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Flavor structure and coupling selection rule from intersecting D-branes
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We study flavor structure and the coupling selection rule in intersecting D-brane configurations on
T2 � T2 � T2 as well as its orbifold/orientifold compactifications. We formulate the selection rule for
Yukawa couplings and its extensions to generic n-point couplings. We investigate the possible flavor
structure, which can appear from intersecting D-brane configuration. Then, we show there is a certain rule
among intersecting numbers for states corresponding to allowed Yukawa couplings, and also it is found
that their couplings are determined by discrete Abelian symmetries. Our studies on the flavor structure and
the coupling selection rule in this class of models show that there is no solution to derive realistic Yukawa
matrices only from stringy 3-point couplings at the tree-level within the framework of the minimal matter
content of the supersymmetric standard model.
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I. INTRODUCTION

Understanding the origin of fermion masses and mixing
angles is one of the most important issues in particle
physics. Their experimental values show the hierarchical
structure. Within the framework of the standard model and
its extensions, fermion masses are obtained through
Yukawa couplings between fermions and Higgs fields.
Yukawa couplings seem naturally of O(1) in a sense.
From this viewpoint, how to derive suppressed Yukawa
couplings is a key point for understanding hierarchical
structure among fermion masses and mixing angles.

Superstring theory is a promising candidate for unified
theory including gravity. Thus, it is important to study
which type of flavor structure can be derived in superstring
theory. Superstring theory predicts the existence of 6D
compact space in addition to our 4D space-time. Indeed,
the 6D compact space is the origin of the flavor structure;
that is, the flavor structure, which is derived from string
models, is determined by geometrical aspects of the 6D
compact space.

Several types of string models have been proposed so
far. Recently, intersecting D-brane models have been
studied extensively. In particular, many intersecting
D6-brane models on T2 � T2 � T2=ZN � ZM and T2 �
T2 � T2=ZN orientifolds as well as their T-dual models
have been constructed. (See for an essential idea on model
building Refs. [1–4].)1 In intersecting D-brane models,
matter fields as well as Higgs fields correspond to open
string modes at intersecting points between different
D-branes, and those are localized modes [7]. Thus,
Yukawa couplings among fermions and Higgs fields de-
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pend on the distance of their intersecting points.
Suppressed Yukawa couplings can be realized when inter-
secting points corresponding to matter fermions and Higgs
fields are far from each other. That is one of the phenom-
enologically interesting aspects in intersecting D-brane
models. Such behavior is qualitatively the same as in
heterotic orbifold models. In general, an orbifold has fixed
points on the 6D compact space, and heterotic orbifold
models have twisted string modes, which are localized at
orbifold fixed points. Yukawa couplings can be suppressed
when matter fermions and Higgs fields correspond to
different fixed points. Indeed, the same technique of con-
formal field theory (CFT) is used to calculate magnitudes
of Yukawa couplings in both heterotic orbifold models [8–
11] and intersecting D-brane models [12–14]. (See also
[15].)

Understanding the origin of suppressed Yukawa cou-
plings is the first important step to deriving realistic
Yukawa matrices, but that is not sufficient to realize ex-
perimental values. Derivation of realistic Yukawa matrices
in string models is quite nontrivial. Another important
point is to study stringy selection rules for allowed
Yukawa couplings. Then we would see a pattern of
Yukawa matrices in a model. In heterotic orbifold models,
allowed Yukawa couplings are determined by the 6D space
group selection rule [8,16,17] as well as H-momentum
conservation and gauge invariance. The space group selec-
tion rule is the selection rule for allowed Yukawa couplings
due to the 6D orbifold geometry. That is quite nontrivial;
that is, in some types of Yukawa couplings on orbifolds
only diagonal couplings are allowed, but for certain types
of Yukawa couplings on nonprime orbifolds off-diagonal
couplings are also allowed. Here diagonal couplings mean
the case that when we choose two states, the other state to
be allowed to couple is determined uniquely. Off-diagonal
couplings correspond to the case that the third states are not
uniquely determined. Obviously, off-diagonal Yukawa
couplings are important to realize nonvanishing mixing
-1 © 2005 The American Physical Society
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angles in the case with the minimal and small numbers of
Higgs fields. Actually, the number of possible 6D orbifolds
is finite as determined by 6D crystallographic space
groups, and the number of fixed points on an orbifold is
also finite. Explicit results for allowed Yukawa couplings
due to the space group selection rule are shown in [16,17].
Then, in principle, a systematic study is possible to classify
which patterns of Yukawa matrices can be obtained within
the framework of heterotic orbifold models. Indeed such
analysis has been done for Z6 orbifold models in [18]
showing interesting results for the quark and lepton sectors.

On the other hand, patterns of Yukawa matrices have
been calculated model by model explicitly within the
framework of intersecting D-brane models so far.
Although explicit models with phenomenologically inter-
esting aspects other than Yukawa matrices have been con-
structed so far, it is still a challenging issue to lead
nontrivial Yukawa matrices. Thus, our purpose is to study
systematically the flavor structure which can be derived
from intersecting D-brane models, and classify possible
patterns of Yukawa matrices. For such purpose, we for-
mulate a selection rule for allowed Yukawa couplings on
T2 � T2 � T2. In particular, we are interested in formulat-
ing the selection rule, which is useful to investigate
whether off-diagonal couplings are allowed or not.
Indeed, the selection rule for allowed three-point couplings
has been discussed in [12]. We will formulate the coupling
selection rule in a different approach, which is similar to
the space group selection rule in heterotic orbifold models,
showing the condition for off-diagonal couplings. Then we
study which types of flavor structure can appear from
intersecting D-brane configurations on T2 � T2 � T2.
Here we concentrate intersecting D6-brane systems (as
well as D4-brane systems) in type IIA string theory.
Since their T-duals correspond to magnetized D-brane
systems in type IIB string theory, the following discussions
would be applicable to magnetized D-brane systems in
type IIB string theory. Furthermore, although we consider
explicitly T2 � T2 � T2 as 6D compact space, our discus-
sions hold true for T2 � T2 � T2=ZN � ZM and T2 �
T2 � T2=ZN orbifold backgrounds. That is because orbi-
fold backgrounds do not realize new intersecting D-brane
configurations, which differ from those on T2 � T2 � T2,
but rather constrain D-brane configurations on T2 � T2 �
T2. For orientifold backgrounds, the situation is the same
except for the fact that we have to introduce mirror branes
for the D-branes, which are not parallel to orientifold
planes. Thus, our following discussions on the selection
rule and possible flavor structure are applicable in D-brane
configurations including mirror branes.

This paper is organized as follows. In Sec. II, we review
briefly the space group selection rule in heterotic orbifold
models. In Sec. III, we study the selection rule in intersect-
ingD-brane models. In Sec. IV, we consider which types of
flavor structure can appear from intersecting D-brane con-
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figurations. In Sec. IVAwe discuss the flavor structure, that
the numbers of left-handed and right-handed quarks are the
same on T2. In this case, we show the minimum number of
Higgs fields is the same as the flavor number Nf, and the
Higgs number is generically equal to kNf with k 2 N. The
selection rule is controlled by a discrete Abelian symmetry.
In Sec. IV B, we discuss generic flavor structure, that is, the
asymmetric flavor structure. In that case, the coupling
selection rule is also determined by a discrete Abelian
symmetry. For the minimal number of Higgs field, we
also show Yukawa matrices are nontrivial, but lead to a
certain number of massless fermions, and diagonal entries
are larger than off-diagonal entries. In Sec. IV C, we com-
ment on how to reduce the flavor and Higgs numbers, and
that would be important to obtain nontrivial fermion mass
matrices. Section V is devoted to conclusion and discus-
sion. In Appendix A, we give a simple recipe: how to
obtain shift vectors, which play an important role on
description of independent intersecting points and formu-
lation of the coupling selection rule. In Appendix B, we
discuss the possible number of Higgs fields when the flavor
number of both left- and right-handed quarks on T2 is equal
to two.
II. YUKAWA SELECTION RULE FOR HETEROTIC
ORBIFOLD MODELS

Here we give a brief review on the space group selection
rule for allowed Yukawa couplings in heterotic orbifold
models. This will be useful to study the selection rule for
allowed Yukawa couplings in intersectingD-brane models.

A. Orbifold and fixed points

An orbifold is obtained by dividing a torus Td by a twist
�, while Td is a division of Rd by a lattice �, i.e. Td �
Rd=�, where the twist � must be an automorphism of the
lattice �. On such orbifold, there are the closed strings,
which satisfy the following twisted boundary condition

Xi�� � �� � ��kX�� � 0��i � vi; (1)

where vi is a shift vector on the torus lattice �. These are
refereed as the �k twisted string. Their zero-modes fi also
satisfy the same boundary condition

fi � ��kf�i � vi (2)

that is the fixed point on the orbifold. The fixed point fi is
denoted by the corresponding space group element ��k; vi�.
The product of two space group elements, ��k�1� ; vi�1�� and
��k�2� ; vi

�2��, is obtained as

��k�1� ; vi
�1����

k�2� ; vi
�2�� � ��

k�1��k�2� ; vi
�1� � �

k�1�vi
�2��: (3)

Indeed, this product of space group elements corresponds
to the combination of two twisted strings with the twisted
boundary conditions, ��k�1� ; vi

�1�� and ��k�2� ; vi
�2��.
-2
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As said above, the fixed point and twisted string are
denoted by the corresponding space group element ��k; vi�.
Furthermore, it is remarkable that the fixed point fi is
equivalent to fi �� on the torus. That implies that the
space group ��k; vi� is equivalent to ��k; vi � �1� �k���,
that is, these belong to the same conjugacy class. Thus,
independent fixed points are defined up to the conjugacy
classes.

Here we give two examples. One is the 2D Z3 orbifold,
and the other is the 2D Z6 orbifold. The 2D Z3 orbifold is
obtained as a division of R2 by the SU(3) root lattice �SU�3�

and its Z3 automorphism �. Here we denote the two simple
roots of �SU�3� by e1 and e2, and these are transformed
under � as

�e1 � e2; �e2 � �e1 � e2: (4)

The lattice �1� ��� is spanned e.g. by 3e1 and e1 � e2.
The three independent fixed points are denoted by

��; ne1�; �n � 0; 1; 2�: (5)

Similarly, fixed points on the 2D Z6 orbifold are ob-
tained. The 2D Z6 orbifold is obtained as a division of R2

by the SU(3) lattice �SU�3� and the Z6 twist, which trans-
forms the SU(3) simple roots as

�e1 � e1 � e2; ��e1 � e2� � e2; �e2 � �e1:

(6)

Thus, we obtain �1� ��� � �, that is, we have only one
independent fixed point under �, i.e.

��; 0�: (7)

The �2 twist of Z6 is nothing but the Z3 twist. Hence, the �2

twist has three independent fixed points,

��2; ne1�; �n � 0; 1; 2�: (8)

Furthermore, the �3 twist of Z6 is the Z2 twist, and the
lattice �1� �3�� is spanned by 2e1 and 2e2. Thus, the four
independent fixed points are denoted as

��3; n1e1 � n2e2�; �ni � 0; 1�: (9)

Similarly, we can obtain fixed points on other orbifolds,
and twisted strings also correspond to those fixed points.2

In the next subsection, we show the space group selection
rule for these twisted strings.

B. Space group selection rule

In this subsection, we give a brief review on the space
group selection rule for allowed Yukawa couplings. Here
we consider the condition that three twisted strings with the
boundary conditions ��k�a� ; vi

�a�� for a � 1; 2; 3 are allowed
2In nonprime order orbifold models, we have to take linear
combinations of states corresponding directly to fixed points, in
order to obtain �-eigenstates [19]. However, this is irrelevant to
intersecting D-brane models.

086003
to couple. The coupling condition due to the space group
invariance is denoted as follows,Y

a

��k�a� ; vi�a�� � �1; 0�: (10)

Simply, that implies the coupling is allowed when the three
twisted strings combine into the untwisted closed string,
which can shrink. However, here we recall that each space
group element ��k�a� ; vi�a�� is equivalent to ��k�a� ; vi�a� �
�1� �k�a� ����. This equivalence in the conjugacy class
has an important meaning, as shown below in explicit
models. The space group selection rule includes the point
group selection rule, and the latter requires the productQ
a�

k�a� to be identity.
Here we examine the space group selection rule for the

two explicit models, the 2D Z3 orbifold model and the 2D
Z6 orbifold model. First, let us consider the 2D Z3 orbifold
models. As shown in the previous subsection, there are
three independent fixed points on the 2D Z3 orbifold,
��; ne1) with n � 0; 1; 2. Let us consider the coupling of
three twisted strings corresponding to fixed points,
��; n1e1�, ��; n2e1�, and ��; n3e1�. The space group selec-
tion rule requires

��; n1e1���; n2e1���; n3e1� � �1; 0�; (11)

up to the conjugacy classes, and leads the following con-
dition for allowed Yukawa couplings,

n1 � n2 � n3 � 0 �mod 3�: (12)

That implies that the couplings are allowed only two cases,
(1) the case that all of three fixed points are the same, and
(2) the case that all of three fixed points are different each
other. Namely, these are diagonal couplings. Indeed, this
coupling selection rule can be understood as the Z3

symmetry.
Similarly, we examine the space group selection rule on

the 2D Z6 orbifold. As shown in the previous subsection,
there are three twisted sectors, �-twisted, �2-twisted, and
�3-twisted sectors. For example, let us consider the cou-
plings among �-twisted, �2-twisted, and �3-twisted sec-
tors. As shown in the previous subsection, the �-twisted,
�2-twisted, and �3-twisted sectors have one, three, and four
independent fixed points, which are denoted by ��; 0�,
��2; ne1� and ��3; m1e1 �m2e2�, respectively, where n �
0; 1; 2 and m1; m2 � 0; 1. Now, we examine the condition
for allowed Yukawa couplings due to the space group
invariance, that is,

��; 0���2; ne1���3; m1e1 �m2e2� � �1; 0�; (13)

where the space group elements are defined up to the
conjugacy classes. The important point is that �1� ��� �
�. As a result, the couplings among all of the twisted states
are allowed, and off-diagonal couplings are allowed. This
makes it clear the situation in which off-diagonal couplings
are allowed, that is, when two or more independent fixed
-3
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points under a twisted sector belong to the same conjugacy
class in different twisted sector, off-diagonal couplings
among corresponding twisted states are allowed.

The extension to the selection rule for generic n-point
couplings is straightforward, that is,

Qn
a�1��

k�a� ; vi
�a�� �

�1; 0� for n twisted strings with the boundary conditions,
��k�a� ; vi

�a�� up to �1� �k�a� ��.

III. COUPLING SELECTION RULE FOR
INTERSECTING D-BRANE MODELS

Here we study the coupling selection rule for intersect-
ingD-brane models. We concentrate intersectingD6-brane
systems (as well as D4-brane systems) in type IIA string
theory. Since their T-duals may correspond to magnetized
D-branes in type IIB string theory, the following discus-
sions would be applicable to magnetized D-brane systems
in type IIB string theory. We consider T2 � T2 � T2 as the
6D compact space, and the D6-branes, which wrap one-
cycle on each T2. Orbifold/orientifold backgrounds can be
studied in the same way, as described in the introduction.
Furthermore, other backgrounds like T4 � T2 could be
discussed in a similar way. The ith torus lattice ��i� is
spanned by the basis e�i�1 ; e

�i�
2 . Thus, the configuration of

Da-brane is described by its winding numbers for the ith
torus,

�n�i�a ; m
�i�
a �; (14)

along e�i�1 and e�i�2 . Here we take g:c:d:�n�i�a ; m
�i�
a � � 1 or

�n�i�a ; m
�i�
a � � �1; 0�; �0; 1�.

3 Namely, we consider the case
that the vector w�i�a � �n

�i�
a ;m

�i�
a � is the shortest vector on the

lattice ��i� along its direction. A gauge multiplet appears
on each set ofD-branes. The gauge group U�N� is obtained
from N D-branes.

Now, let us consider two sets ofD-branes,Da-brane and
Db-brane, which intersect each other. Their intersecting
number on the ith T2 is given as

I�i�ab � n�i�a m
�i�
b � n

�i�
b m

�i�
a ; (15)

and the total intersecting number on the 6D compact space
is obtained as their product, i.e. Iab � I�1�ab I

�2�
ab I
�3�
ab . At these

intersecting points, there appear open strings, one of whose
ends is on the Da-brane and the other is on the Db-brane.
Such open strings can correspond to massless chiral matter
fields, which have nontrivial representations under both
gauge groups corresponding to Da and Db branes, that is,
such massless modes have bi-fundamental representations
�Na; �Nb� under U�Na� � U�Nb� for positive intersecting
numbers. The different signs of Iab correspond to charge
conjugated modes, i.e., � �Na;Nb�. Thus, chiral matter fields
correspond to localized modes around intersecting points.
3g:c:d:�a; b� denotes the greatest common divisor of the inte-
gers a and b.
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Higgs fields also correspond to such modes. Here and
hereafter we assume D-brane configurations with 4D N �
1 supersymmetry, because nonsupersymmetric configura-
tions are usually unstable. Preserving supersymmetry re-
quires certain conditions for intersecting angles, but that is
irrelevant to our discussions.

Here, we study coupling selection rule among such open
strings stretching different D-branes around intersecting
points. In heterotic orbifold models, the key point for the
coupling selection rule is description of boundary condi-
tions of twisted strings (1), that is, space group elements
and their conjugacy classes. Thus, let us study first how to
describe boundary conditions of open strings around inter-
secting points. Our setup is as follows. We concentrate one
2D torus among T2 � T2 � T2, e.g. the first torus, because
extension to the case with T2 � T2 � T2 is simple. Then
we consider two sets of D-branes, Da and Db, whose
winding numbers on the first T2 are obtained as the follow-
ing vectors on the torus lattice ��1�,

Da:w�1�a � �n
�1�
a ; m

�1�
a �; (16)

Db:w�1�b � �n
�1�
b ; m

�1�
b �: (17)

Their intersecting number on the first T2 is I�1�ab . We assume
the nontrivial case, i.e., I�1�ab � 0, and furthermore we take
I�1�ab > 0, because the case with I�1�ab < 0 can be studied in
the same way. One of their intersecting points is taken as
the origin of the torus lattice ��1�.

Obviously, all of the intersecting points sit along the
Da-brane, that is, those positions are written as k

I�1�ab
w�1�a with

k � 0; 1; � � � ; I�1�ab � 1. Note that the Db-brane correspond-
ing to k � 0 passes the origin of the torus lattice, but the
other Db-branes corresponding to k � 0 do not. On the
other hand, all of the intersecting points sit along the
Db-brane, and those positions are written as ‘

I�1�ab
w�1�b with

‘ � 0; 1; � � � ; I�1�ab � 1. The former and the latter sets of
independent intersecting points are equivalent each other
on T2. The equivalence on T2 implies the following rela-
tion,

k

I�1�ab
w�1�a �

‘

I�1�ab
w�1�b � v�1�ab; (18)

for proper combinations of k and ‘, where v�1�ab is a shift
vector on the torus lattice. Thus, the shift vectors v�1�ab can be
used to describe independent intersecting points. Note that
� k
I�1�ab
� k0�w�1�a and � ‘

I�1�ab
� ‘0�w�1�b are equivalent to k

I�1�ab
w�1�a and

‘
I�1�ab

w�1�b , respectively, for k0; ‘0 2 Z. That implies that the

shift vectors v�1�ab have the meaning to describe independent
intersecting points up to the sublattice ��1�ab , which is
spanned by w�1�a and w�1�b . Namely, the I�1�ab independent
-4
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FIG. 1 (color online). A simple example of the D-brane con-
figuration. The winding vectors wa and wb of Da:�1; 0� and
Db:�1; 3� are shown. The points on wa and wb correspond to
intersecting points m

3 wa and m
3 wb (m � 0; 1; 2), respectively.

Shift vectors vm � �0;�m� are also shown.

Db Db

Da

Da0

FIG. 2 (color online). Open string at the intersecting point
1
3 wa. We can move its endpoint on the Da-brane to the origin,
and the other endpoint can be moved not to the origin, but to the
point �0;�1�.
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shift vectors are coset representatives corresponding to
��1�=��1�ab . The sublattice ��1�ab is not as dense as ��1�,4

and plays a role similar to �1� �k�� in heterotic orbifold
models.

Here we give a simple example. We consider two sets of
D-branes with winding numbers, w�1�a � �1; 0� and w�1�b �
�1; 3� as shown in Fig. 1. Their intersecting number is
I�1�ab � 3. Thus, the three independent intersecting points
are written as k

3 w�1�a with k � 0; 1; 2. Equivalent sets are

obtained as ‘
3 w�1�b with ‘ � 0; 1; 2. On the other hand, the

sublattice ��1�ab can be spanned by (1,0) and (0,3), and that
implies independent shift vectors v�1�ab up to ��1�ab are ob-
tained as v�1�ab � �0;�m� with m � 0; 1; 2. Indeed, these
intersecting points and shift vectors satisfy

k
3

w�1�a �
‘
3

w�1�b � v�1�ab ; (19)

up to ��1�ab , when k � ‘ � m as shown in Fig. 1. Therefore,
independent intersecting points and the coset representa-
tives corresponding to ��1�=��1�ab can be described by shift
vectors v�1�ab up to ��1�ab . See Appendix A, where a simple
recipe how to obtain shift vectors v�1�ab for generic winding
numbers is given.

The above simple example also clarifies a concrete
implication of shift vectors v�1�ab for open strings. Let us
consider the open string at the intersecting point 1

3 w�1�a
4Obviously we have vol���1�ab� � I�1�abvol���1��, where vol���
denotes the volume of the unit cell.
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between Da- and Db-branes, and move it such that one
end sits on the origin of the torus lattice like Fig. 2. The
other end cannot sit on the origin, but on the Db-brane,
which passes �0;�1�, that is nothing but the corresponding
shift vector v�1�ab . The same is true for the other intersecting
points. Thus, we can describe open strings at different
intersecting points by the following equations, which are
satisfied by string endpoints, xa and xb,

x a � xb � vab; (20)

when we move one of the endpoints to the same point, e.g.
the origin. It is also true for the generic case, that is,
independent intersecting points are represented by shift
vectors vab up to �ab, and endpoints of Da-Db open string
at the intersecting point satisfy Eq. (20).

Now we are ready to study the coupling selection rule in
intersecting D-brane models. We consider three sets of
D-branes, Da, Db, and Dc, with the following winding
numbers,

Da:w�1�a � �n
�1�
a ; m

�1�
a �; Db:w�1�b � �n

�1�
b ; m

�1�
b �;

Dc:w
�1�
c � �n

�1�
c ; m

�1�
c �:

(21)

Here we do not consider the trivial case that one of I�1�ab , I�1�bc
and I�1�ca vanishes. Furthermore, we study the case that all of
I�1�ab , I�1�bc and I�1�ca are positive. It is quite straightforward to
extend the following discussions to other cases, e.g. the
case that all of I�1�ab , I�1�bc and I�1�ca are negative.5 There are
5We will show at the end of the section that the H-momentum
conservation requires all of I�1�ab , I�1�bc and I�1�ca to have the same
sign.
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FIG. 3. D-brane configuration corresponding to Eqs. (23) and
(28). The single C�bc� field is located at the origin. Intersecting
points between Da and Db are labeled by integer ‘ (mod 2),
while intersecting points between Da and Dc are labeled by
integer k (mod 3). The parameter " in Eq. (28) denotes the
suppression factor for the Yukawa coupling corresponding to the
minimum triangle.
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three types of open strings, Da-Db, Db-Dc, and Dc-Da
open strings at intersecting points between Da and Db
branes, Db and Dc branes, and Dc and Da branes, respec-
tively. Let us study the coupling selection rule among these
three open strings. Simply, these open strings can couple if
the corresponding intersecting points andD-branes make a
closed triangle. In other words, the coupling is allowed if
these three open strings combine into the closed string,
which can shrink without winding on the torus. Recall that
the endpoints of the open string satisfy the condition (20).
Thus, the above condition for allowed couplings is written
as

v �1�ab � v�1�bc � v�1�ca � 0: (22)

Here note that shift vectors, v�1�ab , v�1�bc , and v�1�ca , are defined
up to the sublattices, ��1�ab , ��1�bc , and ��1�ca , respectively. This
selection rule tells us whether off-diagonal couplings are
allowed or not in intersecting D-brane models like heter-
otic orbifold models. For example, in the situation where
differences between two or more independent shifts v�1�ab are
on the sublattice ��1�bc , off-diagonal couplings are allowed.
Thus, the difference among the sublattices, ��1�ab , ��1�bc , and
��1�ca , is important to realize off-diagonal couplings.

As an illustrating example, let us consider the D-brane
configuration with the following winding numbers

Da: �1; 0�; Db: ��1; 2�; Dc: �1;�3�: (23)

The intersecting number between Da and Db-branes is
obtained as I�1�ab � 2, and independent intersecting points
are described by

v �1�ab � �0; ‘�; �‘ � 0; 1�; (24)

up to the sublattice ��1�ab , which is spanned by (1,0) and
(0,2). Similarly, the intersecting number between Dc and
Da-branes is obtained as I�1�ca � 3, and independent inter-
secting points are described by

v �1�ca � �0; k�; �k � 0; 1; 2�; (25)

up to the sublattice ��1�ca , which is spanned by (1,0) and
(0,3). On the other hand, the intersecting number between
Db and Dc is equal to I�1�bc � 1, and the corresponding shift
vector v�1�bc is obviously obtained as v�1�bc � 0 up to the
sublattice ��1�bc , where ��1�bc is nothing but the torus lattice,
i.e. ��1�bc � ��1�. In this model, couplings among all the
states are allowed. More explicitly, the following Yukawa
couplings,

Y‘kC
‘
�ab�C

k
�ca�C�bc�; (26)

are allowed for any ‘ and k, where C‘
�ab� denote chiral

matter fields corresponding to the Da-Db open strings and
the other notation of fields, Ck

�ca� and C�bc�, have a similar
086003
meaning. Here we have assumed that all of the intersecting
numbers on the second and third tori are equal to one. The
strength of Yukawa couplings is calculated through CFT
technique in [12–14], and its dominant factor is obtained
as

Y � e�Scl � e���1��2��3�; (27)

where Scl denotes the action of the classical string solution
Xcl, which has the asymptotic behavior corresponding to
local open string modes near intersecting points, and that is
obtained as the triangle area �i, which is swept by a string
to couple on the ith T2. Here we consider only the domi-
nant contribution due to the minimal classical action,
although other classical solutions also have subdominant
contributions. That is because we are interested in the
hierarchical form of Yukawa matrices. It is possible to
extend the following discussions on possible forms of
Yukawa matrices to full results including all of the classical
solutions [12–14].

For example, in the configuration that three sets of
D-branes, Da, Db, and Dc, intersect at the same point,
‘‘the origin’’ of the torus lattice, we evaluate

Y‘k �
1 "4 "4

"9 " "

� �
: (28)

Here, the parameter " denotes the suppression factor for
the Yukawa coupling corresponding to the minimum tri-
angle. For explicit calculations of Yukawa couplings, it is
simple to use a figure like Fig. 3, in particular, in the case
that the number of either Higgs field or matter field is equal
to one. Figure 3 shows the above D-brane configuration,
where the single C�bc� field is located at the origin. Several
vertical branes correspond to Da-branes. Intersecting
points between Da and Db are labeled by integer ‘ (mod
2), while intersecting points between Da and Dc are
labeled by integer k (mod 3). Indeed, off-diagonal cou-
plings are allowed, because all of the combinations �‘; k�
-6
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can be connected by the Da-brane in Fig. 3. If I�1�ab and I�1�ca
had g:c:d:�I�1�ab ; I

�1�
ca � � 1, all of the combinations �‘; k�

could not be connected by the Da brane in a figure like
Fig. 3.

Even if the three D-branes do not intersect at the same
point like Fig. 4, the coupling selection rule is the same,
because the shift vectors do not change. However, Yukawa
matrix becomes

Y‘k �
"d

2
"�2�d�

2
"�2�d�

2

"�3�d�
2

"�1�d�
2

"�1�d�
2

 !
; (29)

where d is a continuous parameter (� 1 	 d 	 1).
This example shows an important aspect of the coupling

selection rule, that is, all of the couplings are allowed for
any D-brane configuration with

g :c:d:�I�1�ab ; I
�1�
bc � � g:c:d:�I�1�ca ; I

�1�
bc � � g:c:d:�I�1�ab ; I

�1�
ca � � 1:

(30)

This rule can be understood simply by drawing a figure like
Fig. 3, by which we can see all of the combinations of
intersecting points that are connected by the same type of
D-branes. This can also be explained as follows. Suppose
that

g :c:d:�n�1�1 ;n
�1�
2 ��g:c:d:�n�1�1 ;n

�1�
3 ��g:c:d:�n�1�2 ;n

�1�
3 ��1:

(31)

Then, the sublattice ��1�ab is spanned by �1; J�1�ab � and �0; I�1�ab �,

and the sublattice ��1�ca is spanned by �1; J�1�ca � and �0; I�1�ca �,
where J�1�ab and J�1�ca are certain integers, but irrelevant to our
discussions. (See Appendix A.1.) Similarly, the sublattice
��1�bc is spanned by �1; J�1�bc � and �0; I�1�bc �. It is obvious that the
combination among the sublattices ��1�ab;�

�1�
ca , and ��1�bc

corresponds to the torus lattice ��1�, i.e. ��1� �

��1�ab [��1�ca [��1�bc , when Eq. (30) is satisfied. This implies
that all of the couplings are allowed for any D-brane
configuration with Eq. (30). In generic winding numbers,
the sublattice ��1�ab is spanned by �kab; J

�1�
ab � and �0; k0ab�, and

the sublattice ��1�ca is spanned by �kca; J
�1�
ca � and �0; k0ca�.
b
a

0
1

2
1

0

1 2
0

1

D
D

1
0

0

1
0

Dc

d

C bc

FIG. 4. The same D-brane configuration as Fig. 3. Three sets
of D-branes do not intersect at the same point, and the distance
between those intersecting points is parametrized by d.
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(See Appendix A.2) Moreover, the lattice ��1�bc is spanned
by �kbc; J

�1�
bc � and �0; k0bc�. Equation (30) implies that

g :c:d:�kab; kca� � g:c:d:�kab; kbc� � g:c:d:�kca; kbc� � 1;

g:c:d:�k0ab; k
0
ca� � g:c:d:�k0ab; k

0
bc� � g:c:d:�k0ca; k

0
bc� � 1;

(32)

where I�1�ab � kabk
0
ab, I�1�ca � kcak

0
ca and I�1�bc � kbck

0
bc. This

leads to the fact that the combination among the sublattices
��1�ab;�

�1�
ca ,and ��1�bc corresponds to the torus lattice ��1�, i.e.

��1� � ��1�ab [��1�ca [��1�bc . This implies that all of the cou-
plings are allowed for any D-brane configuration with
Eq. (30), and this has been shown already in [12] through
a different approach. This rule will be extended into the
generic case when we find generic D-brane configurations
in Sec. IV B.

The extension to the selection rule for generic n-point
couplings is straightforward. We consider n sets of Di
branes for i � 1; 2; � � � ; n. Such setup may include open
strings at intersecting points between Di and Di�1 branes
as well as open strings between Dn and D1 branes. Their
intersecting points are described by shift vectors vi;i�1 as
well as vn;1. Then, the condition for allowed couplings is
written as

v 1;2 � v2;3 � � � � � vn�1;n � vn;1 � 0: (33)

Here, recall that the shift vectors vi;i�1 are defined up to the
lattice �i;i�1, whose definition is the same as �ab.

Finally, we comment on the coupling selection rule due
to the H-momentum conservation. Within the bosonized
formulation, the (twisted) RNS fermionic strings are writ-
ten as

eiqiHi ; (34)

where Hi are 2D bosonized fields and qi are the so-called
H-momenta. If I�i�ab > 0, massless space-time spinors cor-
responding to R modes and massless space-time scalars
corresponding to NS modes have the following
H-momenta

qi � ��i�ab �
1

2
for R; (35)

qi � ��i�ab � 1 for NS; (36)

respectively, where ��i�ab� (0< ��i�ab < 1) denotes the inter-
secting angle on the ith T2 between Da and Db branes.
Now, let us consider the H-momentum conservation for
Yukawa couplings among two fermions and a single scalar
field, which are originated fromDa-Db,Db-Dc, andDc-Da
open strings. The H-momentum conservation requires that

���i�ab � �
�i�
bc � �

�i�
ca�� � 2�: (37)

This implies that the sum of the exterior angles of triangle
-7



6The H-momentum conservation and gauge invariance require
ICL � IRC, and in this case, the sign on the left-hand side must be
�.

7In the case with Nf � 2, the minimum number of Higgs is not
equal to 2, but 4. See Appendix B for such case.
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must be equal to 2�. Obviously, this is satisfied with a
closed triangle. However, if one of the intersecting num-
bers, e.g. I�1�ab , is negative, the massless mode has the
H-momentum opposite to Eq. (36). In this case, the
H-momentum conservation must not be satisfied with a
closed triangle configuration of D-branes. Moreover, if all
of the intersecting numbers are negative, theH-momentum
conservation is satisfied with a closed triangle configura-
tion of D-branes. Thus, the H-momentum conservation is
satisfied only when all of the intersecting numbers, I�i�ab, I�i�bc,
and I�i�ca, have the same sign on each ith T2. Thist includes
the condition that all of the total intersecting numbers, Iab,
Ibc, and Ica, must have the same sign. Since this means the
corresponding Yukawa couplings are �Na; �Nb; 1��
�1; Nb; �Nc�� �Na; 1; Nc� type or its conjugate, the condition
due to H-momentum conservation includes the condition
that the Yukawa couplings must be gauge invariant.

IV. FLAVOR STRUCTURE FROM INTERSECTING
D-BRANE CONFIGURATIONS

In this section, we study systematically the flavor struc-
tures, which can appear from intersecting D-brane con-
figurations. The flavor structure on T2 � T2 � T2 is a
direct product of the flavor structure on each T2. Thus,
we mainly investigate the flavor structures from intersect-
ing D-brane configurations on each T2. In Sec. IVA, we
study the symmetric flavor structure, that is, the intersect-
ing numbers for left- and right-handed quarks are the same
on T2. In Sec. IV B, we study the asymmetric flavor
structure, that is, the intersecting numbers for left- and
right-handed quarks are different from each other on T2,
but their total numbers on T2 � T2 � T2 are the same.

A. Symmetric flavor structure

Here we investigate the D-brane configurations leading
to the symmetric flavor structure, that is, the intersecting
numbers for left- and right-handed quarks are the same on
T2. Suppose that the flavor number is equal to Nf, e.g. on
the first T2 while their intersecting numbers on the other
T2 � T2 are equal to one. Then, we can easily show the
number of Higgs fields, which can have allowed 3-point
couplings with these quarks, is equal to kNf, where k 2 Z
and Nf � 2. Let us consider three sets of D-branes, DC,
DL, and DR branes with the following winding numbers,

DC:wC � �nC;mC�; DL:wL � �nL;mL�;

DR:wR � �nR;mR�:
(38)

In this subsection, we omit the index (1) denoting the first
T2, because we discuss the D-brane configurations only on
the first T2. Open strings between DC and DL �DR� corre-
spond to left-handed (right-handed) quarks QL (QR), and
open strings between DL and DR correspond to the modes,
which can have allowed 3-point couplings with left- and
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right-handed quarks, that is, Higgs fields H. Then, we
consider the symmetric flavor structure

jICLj � jIRCj � Nf: (39)

Through a simple algebraic calculation, that implies that

w L 
 wR � kwC; (40)

where k is a real number. The sign on the left-hand side
depends on the signs of ICL and IRC.6 Recall here that wC is
the shortest vector on � along its direction. This implies
that k must be an integer. Thus, we obtain the number of
Higgs fields

jILRj � kNf: (41)

Namely, the minimum number of Higgs fields is equal to
Nf.7 In this case, we find

�CL � �RC � �LR; (42)

and the varieties of shift vectors, vCL, vRC, and vLR are the
same. Thus, these types of D-brane configurations lead to
only diagonal couplings for one of the Nf Higgs fields.
Indeed, the selection rule is determined by the discrete
Abelian symmetry.

As an illustrating example, we consider the case ofNf �
3, e.g. with the following winding numbers,

DC:wC � �nC;mC� � �1; 0�;

DL:wL � �nL;mL� � �1; 3�;

DR:wR � �nR;mR� � ��2;�3�:

(43)

Indeed, this configuration leads to ICL � IRC � ILR � 3.
All of the sublattices, �CL, �RC, and �LR, are the same,
and spanned by (1,0) and (0,3). The intersecting points of
these D-branes are described by the shift vectors,

v CL��0;kCL�; vRC��0;kRC�; vLR��0;kLR�; (44)

where kCL; kRC; kLR � 0; 1; 2 (mod 3). Thus, the coupling
selection rule (22) leads to

kCL � kRC � kLR � 0; �mod 3�: (45)

This selection rule is the same as the one in the 2D Z3

orbifold, and is described by the Z3 symmetry, under which
the fields �k with the Z3 charge k transform as

�k ! e2�ik=3�k; (46)

where k � 0; 1; 2. Thus, only diagonal couplings are al-
lowed for one of three Higgs fields. Explicitly, in the case
that the three D-branes intersect at the same point, we
-8
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obtain the Yukawa matrix

Y �
H0 "H2 "H1

"H2 H1 "H0

"H1 "H0 H2

0
@

1
A; (47)

where " is the suppression factor. This form of Yukawa
coupling is the generic form when the three sets of
D-branes intersect at the same point, although we have
shown the explicit winding numbers. When " is suffi-
ciently suppressed, its three eigenvalues are obtained by
vacuum expectation values (VEVs) of the Higgs fields,
vi � hHii, for i � 0; 1; 2, and its diagonalizing matrix is
obtained as8

V �

1 � v2

v1
" � v1

v2
"

v2

v1
" 1 � v0

v2
"

v1

v2
" v0

v2
" 1

0
B@

1
CA: (48)

We apply the above Yukawa matrix to the up and down
sectors of quarks with Higgs fields H�u;d�i and suppression
factors "u;d. The quark mass ratios are obtained as

mu:mc:mt � vu0:vu1:vu2 ; md:ms:mb � vd0:vd1:vd2 :

(49)

Moreover, the mixing angles are predicted as

Vus �
mb

ms
"d �

mt

mc
"u; Vub �

ms

mb
"d �

mc

mt
"u;

Vcb �
md

mb
"d �

mu

mt
"u;

(50)

by the two parameters "u;d. This prediction does not fit the
experimental values.

When the three sets of D-branes do not intersect at the
same point, the Yukawa matrix becomes

Y �
"d

2
H0 "�1�d�

2
H2 "�1�d�

2
H1

"�1�d�
2
H2 "d

2
H1 "�1�d�

2
H0

"�1�d�
2
H1 "�1�d�

2
H0 "d

2
H2

0
B@

1
CA; (51)

where d is a continuous parameter ��1 	 d 	 1� to denote
the nearest distance between three types of intersecting
points. This is the generic form of the Yukawa matrix for
the symmetric flavor structure with Nf � 3 flavor and the
three Higgs fields. Application of this form to the up and
down sectors of quarks does not seem to lead to fully
realistic results [21].

Similarly we can discuss the D-brane configurations
with more than three Higgs fields, i.e. the case with the
NfkHiggs fields for k > 1. In this case, the sublattices �CL

and �RC are still the same and these are spanned by wC and
wL. On the other hand, the sublattice �LR is spanned by
kwC and wL, and is less dense than �CL and �RC. This
implies that the number of coset representatives corre-
8See e.g. [20] for similar analysis on Z3 orbifold models.
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sponding to �=�LR is k times as large as one of �=�CL
and �=�RC, that is, the independent set of intersecting
points for the Higgs fields is described by the joint of sets
of shift vectors fvCLg [ fmwCg for m � 0; 1; � � � ; �k� 1�,
while the independent set of intersecting points for left-
and right-handed quarks is described by the set of shift
vectors fvCLg. However, the part fmwCg is irrelevant to the
coupling selection rule, that is, the selection rule is deter-
mined by the same ZNf symmetry, and the part fmwCg has
the trivial charge under the ZNf symmetry. As a result, the
same couplings are allowed except we replace

H�vab� ! H�vab� �H�vab � wC� � � � �

�H�vab � �k� 1�wC�; (52)

where H�vab� denotes the Higgs field corresponding to the
shift vector vab and we have omitted coefficients. As a
result, only diagonal couplings are allowed for one of the
Higgs fields.

Here we give an explicit model with Nf flavors and 2Nf
Higgs fields. In this case we have the following Yukawa
matrix

Y �
H1 � "9H5 "H4 � "4H3 "H6 � "4H2

"H4 � "
4H3 H2 � "

9H6 "H5 � "
4H1

"H6 � "4H2 "H5 � "4H1 H3 � "9H4

0
B@

1
CA;
(53)

when all of three sets of D-brane intersect at the same
point.

Including many Higgs fields may lead to realistic
Yukawa matrices for the quark and lepton sectors when
we assume proper VEVs for these Higgs fields. However,
this raises the question of how we can realize such proper
ratios of Higgs VEVs.

B. Asymmetric flavor structure

Here we study the asymmetric flavor structure on T2,
that is, the numbers of left- and right-handed quarks are
different from each other, e.g. on the first T2, i.e. jI�1�CLj �

jI�1�RCj. The total number of left- and right-handed quarks
must be the same. Thus, intersecting points, e.g. on the
second T2, must satisfy jI�1�CLI

�2�
CLj � jI

�1�
RCI

�2�
RCj, and the total

flavor number is equal to Nf � jI
�1�
CLI

�2�
CLj � jI

�1�
RCI

�2�
RCj.

First, let us investigate which types of D-brane configu-
rations can appear. Again, we consider three sets of
D-branes, DC, DL, and DR branes with the following
winding numbers on the first T2,

DC:w�1�C � �n
�1�
C ;m

�1�
C �; DL:w�1�L � �n

�1�
L ;m

�1�
L �;

DR:w�1�R � �n
�1�
R ;m

�1�
R �:

(54)

Suppose that

I�1�CL � ‘C; I�1�RC � rC; (55)
-9
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where ‘; r; C 2 Z, and g:c:d:�‘; r� � 1. Through a simple
algebraic calculation, we can show

‘wR 
 rwL � jwC; (56)

where j is an integer. Then, we can calculate

jI�1�LRj � jC: (57)

Here the integer j must satisfy

g :c:d:�j; ‘� � g:c:d:�j; r� � 1: (58)

For example, if g:c:d:�j; ‘� � C0 � 1, the above discussion
could be applied to show that r � C0r0 with integer r0. This
is inconsistent with the above condition g:c:d:�‘; r� � 1.
Thus, the generic D-brane configuration should satisfy

g :c:d:�I�1�CL; I
�1�
RC� � g:c:d:�I�1�CL; I

�1�
LR� � g:c:d:�I�1�RC; I

�1�
LR�:

(59)

We have understood the generic D-brane configuration.
Now, let us consider the selection rule for such generic
case. In Sec. III, we have shown that all of the couplings are
allowed in the D-brane configuration satisfying Eq. (30).
Here we extend this into the generic case. We take C as the
greatest common divisor of any two intersecting numbers.
Suppose that g:c:d:�n�1�1 ; n

�1�
2 � � g:c:d:�n�1�1 ; n

�1�
3 � �

g:c:d:�n�1�2 ; n
�1�
3 � � 1: Then, the sublattices are spanned by 9

��1�CL:�1; J�1�CLC� and �0; k0CLC�;

��1�RC:�1; J�1�RCC� and �0; k0RCC�;

��1�LR:�1; J�1�LRC� and �0; k0LRC�;

(60)

where

g :c:d:�k0CL;k
0
RC��g:c:d:�k0CL;k

0
LR��g:c:d:�k0RC;k

0
LR��1;

(61)

and J�1�CL, J�1�RC and J�1�LR are certain integers, but irrelevant to
our discussions. In this case, the combination of the sub-
lattices, �CL;�RC, and �LR corresponds to the sublattice,
which is spanned by �1; 0� and �0; C�. Therefore, the cou-
pling selection rule is determined by the discrete ZC sym-
metry. Let us write this generic result on the coupling
selection rule in simple words. When we label intersecting
points by jCL, jRC, and jLR, i.e.,

jCL � 0; 1; � � � ; I�1�CL � 1; jRC � 0; 1; � � � ; I�1�RC � 1;

jLR � 0; 1; � � � ; I�1�LR � 1; (62)

the coupling selection rule is obtained as

jCL � jRC � jLR � 0 �mod C�; (63)

where
9See Appendix A.1.
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C � g:c:d:�I�1�CL; I
�1�
RC� � g:c:d:�I�1�CL; I

�1�
LR� � g:c:d:�I�1�RC; I

�1�
LR�;

(64)

for g:c:d:�n�1�1 ;n
�1�
2 ��g:c:d:�n�1�1 ;n

�1�
3 ��g:c:d:�n�1�2 ;n

�1�
3 ��

1. This selection rule is mentioned also in [12] as Ansatz.
In the generic case, the sublattices are spanned by10

��1�CL:�kCLC1; J
�1�
CLC2� and �0; k0CLC2�;

��1�RC:�kRCC1; J
�1�
RCC2� and �0; k0RCC2�;

��1�LR:�kLRC1; J
�1�
LRC2� and �0; k0LRC2�;

(65)

where C1C2 � C and

g :c:d:�kCL;kRC��g:c:d:�kCL;kLR��g:c:d:�kRC;kLR��1;

g:c:d:�k0CL;k
0
RC��g:c:d:�k0CL;k

0
LR��g:c:d:�k0RC;k

0
LR��1:

(66)

Then, the combination of the sublattices, �CL;�RC, and
�LR corresponds to the sublattice, which is spanned by
�C1; 0� and �0; C2�. Hence, the coupling selection rule is
determined by the ZC1

� ZC2
symmetry. This selection rule

is also written as a simple extension of Eq. (63). Indeed, we
obtain the symmetry ZC1

� ZC2
� ZC��C1�C2�

because
g:c:d:�C1; C2� � 1.

We have understood the generic D-brane configuration
and its coupling selection rule. From a phenomenological
viewpoint, we are interested in D-brane configurations
leading to small numbers of flavors, in particular, the flavor
number equal to three. The D-brane configuration leading
to the total flavor number Nf � 3 is realized by the inter-
secting numbers

�I�1�CL; I
�1�
RC��I

�2�
CL; I

�2�
RC� � �3; 1��1; 3�: (67)

Suppose that I�1�LRI
�2�
LR � 1, that is, the number of Higgs

fields is equal to one. In this case, we have the factorizable
form of the Yukawa matrix

Yij � aibj; (68)

as already known in the literature. This is the rank-one
matrix, and this makes only one of flavor massive and the
others still remain massless with obviously vanishing mix-
ing angles.

The minimal case, which can lead to nonvanishing
mixing with only one Higgs field, may be the D-brane
configuration with the intersecting numbers

�I�1�CL; I
�1�
RC��I

�2�
CL; I

�2�
RC� � �3; 2��2; 3�: (69)

The total flavor number Nf is equal to Nf � 6, and left-
and right-handed quarks are denoted by Qij

L and Qk‘
R ,

respectively, where the indices �i; j� label intersect-
ing points on the first and second tori for i � 0; 1; 2 and
10See Appendix A.2.
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softly broken SUSY case, it seems difficult to obtain realistic
results by loop corrections.
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j � 0; 1. The indices �k‘� have the same meaning. In this
case with one Higgs field, the total Yukawa matrix is
obtained as a direct product of the parts from the first
and second tori, i.e.,

Y�i;j��k;‘� � aikbj‘: (70)

The generic form of aik and �bj‘�T is obtained by Eqs. (28)
and (29) with different suppression factors " and "0. Thus,
this Yukawa matrix Y�i;j��k;‘� has the nontrivial form with
the rank-four, that is, the mass ratios among massive modes
and diagonalizing matrix elements are determined by geo-
metrical aspects. However, when we apply this form to up
and down sectors of quarks, it cannot realize experimental
values of masses and mixing angles. The clear problem is
that the flavor number is larger and two flavors remain still
massless. Also, another phenomenological aspect is that
off-diagonal entries are suppressed compared with diago-
nal entries. However, experimental values of mass ratios
and mixing angles in the quark sector as well as the lepton
sector satisfy mi=mj 	 Vij for i < j, and this implies that
off-diagonal entries must not be suppressed so much in one
of the up and down sectors.

The generic aspects of the asymmetric flavor structure
with the intersecting numbers �I�1�CL; I

�1�
RC��I

�2�
CL; I

�2�
RC�, which

satisfy I�1�CL � I�2�RC and I�1�RC � I�2�CL, are as follows. Here we
consider the case that g:c:d:�I�1�CL; I

�1�
RC� � 1. The extension

to the case with g:c:d:�I�1�CL; I
�1�
RC� � 1 is simple. We denote

left- and right-handed quarks by Qij
L and Qk‘

R , respectively,
for i; ‘ � 0; 1; � � � ; I�1�CL � 1 and j; k � 0; 1; � � � ; I�1�RC � 1.
We suppose the minimal number of Higgs field. In this
case, the full Yukawa matrix is obtained as a direct product

Y�i;j��k;‘� � aikbj‘: (71)

When all three sets ofD-branes intersect at the same point,
the factor matrix corresponding to the first T2, aik, is
derived through a simple calculation

aik � "m
2
; (72)

where m is the integer that satisfies

i � m �mod I�1�CL�; k � m �mod I�1�RC�; (73)

with the minimum jmj, wherem includes negative integers.
This result may be obvious when we draw a figure like
Fig. 3. The matrix bj‘ is also obtained in a similar way.
When all three sets ofD-branes do not intersect at the same
point, the factor matrix aik is obtained in the same way
except by replacing m! m� d, where d is a continuous
parameter ��1 	 d 	 1�.

The total flavor number Nf is obtained as Nf � I�1�CLI
�2�
CL.

The rank of the full Yukawa matrix is equal to I�1�CLI
�1�
CL when

I�1�CL < I�2�CL. Thus, the I�1�CL�I
�1�
RC � I

�1�
CL� modes appear mass-

less. Off-diagonal entries are suppressed compared with
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diagonal entries, and not enough to realize experimental
values of mixing angles.

Now let us consider the case with more than one Higgs
fields. We consider the model with the intersecting num-
bers, �I�1�CL; I

�1�
RC��I

�2�
CL; I

�2�
RC� � �3; 1��1; 3�. Even if the inter-

secting numbers for the Higgs fields are �I�1�LR; I
�2�
LR� � �2; 1�

or �1; 2�, the rank of mass matrix is still equal to one. For
example, in the former case, the Yukawa couplings for
each of the Higgs fields Ha �a � 1; 2� are a factorizable
form like Yija � aiabj, and the mass matrix mij is still a
factorizable form,

mij � �ai1hH1i � ai2hH2i�bj; (74)

that is, the rank-one matrix. The minimal case increasing
the rank of mass matrix is �I�1�LR; I

�2�
LR� � �2; 2�, that is, the

totally four Higgs fields. Then, the mass matrix becomes
rank-two.

To make all of three flavors massive, we have to intro-
duce more Higgs fields. However, recall the rule for
D-brane configuration discussed in Sec. IVA when I�1�LR �
3 or I�2�LR � 3. If we have e.g. I�1�LR � 3 in addition to I�1�CL �
3, such D-brane configuration requires at least I�1�RC � 3,
and the minimum case with I�1�RC � 3 corresponds to the
symmetric flavor structure, which has been discussed in the
previous subsection.

C. Comments on reducing flavor and Higgs numbers

We have studied the flavor structures, which can be
derived from intersecting D-brane configurations, includ-
ing the symmetric flavor structures and asymmetric ones.
For the symmetric flavor structure with Nf � 3, corre-
sponding D-brane configurations require the number of
Higgs fields to be equal to Nfk with integer k. For the
asymmetric flavor case, the D-brane configurations with
�I�1�CL; I

�1�
RC��I

�2�
CL; I

�2�
RC� � �3; 1��1; 3� lead to the factorizable

form of the Yukawa matrix, Yij � aibj, that is, the rank-
one matrix. This implies that even if we can realize the
massless spectrum of the minimal supersymmetric stan-
dard model, we would have difficulty in deriving realistic
Yukawa matrices from stringy 3-point couplings at the
tree-level.11

For the symmetric flavor case as well as the asymmetric
case, introduction of many Higgs fields may lead to real-
istic Yukawa matrices. However, in such case, proper
values of ratios among VEVs of many Higgs fields have
to be chosen. Also, the introduction of many Higgs fields
may lead to a problem, because that, in general, causes
flavor changing neutral currents. One solution is that we
introduce extra fields H0, which have mass terms with
-11
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Higgs fields larger than the weak scale, and that only one
mode remains light. If such light mode is a linear combi-
nation of original modes with proper coefficients, then
realistic Yukawa matrices can be realized.

For the asymmetric flavor case, off-diagonal couplings
are allowed for one Higgs field, e.g. �I�1�CL; I

�1�
RC��I

�2�
CL; I

�2�
RC� �

�3; 2��2; 3�, and the cases with more intersecting points also
lead to nontrivial mixing angles. However, in such case the
flavor number is larger than 3. We have to reduce the flavor
number, that is, we have to introduce antigenerations and
mass terms between generations and antigenerations.

Thus, it is quite important to generate mass terms among
Higgs fields H and extra fields H0, and/or generations and
antigenerations of quarks. One of the stringy ways to
generate mass terms is the recombination of D-branes.
However, if those D-branes are stabilized to be bending,
it is not clear how to treat them. Otherwise, if those are
stabilized not to bend, but to be straightened, the resultant
D-brane configurations would be classified into the
D-brane configurations which have been studied in
Secs. IVA and IV B. Anyway, the stringy way to generate
mass terms is beyond our scope. Thus, here we give com-
ments on this issue from the viewpoint of effective field
theory. Within the framework of effective field theory,
there may be two ways to generate mass terms; one is
through symmetry breaking and the other is due to com-
positeness through strong dynamics.

Concerning the former scenario, suppose that we have
the following type of couplings:

yHH0X; yQQ0X: (75)

These couplings are originated from the D-brane configu-
ration of Fig. 5 for the Higg fields, and a similar configu-
ration for the quarks. These coupling strengths y are
calculated within the framework of string theory.
Q

Q

H

X

D

HL

R

S

’

FIG. 5. D-brane configuration leading to mass terms between
H and H0.
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Suppose that the fields X develop their VEVs. Then, the
above operators become effective mass terms between H
and H0, and Q and Q0, and that can reduce the number of
light flavors and light Higgs fields. Note that the VEVs of
the fields X break gauge symmetries, under which X have
nontrivial representations. Thus, the gauge group, which is
obtained at the string scale, must be larger than the gauge
group of the standard model.

The latter scenario to generate mass terms is similar to
the former. Suppose again that we have the same type of
couplings as Eq. (75). This time, we assume that the gauge
coupling corresponding to the gauge group, under which
both X and H0, and X and Q0, have nontrivial charges
becomes strong. Such gauge sector corresponds to the
Ds-brane in Fig. 5. Then, composite modes appear �H0X�
and �Q0X�. Obviously, these composite modes have effec-
tive mass terms withH and Q. Then, the numbers of Higgs
fields and flavors can be reduced.

In the composite scenario, the light modes can be com-
posite modes, when the flavor number from composite
modes is larger than the flavor number of original modes.
In this case, effective Yukawa couplings can be originated
from stringy n-point couplings for n � 3; 4; 5; 6 depending
on which modes correspond to composite modes. Actually,
such explicit models with composite modes have been
studied showing an interesting form of Yukawa matrices
[23,24]. It is quite important to study somehow systemati-
cally the flavor structure, which can be derived from inter-
secting D-brane configurations, considering the above
scenarios to reduce the Higgs and flavor numbers through
the symmetry breaking and strong dynamics. We have to
classify higher dimensional operators as well as 3-point
couplings. For such purpose, the discussions in the pre-
vious subsections would be useful. However, we leave it
for future study.
V. CONCLUSION

We have studied the flavor structure and the coupling
selection rule within the framework of intersecting
D-brane models on T2 � T2 � T2. We have formulated
the coupling selection rule in terms of shift vectors, which
are coset representatives corresponding to �=�ab. With
this formulation, we can write the coupling selection rule
for generic n-point couplings in a simple way.

We have found that genericD-brane configurations must
satisfy the relation (59). In such a generic case, the cou-
pling selection rule is determined by the discrete Abelian
symmetry. For example, the symmetric flavor structure
with Nf � 3 requires at least three Higgs fields, and the
coupling selection rule is determined by the Z3 symmetry.
We may need more Higgs fields to derive realistic Yukawa
matrices. However, the presence of more than one light
Higgs field coupled to the same type of quarks/leptons is
dangerous, because that, in general, causes unsuppressed
flavor changing neutral currents.
-12
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In the asymmetric flavor structure, the case with Nf � 3
leads to the result that only the third family becomes
massive, but the others remain massless. For the asymmet-
ric flavor structure with more flavor, we have nontrivial
Yukawa matrices, although their diagonal entries are quite
larger than off-diagonal entries and some modes still re-
main massless.

Our results show that even if we could obtain the mini-
mal matter content of the supersymmetric standard model
at the string scale, we would face the difficultly of deriving
realistic Yukawa matrices. It would be interesting to study
an alternative scenario that we may have several Higgs
fields and generations and antigenerations of fermions and
investigate a way to generate mass terms e.g. within the
effective field-theoretical way.

We have studied only 3-point couplings at the tree level.
It is important to study higher dimensional operators and
loop-effects. The selection rule (33) for higher dimensional
operators is useful, because such operators provide effec-
tive Yukawa couplings after symmetry breaking like the
Froggatt-Nielsen mechanism. Furthermore, it is also inter-
esting to classify D-brane configurations with allowed
n-point couplings for n � 3; 4; 5; 6; � � � from the viewpoint
of the scenarios discussed in Sec. IV C.

In heterotic orbifold models without Wilson lines, mass-
less spectra are degenerate on all of the fixed points, and a
large number of quarks and leptons as well as Higgs fields
appear. However, Wilson lines can resolve such degener-
acy [16,25,26] and lead to different massless spectra be-
tween fixed points. That is useful to reduce flavor numbers.
We might need such stringy way in intersecting D-brane
models.

As 6D compact space, we consider explicitly T2 � T2 �
T2, but our results are the same for its orbifold compacti-
fication, T2 � T2 � T2=ZN � ZM and T2 � T2 � T2=ZN .
In the orientifold case, we have to introduce mirror branes
for the D-branes, which are not parallel to orientifold
planes. However, genericD-brane configurations including
mirror branes must also satisfy the relation (59), and their
allowed couplings are determined by the ZN symmetry.
Our discussions can be extended to models e.g. on T4 �
T2. Moreover, it is quite important to study flavor struc-
tures in models on Calabi-Yau manifolds, but that is be-
yond the scope of the present paper, because how to
construct intersecting D-brane models on Calabi-Yau
manifolds is not completely clear at present.
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APPENDIX A: SHIFT VECTORS

In this appendix, we give a simple recipe how to obtain
shift vectors vab for generic winding numbers, e.g. for the
first T2. Here we omit the index (1) for the first T2. We
consider the two sets ofD-branes with the following wind-
ing numbers,

Da:wa � �na;ma�; Db:wb � �nb;mb�: (A1)
1. Case I

First we consider the case with g:c:d:�na; nb� � 1. In this
case, we can show easily g:c:d:�Iab; na� � g:c:d:�Iab; nb� �
1. Thus, the set of independent intersecting points k

Iab
wa

�k � 0; 1; � � � ; Iab � 1� is equivalent to the sets of k
Iab
nbwa

�k � 0; 1; � � � ; Iab � 1�. Similarly the set of independent
intersecting points ‘

Iab
wb �‘ � 0; 1; � � � ; Iab � 1� is equiva-

lent to the sets of ‘
Iab
nawb �k � 0; 1; � � � ; Iab � 1�.

Obviously, we have

nawb � nbwa � �0; Iab�: (A2)

Thus, the sublattice �ab is spanned by �1; Jab� and �0; Iab�,
where Jab must be an integer. This integer Jab is irrelevant
to description of the sets of independent shifts and coset
representatives of �=�ab. When g:c:d:�ma;mb� � Cm �

1, the integer Jab is also written as Jab � J0abCm with
integer J0ab. The shift vectors describing Iab independent
intersecting points are written as

v ab �
k�ab�

Iab
�nawb � nbwa� � �0; k�ab��;

�k�ab� � 0; 1; � � � ; Iab � 1�:

(A3)

Similarly, we can obtain the shift vectors vab in the case
with g:c:d:�ma;mb� � 1. In this case, the independent
shifts are written as

v ab �
k�ab�

Iab
�mbwa �mawb� � �k

�ab�; 0�;

�k�ab� � 0; 1; � � � ; Iab � 1�:

(A4)

When g:c:d:�na; nb� � g:c:d:�ma;mb� � 1, both sets of in-
dependent shift vectors are equivalent.

2. Case II

Here we discuss a simple recipe of how to obtain shift
vectors in the case with g:c:d:�na; nb� � Cn � 1 and
g:c:d:�ma;mb� � Cm � 1, where Cn and Cm must satisfy
g:c:d:�Cn; Cm� � 1. We write these winding numbers as
follows,

na � n0aCn; nb � n0bCn; (A5)

ma � m0aCm; mb � m0bCm; (A6)
-13
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where n0a;b; Cn;m 2 Z. We can do the same discussion as
the Appendix A.1 except we replace

na;b ! n0a;b; ma;b ! m0a;b: (A7)

For example, we obtain

n0awb � n0bwa �

�
0;
Iab
Cn

�
� �0; CmI0ab�; (A8)

where I0ab � n0am0b � n
0
bm
0
a. Then the sublattice �ab is

spanned by �Cn; CmJ0ab� and �0; CmI0ab�, where J0ab must
be an integer. This integer J0ab is irrelevant to coset repre-
sentatives of �=�ab like Appendix A.1. The set of inde-
pendent shifts are obtained as

v ab � �k; k
0�; (A9)

where �k � 0; 1; � � � ; Cn � 1�; �k0 � 0; 1; � � � ; IabCn � 1�.
There are other equivalent descriptions of shift vectors.

APPENDIX B: SYMMETRIC FLAVOR STRUCTURE
WITH Nf � 2

In Sec. IVA, we have shown that if jICLj � jICRj � Nf
on T2, the intersecting number jILRj must satisfy jILRj �
kNf with k 2 Z, that is, the minimum number of jILRj is
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equal to Nf. Here, again we omit the index for the ith torus
like Sec. IVA. However, this statement is not true forNf �
2. Indeed, the case with Nf � 2 requires k � 2. If the
following relation

jICLj � jICRj � jILRj � 2; (B1)

is true, we could write

w C � 
wL 
 wR; (B2)

where the signs depend on signs of ICL; ICR, and ILR.
However, the relations (B1) and (B2) are inconsistent in
the D-brane configurations. The relation (B2) always leads
to wC � (even, even) except the two cases with

w L � �even, odd�; wR � �odd, even�;

wL � �odd, even�; wR � �even, odd�:
(B3)

However, both of these cases lead to ILR � odd. Thus, one
cannot realize the D-brane configuration with the relation
(B1).

The flavor structure with Nf � 2 on T2 is not realistic,
but this can be useful as a piece of a full flavor structure
when we combine it with other flavor structures on T2 �
T2. (See Sec. IV.)
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