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We study an integrable conformal OSp�2m� 2j2m� supercoset model as an analog to the AdS5 � S5

superstring world-sheet theory. Using the known S-matrix for this system, we obtain integral equations for
states of large particle number in an SU(2) sector, which are exact in the sigma model coupling constant.
As a check, we derive as a limit the general classical Bethe equation of Kazakov, Marshakov, Minahan,
and Zarembo. There are two distinct quantum expansions around the well-studied classical limit, the
��1=2 effects and the 1=J effects. Our approach captures the first type, but not the second.
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I. INTRODUCTION

The discovery of integrable structures in both the gauge
theory [1–3] and string theory [4,5] limits of the AdS/CFT
duality gives a strong hint that N � 4 supersymmetric
gauge theory is solvable, at least in the planar approxima-
tion.1 Subsequently this subject has advanced on many
fronts; for reviews see Refs. [8–15].

Let us note here a few key developments, particularly
those concerning the string side and its relation to the
gauge side. For states of large charge, it has been possible
to compare the operator dimensions obtained in the gauge
and string descriptions [16–21]. The classical string pic-
ture can be derived directly by going to a coherent state
representation for the gauge theory operators [22]. How-
ever, higher order calculations show that the gauge-string
correspondence is not a simple as initially assumed
[23,24]. In the string sigma model, the nonlocal conserved
charges can be used to construct a spectral curve that
characterizes the general classical solution [25–27]. The
Bethe ansatz equation for this spectral curve has been
further developed and compared with the gauge theory
Bethe ansatz [28–30]. It has been argued that the nonlocal
charges are conserved in the full quantum sigma model for
the AdS5 � S5 string [31,32]. In Refs. [33,34] an extension
of the Bethe ansatz to the quantized sigma model is con-
jectured, but the discrepancy with the gauge theory re-
mains. Recently there has been further study of the one-
loop quantum corrections to the sigma model, again with
apparent discrepancies [35]. Finally, additional discussions
of the sigma model conserved charges and their relation to
the gauge theory charges can be found in Refs. [36].

To summarize, integrability is fairly well developed for
the classical sigma model, but the extension to the quantum
sigma model is in a very preliminary state. There has been
a focus on quantities for which the quantum corrections are
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hoped to take a rather restricted form [18], but ultimately it
is clear that most of the physics of the AdS/CFT system is
dependent on the quantization of the sigma model. Thus in
this paper we wish to take a complementary approach,
starting with a sigma model where some integrable
structure is already known at the quantum level. This is
the OSp�2m� 2j2m� coset model [37], specifically
OSp�2m� 2j2m�=OSp�2m� 1j2m�, whose bosonic part
is S2m�1. Like the AdS5 � S5 world-sheet theory it is
conformally invariant and its target space is a supergroup
coset. It is a different coset, and lacks the ghost and Becchi-
Rouet-Stora-Tyutin structure of the string theory, but still is
likely to give a hint of the structure that will appear in the
full string theory.

In the coset model the integrable structure takes the form
of an S-matrix.2 This is derived by taking the conformal
n! 2 limit of the OSp�2m� nj2m� S-matrix. The latter
[38] is obtained from the well-known O�n� S-matrix [39]
by addition of equal numbers of bosonic and fermionic
coordinates. In Ref. [37] it was shown that the n! 2 limit
can be defined, and the resulting S-matrix used in a finite-
density Bethe ansatz. The limit has the feature that, in
addition to the right-moving and left-moving particles
that would be expected in a conformal theory, there is a
continuum of zero-energy states, so-called ‘‘zero modes‘‘
[37] though perhaps ‘‘nonmovers’’ would be more apt.

Reference [37] considered only a U(1) sector of the
sigma model, which is trivial from the point of view of
the analogous string theory. In this paper we extend the
analysis to an SU(2) sector. We obtain the Bethe ansatz
equations for the full quantum sigma model, and then take
the classical limit. The classical theory, a bosonic sigma
model on an S3, is identical to the SU(2) sector of the
AdS5 � S5 theory.3 Indeed, we recover the Bethe equation
2The importance of the world-sheet S-matrix has recently been
emphasized in Ref. [29].

3To obtain nontrivial physical states we imagine appending a
free timelike coordinate. We could also analytically continue in
the charges, equivalent to spinning strings on AdS3.
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found in Refs. [26]. The embedding of this Bethe ansatz
into a quantum theory is our main result.

One important lesson is that the extension of the classi-
cal Bethe equations to the quantum theory involves two
separate deformations. The classical sigma model here is
the classical field limit, in which the coupling is taken to
zero and the number of quanta is taken to infinity. Thus to
recover the quantum theory we must restore finite quantum
numbers (that is, 1=J corrections), and also include
world-sheet quantum effects (g2 corrections).4 Refer-
ences [33,34] focused on the 1=J corrections. We are
unable, in our current work, to address these, but we
have a full account of the g2 corrections.

In Sec. II we review the OSp�2m� 2j2m� coset model,
the use of the S-matrix, and the Bethe ansatz in the U(1)
sector. Most of the results are from Ref. [37], though we
treat the classical limit in more detail. In Sec. III we obtain
the Bethe ansatz for the SU(2) sector, as well as its reduc-
tions to single impurities and to nonrelativistic impurities.
In Sec. IV we develop the classical limit. The zero modes
enter in an interesting way: the somewhat complicated
form for the Bethe equation given in Ref. [28] arises
from a simpler equation when they are integrated out. In
the appendix we review the finite Hilbert transform, which
appears in the classical limit.

One might wonder whether the agreement between the
SU(2) sectors of our model and the AdS5 � S5 theory,
which must hold at the classical level, might fortuitously
extend to the quantum theory. In fact this is unlikely. In our
model there is no supersymmetry connecting the spacelike
S3 and the appended time coordinate, so the quantum
corrections should take a less restricted form. In addition,
our model appears to have a phase transition at finite
world-sheet coupling [37], as we will discuss further in
Sec. II. Such a transition is not expected in the string
theory. We are currently attempting to extend our approach
to the PSL�mjm� model [40–42], whose symmetry struc-
ture is closer to the string theory. The Bethe ansatz takes a
somewhat different form, and the phase transition may be
absent.

II. OVERVIEW AND REVIEW

A. The supercoset model

Consider a nonlinear sigma model based on a field ’i
whose first 2m� n components are commuting and whose
last 2m components are anticommuting. The action and
constraint are
4To see that the latter are independent effects, consider the
world-sheet theory on a line rather than a circle. At finite density
the 1=J corrections are strictly absent—the Bethe ansatz re-
mains continuous—but the physics certainly depends on g2.
Also, the three-loop discrepancy [23,24] is visible in the con-
tinuous Bethe equations [28], and so should be due to g2 effects.
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S � �
1

2g2

Z
d�d�Jij@�’i@�’j; Jij’i’j � 1;

(2.1)

where

Jij �
I2m�n 0 0

0 0 �Im
0 Im 0

264
375: (2.2)

The action is invariant under an OSp�2m� njm� symme-
try. Correlation functions of fields restricted to a subset of n
bosonic components are identical to those of the bosonic
O�n� coset model, because the path integral over the re-
maining 2m bosonic coordinates is the reciprocal of the
integral over the fermionic coordinates [43,44]. In particu-
lar, the OSp�2m� 2jm� is conformally invariant, because
the O�2� model is free. However, it is not rational: it is
conformally invariant without a Wess-Zumino term, and
the separate right- and left-moving currents are not con-
served. Instead it possesses an infinite family of nonlocal
charges constructed from a flat connection, by direct gen-
eralization of the construction for the O�n� coset [45,46].

For quantum sigma models, the integrable structure is
encoded in a factorizable S-matrix [39]. For massless
theories, the usual definition of the S-matrix does not apply
because particles moving in the same direction do not
separate. Nevertheless, the massless limit of the S-matrix
of a massive integrable theory can still be used in the finite
density Bethe ansatz [47,48]: it retains its interpretation as
the relative phase acquired in the wave function when one
particle is moved past another.

The flat spacetime S-matrix does not directly give the
full set of amplitudes needed on the string world sheet
because the string has finite spatial volume while the S-
matrix is defined in infinite volume. In a relativistic field
theory the vacuum is nontrivial, and so in finite volume the
virtual particle states shift; one signature of this is the
Casimir energy. There do not yet exist general methods
to account for this shift and construct the finite volume
system. Thus the questions that are readily answered in-
volve states with a large number K of real particles, where
the effect of the virtual particles represent a relative frac-
tion 1=K. It is not necessary that there be a large net charge
J, but in fact the Bethe ansatz is simplest when all particles
have the same sign of the charge, and so we will focus on
this case. Thus in our present work we are insensitive to
1=J corrections; going beyond this is an important future
direction.

The exact S-matrix for the O�n� model is well known
[39], and the OSp�2m� nj2m� symmetry allows this to be
lifted in a unique way to the supercoset model [38].5 The
5The supercoset theory is only pseudounitary, because the
indefinite metric Jij appears and we have no analog of �
symmetry to remove the unwanted states, but the S-matrix is
still defined, and factorizable.
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S-matrix has three terms,

ji1�; j1�
0; ini � Sj2i2

j1i1
��� �0�jj2�; i2�

0; outi;

S��� � �1���E� �2���P� �3���I
(2.3)

where

Ej2i2
j1i1
� Ji1j1

Ji2j2 (2.4)

Pj2i2
j1i1
� �j2

i1
�i2j1

(2.5)

Ij2i2
j1i1
� ��1�pi1�pj1�i2i1�

j2
j1

; (2.6)

here pi is 0 for a bosonic component and 1 for a fermionic
component. The tensor structures are shown diagrammati-
cally in Fig. 1. The functions �i��� are

�1 � �
2i�

�n� 2��i�� ��
�2; �3 � �

2i�
�n� 2��

�2;

�2 �
��1� �

2i����
1
2�

�
2i����

1
n�2�

�
2i����

1
2�

1
n�2�

�
2i��

�� �2i����
1
2�

�
2i����1�

1
n�2�

�
2i����

1
2�

1
n�2�

�
2i��

:

(2.7)

The parameter n in the S-matrix can be treated as a
continuous parameter in the Bethe ansatz and in Feynman
diagrams, with the definition that Supertrace�1� �P
i��1�pi � n. In particular the Yang-Baxter equation is

satisfied. Since the n � 2 theory is conformal, the 	 func-
tion is of the form 	�g� � �n� 2�b�g� where b�g� is finite
as n! 2. The coupling thus runs arbitrarily slowly as
n! 2: it is a function of


 � �n� 2� ln�E=M� (2.8)

where M is the dynamically generated mass. For example,
from the one-loop beta function it follows that

g2 �
2�


�O

�
ln



2

�
(2.9)

at large 
. By holding 
 and E fixed as n! 2 and M ! 0,
we obtain a limit in which the coupling takes the constant
value g�
�. In particular we get the same coupling if we use
another reference energy E0 where E0=E is fixed, since
�n� 2� ln�E0=E� goes to zero.

In particular, holding fixed the single-particle energy
" � M cosh� implies that we hold fixed one of
++σ σ σ1 2 3=

j

j

i

i 11

22

FIG. 1. Terms in the S-matrix
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~� R � �� 
=�n� 2�; " �
�
2
e~�R ;

~�L � �� 
=�n� 2�; " �
�
2
e�~�L :

(2.10)

Thus the excitations that carry energy and momentum
separate into a right-moving range with fixed ~�R and a
left-moving range with fixed ~�L. The rapidity difference
between these two sets diverges as 1=�n� 2�. The surpris-
ing result in Ref. [37], which we will review below, is that
in the limit there remains also a continuum of ‘‘zero-
mode’’ excitations between the right- and left-movers.
For these, � � �n� 2�� is held finite, where �
 <�<

. The zero modes do not carry single-particle energies,
but they affect the total energy through their interaction
with the right- and left-movers. We denote the three types
of particle state by R, L, and 0.

B. The U(1) sector

We begin by building states with a finite density of
excitations all positively charged under a single U�1� �
O�2� � O�2m� n�, for example, states created by ’1 �
i’2. Acting on these, P � I and E � 0, giving

Spp��� � �2��� � �3���

�
�� 1

n�2�
i�
2����

1
n�2�

1
2�

i�
2����

1
2�

i�
2����

i�
2��

�� 1
n�2�

i�
2����

1
n�2�

1
2�

i�
2����

1
2�

i�
2����

�i�
2� �

:

(2.11)

The standard Bethe ansatz equation for a state of iden-
tical particles, from periodicity on a space of length L, is
[49,50]

eipjL �
Y
i�j

S��i � �j�: (2.12)

Here �j is the rapidity of the jth particle and pj �
m sinh�j. Following standard steps we take the logarithm
of Eq. (2.12),

pjL � �i
X
i�j

lnS��i � �j� � 2�lj: (2.13)

Each rapidity �j is thus associated with an integer lj from
the branch cut in the logarithm. For �i lnS we fix the
branch that increases monotonically from 0 to 2�. In the
present discussion we focus on a single filled band of
particle states. In this case the integers are consecutive,
lj�1 � lj � 1, and the rapidities are found to increase
monotonically with j [51].

For future reference we can also write this in another
way. Suppose that we define the logarithm differently, so
that it increases from 0 to � (taking the latter value at � �
0), then jumps to �� and finally increases to 0,

�il̂nS��� � �i lnS��� � 2�����: (2.14)

The integer lj now takes a constant value l̂ for all particles,
-3
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as the jump by 2� on the right-hand side of Eq. (2.13) as
we move from j to j� 1 now comes from �i lnS��j�1 �

�j�. We will denote the logarithm with this definition by ^ln.
For particle distributions consisting of several filled bands,
l̂ is a different constant for each band.

Now take the thermodynamic limit of a large number of
particles, holding the density fixed and letting L! 1. The
difference between consecutive rapidities becomes small
with the density (per rapidity and length) finite,

���j� �
1

L��j�1 � �j�
: (2.15)

These finite-density states obey

M
2�

cosh� � ���� �
Z BR

�BL
K��� �0����0�d�0; (2.16)

where

K��� �
1

2�i
d
d�

lnS���: (2.17)

This is valid only in the range �BL < � < BR where the
particle states are filled; outside this range ���� � 0.

We now take the n! 2 limit; for more details see
Ref. [37]. From the discussion in Sec. II A, we see that
there are some rapidity differences that remain fixed in the
limit, and others that scale as 1=�n� 2�. In fact, both limits
of Spp are nontrivial, because some of the gamma func-
tions (2.11) contain 1=�n� 2� in their argument and others
do not. Specifically,

SI��� � lim
n!2

Spp��� �
��12�

i�
2����

i�
2��

��12�
i�
2����

�i�
2� �

: (2.18)

and

SII��� � lim
n!2

Spp��=	n� 2
� �
�
2�� i�
2�� i�

�
1=2
ei�sign���=2:

(2.19)

In particular, SI appears in RR and LL scattering, SRR �
SLL � SI, while SII appears in RL, R0, 00, and 0L
scattering.

The Bethe ansatz equation separates into integral equa-
tions for right-movers, left-movers, and zero-modes:6

�R��� �
Z ~BR

�1
KRR��� �0��R��0�d�0 �

�
4�

e�;

�L��� �
Z 1
� ~BL

KLL��� �0��L��0�; d� �
�
4�

e��

(2.20)
6The existence of these particles in the middle is implied by
the fact that the limit of SRR as the rapidity difference them large
is not equal to SRL. Thus some states must get ‘‘trapped’’ in
between in the conformal limit.
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and

1

2
�0��� �

Z 


�


�0��
0�

4�2 � ����0�2
d�0

�
JR

4�2 � ��� 
�2
�

JL

4�2 � ��� 
�2
: (2.21)

We have defined the fixed endpoints ~BR � BR � 
=�N �
2�, ~BL � BL � 
=�N � 2�, and the number densities

J R �
Z ~BR

�1
�R���d�;JL �

Z 1
� ~BL

�L���d�;J 0

�
Z 


�

�0���d�: (2.22)

The semi-infinite integral equations for the right- and
left-movers can be solved by the Wiener-Hopf method.
This is done in Ref. [37]; for the present paper we need
only the result for the energy and momentum densities in
terms of the number densities:

P � P=L �
��J 2

R � J 2
L�

2
;

E � E=L �
��J 2

R � J 2
L�

2
;

(2.23)

so that

E �
��JR � JL�

2

4
�

P 2

��JR � JL�
2 : (2.24)

The zero-mode equation determines J 0 in the form

J 0 � �h�
� � 1��JL � JR� (2.25)

for some function h�
�. This in turn gives JL � JR �
J=h�
�, and so

E �
�J 2

4h�
�2
�

P 2h�
�2

�J 2 : (2.26)

Returning to the Lagrangian description, we are looking
for the state of lowest energy for given O�2� charge and
momentum. Since the excitations lie entirely within an
O�2� this reduces to a free-field calculation. Inserting the
classical configuration

# � �!�� k�; ’1 � i’2 � ei#; (2.27)

we have

J �
!

g2 ; P �
!k

g2 ; E �
!2 � k2

2g2 : (2.28)

Comparing with the Bethe ansatz results gives

g2 �
�

2h�
�2
: (2.29)

Thus this state fixes the dictionary between the parameter
g2 of the Lagrangian description and the parameter 
 of the
Bethe ansatz description.
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The zero-mode integral equation cannot be solved in
closed form; it can be solved numerically or by expanding
around large or small 
. The details of the large 
 expan-
sion are set aside to the next subsection. The result is

�0��� �
JR

2�
����


p

��������������

��

��

s
�

JL

2�
����


p

��������������

��

��

s
; (2.30)

which integrates to

J 0 �

����


p

2
�JR � JL�: (2.31)

Then h�
� �
����


p

=2 to leading order, and

g2 �
2�


; (2.32)

in agreement with the one-loop result (2.9). In particular,
the large-
 limit is the weak-coupling (classical) limit of
the sigma model. Note that in this regime, the zero modes
carry nearly all the charge, while the right- and left-movers
carry all the energy and momentum.

It is clear from the form of the zero-mode equation that
as we reduce 
 we reduce J 0 and so g2 increases mono-
tonically. In the string world-sheet theory the limit g2 ! 1
is particularly interesting, because it is dual to the free
gauge theory. However, in our model we do not reach this
limit even as 
! 0. In this limit the zero-mode range goes
to zero and J 0 ! 0, giving h�0� � 1 and g2 � �=2. The
role of this special value is not clear. It corresponds to the
Kosterlitz-Thouless point, where the vortex interaction
becomes marginal.7 However, it is not clear that this con-
tinuum model should have a Kosterlitz-Thouless transition.
The small-
 expansion is simple to carry out to many terms
[37], and it seems to be convergent and to allow continu-
ation to negative 
. However, it does not seem that we can
reach the very interesting point g � 1, even at 
! �1.
This is a puzzling artifact of this supergroup coset model,
which probably has no relevance to the string theory.

Excited states, with gaps in the sequence of Bethe
integers nj, correspond to excitations of the free field #
(2.27). In the application to string theory these can be
removed using the residual gauge freedom of the confor-
mal gauge: we can always choose coordinates in which
# � �!�� k�. Thus to describe the physical states of
string theory we can restrict attention to the filled rapidity
band. The center of mass constraints E � P � 0 must still
be satisfied.
7We thank H. Saleur for pointing this out, and that it is also the
point where an exact lattice solution exists [52]. In our world-
sheet approach, it is relatively easy to expand around this
coupling.
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C. Large-� expansion

Here and in Sec. IV we will work out some of the details
of the large-
 expansion of the Bethe ansatz equations. For
the zero mode equation (2.21), the source terms on the right
are strongly peaked at the endpoints, and so we start by
analyzing the behavior near one endpoint, say �
.
Defining � �  � 
 and R� � � �0���, the equation
goes in the limit to

R� � �
Z 0

�1
K0� �  0�R� 0�d 0 � g� �;  < 0;

(2.33)

where

K0� �  0� �
2

4�2 � � �  0�2
; g� � �

2JR

4�2 �  2 :

(2.34)

Again, the solution is via the Wiener-Hopf method, as
reviewed, for example, in the appendix to [53] and in [54].
In Fourier space one can write

1� ~K0�!� �
1

G��!�G��!�
; (2.35)

where the functions G��!� and G��!� are holomorphic
and novanishing in the upper and lower half-planes, re-
spectively, and approach 1 at large ! in these respective
half-planes. Here we have the particular form

~g�!� � JR
~K0�!� � JR�1�G

�1
� �!�G

�1
� �!��: (2.36)

The integral equation then takes the form

G�1
� G

�1
�

~R � JR�1�G
�1
� G

�1
� � � X� (2.37)

where X� is an unknown function that is holomorphic in
the upper half-plane and approaches 0 asymptotically (this
appears because the integral equation holds only for nega-
tive  ). Multiplying by G� and rearranging gives

G�1
�

~R� JR�G
�1
� � 1� � JR�G� � 1� �G�X�: (2.38)

The left-hand side is holomorphic in the lower half-plane
and approaches 0 asymptotically, and the right-hand side
has the same property in the upper half-plane. It follows
that both sides vanish identically, and so

~R�!� � JR�G��!� � 1�: (2.39)

Explicitly for the kernel (2.36)

G��!� �
1������������

2�i!
p ��1� i!�ei!�i! ln�i!�: (2.40)

To match onto the solution away from the endpoint we
need only the small-! behavior, giving

R��� �
JR

�
��������������������
2�
���

p �O��
����3=2�: (2.41)

In the bulk we thus look for a solution of the form
-5
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�0��� �
1



r��=
�; (2.42)

where

r�y� �
JR

����


p

�
������������������
2�1� y�

p ; y! 1; (2.43)

and similarly

r�y� �
JL

����


p

�
������������������
2�1� y�

p ; y! �1: (2.44)

The large-
 limit of the zero-mode equation (2.21) at fixed
y �  =
 is

0 � �
Z 1

�1

r�y0�

�y� y0�2
dy0 � 0: (2.45)

We will discuss such principal part equations at more
length in Sec. IV. Here there is a unique solution with the
given limits,

r�y� �
JR

����


p

2�

������������
1� y
1� y

s
�

JL
����


p

2�

������������
1� y
1� y

s
; (2.46)

giving Eq. (2.30). In Sec. II B we integrated this to obtain
the zero-mode charge density. The full form (2.39) near
the endpoint gives a correction to J 0 that is subleading at
large 
.

This method can be iterated to give higher orders in the
semiclassical expansion, but this is beyond our present
scope.
THE SU(2) SECTOR

A. The nested Bethe ansatz

We now consider states with particles created by either
’1 � i’2 or ’3 � i’4. That is, the particles of positively
charged under one of the factors in O�2� � O�2� �
O�2m� 2� � OSp�2m� 2j2n�. In such states, the E ten-
sor still vanishes, but the I and P tensors are distinguish-
able. The effective S-matrix at general n is

S �
i�P� 2�

n�2 I

i�� 2�
n�2

Spp; (3.1)

where Spp is the single-species S-matrix (2.11). A state
with charge J1 under the first O�2� and J2 under the second
O�2� is described in terms of J � J1 � J2 particles with J2

impurities [55]. The resulting nested Bethe ansatz equa-
tions are

eipjL �
Y
	

i�j � i�	 �
�
n�2

i�j � i�	 �
�
n�2

Y
i�j

Spp��i � �j�; (3.2)

Y
j

i�j � i� �
�
n�2

i�j � i� �
�
n�2

�
Y
	�

i� � i�	 �
2�
n�2

i� � i�	 �
2�
n�2

; (3.3)
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where indices i; j run from 1 to J and ;	 run from 1 to J2.
The pj and �j still describe the momenta and rapidity of
each particle (including both types). The pseudorapidities
� describe the solution to a nested Bethe ansatz which
describes the motion of the impurities on the chain of
particles. Equation (3.3) gives a quantization condition
for these �, which are like spin chain rapidities.

B. The single-impurity state

Consider first a state with a finite density of type 1
particles and a single type 2 particle. We will use this in
the next section to understand how the pseudorapidity �
maps onto the physical parameters. The Bethe ansatz
equations reduce to

eip
0
jL �

i�0j � i��
�
n�2

i�0j � i��
�
n�2

Y
i�j

S��0i � �
0
j�; (3.4)

1 �
Y
j

i�0j � i��
�
n�2

i�0j � i��
�
n�2

: (3.5)

Primes denote the rapidities and momenta in the single-
impurity state, while the unprimed values refer to the no-
impurity state, with J particles all of type 1 as studied in the
previous section.

In the thermodynamic limit L! 1 the single-impurity
state is treated as a perturbation of the pure state, defining
w��� � L��� �0� [50]. Taking the logarithm of the Bethe
ansatz equation (3.4) and subtracting the unprimed equa-
tion gives

F��� �
Z BR

�BL
K��� �0�F��0�d�0

�
1

�
cot�1 �n� 2������

�
; (3.6)

where F��� � w�������. We have set nj � n0j, but leave
the branch of the logarithm unspecified for now; different
choices can be absorbed in shifts of the nj.

As we take the n! 2 limit, the integral equation again
splits into three parts. The zero-mode equation is

1

2
F0��� �

Z 


�


F0��
0�

4�2 � � �  0�2
d�0 �

1

�
cot�1 ��

~�

�
;

(3.7)

where ~� � �n� 2��; for states whose energy remains
finite in the n! 2 limit, it is ~� that is held fixed. The
right- and left-moving parts can be put in the form

FR��� �
Z ~BR

�1
KRR��� �0�FR��0�d�0 �

1

2
F0�
�;

FL��� �
Z 1
� ~BL

KLL��� �
0�FL��

0�d�0 �
1

2
F0��
�

(3.8)

We have used the zero-mode equation to simplify these;
-6
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note that cot�1 is essentially constant in the right and left
ranges, and equal to its value at the nearer end of the zero-
mode range. Equations (3.8) are solved readily using the
Wiener-Hopf method to give

�P � �JRF0�
� � �JLF0��
�; (3.9)

�E � �JRF0�
� � �JLF0��
�: (3.10)

These are both functions of the rapidity ~�. Eliminating ~�
gives the dispersion relation for �E in terms of �P.

The second Bethe ansatz equation (3.5) becomes

m̂
L
�

1

�

Z 


�

F0��� ^cot�1 ��

~�

�
d�: (3.11)

Here we have defined the ^cot to vanish at �1 and to jump
by �� at 0, in parallel with Eq. (2.14). Equation (3.11)
provides a quantization condition on ~� and so on �P. In
fact, it follows immediately from taking the product of
Eq. (3.4) over j (so that S��0i � �

0
j� cancels) that Eq. (3.5)

for a single impurity directly implies quantization of mo-
mentum, �P � 2�m=L.

C. Equations for finite impurity density

We now consider states with a finite density of both
type 1 and type 2 particles. We assume that the rapidities
�j lie in a single filled band and the pseudorapidities � lie
in one or more filled bands. The Bethe ansatz equa-
tions (3.2) and (3.3) then become the integral equations

���� �
Z BR

�BL
K��� �0����0�d�0

�
M
2�

cosh��
Z �n� 2�����d�

�2 � �����2�n� 2�2
(3.12)

and

���� � 2
Z �n� 2����0�d�0

4�2 � ����0�2�n� 2�2

� �
Z BR

�BL

�n� 2�����d�

�2 � �����2�n� 2�2
: (3.13)

The pseudorapidity integral runs over the filled bands,
which are not specified. Each equation holds only within
the filled range. The total particle density is

J � J 1 � J 2 �
Z
����d�; (3.14)

and the impurity density is

J 2 �
Z
����d�: (3.15)

The n! 2 limit is smooth if we define � � �n� 2��
and ~� � �n� 2�� as before, and ~��~�� � ����=�n� 2�.
Then
086002
1

2
�0��� �

Z 


�


�0��0�d�0

4�2 � ����0�2

�
JR

4�2 � �
���2
�

JL

4�2 � �
���2

�
Z ~��~��d~�

�2 � ��� ~��2
(3.16)

and

~��~�� � 2
Z ~��~�0�d~�0

4�2 � �~�� ~�0�2

� �
JR

�2 � �
� ~��2
�

JL

�2 � �
� ~��2

�
Z 


�


�0���

�2 � ��� ~��2
: (3.17)

The right- and left-moving equations (2.20) are un-
changed—all additional terms scale out as n! 2. Thus
the relation (2.23) continues to hold, determining the en-
ergy and momentum in terms of JR;L.

The equations for �0 and ~� are coupled, but they
decouple if all impurities are at large pseudorapidity
j~�j  
. We will see in the next section that this corre-
sponds to nonrelativistic impurities. The Bethe ansatz
equations become

1

2
�0��� �

Z 


�


�0��0�d�0

4�2 � ����0�2

�
JR

4�2 � �
���2
�

JL

4�2 � �
���2
�

T


2 (3.18)

and

~��~�� � 2
Z ~��~�0�d~�0

4�2 � �~�� ~�0�2
� �

J

�2 � ~�2
; (3.19)

where

T � 
2
Z ~��~��d~�

�2 � ~�2
: (3.20)
IV. THE LARGE-� APPROXIMATION

The integral equations found in Sec. III determine the
world-sheet energies in the quantized world-sheet theory.
In order to make contact with earlier results, we now take
the large-
 approximation, which we have seen to be the
classical limit of the field theory. For reference recall our
semiclassical result for 
�g2�, and express it in terms of the
string theory quantities:


 �
2�

g2 �
R2

AdS

0
� �1=2: (4.1)
-7



NELIA MANN AND JOSEPH POLCHINSKI PHYSICAL REVIEW D 72, 086002 (2005)
A. The single impurity

For ‘ � ~�=
 > 1, the argument of the cot�1 becomes
large and negative in the semiclassical limit. It is conve-
nient to choose the branch ��< cot�1 < 0 so that the
inhomogenous term in the zero-mode equation is small,

1

2
F0��� �

Z 


�


F0��0�d�0

4�2 � ����0�2
�

1

�� ~�
: (4.2)

As 
! 1, there are two ways to take the limit: we can
make a linear shift of � to focus on the behavior one or the
other endpoint, or we can make a multiplicative rescaling
of � to keep the range finite. In practice it is necessary to
do both and match the solutions. In Sec. II C the source was
peaked at the endpoints and so we analyzed the endpoint
behavior first. Here it is distributed and we analyze the bulk
behavior first.

Defining

y � �=
; ‘ � ~�=
; f�y� � F0���; (4.3)

the zero-mode equation has the large-
 limit

�
Z 1

�1

f�y�dy0

�y� y0�2
�

1

y� ‘
: (4.4)

The principal part arises because the 1
2F0 just cancels the

area under the peak in the integral. The solution is given in
Eq. (A13). In particular the limits (A14) are

F0��� 
� � �

���
2
p

�

��������������

��

p
����


p

� ������������
‘� 1
p������������
‘� 1
p � 1

�
;

F0��� 
� � �

���
2
p

�

��������������

��

p
����


p

�
1�

������������
‘� 1
p������������
‘� 1
p

�
:

(4.5)

The principle part approximation to the Bethe equation
breaks down when the distance from � to an endpoint �

is of order one. The momentum and energy shifts (3.9) and
(3.10) depend on the value at the endpoint, and so we need
to work out the endpoint correction. For �� 
 of order
one define

 � �� 
; �� � �
����


p

F0���: (4.6)

Matching to the bulk solution, we see that at large negative
 �� � ! cj j1=2 with a known coefficient. Inserting this
form into the Bethe equation gives

�� � �
Z 0

�1

2�� 0�d 0

4�2 � � �  0�2
� O�
�1=2� ! 0: (4.7)

Thus we need to solve the sourceless equation with give
large- behavior. We cannot immediately apply the
Wiener-Hopf method because the Fourier transform does
not exist. Thus we differentiate Eq. (4.7) once to obtain

�� � �
Z 0

�1

2�� 0�d 0

4�2 � � �  0�2
� �

2��0�

4�2 �  2 (4.8)
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for �� � � �0� �. This is now of the same form as en-
countered in Sec. II C. In particular, to match onto the bulk
equation we need the asymptotic form (2.41),

�� � ! �
��0�

�
������
2 
p �O� �3=2�;

�� � ! �

������
2 
p

�
��0� �O� �1=2�:

(4.9)

Matching onto Eq. (4.5) gives the necessary result

F�
� �
1����


p

� ������������
‘� 1
p������������
‘� 1
p � 1

�
;

F��
� �
1����


p

�
1�

������������
‘� 1
p������������
‘� 1
p

�
:

(4.10)

Taking for simplicity the case JR � JL � J=
����


p

(the
second equality is the already-known large-
 result), the
impurity energy and momentum become

�P � �
1��������������

‘2 � 1
p ; �E � �

�
‘��������������

‘2 � 1
p � 1

�
;

� � 2�J=
:

(4.11)

This can be put in the form of a relativistic dispersion
relation

��E���2 � �P2 � �2; �P> 0: (4.12)

The momentum quantization condition gives

‘ �

�������������������������
�2L2

�2�m̂�2
� 1

s
: (4.13)

For ‘ <�1 it is simplest to take the branch 0< cot�1 <
�, giving

�P � ��
1��������������

‘2 � 1
p ; �E � �

�
j‘j��������������
‘2 � 1
p � 1

�
;

(4.14)

which corresponds to the �P< 0 branch of the relativistic
dispersion relation (4.12).

For �1< ‘< 1 we approximate



�

tan�1 �

�y� ‘�

� �
�p���y� ‘�� (4.15)

where ��x� is the step function and p is an integer asso-
ciated with the branch choice for tan�1. Here, there is no
obvious preference between p � 0 and p � �1, so we will
leave it undetermined. Then

F0�
� �


�

�
p��

�
2
�

��������������
1� ‘2

p
� tan�1 ‘��������������

1� ‘2
p

�
;

F0��
� �


�

�
p��

�
2
�

��������������
1� ‘2

p
� tan�1 ‘������������

1� ‘
p

�
;

(4.16)
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and

�P � J

�
�2p� 1��� 2tan�1 ‘��������������

1� ‘2
p

�
;

�E � 2J
��������������
1� ‘2

p
:

(4.17)

and this gives

�E � 2J j sin��P=2J �j;

2�np < �P< 2�n�p� 1�:
(4.18)

Let us compare with the semiclassical calculation in the
field theory. We focus on an O�4� � O�2m� 2� subgroup,

S � �
1

2g2

Z
d�d�@�Xi@

�Xi; (4.19)

with i � 1; 2; 3; 4 and the constraint XiXi � 1. We trans-
form to variables X3;4 and �, where

X1 � cos�
���������������������������
1� X2

3 � X
2
4

q
; X2 � sin�

���������������������������
1� X2

3 � X
2
4

q
(4.20)

The perturbation transforms as X3 � iX4, so we expand to
quadratic order in X3;4 to obtain the Hamiltonian

H �
Z
d�

�
g2

2
��2

3 � �
2
4 � �

2
�� �

g2

2
�2
��X

2
3 � X

2
4�

�
1

2g2 �X
02
3 � X

02
4 ��

02�

�
: (4.21)

Note that �� � J in the unperturbed state, so X3;4 indeed
behave as relativistic particles of mass � � g2J �
2�J=
. Removing one X1�i2 charge from the sea and
adding one X3�i4 particle of momentum �P thus changes
the energy by

�E �
����������������������
�P2 ��2

q
�� (4.22)

as found above; the �� term is from ��L! ��L� 1.
The semiclassical calculation covers the ranges j�j> 1

only. As j�j ! 1 the energy becomes large and apparently
the semiclassical description breaks down. The need to
take different branches of the cot�1 for ‘ > 1 and ‘ <
�1 reflects an interesting spectral flow phenomenon. If
we start with large positive ‘ and move to decreasing
values, we have increasing positive momentum. If we
decrease ‘ through zero and then past�1 while remaining
on the original branch of the cot�1, we reach a state with an
impurity of negative momentum. However, the total mo-
mentum of the state must increase throughout, because
�P � 2�m̂=L is increasing monotonically with m. The
point is that the cot�1 approaches a constant value ��,
which reflects a shift of the momenta of the sea particles,
an increase of one unit of momentum for each. The results
for �1< �< 1 suggest a simple interpretation: as the
impurity pseudorapidity passes through the sea a hole
086002
appears, with all particles at y > ‘ shifted one unit to the
right. When the impurity reaches ‘ � �1 the whole sea is
shifted, giving total momentum 2�J=L. The energy shift at
this point is of higher order in 1=L.

B. Nonrelativistic impurities

Now consider a finite density of nonrelativistic impuri-
ties. From the single-impurity example we see that these
are at j‘j  1. We thus have the Bethe equations given at
the end of Sec. III C.

The �0 equation differs from the earlier (2.21) by the
constant term �T =
2. Defining

y � �=
; r�y� � �0���
 (4.23)

as in Sec. II C, the Bethe equation in the bulk becomes

�
Z 1

�1

r�y0�

�y� y0�2
dy0 � T : (4.24)

Equation (A8) then gives the additional contribution

�0��� �
JR

2�
����


p

��������������

��

��

s
�

JL

2�
����


p

��������������

��

��

s

�
T


2�

������������������

2 ��2

q
: (4.25)

This integrates to

J 0 �

����


p

2
�JR � JL� �

T

2
: (4.26)

The shift of J 0 and of the energy if of order ‘�2.
Expanding to second order in ‘�1 and P , the energy
(2.24) becomes

E �
�J 2



�

P 2


4�J 2 �
�TJ



: (4.27)

The ~� equation has a smooth source and so we take the
bulk limit,

‘ � ~�=
; s�‘� � 
 ~��~��: (4.28)

The Bethe equations become

�
Z 1

�1

s�‘0�d‘0

�‘� ‘0�2
�

J

2‘2 ; (4.29)

where again the contours are unspecified, and might even
be continued into the complex ‘ plane. This density feeds
back into the energy (4.27) through

T �
Z s�‘�d‘

‘2 : (4.30)

In this case we do not need a separate analysis of the
endpoint region, because its effect on T is subleading in

. The last term in the energy density is then
-9
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�E �
�
2

Z s�‘�d‘

‘2 : (4.31)

It is useful to integrate Eq. (4.29) to obtain

�
Z 1

�1

s�‘0�d‘0

‘� ‘0
�

J

2‘
�

m̂
2L

; (4.32)

where m̂ must be constant on each connected band of
impurities, and in fact must be an integer by the Bethe
ansatz Eq. (3.3). For a small number of impurities it is the
same as m̂ in the single-impurity equations (3.11) and
(4.13).

To impose the analog of the physical state equations
from string theory, we need also the integrated form of
Eq. (4.24),

�
Z 1

�1

r�y0�
y� y0

dy0 � �
Z s�‘�d‘

‘
�

l̂
L

(4.33)

where l̂ is an integer. (To derive this one must integrate the
Bethe ansatz equation before taking the classical limit).
The physical state condition P � 0 implies, by the general
result (2.23), that JR � JL. The left-hand side of
Eq. (4.33) then vanishes, and so we have the constraint

Z s�‘�d‘
‘
�

l̂
L
: (4.34)

Finally, to satisfy the physical state condition Etotal � 0 we
append a free timelike field, whose energy is like the
classical result (2.28) but with a minus sign,

E � �
g2

2
D2; D � �=L; (4.35)

where � is the spacetime dimension. In all,

0 �
g2

2
�J 2 �D2� �

g2J

2

Z s�‘�d‘

‘2 ; (4.36)

where we have used g2 � 2�=
.
The Bethe equations (4.32), (4.34), and (4.36) are the

same as in the nonrelativistic classical limit of the sigma
model, which reproduces the one-loop anomalous dimen-
sions of the gauge theory; see Ref. [25] for a detailed
discussion. Note that the nonrelativistic expansion parame-
ter is k2=�2 where k � 2�m̂=L is the wave number of the
impurity on the string. The expansion parameter reduces to
�2�m̂�2=g4J2 � m̂2�=J2, and so for fixed harmonic m̂ the
nonrelativistic expansion it is the same as the dual gauge
theory loop expansion [19]. The agreement is expected,
because the leading large-
 approximation reduces to the
SU(2) sector of the bosonic sigma model, which is the
same here as in the string theory. It confirms that the n! 2
limit that we are considering gives a sensible Bethe ansatz,
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and shows one way that these can be extended to a quan-
tized sigma model, Eqs. (3.18) and (3.19).

While on the subject of the nonrelativistic limit, we
should note that even the quantum-mechanical equations
can be simplified in this limit. The point is that the pseu-
dorapidities ~� are much larger than 1, so for finite impurity
density the impurity bands have length much greater than
1. The ~� equation can then be reduced to the same princi-
pal part equation (4.33) and therefore the moment T is
unchanged. However, the contour for the �0 equation is not
long, so the relation between T and the energy (and
dimension) will be corrected. It follows that states that
have equal dimensions in the nonrelativistic semiclassical
limit still have equal dimensions in the nonrelativistic
quantum theory. This is similar to the string world-sheet
theory result but somewhat weaker, for in that case no g2

correction is expected at all [18]. In both cases the system
should be described by a low-energy effective action for
the impurities [18]. In the string theory case this is not
renormalized, whereas in our less supersymmetric model
there is evidently a renormalization of the parameters. Note
however that even in more supersymmetric theories one
expects nonrenormalization results to become weaker as
one goes to higher dimension operators, which may be
connected with the three-loop discrepancy of Refs. [23,24].

C. The general case

We now consider the large-
 limit without assuming
nonrelativistic impurities. The equations for �0 and ~� are
now coupled, but we expect by analogy with Ref. [25] to be
able to obtain an equation for ~� by itself. We will do this by
solving for �0.

The Bethe Eq. (3.16) in linear in �0 and has three source
terms on the right. We separate

�0��� � �0��� ��r�y�=
; y � �=
; (4.37)

where �0 is sourced by the first two terms and �r by the
third. Then �0 is exactly the same as for the U(1) sector,

� 0 �
~J

����


p

�
������������������

2 ��2

p ; (4.38)

where we have used the physical state condition JR �

JL �
~J . For �r and s we obtain the principal part equa-

tions

�
Z 1

�1

�r�y0�dy0

�y� y0�2
�
Z s�‘�d‘

�y� ‘�2
;

2�
Z s�‘0�d‘0

�‘� ‘0�2
�

~J

�‘� 1�2
�

~J

�‘� 1�2
�
Z 1

�1


�0�
y�dy

�‘� y�2
:

(4.39)

The integrated forms are
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�
Z 1

�1

�r�y0�dy0

y� y0
�
Z s�‘�d‘
y� ‘

�

l̂
L
; (4.40)

2�
Z s�‘0�d‘0

‘� ‘0
�

~J

�‘� 1�
�

~J

�‘� 1�
�
Z 1

�1


�0�
y�dy
‘� y

�

m̂
L

�
~J

����


p��������������

‘2 � 1
p �

Z 1

�1

�r�y�dy
‘� y

�

m̂
L
;

(4.41)

dropping a term of relative order 
�1=2.
We now solve Eq. (4.40) for �r, using the inverse finite

Hilbert transform (A21). Note that the solution exists only
with the constraint (A20), which becomes

Z s�‘�d‘��������������
‘2 � 1
p �


l̂
L
: (4.42)

The solution is then

�r�y� �

��������������
1� y2

p
�

Z s�‘�d‘

�y� ‘�
��������������
‘2 � 1
p : (4.43)

Substituting back into the Eq. (4.41) gives

�
Z s�‘0�d‘0���������������

‘02 � 1
p

� ��������������
‘2 � 1
p

�
���������������
‘02 � 1
p

‘� ‘0

�

�
~J

����


p��������������

‘2 � 1
p �


�l̂� m̂�
L

; (4.44)

again dropping a term of relative order 
�1=2.
As desired, we have found a closed equation for s�‘�, but

of a somewhat complicated form. The equation simplifies
if we make the change of variables

‘ �
x2 � 1

2x
; ��x� �

2�L



s�‘�: (4.45)

This is the same change of variables used to relate the
rapidities in the gauge description to the spectral parameter
of the monodromy matrix [25,28]; note that ��x� is not a
density [28]. Note also that the x plane is mapped to two
copies of the ‘ plane, through a cut between�1 and 1. The
Bethe equation becomes

2�
Z ��x0�dx0

x� x0
�

2�L~J

�x� 1�
����


p �

2�L~J

�x� 1�
����


p � 2�m̂: (4.46)

This is the general classical Bethe equation found in
Ref. [25]. As was shown in that work, the various folded
and spinning solutions can be obtained from it.

To complete the comparison we relate the various con-
stants to moments of �. The constraint (4.42) becomes
086002
Z ��x�dx
x

� 2�l̂: (4.47)

The total particle density is

J � 2 ~J �
Z 


�

�0���d� � ~J

����


p
�



2�L

Z ��x�dx

x2 ;

(4.48)

dropping a term of relative order 
�1=2. Defining the
dimension as in Sec. IV B, we have the general result 0 �
Etotal=L � �~J 2 � g2D2=2, and so at large 


D � ~J
����


p
� J �



2�L

Z ��x�dx

x2 : (4.49)

The number density of type 2 particles is given by the
integral over the pseudorapidity density,

J 2 �



4�L

Z
��x�

�
1�

1

x2

�
dx: (4.50)

These results are equivalent to Eqs. 4.43, 4.44, 4.45, and
4.47 of [25], with the notation �! �, L! 2�, LJ ! L,
LJ 2 ! J, LD! �, l̂! m, m̂! �n.
V. DISCUSSION

Let us first review the expansion parameters for the
various approximations. For the nonrelativistic approxima-
tion it is m̂2�=J2. For the finite-size expansion it is 1=J. For
the world-sheet quantum field theory it is ��1=2. Thus the
expansion for �, assuming that it is analytic in all the
parameters, is

� � J
X1

a;b;c�0

cabc

�
m̂2�

J2

�
a
�

1

J

�
b
��c=2: (5.1)

If we consider only the J and � dependence there are
degeneracies. Increasing b by two is the same as increasing
a by one and c by two. However, these are distinct physical
effects. For example, they can be distinguished by their m̂
dependence. If we take m̂ and J to infinity together with the
ratio fixed, it amounts to taking the length L to infinity with
fixed world-sheet wavelength. In this limit the ��1=2 ef-
fects dominate the 1=J effects. In our model we believe
that our integral equations capture the full world-sheet
quantum theory, but no finite-size effects at present.

We have developed techniques for deriving and solving
the Bethe ansatz in conformal world-sheet theories. The
unexpected zero modes played an interesting role. In the
nonrelativistic limit we were able to decouple them from
the impurities, though they themselves still had nontrivial
quantum Bethe equations. In the semiclassical limit we
-11



NELIA MANN AND JOSEPH POLCHINSKI PHYSICAL REVIEW D 72, 086002 (2005)
were able to solve and eliminate them. This had the inter-
esting effect of introducing a cut in the rapidity plane,
which was removed by changing to the monodromy vari-
able. In the fully relativistic quantum theory we do not
know how to solve for the zero modes analytically, and it
may indeed be necessary to retain this additional degree of
freedom.

To complete the solution of the planar N � 4 theory it
is necessary to understand both the ��1=2 and the 1=J
effects. Perhaps the powerful and elegant approach of
Ref. [25] can be extended directly. In our approach, in-
clusion of the ��1=2 effects would require that we find a S-
matrix for the AdS5 � S5 world-sheet theory, either by the
limit from a massive integrable theory or directly. The
principal chiral supergroup models may be more similar
in structure to the AdS5 � S5 theory and give some insight.
For the finite-size effects, the most direct approach would
be to identify a bare version of the theory with a ‘‘ferro-
magnetic’’ state. Such models exist for some bosonic co-
sets [56–58], but it is not clear whether the extension to a
supergroup symmetry is possible.

In summary, there is still every reason to expect that a
Bethe ansatz solution exists for the full planar N � 4
theory, but there remain some important hurdles. We be-
lieve that our work points to an important gap in the current
understanding, namely, the ��1=2 quantum effects, and
gives some indication as to how these are to be included.
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APPENDIX: PRINCIPAL PART EQUATIONS

The large-
 limit of the Bethe equations lead to the
integral equations of the form

�
Z b

a

f�y0�

�y� y0�2
dy � j�y� (A1)

or its integral with respect to y

�
Z b

a

f�y0�dy0

y� y0
� V�y�; (A2)

where V 0�y� � �j�y�. The additive constant in V�y� is
undetermined by this definition, but we will see that it is
determined by the integral equation. These are finite
Hilbert transforms and their inversion is well known. We
will work out both the general form and some useful
special cases.

Equation (A2) arises in the evaluation of matrix inte-
grals, e.g. [59]; we repeat here the method of solution for
convenience. Define for complex z the function
086002
g�z� �
Z b

a

f�y0�dy0

z� y0
(A3)

so that

V�y� �
1

2
	g�y� i�� � g�y� i��
;

f�y� �
1

2�i
	g�y� i�� � g�y� i��
:

(A4)

Then

g2�z� � �
Z b

a
�
Z b

a

f�y0�f�y00�dy0dy00

�z� y0��z� y00�

� �
Z b

a
�
Z b

a
f�y0�f�y00�dy0dy00

�
1

z� y0
�

1

z� y00

�

�
1

y0 � y00

� 2�
Z b

a

f�y0�dy0

z� y0
V�y0�

� 2�
Z b

a

f�y0�dy0

z� y0
	V�y0� � V�z�
 � 2V�z�g�z�:

(A5)
We will eventually use this to derive a general Green’s
function solution to Eq. (A1), but first obtain some simple
special solutions.

1. Special case I: j�y� � 1.

We have V � �y� C, and Eq. (A5) becomes

g2�z� � �� 2V�z�g�z�; � � 2
Z b

a
f�y�dy; (A6)

or

g�z� � �z� C�
����������������������������
�C� z�2 � �

q
: (A7)

The branch of the square root, here and below, is fixed by
the property g�z� ! 0 as z! 1. From its definition, g�z�
has a branch cut on the real line from a to b, which
determines C � �a� b�=2 and � � ��b� a�2=4. Thus
g�z� � �z� C�

������������������������������
�z� a��z� b�

p
, and

f�y� � �
1

�

�������������������������������
�y� a��b� y�

q
: (A8)

This is the Wigner semicircle law for eigenvalues of
Gaussian-random matrices.

2. Special case II: j�y� � 1=�y� z0�
2.

The value z0 may be complex but is assumed not to lie
directly in the integration range �a; b�. Here

V�y� �
1

y� z0
� C; (A9)

and
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g2�z� � 2V�z�g�z� �
�

z� z0
; � � 2

Z b

a

f�y�dy
y� z0

;

g�z� � V�z� �

�������������������������������
V2�z� �

�
z� z0

s
: (A10)

Again g�z� must have a branch cut along the real line
between a and b, and this fixes the undetermined constants:

C �
1����������������������������������

�z0 � a��z0 � b�
p ;

� � �	1� C�a� z0�

2=�a� z0�;

g�z� �
1

z� z0
�

1����������������������������������
�z0 � a��z0 � b�

p
�

1

z� z0

������������������������������
�z� a��z� b�

p
����������������������������������
�z0 � a��z0 � b�

p : (A11)
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Finally,
f�y� �
1

��y� z0�

�������������������������������
�y� a��b� y�

p
����������������������������������
�z0 � a��z0 � b�

p : (A12)
In Eqs. (A11) and (A12), and in the following sections, we
specify the branch

������������������������������
�z� a��z� b�

p
! z at large complex

z, while
�������������������������������
�y� a��b� y�

p
is real [y is restricted to the range

�a; b�].

3. Special case III: j�y� � 1=�y� z0�.

This is simply �
R
dz0 of the previous source, and so

linearity determines
f�y� �
Z 1
z0

dz00
��y� z00�

�������������������������������
�y� a��b� y�

p
����������������������������������
�z00 � a��z

0
0 � b�

q

�
i
�

ln
ab� yz0 �

1
2 �a� b��y� z0� � i

�������������������������������
�y� a��b� y�

p ����������������������������������
�z0 � a��z0 � b�

p
�z0 � y��y�

1
2 �a� b� � i

�������������������������������
�y� a��b� y�

p
�

: (A13)

This simplifies near the endpoints;

f�y� b� �
2

�

������������
b� y
p�������������
b� a
p

� ��������������
z0 � a
p��������������
z0 � b
p � 1

�
; f�y� a� �

2

�

������������
y� a
p�������������
b� a
p

�
1�

��������������
z0 � b
p��������������
z0 � a
p

�
: (A14)

4. Green’s function solutions

The case j�y� � ��y� y0�, a < y0 < b, is obtained from the previous solution by linearity,

��y� y0� �
1

2�i

�
1

y� y0 � i�
�

1

y� y0 � i�

�
; (A15)

and so we obtain, after some rearrangement,

f�y� � h�y; y0� �
1

�2 ln

��������ab� yy0 �
1
2 �a� b��y� y0� �

�������������������������������
�y� a��b� y�

p �����������������������������������
�y0 � a��b� y0�

p
�y0 � y��b� a�=2

��������: (A16)
This gives the solution to Eq. (A1) for general j�y�:

f�y� �
Z b

a
h�y; y0�j�y0�dy0: (A17)

For bounded j this is the unique bounded solution.
Let us also give a Green’s function solution to the

integrated Eq. (A2). A solution does not exist for all
V�x�: for a constant V�x� Eq. (A5) leads to a contradiction.
Rather, a solution exists for functions V�x� satisfying one
constraint. Using Eq. (A15) for a < y0 < b one finds that
for
f�y� � �
1

�2�y� y0�

�������������������������������
�y� a��b� y�

p
�����������������������������������
�y0 � a��b� y0�

p (A18)

one has

�
Z b

a

f�y0�dy0

y� y0
� ��y� y0� �

1

�
�����������������������������������
�y0 � a��b� y0�

p : (A19)

Therefore, if
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Z b

a

V�y0�dy0�����������������������������������
�y0 � a��b� y0�

p � 0 (A20)

then Eq. (A2) is satisfied by
086002
f�y� � ��
Z b

a

V�y0�

�2�y� y0�

�������������������������������
�y� a��b� y�

p
�����������������������������������
�y0 � a��b� y0�

p dy0: (A21)
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