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Quasinormal frequencies of electromagnetic and gravitational perturbations in asymptotically anti-
de Sitter spacetime can be identified with poles of the corresponding real-time Green’s functions in a
holographically dual finite temperature field theory. The quasinormal modes are defined for gauge-
invariant quantities which obey an incoming-wave boundary condition at the horizon and a Dirichlet
condition at the boundary. As an application, we explicitly find poles of retarded correlation functions of
R-symmetry currents and the energy-momentum tensor in strongly coupled finite temperature N � 4
supersymmetric SU�Nc� Yang-Mills theory in the limit of large Nc.
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I. INTRODUCTION

While the statistical origin of black hole entropy remains
a subject of active research, one may wonder if the cele-
brated analogy [1] between the laws of black hole mechan-
ics and the laws of thermodynamics can be generalized to
nonequilibrium processes. Holographic anti-de Sitter/con-
formal field theory (AdS/CFT) correspondence ([2–4]; see
[5] for a review) provides a suitable arena for such a
generalization. AdS/CFT conjecture asserts that string
theories on certain asymptotically anti-de Sitter spacetimes
are dual to quantum field theories in lower dimension.
Since the low-energy limit of string theory is described
by the appropriate supergravity, problems in general rela-
tivity can be mapped to problems in the dual field theory.
According to the duality, asymptotically AdS background
spacetimes with event horizons are interpreted as thermal
states in dual field theories. Correspondingly, small pertur-
bations of a black hole or a black brane background are
interpreted as small deviations from thermodynamic equi-
librium in a dual theory. This particular entry in the holo-
graphic dictionary can be made precise by considering
quasinormal spectra of asymptotically AdS spacetimes.

Quasinormal modes (see reviews [6], and references
therein) are solutions to linearized equations obeyed by
classical fluctuations of a gravitational background subject
to specific boundary conditions. The choice of the bound-
ary condition at the (future) horizon is dictated by the fact
that, classically, horizons do not emit radiation. Thus, out
of two local solutions near the horizon typically represent-
ing waves incoming to the horizon and outgoing from it,
one chooses the incoming waves only. This choice of the
boundary condition has profound consequences, making
the boundary value problem non-Hermitian and the asso-
ciated eigenfrequencies complex. This, however, is exactly
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what one expects in a holographically dual theory, where
small deviations from thermal equilibrium are described by
dispersion relations which correspond to nonzero damping
[7]. Mathematically, these dispersion relations appear as
singularities of the retarded1 Green’s functions in the com-
plex frequency plane. The connection between quasinor-
mal spectrum of AdS black holes and singularities of
thermal correlators in dual quantum field theories was first
noted and explored for 2� 1-dimensional Bañados-
Teitelboim-Zanelli black holes in Ref. [8]. It was pointed
out later [9] that, even for higher-dimensional systems,
imposing Dirichlet boundary conditions for scalar pertur-
bations at asymptotic infinity ensures that quasinormal
frequencies coincide with the singularities of the retarded
Green’s function in a holographically dual theory.

Quasinormal modes for electromagnetic and gravita-
tional perturbations are physically more interesting than
those for scalars, because the corresponding fluctuations
couple to conserved symmetry currents in the dual quan-
tum field theory. However, the relation of these quasinor-
mal modes to correlation functions of the dual theory is not
immediate: For example, choosing Dirichlet boundary
conditions for gauge-dependent quantities such as metric
perturbations would be rather unnatural. Thus, we address
the following question in this paper: Considering compu-
tation of a quasinormal spectrum as a purely general
relativity problem (independent of the holographic dual-
ity), what variables and boundary conditions should one
use in order to ensure that the resulting spectrum coincides
with the poles of the correlators in the dual quantum field
theory? (For related discussions, see [10–12].)

For vector and gravitational fluctuations, a convenient
approach similar to the one used in cosmology [13] is to
work with gauge-invariant combinations of the fluctua-
1Choosing outgoing waves at the horizon, one obtains ad-
vanced Green’s functions in the dual theory.
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tions. As an example, consider gravitational fluctuations
h�� of five-dimensional AdS-Schwarzschild background
with a translationally invariant horizon. According to the
gauge theory/gravity duality, the fluctuation couples to the
stress-energy tensor on the boundary [5], and, thus, we
expect the quasinormal spectrum of h�� to be related to the
poles of the retarded two-point correlation functionG��;��

of the stress-energy tensor. As we discuss in Sec. II, the
two-point function of the stress-energy tensor in the dual
theory is a sum of three independent components
G��;���k� � S��;��G1�k0;k2� �Q��;��G2�k0;k2�

� L��;��G3�k0; k
2�;
2One may choose to define the correlation functions in such a
way that local (in position space) counterterms appear on the
right-hand side of the Ward identities. The correlation functions
defined in this way will differ from C���k� and G��;���k� by
analytic functions of k0 and k.
where k is the four-momentum, and S��;��, Q��;��,
L��;�� are the appropriate projectors which provide three
independent Lorentz index structures. The correlation
function is therefore completely determined by three scalar
functions G1, G2, G3. On the gravity side, one can form
three gauge-invariant combinations of the components of
h�� in such a way that each of them corresponds to one of
the functions G1, G2, G3. Each of these gauge-invariant
variables satisfies a second-order ordinary differential
equation whose connection matrix essentially determines
G1, G2, G3. Dirichlet boundary condition imposed on each
of the gauge-invariant variables ensures that their quasi-
normal spectrum corresponds to the poles of G1, G2, G3.

The paper is organized as follows. In Sec. II we discuss
general Lorentz index structure of thermal correlators of
conserved currents and stress-energy tensor in relativistic
quantum field theories. In Sec. III we propose a way to
identify quasinormal frequencies of asymptotically AdS
spacetimes with poles of the corresponding retarded
Green’s functions in the holographically dual finite tem-
perature field theory. In Sec. IV we provide a detailed
account of scalar, electromagnetic, and gravitational qua-
sinormal spectra for the five-dimensional AdS-
Schwarzschild background with a translationally invariant
horizon. Using the approach of gauge-invariant variables,
we explicitly show that one can define quasinormal modes
whose frequencies coincide with singularities of retarded
Green’s functions in the dual theory, when the latter are
computed using the standard AdS/CFT prescription. In the
low-energy limit we reproduce earlier results [14–16] on
hydrodynamic properties of 3� 1-dimensional N � 4
supersymmetric SU�Nc� Yang-Mills theory. In the more
general case, we numerically compute the positions (in the
complex frequency plane) of the singularities of retarded
correlation functions of global R-symmetry currents and
energy-momentum tensor in strongly coupled N � 4
supersymmetric Yang-Mills (SYM) theory in the limit of
large Nc. Some technical details appear in two appendices.
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II. FIELD THEORY CORRELATORS

We start by discussing Lorentz index structure of re-
tarded Green’s functions of conserved currents and energy-
momentum tensor in relativistic quantum field theories in
infinite, flat D-dimensional Minkowski space. Translation
and rotation invariance are assumed to be unbroken sym-
metries of the theory. We shall be interested in retarded
Green’s functions of conserved symmetry currents,

C���x� y� � �i��x0 � y0�h�J��x�; J��y��i; (2.1)

as well as of stress-energy tensor,

G��;���x� y� � �i��x0 � y0�h�T���x�; T���y��i: (2.2)

The expectation value is taken in a translation-invariant
state, so that the expressions can be Fourier transformed:

C���x� y� �
Z dDk
�2��D

eik�x�y�C���k� (2.3)

and similarly for G��;���x� y�. Here k � �k0; k� is a
D-dimensional momentum vector, kx � k0x

0 � kx, and
the metric ��� is taken to be mostly plus. Expectation
values of all global conserved charges are assumed to
vanish in the equilibrium state; in other words, we consider
systems without chemical potentials. Then CPT invariance
of the equilibrium state implies that

C���k� � C���k�; (2.4)

G��;���k� � G��;���k�: (2.5)

In addition, correlation functions of stress-energy tensor
satisfy

G��;���k� � G��;���k� � G��;���k� (2.6)

because of the symmetry of T���x�. Conservation of J��x�
and T���x� implies that the correlation functions may be
defined so that they satisfy the following Ward identities2:

k�C���k� � 0; (2.7)

k�G��;���k� � 0: (2.8)

If, in addition, the theory possesses scale invariance, then
the correlation functions of stress-energy tensors satisfy an
extra Ward identity

���G��;���k� � 0: (2.9)

Hermiticity of J� and T�� combined with rotation invari-
ance implies
-2
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C���k0; k� � C����k0; k��; (2.10)

G��;���k0; k� � G��;����k0; k��: (2.11)
A. Conserved currents

In vacuum, the Ward identity (2.7) implies that the
current-current correlation function C���k� is proportional
to the projector onto conserved vectors,

P�� � ��� �
k�k�
k2 ; (2.12)

where k2 � �k2
0 � k

2. All components of C���k� are thus
determined by a single scalar function,

C���k� � P����k2�: (2.13)

If the expectation value is taken in a state that has only
rotation symmetry (such as a thermal equilibrium state in
the canonical ensemble), it is convenient to split the pro-
jector P�� into transverse and longitudinal parts,

P�� � PT�� � P
L
��; (2.14)

where PT�� and PL�� are mutually orthogonal
(PT�����PL�� � 0) projectors defined as

PT00 � 0; PT0i � 0; PTij � �ij �
kikj
k2 ; (2.15)

PL�� � P�� � PT��: (2.16)

They satisfy k�PT�� � k�PL�� � 0, and, therefore, any
expression constructed out of PT�	, PL�	 will automatically
satisfy the current-conservation constraint. Therefore, in
the rotation-invariant case the current-current correlation
function is determined by two independent scalar func-
tions,

C���k� � PT���T�k0; k2� � PL���L�k0;k2�: (2.17)

When �T � �L � �, this expression reduces to the
Lorentz-invariant form (2.13). Also, it is not difficult to
see that due to rotation invariance the k! 0 limits (with k0

fixed) of transverse and longitudinal self-energies coin-
cide,

lim
k!0

�T�k0;k2� � lim
k!0

�L�k0; k2�: (2.18)

As an example, consider a four-dimensional field theory at
nonzero temperature. Without loss of generality, one can
take the spatial momentum oriented along the x3 direction,
so that k� � ��!; 0; 0; q�, with k2 � �!2 � q2. Then the
components of the current-current correlation function are

Cx1x1�k� � Cx2x2�k� � �T�!; q�; (2.19)

as well as
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Ctt�k� �
q2

!2 � q2 �L�!; q�;

Ctx3�k� �
�!q

!2 � q2 �L�!; q�;

Cx3x3�k� �
!2

!2 � q2 �L�!; q�:

(2.20)

For a system in stable thermodynamic equilibrium at tem-
perature T, the low-energy (!	 T, q	 T) behavior of
�T and �L is universal and is described by effective
hydrodynamic theory (see, for example, [17]). In the ap-
proximation of linearized hydrodynamics, �T�!; q� is
nonsingular as a function of ! because it does not couple
to charge density fluctuations. On the other hand, correla-
tors which involve conserved charge density must exhibit a
hydrodynamic singularity whose dispersion relation satis-
fies !�q� ! 0 as q! 0. The longitudinal self-energy
�L�!; q� has a simple pole at ! � �iDQq2, where DQ

is the diffusion constant of charge Q associated with
current J��x�.

B. Stress-energy tensor

In vacuum, the two-point correlation function of
stress-energy tensor may be written as a sum of five
terms allowed by the symmetries (2.5) and (2.6), which
are proportional to ������, ������� � �������,
����k�k� � k�k�����, ����k�k� � ���k�k� �
���k�k� � ���k�k��, and k�k�k�k�. Only two linear
combinations of these terms are consistent with the Ward
identity (2.8); they can be taken to be P��P�� and
P��P�� � P��P��. A convenient way to write
G��;���k� is

G��;���k� � P��P��GB�k2� �H��;��GS�k2�; (2.21)

where

H��;�� �
1

2
�P��P�� � P��P��� �

1

D� 1
P��P��

is a projector onto conserved traceless symmetric tensors,
which is constructed to satisfy ���H��;�� � 0. As a re-
sult, a scale-invariant theory must have GB�k2� � 0, and
the correlation function takes a simple form

G��;���k� � H��;��GS�k2�: (2.22)

If the expectation value is taken in a state that has only
rotation symmetry (such as a thermal equilibrium state in
the canonical ensemble), it is convenient to split H��;��

into mutually orthogonal projectors constructed out of
PT��, PL��. One relevant combination is

S��;�� � 1
2�P

T
��PL�� � P

L
��PT�� � P

T
��P

L
�� � PL��P

T
���:

(2.23)

It satisfies k�S��;�� � 0 and also ���S��;�� � 0 because
-3
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of the orthogonality of PT and PL. It is not difficult to find
another independent combination with the same properties,

Q��;�� �
1

D� 1

�
�D� 2�PL��PL�� �

1

D� 2
PT��PT��

� �PT��P
L
�� � P

L
��P

T
���

�
: (2.24)

The projectors S��;�� and Q��;�� square to themselves
and are orthogonal to each other (S��;����	��
Q	
;�� �

0). Therefore, the projector H��;�� can be split as

H��;�� � S��;�� �Q��;�� � L��;��;

where L��;�� 
 H��;�� � S��;�� �Q��;�� is orthogonal
to both S��;�� and Q��;��. Thus, the correlation function
of energy-momentum tensor in a scale-invariant theory can
be written as a sum over three independent index struc-
tures,

G��;���k� � S��;��G1�k0; k
2� �Q��;��G2�k0; k

2�

� L��;��G3�k0; k
2�: (2.25)

It is not difficult to show that rotation invariance implies
that k! 0 limits (with k0 fixed) of the three independent
scalar functions must coincide,

lim
k!0

G1�k0;k2� � lim
k!0

G2�k0; k2� � lim
k!0

G3�k0; k2�: (2.26)

In a scale noninvariant theory, two extra scalar functions
are needed to specify G��;���k�. They multiply two inde-
pendent linear combinations of PT��PT��, PL��PL��, and
�PT��P

L
�� � P

L
��P

T
���; one possible choice is

G��;���k�� �PT��PT��� 1
2�P

T
��PL���P

L
��PT����CT�k0;k2�

��PL��PL��� 1
2�P

T
��PL���P

L
��PT����

�CL�k0;k2��S��;��G1�k0;k2��Q��;��

�G2�k0;k
2��L��;��G3�k0;k

2�: (2.27)

When CT � CL � GB and G1 � G2 � G3 � GS, this ex-
pression reduces to the Lorentz-invariant form (2.21).

As an example, consider a four-dimensional field theory
at nonzero temperature. Choosing momentum to be k� �
��!; 0; 0; q� as above, one finds the following components
of the correlation function. The correlations of transverse
momentum density are determined by G1�!; q�,

Gtx1;tx1�k� �
1

2

q2

!2 � q2 G1�!; q�; (2.28)

Gtx1;x1x3�k� � �
1

2

!q

!2 � q2 G1�!; q�; (2.29)

Gx1x3;x1x3�k� �
1

2

!2

!2 � q2 G1�!; q�: (2.30)
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The correlations of longitudinal momentum density, en-
ergy density, and diagonal stress are determined by
G2�!; q�, CL�!; q�, CT�!; q�. For example,

Gtt;tt�k��
1

3

q4

�!2�q2�2
�2G2�!;q��3CL�!;q��; (2.31)

Gtt;tx3�k� � �
1

3

!q3

�!2 � q2�2
�2G2�!; q� � 3CL�!; q��;

(2.32)

Gtt;x1x1�
1

6

q2

�q2�!2�
�2G2�!;q��3CL�!;q��3CT�!;q��:

(2.33)

The correlations of transverse stress are determined by
G3�!; q�,

Gx1x2;x1x2�k� � 1
2G3�!; q�: (2.34)

For a system in stable thermodynamic equilibrium at tem-
perature T, the low-energy (!	 T, q	 T) behavior of
G��;�� is universal and is described by effective hydro-
dynamic theory (see, for example, [17]). In the approxi-
mation of linearized hydrodynamics, G3�!; q� is
nonsingular as a function of ! because it does not couple
to energy density or momentum density fluctuations. On
the other hand, correlation functions which involve con-
served densities exhibit hydrodynamic singularities whose
dispersion relations satisfy !�q� ! 0 as q! 0. Function
G1�!; q� has a simple pole at ! � �i
�q2, where 
� is
the damping constant of the shear mode, proportional to
shear viscosity. In a conformal theory (when CL � CT �
0), function G2�!; q� has simple poles at ! � �vsq�
i�sq

2, where vs is the speed of sound, and �s is the
damping constant of the sound mode, also proportional
to shear viscosity.

III. QUASINORMAL SPECTRUM AND
HOLOGRAPHIC DUALITY

A. Thermal correlation functions

We will be interested in small fluctuations of a black
p-brane,

ds2 � a�r�
�
�f�r�dt2 �

Xp
i�1

�dxi�2
�
� b�r�dr2: (3.1)

Metrics of this form arise as a result of dimensional reduc-
tion of higher-dimensional supergravity backgrounds. In
addition, these backgrounds have nonzero values of vari-
ous ‘‘matter’’ fields which we collectively denote by ��0�

suppressing all indices. Holographically dual theory is
defined on the boundary (r! 1) of (3.1), which is a flat
p� 1-dimensional Minkowski space.

Translation invariance on the boundary implies that all
fluctuating fields can be taken to be proportional to
-4



5One should add at once that, in addition to zeros of A,
singularities of the correlator (3.5) may also come from singu-
larities of B. However, singularities of B are completely deter-
mined by the singularities of the local Frobenius solution ’1
considered as a function of parameter(s) of the differential
equation. Indeed, a general theorem [21] guarantees smoothness
of a solution of a differential equation with respect to a parame-
ter, if the equation and the boundary conditions depend smoothly
on the parameter. Thus, the solution Z is smooth, and singular-
ities of B are destined to cancel the singularities of the coef-
ficients of the series expansion in the local Frobenius solution ’1
with respect to a parameter. Therefore, singularities of B are
essentially determined by the recursion relations for the coef-
ficients of the series expansion which defines ’1. Let us illustrate
this point using a hypergeometric equation as an example. On
the interval z 2 �0; 1�, the solution 2F1�a; b; c; z� defined by its
recursion relations at z � 0 is related to two local solutions at
z � 1 by

2F1�a; b; c; z� �A 2F1�a; b; a� b� c� 1; 1� z�

�B�1� z�c�a�b2F1�c� a; c� b; c

� a� b� 1; 1� z�;

(3.6)

where the connection matrix coefficients are given by

A �
��c���c� a� b�
��c� a���c� b�

; B �
��c���a� b� c�

��a���b�
:

To be in agreement with the scenario set by Eq. (3.2), let us
further assume that c� a� b > 0. The poles of the correlator
(3.5) come from the poles of ��c� a� and ��c� b� (also
corresponding to the Dirichlet condition A � 0) and from the
poles of ��a� b� c�. The latter are determined by the local
solution near z � 1,

2F1�a; b; a� b� c� 1; 1� z�

� 1�
ab

1� a� b� c
�1� z�
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e�i!t�iqx; thus, linearized fluctuations �g��, �� of the
background will obey a system of second-order linear
ordinary differential equations. Generically, the system
will be redundant, reflecting the gauge freedom (such as
linearized diffeomorphisms) enjoyed by the fluctuation
fields. Instead of fixing a particular gauge, we consider
gauge-invariant combinations of the fluctuation fields. Let
Zk be these gauge-invariant variables, which are con-
structed as linear combinations of fluctuating fields and
their derivatives, excluding r derivatives. Variables Zk will
obey a system of coupled second-order linear ordinary
differential equations (ODEs), which can, in principle, be
diagonalized. Let Z�r� be such a gauge-invariant variable
satisfying a second-order ODE. A local solution of the
ODE near the horizon will generally be a superposition
of incoming and outgoing waves. Since classically the
horizon does not radiate, we choose the incoming-wave
boundary condition there.

The solution obeying the incoming-wave boundary con-
dition at the horizon can be written in the basis of two local
solutions at the boundary3 as

Z�r� �A’1�r� �B’2�r�; (3.2)

where A, B are the connection coefficients of the corre-
sponding ODE. Coefficients A, B typically depend on the
parameters (such as frequency and momentum) which
enter the differential equation for Z�r�. Near the boundary,
the solution (3.2) becomes

Z�r� �Ar����1� 
 
 
� �Br����1� 
 
 
�; (3.3)

where ��, �� are exponents of the ODE at r � 1, and
ellipses denote higher powers of r. We consider the situ-
ation when the exponents are not equal, �� >��, and ��
can be taken positive.4

The action of the system expanded to quadratic order in
fluctuations �g��, �� can be rewritten in terms of the
gauge-invariant variables. On shell, the part of the action
quadratic in fluctuations will reduce to the boundary term

S�2� � lim
r!1

Z
d!dpqF�!; q�Z0�r�Z�r� � contact terms;

(3.4)

where F�!; q� depends on the details of the action, and
‘‘contact terms’’ do not contain Z0�r�.

In holographic AdS/CFT duality, fluctuation �� couples
to a particular operator O of the dual theory at the bound-
ary. Applying the Lorentzian AdS/CFT prescription [9,20]
to the action (3.4) to compute the retarded correlator, and
3By local solutions, we mean the solutions obtained as power
series around the corresponding singular point (r � 1 in this
case) of the differential equation. See, for example, [18] for a
general discussion.

4In AdS/CFT correspondence, �� is equal to the conformal
dimension of the operator that couples to bulk fields contained in
Z. See also [19] for exceptional cases.
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remembering that Z�r� is a functional of ��, we find

hOOiR �
B

A
� contact terms: (3.5)

The poles of the retarded correlator correspond to zeros of
the connection coefficient A. On the other hand, setting
A � 0 in Eq. (3.2) corresponds to a particular choice of
boundary conditions for the fluctuation Z�r�. From the
general relativity point of view, this choice determines
the quasinormal spectrum of Z�r�. In other words, equation
A � 0 defines quasinormal spectrum for gauge-invariant
perturbations which has the interpretation of the poles of
retarded correlators in a holographically dual theory.5 This
argument is similar to the one given in Refs. [9,22] in the
�
ab�a� 1��b� 1�

2�1� a� b� c��2� a� b� c�
�1� z�2 � 
 
 
 ;

the coefficients of which have poles at a� b� c � �n, where
n is a positive integer. These are precisely the poles of the
correlator (3.5) coming from B. By setting a� b� c � �n�
� and taking the limit �! 0, one can show that the right-hand
side of Eq. (3.6) is, in fact, a smooth function of the parameters
a, b, c.

-5
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case of a scalar fluctuation, the difference being the use of
gauge-invariant variables in the present discussion.

B. Black brane fluctuations

According to the dictionary of the AdS/CFT correspon-
dence [5], global symmetry currents of the dual field theory
have as their sources boundary values of the gauge field A�
on the higher-dimensional background (3.1). Similarly,
stress-energy tensor of the dual theory is sourced by gravi-
tational fluctuations h�� of the black brane. We shall be
interested in quasinormal spectra of these fluctuations. We
take the fluctuations to be of the form A��r�e

�i!t�iqz,
h���r�e�i!t�iqz, where z � xp. The fluctuations can be
classified according to their transformation properties
under the ‘‘remaining’’ world-volume symmetry group
O�p� 1� acting on x1; . . . ; xp�1.

Let us restrict ourselves to the simplest case when the
considered fluctuations do not couple to fluctuations of
other background fields. Components At, Az do not trans-
form under O�p� 1�, while components A�, � �
x1; . . . ; xp�1 transform as vectors. One can therefore dis-
tinguish two symmetry channels for electromagnetic fluc-
tuations

Spin 0 �diffusive channel�: At; Az; Ar; (3.7a)

Spin 1 �transverse channel�: A�: (3.7b)

A similar classification can be adopted for metric fluctua-
tions. Components htt, htz, hzz, hrr, htr, and hzr do not
transform under O�p� 1�, components ht�, hz�, and hr�
transform as vectors, while h�� transform as rank-2 ten-
sors. The tensor representation is reducible, for a symmet-
ric h�� can be decomposed into the trace part
���h=�p� 1�, where h �

P
�h�� (a singlet) and the sym-

metric traceless part h�� � ���h=�p� 1�. Thus, we have
three symmetry channels for gravitational fluctuations6:

Spin 0 �sound channel�: htt; htz; hzz; h; hrr; htr; hzr; (3.8a)

Spin 1 �shear channel�: ht�; hz�; hr�; (3.8b)

Spin 2 �scalar channel�: h�� � ���h=�p� 1�: (3.8c)

The O�p� 1� symmetry guarantees that equations for
fluctuations belonging to different symmetry channels de-
couple. Classification presented here mirrors the classifi-
cation of the correlators in Sec. II: Diffusive and transverse
channels of the U�1� fluctuation correspond to functions
�L and �T of the current-current correlator. When the
dual theory possesses conformal invariance, shear, sound,
6The name ‘‘scalar’’ for spin-2 fluctuations reflects the fact
that the corresponding wave equation coincides with that of the
minimally coupled massless scalar [23]. The names ‘‘shear’’ and
‘‘sound’’ (as well as ‘‘diffusive’’ above) reflect physical inter-
pretation of the lowest quasinormal frequency (for a given
symmetry channel) in the dual field theory. This will be seen
explicitly in the next section.

086009
and scalar channels of the gravitational fluctuation are
related to functions G1, G2, G3 of the stress-energy tensor
correlator.

C. Gauge-invariant variables

We now define gauge-invariant variables corresponding
to classes (3.7) and (3.8). Combinations of the gauge field
components invariant under the transformation A� !
A� � @�	 include components of the electric field

Diffusive channel : Ez � qAt �!Az; (3.9)

Transverse channel : E� � !A�: (3.10)

Perturbations h�� transform under infinitesimal diffeomor-
phisms as h�� ! h�� �r��� �r���, where �� �
���r�e

�i!t�iqz are gauge functions, and covariant deriva-
tives are taken with respect to the background metric (3.1).
One may define the following gauge-invariant combina-
tions linear in perturbations:

Shear channel : Z1 � qHtx1 �!Hzx1 ; (3.11)

Sound channel: Z2 � q2fHtt � 2!qHtz �!2Hzz

� q2f
�
1�

af0

a0f
�
!2

q2f

�
H; (3.12)

Scalar channel : Z3 � Hx1x2 ; (3.13)

where Htt � htt=af, Htz � htz=a, Hij � hij=a (i; j � t),
H � h=�p� 1�a. From Einstein equations obeyed by the
fluctuations, one obtains three independent second-order
ODEs satisfied by Z1, Z2, and Z3.

Quasinormal modes are defined as solutions to the
second-order differential equations satisfied by the
gauge-invariant variables Ez, E�, Z1, Z2, Z3 obeying the
incoming-wave boundary condition at the horizon and the
Dirichlet condition at the boundary. According to the
above discussion, the spectra of complex eigenfrequencies
obtained in solving the boundary value problem for fluc-
tuations Ez, E�, Z1, Z2, Z3 coincide with poles of the
functions �L, �T , G1, G2, G3, respectively.
IV. THERMAL CORRELATORS IN STRONGLY
COUPLED N � 4 SYM

We now apply the approach outlined in Sec. III to the
near-horizon limit of the nonextremal gravitational back-
ground of type IIB low-energy string theory describing Nc
parallel black three-branes. The background is given by the
metric
-6
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ds2 �
r2

R2 ��f�r�dt
2 � dx2 � dy2 � dz2�

�
R2

r2f�r�
dr2 � R2d�2

5; (4.1)

where R is a constant, which depends on the number of D3

branes, R / N1=4
c , and f�r� � 1� r4

0=r
4. The parameter of

nonextremality r0 specifies the location of the horizon,
whose Hawking temperature is T � r0=�R

2. Upon dimen-
sional reduction on S5, gravitational perturbations will
effectively propagate on the five-dimensional part of the
background (4.1). Introducing new coordinate u � r2

0=r
2,

the metric can be written as

ds2 �
��TR�2

u
��f�u�dt2 � dx2 � dy2 � dz2�

�
R2

4u2f�u�
du2; (4.2)

where f�u� � 1� u2. In these coordinates, the horizon is
located at u � 1, and the boundary is at u � 0. In addition,
the background is specified by the value of the self-dual
five form field

F5 �
2��TR�4

u3 �1� ��dt ^ dx ^ dy ^ dz ^ du; (4.3)

with all other fields vanishing. The dual quantum field
theory is N � 4 SU�Nc� supersymmetric Yang-Mills the-
ory in 3� 1-dimensional Minkowski space at large Nc and
large ’t Hooft coupling [2]. The field theory is taken in a
thermal equilibrium state at a temperature equal to the
Hawking temperature of the background. Real-time ther-
mal correlators of the conserved R-symmetry currents and
stress-energy tensor in this theory were considered in the
AdS/CFT approach in Refs. [11,15,16]. Here we show that
reformulating the problem in terms of gauge-invariant
variables allows one to compute functions �L, �T , G1,
G2, G3 directly by solving the second-order ODEs associ-
ated with each of them. In particular, quasinormal spectra
of the gauge-invariant fluctuations determine poles of these
functions in a complex frequency plane.7

A. R-current correlators

Correlators of R currents in strongly coupled N � 4
SYM at zero temperature were computed in Refs. [24,25]
by using the AdS/CFT correspondence. A similar approach
can be taken at nonzero temperature [15]. On the gravity
side of AdS/CFT, one considers an effective U�1� field8 in
7The problem of additional singularities discussed in footnote 5
does not arise here.

8The R charges of the theory Qa �
R
d3xja0�x� generate a

global SU�4� symmetry group, with a � 1 . . . 15. In an equilib-
rium state without chemical potentials for the R charges, the
correlation function of R currents ja� has the form Cab���x� �
�abC���x�. The expressions of this section refer to C���x�.
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the five-dimensional asymptotically AdS part of the back-
ground (4.2). This five-dimensional Maxwell field is es-
sentially a graviphoton of the dimensional reduction of
(4.1) on S5.

According to the discussion in Sec. II, thermal current-
current correlators are determined by two independent
scalar functions, �T�!; q� and �L�!; q�. Corre-
spondingly, we expect the dual five-dimensional Maxwell
system to reduce to two independent equations for gauge-
invariant variables whose quasinormal frequencies deter-
mine the poles of the correlators. One of the quasinormal
frequencies should be purely imaginary (at least in the
regime q=T 	 1), reflecting diffusive relaxation of large-
scale charge density fluctuations around thermal equilib-
rium state in the dual field theory.

Maxwell’s equations for the U�1� field are simply
@A�

�������
�g
p

gACgBDFCD� � 0, where FCD � @CAD � @DAC,
capital Latin indices run over t; x; y; z; u, and components
of the five-dimensional metric gAB are given by (4.2).
Translation invariance for the t; x; y; z coordinates implies
that vector potential can be Fourier transformed,

AC�u; t; x� �
Z d4k

�2��4
eik0t�ikxAC�u; k�: (4.4)

Choosing k � ��!; 0; 0; q�, one can derive the following
equations satisfied by transverse and longitudinal electric
fields:

E00� �
f0

f
E0� �

w2 � q2f

uf2 E� � 0; (4.5a)

E00z �
w2f0

f�w2 � q2f�
E0z �

w2 � q2f

uf2 Ez � 0; (4.5b)

where � � x; y, E� 
 wA�, Ez 
 qAt �wAz, dimen-
sionless parameters w and q are defined as

w �
!

2�T
; q �

q
2�T

; (4.6)

and prime denotes the derivative with respect to u.
Gauge-gravity duality implies that all information about

two-point R-current correlation functions in the dual N �
4 SYM theory (in the large Nc and large ’t Hooft coupling
limit) is contained in the solutions to the differential equa-
tions (4.5). For both equations, the singularity at u � 1 (the
horizon) has exponents �iw=2 corresponding to the out-
going/incoming waves. To compute the retarded correla-
tors, one has to impose the incoming-wave boundary
condition at the horizon [9], thus choosing �iw=2 as the
correct exponent. At the boundary (u � 0), the exponents
for both equations are 0 and 1, and, thus, solutions to
Eqs. (4.5) which satisfy incoming-wave boundary condi-
tion at the horizon behave near u � 0 as

E��u� �A����w; q� � 
 
 
 �B����w; q�u� 
 
 
 ; (4.7a)

Ez�u� �A�z��w; q� � 
 
 
 �B�z��w; q�u� 
 
 
 : (4.7b)
-7
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The boundary action of the Maxwell system in the gauge
Au � 0 is9

S � lim
u!0

N2
cT

2

16

Z d!dq

�2��2
�A0t�u; k�At�u;�k�

� f�u�A0�u; k�A�u;�k��: (4.8)

Using Maxwell’s equations, the action can be written in
terms of gauge-invariant variables as

S � lim
u!0

N2
cT

2

16

Z d!dq

�2��2

�
f�u�

q2f�u� �w2 E
0
z�u; k�Ez�u;�k�

�
f�u�

w2 �E
0
x�u; k�Ex�u;�k� � E0y�u; k�Ey�u;�k��

�

� contact terms; (4.9)

where contact terms do not contain derivatives of the
electric fields. In order to find the correlation functions,
one has to express the derivatives of the fields in terms of
the boundary values of the fields A0

��k� 
 A��u! 0; k�,
E0
��k� 
 E��u! 0; k� using the solutions (4.7); applying a

Lorentzian AdS/CFT prescription [9], one finds10

C���!; q� �
�2S

�A0
��k��A0

���k�
�

w2�2S

�E0
��k��E0

���k�

� �
N2
cT2B���
8A���

: (4.10)

Similarly,

Ctt�!; q� �
N2
cT2q2B�z�

8�q2 �w2�A�z�
; (4.11a)

Ctz�!; q� � Czt�!; q� �
N2
cT2wqB�z�

8�q2 �w2�A�z�
; (4.11b)

Czz�!; q� �
N2
cT2w2B�z�

8�q2 �w2�A�z�
: (4.11c)

Comparing these expressions with the general result (2.20),
one finds

�T�!; q� � �
N2
cT2B����!; q�

8A����!; q�
;

�L�!; q� � �
N2
cT

2B�z��!; q�

8A�z��!; q�
:

(4.12)

Thus, the correlation functions are completely determined
by the ratios of the connection coefficients of differential
equations (4.5). In particular, poles of the correlators cor-
respond to zeros of the coefficients A����w; q� and
A�z��w; q�. To find the zeros, we impose Dirichlet bound-
9Normalization of the five-dimensional action S �
1=4g2

B

R �������
�g
p

FABF
AB is fixed by g2

B � 16�2R=N2
c [24].

10See [9] for the definition of functional derivative in this
context.
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ary conditions on electric fields at u � 0 for the solutions
to Eqs. (4.5) which satisfy the incoming-wave conditions at
the horizon. Physically, the horizon acts as a perfectly
absorbing surface, while the boundary acts as a perfect
conductor.

In order to determine the self-energies �T�!; q�,
�L�!; q�, one needs to know the solution to Eqs. (4.5).
Analytic solution is unknown, except for a special case of
q � 0, when the Dirichlet boundary value problem can be
reformulated as a problem of solving a transcendental
algebraic continued fraction equation [11,26]. For q � 0,
gauge-invariant variables Ei, i � x; y; z obey the same
equation11

E00i �
f0

f
E0i �

w2

uf2 Ei � 0: (4.13)

The solution to the Dirichlet boundary value problem for
Eq. (4.13) can be found exactly and is given by Heun
polynomials [11]. The quasinormal spectrum is

q � 0; w � n�1� i�; n � 0; 1; 2; . . . : (4.14)

For q � 0, quasinormal spectra of perturbations E� and Ez
[and, correspondingly, the poles of �T�!; q� and
�L�!; q�] differ from each other and can be found numeri-
cally, as explained in Appendix B. A typical arrangement
of quasinormal frequencies is shown in Fig. 1 [the poles of
�L�!; q� were found numerically in Ref. [11]]. Quasi-
normal frequencies are located symmetrically with respect
to the imaginary axis, as is expected from the singularities
of the corresponding correlation function in the dual field
theory; see Eq. (2.10).

In the hydrodynamic limit one can find analytic solu-
tions to Eqs. (4.5) as a series in w	 1, q	 1. Assuming
first that w, q are of the same order, we get

E��u� � C�f�u��iw=2

�
1� iw log

1� u
2

�O�w2;q2�

�
; (4.15a)

Ez�u� � Czf�u��iw=2

�
1� iw log

1� u
2

�
iq2

w
�1� u� �O�w2; q2�

�
; (4.15b)

where C�, Cz are normalization constants. Imposing
Dirichlet boundary conditions at u � 0, one finds that the
equation E��0� � 0 has no solution compatible with the
assumption w	 1. Holographic interpretation of this fact
is that the function �T�!; q� has no singularities in the
hydrodynamic regime. The condition Ez�0� � 0 leads to
w � �iq2 �O�q3�. This is the lowest hydrodynamic qua-
sinormal frequency of the Dirichlet boundary value prob-
11As they should, in accord with rotation invariance in the dual
field theory; see Eq. (2.18).
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FIG. 1. Quasinormal spectrum of electric field fluctuations in the plane of complex w 
 !=2�T, shown for spatial momentum
q 
 q=2�T � 1. Quasinormal frequencies on the left are defined by Eq. (4.5a) for the transverse electric field and coincide with the
poles of �T�!; q�, as explained in the text. Quasinormal frequencies on the right are defined by Eq. (4.5b) for the longitudinal electric
field and coincide with the poles of �L�!; q�. As q decreases, all poles stay at a finite distance from the real axis, except for the one
marked with a large dot. This pole is purely imaginary and approaches the origin in the limit q! 0. The presence of this special
quasinormal frequency is a manifestation of the diffusive relaxation of R-charge density fluctuations in the dual N � 4 SYM theory.
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lem for Ez. Accordingly, in the hydrodynamic regime
function �L�!; q� has a pole at12

! � �iDRq
2; (4.16)

where DR � 1=2�T. Physically, it corresponds to the
R-charge diffusion with the diffusion constant DR. By
comparing the solutions (4.15) to the definition of connec-
tion coefficients (4.7), one finds A��� � 1, B��� � iw,
A�z� � 1� iq2=w, B�z� � iw� iq2=w. Substituting
these connection coefficients into AdS/CFT results (4.10)
and (4.11), one reproduces the R-current correlators in the
low-frequency approximation found earlier in Ref. [15].

B. Stress-energy tensor correlators

Correlation functions of stress-energy tensor in the finite
temperature N � 4 SYM at large Nc and strong coupling
were studied in Refs. [11,15,16]. Here we use the gauge-
invariant variables approach to identify the correct associ-
ated boundary value problem and to obtain new results for
the correlators in the sound wave channel.

To compute correlators of the stress-energy tensor in
AdS/CFT correspondence, one considers metric fluctua-
tions hAB of the supergravity background. To linear order
in hAB, the Einstein equations are
12One may question the validity of this result since it implies
that w� q2, whereas the solution (4.15b) was obtained under the
assumption that w and q are of the same order. To check our
result, we introduce a new parameter � � w=q� q. Solving
Eq. (4.5b) perturbatively in�	 1, q	 1, where � and q are of
the same order, we find Ez�u� � Czf

�i�q=2�1� iq�1� u�=��
O����. The condition Ez�0� � 0 again gives the dispersion
relation w � �iq2.
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R �1�
AB � �

4

R2 hAB; (4.17)

where R�1�
AB is the linearized Ricci tensor evaluated in the

background (4.2). Translation invariance for the t; x; y; z
coordinates implies that metric perturbations can be
Fourier transformed and classified according to their trans-
formations with respect to the rotation group O�2�, as
discussed in Sec. III B. As we shall see shortly, quasinor-
mal spectra of the three gauge-invariant variables (3.11),
(3.12), and (3.13) appear correspondingly as the poles of
the three functions G1, G2, G3 in Eq. (2.25), which deter-
mines the two-point correlation function of stress-energy
tensor in a scale-invariant theory.

1. Scalar channel

According to the discussion in Sec. III, the equation
satisfied by the component hxy of the perturbed metric
decouples from the rest of the Einstein equations. The
gauge-invariant function Z3 � Hxy � hxy satisfies the equa-
tion for a minimally coupled massless scalar in the back-
ground (4.2),

Z003 �
1� u2

uf
Z03 �

w2 � q2f

uf2 Z3 � 0: (4.18)

The exponents of this equation near u � 0 are 0 and 2;
therefore, asymptotic behavior of Z3 near the boundary is

Z3�u� �A�3��1� 
 
 
� �B�3�u
2 � 
 
 
 ; (4.19)

where ellipses denote higher powers of u. The relevant part
of the boundary gravitational action [Eq. (6.9) of Ref. [15]]
can be written using our notations as
-9
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FIG. 2. Quasinormal spectrum of gravitational fluctuations in
the scalar channel, shown in the plane of complex w 
 !=2�T,
for spatial momentum q 
 q=2�T � 1. The quasinormal fre-
quencies coincide with poles of G3�!; q�, as explained in the
text. As q! 0, all poles stay at a finite distance from the real
axis, as one expects from the absence of hydrodynamic singu-
larities in G3�!; q�.
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S � �
�2N2

cT4

8
lim
u!0

Z d!dq

�2��2
f�u�
u

Z03�u; k�Z3�u;�k�:

(4.20)

Proceeding as in Sec. IVA, we obtain the correlator13

Gxy;xy � �
�2N2

cT
4B�3�

2A�3�
: (4.21)

Comparing this expression to the general result (2.34), we
find

G3�!; q� � �
�2N2

cT4B�3��!; q�

A�3��!; q�
: (4.22)

Turning now to the connection between quasinormal spec-
trum and AdS/CFT correlators, we see that the condition
A�3��w; q� � 0 determines the singularities of G3. From
the definition of connection coefficients (4.19), it is evident
that the condition A�3��w; q� � 0 is equivalent to impos-
ing the Dirichlet boundary condition on fluctuations,
Z3�u � 0� � 0.

The quasinormal spectrum of fluctuations obeying the
incoming-wave boundary condition at the horizon and the
Dirichlet condition Z3�u � 0� � 0 at the boundary was
numerically computed in Refs. [11,26]. The spectrum wn
is discrete, (presumably) infinite, and almost equidistant.
For q � 0, its asymptotics for higher modes is well ap-
proximated by a simple formula14 [26]
13Terms analytic in w and q are ignored, even if they are
divergent as u! 0.

14For an analytic approach to the asymptotic behavior (4.23),
see [27].
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!n � 2�Tn��1� i�; n! 1: (4.23)

A typical arrangement of quasinormal frequencies is
shown in Fig. 2. Quasinormal frequencies are located
symmetrically with respect to the imaginary axis, as is
expected from the singularities of the corresponding cor-
relation function in the dual field theory; see Eq. (2.11).

In the hydrodynamic limit w	 1, q	 1, analytic
solution to Eq. (4.18) can be found,

Z3�u� � C3f�u�
�iw=2�1�O�w2; q2��; (4.24)

where C3 is a normalization constant. By comparing this
solution with the definition of connection coefficients
(4.19), one finds A�3� � 1�O�w2�, B�3� � iw=2�
O�w2; q2;wq�. Substituting these connection coefficients
into the AdS/CFT result (4.21), one reproduces the corre-
lator of transverse components of stress tensor in the low-
frequency approximation found earlier in Ref. [15]. The
equation A�3��w;q� � 0 does not have solutions compat-
ible with the condition w	 1. This is consistent with our
expectations in Sec. II that G3 has no hydrodynamic
singularities.

2. Shear channel

According to the discussion in Sec. III, equations sat-
isfied by the components htx, hzx, and hux of the perturbed
metric form a closed set. In the radial gauge huA � 0, they
read

H0zx � �
w

qf
H0tx; (4.25a)

H00tx �
1

u
H0tx �

wq

uf
Hzx �

q2

uf
Htx; (4.25b)

where Htx � uhtx=��TR�
2, Hzx � uhzx=��TR�

2. Using
these equations, one finds that Z1�u� 
 qHtx�u� �
wHzx�u� satisfies the following second-order ODE:

Z001 �
�w2 � q2f�f� uw2f0

uf�q2f�w2�
Z01 �

w2 � q2f

uf2 Z1 � 0:

(4.26)

The exponents of Eq. (4.26) at u � 0 are 0 and 2, and, thus,
asymptotic behavior of Z1 near the boundary is

Z1�u� �A�1��1� . . .� �B�1�u2 � . . . ; (4.27)

where ellipses denote higher powers of u. The relevant part
of the boundary gravitational action is given by Eq. (6.19)
of Ref. [15]. Expressed in terms of the gauge-invariant
variable Z1, the action is
-10
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FIG. 3. Quasinormal spectrum of gravitational fluctuations in
the shear channel, shown in the plane of complex w 
 !=2�T,
for spatial momentum q 
 q=2�T � 1. The quasinormal fre-
quencies coincide with poles of G1�!; q�, as explained in the
text. As q decreases, all poles stay at a finite distance away from
the real axis, except for the one marked with a large dot. This
pole is purely imaginary and approaches the origin in the limit
q! 0. The presence of this special quasinormal frequency is a
manifestation of the diffusive relaxation of transverse momen-
tum density fluctuations in the dual N � 4 SYM theory.
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S � �
�2N2

cT4

8
lim
u!0

Z d!dq

�2��2

�
f�u�

u�w2 � q2f�u��
Z01�u; k�Z1�u;�k�

� contact terms: (4.28)

Proceeding as in Sec. IVA, we find, after comparing the
expression for the correlator with (2.28), (2.29), and (2.30),

G1�!; q� � �
�2N2

cT4B�1��!; q�

A�1��!; q�
: (4.29)

Again, the condition A�1��!; q� � 0 is equivalent to
Dirichlet boundary condition Z1�u � 0� � 0. A typical
arrangement of quasinormal frequencies is shown in Fig. 3.

In the limit w	 1, q	 1, the perturbative analytical
solution to Eq. (4.26) satisfying the incoming-wave bound-
15The argument of footnote 12 regarding the scaling of w, q also ap
way that the initial assumption that w and q are of the same order i
remains unchanged.
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ary condition at the horizon is15

Z1�u� � C1f�u��iw=2

�
1�

iq2f
2w
�O�w2; q2;wq�

�
;

(4.30)

where C1 is a normalization constant. Expanding for small
u, we find the connection coefficients

A�1� � 1�
iq2

2w
�O�w2; q2;wq�;

B�1� �
i�w2 � q2�

2w
�O�w2; q2;wq�:

(4.31)

The Dirichlet condition Z1�u � 0� � 0 gives the hydro-
dynamic quasinormal frequency w � �iq2=2�O�q3�. It
is interpreted as the dispersion relation for the shear mode,

! � �i
�q2 �O�q3�; (4.32)

where 
� � 1=4�T. For the function G1�!; q� in this
approximation, we find

G1�!; q� �
�N2

cT
3�!2 � q2�

4�i!� q2=4�T�
; (4.33)

in agreement with the result obtained earlier in Ref. [15].
The quasinormal spectrum for frequencies beyond the
hydrodynamic limit was obtained in Ref. [11] using a
slightly different approach.

3. Sound channel

According to the discussion in Sec. III, equations obeyed
by the components of the metric Htt � uhtt=f��TR�2,
Htz � uhtz=��TR�2, Hzz � uhzz=��TR�2, Haa � u�hxx �
hyy�=��TR�2 form a closed system of equations (in the
radial gauge huA � 0). These equations are lengthy, and we
present them in Appendix A. Using the equations of mo-
tion (A1)–(A4), one can show that the gauge-invariant
combination

Z2�u� 
 4wqHtz � 2w2Hzz �Haa�q
2�2� f� �w2�

� 2q2fHtt (4.34)

obeys the following second-order differential equation:
Z002 �
3w2�1� u2� � q2�2u2 � 3u4 � 3�

uf�3w2 � q2�u2 � 3��
Z02 �

3w4 � q4�3� 4u2 � u4� � q2�4u5 � 4u3 � 4u2w2 � 6w2�

uf2�3w2 � q2�u2 � 3��
Z2 � 0:

(4.35)

In the limit u! 0, this equation coincides with Eq. (4.18) obeyed by a minimally coupled massless scalar, and, thus, the
behavior of the solution Z2�u� near the boundary is given by
plies here. The boundary condition constrains w and q in such a
s invalid. Using the correct scaling, we find that the result (4.32)

-11
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FIG. 4. Quasinormal spectrum of gravitational fluctuations in
the sound channel, shown in the plane of complex w 
 !=2�T,
for spatial momentum q 
 q=2�T � 1. The quasinormal fre-
quencies coincide with the poles of G2�!; q�, as explained in the
text. As q decreases, all poles stay at a finite distance away from
the real axis, except for the ones marked with large dots, which
approach the origin as q! 0 (see Appendix B for the corre-
sponding dispersion curves). Such behavior of the lowest quasi-
normal frequencies is a manifestation of oscillatory relaxation of
longitudinal momentum density (as well as energy density)
fluctuations in the dual N � 4 SYM theory.
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Z2�u� �A�2��1� 
 
 
� �B�2�u2 � 
 
 
 ; (4.36)

where ellipses denote higher powers of u. Using the equa-
tions of motion (A1)–(A4), the relevant part of the on-shell
boundary gravitational action (quadratic in fluctuations)
can be written as16

S�2�B � lim
u!0

Z d!dq

�2��2
A�w; q; u�Z02�u; k�Z2�u;�k� � S

�2�
CT;

(4.37)

where

A�w;q; u� �
3N2

c�
2T4f�u�

32u�3w2 � q2�3� u2��2
; (4.38)

and the contact term part S�2�CT does not contain derivatives
of the fluctuations (its boundary value is given in
Appendix A). In order to compute the stress-tensor corre-
lation functions, we need to solve the ‘‘wave equation’’
(4.35) for Z2�u� subject to the boundary condition

Z2�u�0��4wqH0
tz�2w2H0

zz�H
0
aa�q

2�w2��2q2H0
tt;

(4.39)

substitute the result into the action (4.37), and take the
appropriate functional derivatives17 with respect to the
boundary values of the fields H0

tt, H0
tz, H0

zz, H0
aa. For

example, for the correlator Gtt;tt, we have

Gtt;tt � �4
�2S�2�B

�H0
tt�k��H

0
tt��k�

: (4.40)

Using the expansion (4.36), we find that the correlators are
given by Eqs. (2.31), (2.32), and (2.33) with18

G2�!; q� � �
N2
c�

2T4B�2��!; q�

A�2��!; q�
� contact terms:

(4.41)

The problem of computing correlation functions in the dual
theory is thus reduced to finding the connection coeffi-
cients A�2� and B�2� of the second-order ODE (4.35).
Zeros of A�2��w;q� appear as poles of the correlators.
Finding the poles is therefore equivalent to solving the
16The action involving the relevant components of the metric is
written in Appendix A. In order to find A�w; q; u�, we form the
difference S�2�B �

R
d!dq=�2��2A�w;q; u�Z02�u; k�Z2�u;�k�,

then use the equations of motion (A1)–(A4) to eliminate all
derivatives in the difference except H0tt, and find A�w; q; u� by
requiring that the coefficient in front of H0tt should vanish.

17For correct normalization of the coupling between the bound-
ary gravitational fluctuations and the stress-energy tensor, see
Eq. (3.18) of Ref. [16].

18Terms analytic in w and q are ignored, even if they are
divergent as u! 0.
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boundary value problem for the gauge-invariant variable
Z2�u� obeying the incoming-wave boundary condition at
the horizon u � 1 and the Dirichlet condition Z2�u � 0� �
0 at the boundary.

For q � 0, Eqs. (4.18), (4.26), and (4.35) all reduce to
the equation for a minimally coupled massless scalar at
zero spatial momentum and, consequently, all have the
same quasinormal spectrum with the asymptotics (4.23).
This is expected, in accord with rotation invariance in the
dual field theory; see Eq. (2.26). For q � 0, the spectrum
can be found numerically, as explained in Appendix B; a
typical arrangement of quasinormal frequencies is shown
in Fig. 4. However, for small momenta, the lowest quasi-
normal frequency can be found analytically.

In the hydrodynamic regime w	 1, q	 1, Eq. (4.35)
for Z2�u� can be solved perturbatively in w and q.
Introducing the bookkeeping parameter 	, rescaling w!
	w, q! 	q, and expanding in 		 1, to first order in 	
we find

Z2�u� � C2f�u��iw=2

�
q2�1� u2� � 3w2

4q2 �
iwf�u�

2

�
;

(4.42)
where C2 is a normalization constant. Imposing Dirichlet
boundary condition Z2�u � 0� � 0 gives the lowest
(jwj 	 1) overtone of the quasinormal spectrum
-12
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w � �
q���
3
p �

iq2

3
�O�q3�: (4.43)

In the holographically dual finite temperature quantum
field theory, Eq. (4.43) appears as a pole in the retarded
correlator of stress-energy tensors and is interpreted as
dispersion relation for the sound wave mode,

!�q� � �vsq� i�sq2 �O�q3�: (4.44)

The values for the speed of sound vs � 1=
���
3
p

and the
attenuation constant �s � 1=6�T coincide with those
found previously in Ref. [16]. Expanding the solution
(4.42) near u � 0 and comparing with (4.19), we identify
the coefficients A�2� � �q

2 � 3w2 � 2iwq2�=4q2, B�2� �
�2q2 � 5iwq2 � 3iw3�=8q2. Thus, to leading order in the
hydrodynamic approximation, we obtain

G2�!; q� �
N2
c�2T4q2

3!2 � q2 : (4.45)

The dispersion relation w � w�q� for the sound wave
frequency can be determined numerically (as explained
in Appendix B) and is shown in Fig. 5.

V. DISCUSSION

In this paper, we proposed a general approach for iden-
tifying quasinormal spectra of asymptotically AdS space-
times with the poles of the retarded correlators in the
holographically dual finite temperature field theory. Our
demonstration in Sec. IV that quasinormal spectrum of
gauge-invariant perturbations in asymptotically AdS
spacetimes has a precise interpretation in dual field theory
086009
was specific to the case of five-dimensional AdS-
Schwarzschild background with a plane-symmetric event
horizon. Although we expect the same to be true in a more
general setting as discussed in Sec. III (such as black holes
rather than branes, or more complicated backgrounds), we
did not give a general proof. Explicit computations for
other backgrounds can be done along the lines of Sec. IV.

From the dual field theory point of view, a noteworthy
observation is that the only singularities of thermal Green’s
functions identified in the supergravity approach are sim-
ple poles. It may indeed be true that real-time thermal
correlation functions of gauge-invariant operators are mer-
omorphic in a complex frequency plane; we leave the
analysis of analytic structure for future investigation. Of
course, this simple nature of singularities is possible only
at infinite Nc; for example, it is known that low-energy
correlation functions of conserved currents develop branch
cuts in the complex frequency plane, with discontinuities
across the cuts suppressed in the Nc ! 1 limit (such cuts
are not visible in classical supergravity and reflect quantum
modifications of the quasinormal spectrum) [28]. In a
sense, the situation is similar to zero-temperature spectrum
of confining gauge theories, when resonances become
stable as Nc ! 1 [29]. However, at finite temperature,
the poles of the real-time correlation functions cannot be
automatically interpreted as quasiparticles propagating in
thermal bath—a definite interpretation can be given only
after the full spectral density (not just the poles) is known.
In infinitely strongly coupled N � 4 SYM theory, the
quasiparticle interpretation is unlikely because of the
unique energy scale (temperature). On the other hand, it
is possible that �0 corrections to the quasinormal spectrum
will reveal new poles corresponding to heavy excitations
(whose mass scales with the ’t Hooft coupling of the dual
field theory) which can be interpreted as quasiparticles.
-13



PAVEL K. KOVTUN AND ANDREI O. STARINETS PHYSICAL REVIEW D 72, 086009 (2005)
ACKNOWLEDGMENTS

We thank D. T. Son and L. G. Yaffe for helpful conver-
sations, C. P. Herzog for comments on the manuscript, and
J. Mas for correspondence and comments on the paper
[16]. A. O. S. thanks the organizers of the ‘‘QCD and
String Theory’’ workshop at the KITP, UC Santa
Barbara, where part of this work was completed. The
work of P. K. K. was supported in part by the National
Science Foundation under Grant No. PHY99-07949.
Research at Perimeter Institute is supported in part by
funds from NSERC of Canada.

APPENDIX A: EQUATIONS OF MOTION AND
BOUNDARY ACTION FOR THE SOUND CHANNEL

Fluctuations of the sound wave mode satisfy a system of
differential equations

H0tz �
2wq

f� 2
�Haa �Htt� �

�u3 � 3u� 2w2�

qf�f� 2�

� �wHaa �wHzz � 2qHtz� �
3wf

q�f� 2�
H0tt; (A1)

H0aa �
w�u3 � 3u� 2w2�

q2f2�f� 2�
�wHaa �wHzz � 2qHtz�

�
3w2 � q2�f� 2�

q2�f� 2�
H0tt �

2w2

f�f� 2�
Haa

�
u3 � 3u� 2w2

f�f� 2�
Htt; (A2)
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H0zz �
2

f�f� 2�
�w2Haa �w2Hzz � q2f�Htt �Haa�

� 2wqHtz� �
3fH0tt
f� 2

�
1

f�f� 2�
�2w2Haa

� �u3 � 3u� 2w2�Htt� �
3w2 � q2�f� 2�

q2�f� 2�
H0tt

�
w�u3 � 3u� 2w2�

q2f2�f� 2�
�wHaa �wHzz � 2qHtz�;

(A3)

H00tt �
1

2u2f2�f� 2�
f6uf�1� u2�H0tt � 2uf�2w2

� q2�1� u2��Haa � 4w2ufHzz � 8wqufHtz

� 4uf2q2Httg: (A4)

The part of the boundary action quadratic in fluctuations is
[16]

S�2�B � lim
u!0

�2N2
cT

4

8

Z
d4x

�
1

8
�3H2

tt � 12H2
tz � 2HttHii

� 2HzzHaa �H2
zz� �

f�u�
2u

�
H2
tz �

1

4
H2
aa �HttHii

�HzzHaa

�
0
�
; (A5)

where prime denotes the derivative with respect to u, and
expressions such as H2

tt are to be understood as
Htt�u; k�Htt�u;�k�. The boundary value of the contact
term part of the gravitational action (4.37) is given by
S�2�CT�0� � lim
u!0

S�2�CT � �
N2
c�2T4

48

�
�H0

aa�
2 �

q2 � 3w2

2�q2 �w2�
H0
aaH

0
tt �

4wq

q2 �w2 H
0
aaH

0
tz �

29q4 � 30w2q2 � 9w4

4�q2 �w2�2
�H0

tt�
2

�
4wq�5q2 � 3w2�

�q2 �w2�2
H0
ttH0

tz �
3q2 �w2

2�q2 �w2�
H0
aaH0

zz �
9q4 � 2w2q2 � 3w4

2�q2 �w2�2
H0
ttH0

zz

�
4wq�3q2 �w2�

�q2 �w2�2
H0
tzH

0
zz �

3q4 � 18w2q2 � 7w4

4�q2 �w2�2
�H0

aa�
2 �

3q4 � 14w2q2 � 9w4

�q2 �w2�2
�H0

tz�
2

�
: (A6)
Equation (A6) appears to contain more than just contact
terms, since there is a pole at jwj � q. This pole, however,
is artificial—it reflects the normalization of Z2 and cancels
in the final expression for the correlators.

If one chooses to keep track of contact terms in field
theory correlators, one can use S�2�CT to reproduce contact
terms computed earlier in Ref. [16]. For example,

Gtt;tt �
2q4

3�q2 �!2�2
G2�!; q� � 4

�2S�2�CT�0�

��H0
tt�

2 (A7)
in the hydrodynamic limit becomes

Gtt;tt �
3N2

c�
2T4�3!2 � 5q2�

8�q2 � 3!2�
; (A8)

which coincides with the result of Ref. [16].

APPENDIX B: FROBENIUS SOLUTION

To find the full quasinormal spectrum, one has to
analyze wave equations (4.5), (4.18), (4.26), and (4.35) in
-14
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FIG. 6. Real and imaginary parts of three lowest quasinormal
frequencies as functions of spatial momentum. The curves for
which w! 0 as q! 0 correspond to hydrodynamic sound
mode in the dual finite temperature N � 4 SYM theory.
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more detail. All these equations are Fuchsian ODEs with
k singular points,19 two of which correspond, respectively,
to the horizon (u � 1) and the boundary (u � 0). For all
of the above equations, the exponents at the horizon
are equal to �iw=2, corresponding to two local solu-
tions representing outgoing (incoming) waves. The solu-
tion obeying the incoming-wave boundary condition at
the horizon can be represented as a power series around
u � 1,

Z�u� � �1� u��iw=2�1� u��w=2
X1
n�0

an�w; q��1� u�
n;

(B1)

where Z�u� stands for either of E�, Ez, Z1, Z2, Z3. The
coefficients an of the series expansion obey �k� 1�-term
recursion relations which can be found by substituting (B1)
in the original differential equations. Quasinormal spec-
trum is determined by imposing a Dirichlet boundary
condition at u � 0,

Z�0� �
X1
n�0

an�w; q� � 0 (B2)

and solving Eq. (B2) numerically, taking a sufficiently
large but finite number of terms in the sum.20 The spectra
of all of the above wave equations are qualitatively similar,
except for the behavior of the lowest (hydrodynamic)
frequency, which is absent for E� and Z3. For Ez and Z1,
hydrodynamic frequencies are purely imaginary [given
by Eqs. (4.16) and (4.32) for small ! and q] and presum-
ably move off to infinity as q becomes large. For Z2, the
hydrodynamic frequency has both real and imaginary parts
[given by Eq. (4.44) for small ! and q] and eventually (for
large q) becomes indistinguishable in the tower of other
19For the transverse Maxwell equation (4.5a) satisfied by E�,
and for the scalar channel wave equation (4.18) satisfied by Z3,
the number of singular points is k � 4, corresponding to u �
0;�1;1. For the longitudinal Maxwell equation (4.5b) satisfied
by Ez, and the shear channel wave equation (4.26) satisfied
by Z1, the number of singular points is k � 6, corresponding
to u � 0;�1;�

�����������������������
1�w2=q2

p
;1. For the sound channel wave

equation (4.35) satisfied by Z3, the number of singular points
is also k � 6, corresponding to u � 0;�1;�

�����������������������������
3�1�w2=q2�

p
;

1.
20Careful readers may note that the expansion (B1) is guaran-

teed to converge only inside a circle of radius 
 around u � 1 (in
the complex u plane), where 
 is the distance to the nearest
singular point, which may become less than one (distance to the
boundary) for some values of w and q. However, even for such
values of w and q, our numerical results for diffusive and shear
modes are in agreement with previous calculations [11] where
this issue did not arise, thus suggesting wider applicability of the
expansion (B1).
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eigenfrequencies. As an example, dispersion relations
for the three lowest quasinormal frequencies in the sound
channel (including the one of the sound wave) are shown in
Fig. 6. The tables below give numerical values of quasi-
normal frequencies for q � 1. Only nonhydrodynamic
frequencies are shown in the tables. The position of
hydrodynamic frequencies at q � 1 is w � �3:250637i
for the R-charge diffusive mode, w � �0:598066i for the
shear mode, and w � �0:741420� 0:286280i for the
sound mode. The numerical values of the lowest five (non-
hydrodynamic) quasinormal frequencies for electromag-
netic perturbations are
-15
Transverse channel
 Diffusive channel

n
 Rew
 Imw
 Rew
 Imw
1
 �1:547187
 �0:849723
 �1:147831
 �0:559204

2
 �2:398903
 �1:874343
 �1:910006
 �1:758065

3
 �3:323229
 �2:894901
 �2:903293
 �2:891681

4
 �4:276431
 �3:909583
 �3:928555
 �3:943386

5
 �5:244062
 �4:920336
 �4:946818
 �4:965186
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and for gravitational perturbations are
Scalar channel
 Shear channel
086009-16
Sound channel

n
 Rew
 Imw
 Rew
 Imw
 Rew
 Imw
1
 �1:954331
 �1:267327
 �1:759116
 �1:291594
 �1:733511
 �1:343008

2
 �2:880263
 �2:297957
 �2:733081
 �2:330405
 �2:705540
 �2:357062

3
 �3:836632
 �3:314907
 �3:715933
 �3:345343
 �3:689392
 �3:363863

4
 �4:807392
 �4:325871
 �4:703643
 �4:353487
 �4:678736
 �4:367981

5
 �5:786182
 �5:333622
 �5:694472
 �5:358205
 �5:671091
 �5:370784
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