for <�s�<� is given by the
analytic continuation from <�s�>�, we first con-
sider the boundary conditions of ~gR for <�s�>�.
Since diverging solutions are unphysical, ~gR for
<�s�>� should behave as

~g R�x; zjs� ! esr� �e�sr� � for r� ! �1�1�;

(A9)

so that

GR�t; x; 0; z� � est~gR�x; zjs� ! es�t�r���es�t�r���

for r� ! �1�1�: (A10)

This means that the appropriate boundary condi-
tions for the retarded Green function GR in this
case are a purely ingoing wave near the horizon
and an outgoing wave at the infinity. Since ~gR for
<�s�<� is defined by the analytical continuation
from <�s�>�, ~gR for <�s�<� also satisfies the
same boundary conditions (A9), in spite of the
diverging behavior.
(ii) F
or asymptotically AdS black hole spacetimes, the
tortoise coordinate � is defined such that the null
infinity (the horizon) corresponds to �! 0 (�1).
Although Eq. (A5) has the same form as Eq. (A8)
near the horizon, Eq. (A5) has a different form near
the null infinity,

��@2
� � C=�2�~gR�x; zjs� � 0 for �! 0; (A11)
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where C is a positive constant. Thus, for �� 0,

we obtain ~gR�x; zjs� � �1=2�
�����������
C�1=4
p

or

GR�t; x; 0; z� � �d=2�
�����������
C�1=4
p

�: ��� , where we
use N�1�d�=2�x� / ��d�1�=2 for �� 0. Since we
have �� < 0< �� in many cases, we henceforth
assume �� < 0<��.
Again, we first consider ~gR for <�s�>�. Since
diverging solutions are physically unacceptable,
~gR for <�s�>� should behave as

~g R�x; zjs� !
�
e�s� for �! �1

�1=2�
�����������
C�1=4
p

for �! 0;

(A12)

so that

GR�t; x; 0; z� � est~gR�x; zjs�

!

�
es�t��� for �! �1
est��� for �! 0:

(A13)
086012-9
We should set the same boundary conditions (A12)
to ~gR for <�s�<� because ~gR for <�s�<� is
defined by the analytical continuation from <�s�>
�.
To summarize, quasinormal frequencies are obtained by
finding the poles of ~gR satisfying Eq. (A5) with the bound-
ary conditions. However, it is easy to show that, for a pole
of ~gR, sn, there exists an eigenmode ~�n�x� of the homoge-
neous equation of Eq. (A5)

�s2 ��� � � �� ~�n�x� � 0; (A14)

which satisfies the boundary conditions (A9) for asymp-
totically flat black hole spacetimes [30], and (A12) for
asymptotically AdS black hole spacetimes. Thus, in prac-
tice, one can also find the quasinormal frequencies by
solving this eigenvalue problem. In the main text, we solve
this eigenvalue problem (A14) with the boundary condi-
tions (A12).
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