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Influence of the Gribov copies on the gluon and ghost propagators in Euclidean Yang-Mills theory
in the maximal Abelian gauge
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The effects of the Gribov copies on the gluon and ghost propagators are investigated in SU(2) Euclidean
Yang-Mills theory quantized in the maximal Abelian gauge. The diagonal component of the gluon pro-
pagator displays the characteristic Gribov-type behavior. The off-diagonal component of the gluon propa-
gator is found to be of the Yukawa type, with a dynamical mass originating from the dimension two con-
densate hAa�Aa�i, which is also taken into account. Finally, the off-diagonal ghost propagator exhibits
infrared enhancement.
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1We remind here that, due to the nonlinearity character of the
maximal Abelian gauge, a slightly more general operator,
�12A

a
�A

a
���c

aca�, has to be considered for renormalization
purposes. The fields ca, ca denote the off-diagonal Faddeev-
Popov ghosts, while � stands for a gauge parameter. The oper-

1 a a a a
I. INTRODUCTION

Among the class of covariant gauges, the maximal
Abelian gauge [1–3] displays several interesting features.
This gauge is suitable for the study of the dual super-
conductivity mechanism for color confinement [4], accord-
ing to which Yang-Mills theories in the low energy region
should be described by an effective Abelian theory [5–8]
in the presence of monopoles. A dual Meissner effect aris-
ing as a consequence of the condensation of these magnetic
charges might give rise to quark confinement. Here, the
Abelian configurations are identified with the diagonal
components Ai�, i�1; . . . ;N�1, of the gauge field corre-
sponding to the �N � 1� generators of the Cartan subgroup
of SU�N�. Moreover, the remaining off-diagonal compo-
nents Aa�, a�1; . . . ;N2�N, corresponding to the �N2 � N�
off-diagonal generators of SU�N�, are expected to acquire a
mass through a dynamical mechanism, thus decoupling at
low energies.

The maximal Abelian gauge can be formulated on the
lattice [2,3], a feature which has made it possible to investi-
gate the gluon propagator by numerical simulations which,
in the case of SU(2), have reported an effective off-
diagonal gluon mass of approximately 1.2 GeV [9,10].
Another relevant feature of the maximal Abelian gauge is
its multiplicative renormalizability to all orders of pertur-
bation theory [11–14]. This property has allowed for a
study of the dynamical mass generation for off-diagonal
gluons, through the condensation of the operator1 Aa�A

a
�

[15]. An effective potential for this operator has been
evaluated in analytic form in [13], providing evidence for
a nonvanishing dimension two condensate hAa�Aa�i.

It is worth mentioning that, although the operator A2 has
been proven to be multiplicatively renormalizable to all
orders in the Landau, linear covariant, Curci-Ferrari, and
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maximal Abelian gauges [17–19], a satisfactory under-
standing of the aspects related to the gauge invariance of
the dimension two condensate hA2i is still lacking. We refer
to [20–25] for an updated analysis of this important issue.
As other gauges, the maximal Abelian gauge is affected by
the Gribov copies [26], whose existence stems from a
general result [27] on the lack of a globally well-defined
gauge fixing procedure. A detailed construction of an
explicit example of a zero mode of the Faddeev-Popov
operator in the maximal Abelian gauge can be found in
[28]. Nevertheless, a study of the influence of the Gribov
copies on the Green’s functions of the theory in this gauge
is still lacking. The aim of the present paper is that of
providing a first analysis of the influence of the Gribov
copies in the maximal Abelian gauge. The need for such an
investigation is motivated by the great relevance that the
Gribov copies have on the infrared behavior of Yang-Mills
theories, as one learns from the large amount of results
obtained in the Landau and Coulomb gauges [29– 41].
Therefore, it might be useful to improve as much as
possible our understanding on the role of the Gribov copies
in different gauges, as recently discussed in the case of the
linear covariant gauges [42].

In the following, we shall focus on the study of the gluon
and ghost propagators in the maximal Abelian gauge, with
SU(2) as gauge group. This allows us to make a compari-
son with the results available from lattice numerical simu-
lations. The analysis of the Gribov copies will be done by
following Gribov’s original work [26]. It turns out in fact
ator �2A�A���c c �, introduced in [15], is multiplicatively
renormalizable to all orders [13,14,16]. The maximal Abelian
gauge is recovered in the limit �! 0, which has to be taken
after the removal of the ultraviolet divergences. Whenever nec-
essary, we shall refer to [13] for the details of the renormaliza-
tion aspects of the maximal Abelian gauge as well as of the
operator �12A

a
�A

a
� � �c

aca�.
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that the construction outlined by Gribov in the case of the
Landau and Coulomb gauges can be essentially repeated
and adapted to the case of the maximal Abelian gauge. We
shall begin with a discussion of the gauge fixing condition
and of the related Faddeev-Popov operator. Further, we
shall generalize to the maximal Abelian gauge Gribov’s
result stating that for any field close to a horizon there is a
gauge copy, close to the same horizon, located on the other
side of the horizon2 [26]. We shall proceed thus by restrict-
ing the domain of integration in the Feynman path integral
to the so-called Gribov region, i.e. to the region in field
space whose boundary is the first Gribov horizon, where
the first vanishing eigenvalue of the Faddeev-Popov opera-
tor appears. The restriction to the Gribov region will be
implemented by means of a no-pole condition on the ghost
two-point function, as done in [26]. This will lead to the
introduction of the Gribov parameter � and of the related
gap equation, enabling us to work out the infrared behavior
of the gluon and ghost propagators.

A few remarks are now in order. Considering the case of
the Landau gauge, it turns out that the restriction to the
Gribov region does not eliminate all possible copies. It has
been proven in fact that Gribov copies still exist inside the
Gribov region [33,34,36]. To avoid the presence of these
additional copies, a further restriction to a smaller region,
known as the fundamental modular region, should be
implemented.3 Several properties of the Gribov region as
well as of the fundamental modular region have been
established in recent years [33,34,36]. This has been pos-
sible due to the availability of an auxiliary functional,4

F �A� �
R
d4x AA�AA�, A � 1; . . . ; N2 � 1, whose minimi-

zation along the gauge orbit of AA� provides a character-
ization of both Gribov and fundamental modular region. It
turns out that the Gribov region can be defined as the set of
all relative minima in field space of this auxiliary func-
tional, while the fundamental modular region is identified
with the set of all absolute minima of F �A�. Although the
restriction to the Gribov region does not eliminate all
possible copies, its implementation in the Feynman path
integral can be effectively worked out [31,35], allowing
one to obtain a certain amount of information on the
infrared behavior of the gluon and ghost propagators.
Such a task appears to be considerably difficult in the
case of the modular region and, to our knowledge, it has
not yet been accomplished. Here, a finite volume
Hamiltonian approach proves to be more adequate [43–
45] (see [46] for a review).

Concerning now the maximal Abelian gauge, it is worth
noting that a suitable auxiliary functional can be intro-
duced also here, namely R�A� �

R
d4xAa�Aa�, a �
2We have found it useful to collect the detailed proof of this
statement in Appendix A.

3The same conclusion holds for the Coulomb gauge.
4The color index A runs now over all the generators of SU�N�,

A � 1; . . . ; N2 � 1.
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1; . . . ; N2 � N (see [1,28]). The gauge fixing condition
for the off-diagonal components Aa� can be obtained by
requiring that the functional R�A� is stationary under
gauge transformations. Moreover, a residual local
U�1�N�1 invariance, corresponding to the Cartan subgroup
of SU�N�, is still present [1,28]. This local invariance has
to be fixed by imposing an additional condition on the
diagonal components Ai� of the gauge field, which will
be chosen to be of the Landau type, i.e. @�Ai� � 0.
Analogously to the Landau and Coulomb gauges, a com-
plete gauge fixing would require the implementation of the
restriction of the domain of integration in the path integral
to the fundamental modular region for the maximal
Abelian gauge, a task which is beyond our present capa-
bilities. As already underlined, we shall limit ourselves to
the restriction to the Gribov region, which turns out to
correspond to field configurations which are relative min-
ima of R�A�.

The output of our results can be summarized as follows.
The diagonal component of the gluon propagator is found
to display the characteristic Gribov-type behavior,

hA��k�A���k�i �
k2

k4 � �4

�
��� �

k�k�
k2

�
; (1)

where � is the Gribov parameter and A� stands for the
diagonal component of the gauge field in the case of SU(2),
i.e. A� � A3

�. The off-diagonal propagator turns out to be
of the Yukawa type, being given by

hAa��k�Ab���k�i � �ab
1

k2 �m2

�
��� �

k�k�
k2

�
; (2)

a; b � 1; 2; (3)

where m denotes the off-diagonal dynamical mass origi-
nating from the dimension two condensate hAa�Aa�i. One
observes that both propagators are suppressed in the infra-
red. In the case of the ghost propagator, we find that the off-
diagonal component exhibits infrared enhancement,
namely

G �k�jk�0 �
�2

k4 ; G�k� �
1

2

X
a

h �ca�k�ca��k�i; (4)

where � �ca; ca� stand for the off-diagonal Faddeev-Popov
ghosts (see Appendix B). Finally, the diagonal component
of the ghost propagator turns out to be not affected by the
restriction to the first horizon.

II. THE GAUGE FIXING CONDITION FOR THE
MAXIMAL ABELIAN GAUGE

In order to discuss the gauge fixing condition, let us first
remind the reader of some basic properties of the maximal
Abelian gauge in the case of SU(2). The gauge field is
decomposed into off-diagonal and diagonal components,
according to
-2
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A � � Aa�T
a � A�T

3; (5)

where Ta, a � 1; 2, denote the off-diagonal generators of
SU(2), while T3 stands for the diagonal generator,

�Ta; Tb� � i"abT3; �T3; Ta� � i"abTb; (6)

where

"ab � "ab3; "ac"ad � �cd: (7)

Similarly, for the field strength one has

F �� � Fa��Ta � F��T3; (8)

with the off-diagonal and diagonal parts given, respec-
tively, by

Fa�� � Dab
� Ab� �Dab

� Ab�;

F�� � @�A� � @�A� � g"
abAa�A

b
�;

(9)

where the covariant derivative Dab
� is defined with respect

to the diagonal component A�:

Dab
� 	 @��

ab � g"abA�: (10)

Thus, for the Yang-Mills (YM) action in Euclidean space,
one obtains

SYM �
1

4

Z
d4x�Fa��Fa�� � F��F���: (11)

As it is easily checked, the classical action (11) is left
invariant by the gauge transformations

�Aa� � �Dab
� !b � g"abAb�!;

�A� � �@�!� g"
abAa�!

b:
(12)

The maximal Abelian gauge is obtained by demanding that
the off-diagonal components Aa� of the gauge field obey the
nonlinear condition

Dab
� Ab� � 0; (13)

which follows by requiring that the auxiliary functional,

R �A� �
Z
d4xAa�A

a
�; (14)

is stationary with respect to the gauge transformations (12).
Moreover, as it is apparent from the presence of the co-
variant derivative Dab

� , Eq. (13) allows for a residual local
U(1) invariance corresponding to the diagonal subgroup of
SU(2) [28]. This additional invariance has to be fixed by
means of a suitable gauge condition on the diagonal com-
ponent A�, which will be chosen to be of the Landau type,
also adopted in lattice simulations, namely

@�A� � 0: (15)

Let us work out the condition for the existence of Gribov
copies in the maximal Abelian gauge. In the case of small
gauge transformations, this is easily obtained by requiring
085021
that the transformed fields, Eqs. (12), fulfill the same gauge
conditions obeyed by �A�; Aa��, i.e. Eqs. (13) and (15).
Thus, to the first order in the gauge parameters �!;!a�,
one gets

�Dab
� D

bc
� !

c � g"bcDab
� �A

c
�!� � g"

abAb�@�!

� g2"ab"cdAb�A
c
�!

d � 0; (16)

�@2!� g"ab@��Aa�!b� � 0; (17)

which, due to Eqs. (13) and (15), read

M ab!b � 0; (18)

�@2!� g"ab@��A
a
�!

b� � 0; (19)

with Mab given by

M ab � �Dac
� Dcb

� � g2"ac"bdAc�Ad�: (20)

The operator Mab is recognized to be the Faddeev-Popov
operator [47] for the off-diagonal ghost sector (see
Appendix B). It enjoys the property of being Hermitian
and, as pointed out in [28], is the difference of two positive
semidefinite operators given, respectively, by �Dac

� D
cb
�

and g2"ac"bdAc�Ad�. Also, one should remark that the
diagonal parameter ! appears only in Eq. (19), in a form
which allows us to express it in terms of the solution of the
first equation (18). More precisely, once Eq. (18) has been
solved for A�, Aa�, !b, for the diagonal parameter ! one
can write

! � �g�ab
@�
@2 �A

a
�!

b�: (21)

This feature means essentially that the diagonal parameter
! has no special role in the characterization of the Gribov
copies, whose properties are encoded in Eq. (18). Also,
from Eq. (21) it follows that the new variable ~!

~! � !� g�ab
@�
@2 �A

a
�!

b� (22)

obeys

@2 ~! � 0: (23)

As shown in Appendix B, the change of variable (22) can
be performed in the partition function expressing the
Faddeev-Popov quantization of Yang-Mills theories in
the maximal Abelian gauge. As the corresponding
Jacobian turns out to be independent from the fields, trans-
formation (22) has the effect of decoupling the diagonal
ghost fields from the theory. As a consequence, the corre-
sponding two-point function is not affected by the restric-
tion to the Gribov region.
-3
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contributions. As such, they vanish in dimensional regulariza-
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III. RESTRICTION OF THE DOMAIN OF
INTEGRATION TO THE GRIBOV REGION

Let us face now the implementation in the Feynman path
integral of the restriction of the domain of integration to the
Gribov region C0, defined as the set of fields fulfilling the
gauge conditions (13) and (15) and for which the Faddeev-
Popov operator Mab is positive definite, namely

C0 � fA�; Aa�; @�A� � 0; Dab
� Ab� � 0;

Mab � �Dac
� Dcb

� � g2"ac"bdAc�Ad� > 0g:
(24)

The boundary, l1, of the region C0, where the first vanish-
ing eigenvalue of Mab appears, is called the first Gribov
horizon. The restriction of the domain of integration to this
region is supported by the possibility of generalizing to the
maximal Abelian gauge Gribov’s original result [26] stat-
ing that for any field located near a horizon there is a gauge
copy, close to the same horizon, located on the other side of
the horizon. We have found it useful to devote the whole
Appendix A to the details of the proof of this statement.

Thus, for the partition function of Yang-Mills theory in
the maximal Abelian gauge, we write

Z �
Z
DAa�DA� det�Mab�A��


 ��Dab
� A

b
����@�A��e

�SYMV �C0�; (25)

where the factor V �C0� implements the restriction to the
region C0. Following [26], the factor V �C0� can be ac-
commodated for by means of a no-pole condition on the
off-diagonal ghost two-point function, given by the inverse
of the Faddeev-Popov operator Mab. More precisely, de-
noting by G�k; A� the Fourier transform of �Mab��1, i.e.

G �k; A� �
1

2

X
ab

�abhkj�Mab��1jki; (26)

we shall require that G�k; A� has no poles for a given
nonvanishing value of the momentum k, except for a
singularity at k � 0, corresponding to the boundary of
C0, i.e. to the first Gribov horizon l1 [26]. This no-pole
condition can be easily understood by observing that,
within the region C0, the Faddeev-Popov operator Mab

is positive definite. This implies that its inverse, �Mab��1,
and thus the Green function G of Eq. (26), can become
large only when approaching the horizon l1, where the
operator Mab has a zero mode.

The Green function G can be evaluated order by order.
Repeating the same procedure of [26] in the case of the
maximal Abelian gauge, we find that, up to the second
order,
085021
G�k; A� �
1

k2 � g
2
k�k�
k4

1

V

X
q

A��q�A���q�

�k� q�2

�
g2

k4

1

V

X
q

A��q�A���q�

�
g2

2k4

1

V

X
q

Aa��q�Aa���q�; (27)

where V is the Euclidean volume. We observe that the last
two terms of expression (27), i.e.

P
qA��q�A���q� andP

qA
a
��q�Aa���q�, do not depend on the external momen-

tum k. Therefore, after subtraction of the corresponding
ultraviolet perturbative parts,5 these terms might yield a
nonperturbative contribution to the Green function G, cor-
responding to the singularity at k � 0, as is apparent from
the presence of the factor 1=k4 in Eq. (27). We shall see in
fact that these terms will give rise to a nonperturbative
contribution which is proportional to the Gribov parameter
�.

Thus, for G�k; A� we shall write [26]

G �k; A� �
1

k2

1

�1� ��k; A��
�

B

k4 ; (28)

where

��k; A� �
g2

V

k�k�
k2

X
q

A��q�A���q�

�k� q�2
;

B �
g2

V

X
q

A��q�A���q� �
g2

V

X
q

Aa��q�A
a
���q�;

(29)

which, in the thermodynamic limit, V ! 1, become

��k; A� � g2
k�k�
k2

Z d4q

�2��4
A��q�A���q�

�k� q�2
;

B � g2
Z d4q

�2��4
A��q�A���q�

�
g2

2

Z d4q

�2��4
Aa��q�Aa���q�:

(30)

The expression for ��k; A� in Eq. (30) can be simplified by
recalling that, due to the Landau gauge condition, the
Abelian component A��q� is transverse, namely

q�A��q� � 0: (31)

Setting

A��q�A���q� � !�A�
�
��� �

q�q�
q2

�
;

!�A� �
1

3
A	�q�A	��q�

(32)
-4



INFLUENCE OF THE GRIBOV COPIES ON THE GLUON . . . PHYSICAL REVIEW D 72, 085021 (2005)
for ��k; A�, one obtains

��k;A��g2
k�k�
k2

1

3

Z d4q

�2��4
A	�q�A	��q�

�k�q�2

�
����

q�q�
q2

�
:

(33)

Note that expression (33) is, in practice, the same as that
obtained by Gribov [26] in the case of the Landau gauge.
This is not surprising since ��k; A� depends only on the
diagonal component A��q�, which is in fact transverse.
Finally, following [26], the no-pole condition at finite non-
vanishing k for the Green function G�k; A� can be stated as

��0; A�< 1; (34)

with

��0; A� � g2 1

4

Z d4q

�2��4
A	�q�A	��q�

q2 ; (35)

where use has been made of

Z d4q

�2��4
A	�q�A	��q�

q2

�
��� �

q�q�
q2

�

�
3

4
���

Z d4q

�2��4
A	�q�A	��q�

q2 ; (36)

which follows from Lorentz covariance. Condition (34)
ensures that the Green function G�k; A� in Eq. (28) has
no poles at finite nonvanishing k. The only allowed singu-
larity is that at k � 0, corresponding to approaching the
first Gribov horizon l1.

A. The gluon propagator

We are now ready to discuss the behavior of the gluon
propagator when the domain of integration in the Feynman
path integral is restricted to the region C0, Eq. (25).
According to [26], the factor V �C0� implementing the
restriction to C0 is given by

V �C0� � 
�1� ��0; A��; (37)

where 
�x� stands for the step function.6 Moreover, making
use of the integral representation


�1� ��0; A�� �
Z i1�"

�i1�"

d�
2�i�

e��1���0;A��; (38)

for the partition function Z we get

Z �
Z
DAa�DA�

d�
2�i�

det�Mab�A��


 exp
�
� � SYM �

1

2�
�Dab

� A
b
��

2

�
1

2�
�@�A��2 � ���0; A�

�
; (39)
6
�x� � 1 for x > 0, and 
�x� � 0 for x < 0.
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where the gauge parameters � and � have to be set to zero
at end, i.e. �;�! 0, to recover the gauge conditions (13)
and (15). In order to study the gluon propagator, it is
sufficient to retain only the quadratic terms in expression
(39) which contribute to the two-point correlation func-
tions hAa��k�Ab���k�i and hA��k�A���k�i. Thus,

Z quadr �N
Z
DAa�DA�

d�
2�i

e���log��Squadr����0;A��;

(40)

where N is a constant factor and Squadr stands for the
quadratic part of the quantized Yang-Mills action, namely

Squadr �
1

2

X
q

�
Aa��q�

�
q2��� �

�
1�

1

�

�
q�q�

�
Aa���q�

�

�
1

2

X
q

�
A��q�

�
q2��� �

�
1�

1

�

�
q�q�

�
A���q�

�
:

(41)

Therefore, recalling the expression for the factor ��0; A�,
Eq. (35), it follows

Zquadr �N
Z
DAa�DA�

d�
2�i


 exp
�
� � log� �

1

2

X
q

A��q�Q����; q�A���q�

�
1

2

X
q

Aa��q�P���q�Aa���q�
�
; (42)

where the quantities Q����; q� and P���q� are given by

Q����; q� �
�
q2 �

�g2

2Vq2

�
��� �

�
1�

1

�

�
q�q�;

P���q� � q2��� �
�
1�

1

�

�
q�q�:

(43)

Note that only the factor Q��, corresponding to the op-
erator appearing in the quadratic part for the diagonal
component A��q� in Eq. (42), depends on � . Integrating
over the gauge fields and keeping only the terms which
depend on � , we find

Zquadr�N
Z d�

2�i
e��log� �detQ����;q���1=2�detP���q���1

�N 0
Z d�

2�i
ef���; (44)

where
-5
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f��� � � � log� �
1

2
logdet�Q����; q��;

� � � log� �
3

2

X
q

log
�
q2 �

�g2

2Vq2

�
:

(45)

As done in [26], expression (44) can be now evaluated at
the saddle point, namely

Z quadr � ef��0�; (46)

where �0 is determined by the minimum condition

@f���
@�

�����������0

� 0; (47)

which yields

1�
1

�0
�

3g2

4V

X
q

1

q4 � �0g2

2V

� 0: (48)

Taking the thermodynamic limit, V !1, and introducing
the Gribov parameter � [26],

�4 �
�0g2

2V
; V ! 1; (49)

we get the gap equation

3

4
g2
Z d4q

�2��4
1

q4 � �4 � 1; (50)

where the term 1=�0 in Eq. (48) has been neglected in the
thermodynamic limit. To obtain the gauge propagator, we
can now go back to the expression for Zquadr which, after
substituting the saddle point value � � �0, becomes

Zquadr �N
Z
DAa�DA�


 e
��1=2��

P
q

A��q�Q����;q�A���q��
P
q

Aa��q�P���q�Aa���q��

;(51)

with

Q����; q� �
�
q2 �

�4

q2

�
��� �

�
1�

1

�

�
q�q�: (52)

Evaluating the inverse of Q����; q� and of P���q�, and
setting the gauge parameters �;� to zero, we get the gluon
propagator for the diagonal and off-diagonal components
of the gauge field, namely
085021
hA��q�A���q�i �
q2

q4 � �4

�
��� �

q�q�
q2

�
; (53)

and

hAa��q�A
b
���q�i � �ab

1

q2

�
��� �

q�q�
q2

�
: (54)

One sees that the diagonal component, Eq. (53), is sup-
pressed in the infrared, exhibiting the characteristic
Gribov-type behavior. The off-diagonal components,
Eq. (54), remain unchanged. Moreover, as we shall see
later, its infrared behavior turns out to be modified once the
gluon condensate hAa�Aa�i is taken into account.

B. The off-diagonal ghost propagator

The off-diagonal ghost propagator can be obtained from
Eq. (28) upon contraction of the gauge fields in expressions
(30), namely

G �k� �
1

k2

1

�1� ��k��
�

B

k4 ; (55)

with

��k� � g2
k�k�
k2

Z d4q

�2��4
hA��q�A���q�i

�k� q�2
; (56)

and

B � g2
Z d4q

�2��4
hA��q�A���q�i

�
g2

2

Z d4q

�2��4
hAa��q�A

a
���q�i: (57)

Let us consider first the factor ��k� of Eq. (56). From the
expression of the diagonal propagator in Eq. (53), we
obtain

��k��g2
k�k�
k2

Z d4q

�2��4
q2

�k�q�2�q4��4�

�
����

q�q�
q2

�
:

(58)

Making use of the gap equation (50), we can write

g2
k�k�
k2

Z d4q

�2��4
1

q4 � �4

�
��� �

q�q�
q2

�
� 1; (59)

so that

1� ��k� � g2
k�k�
k2

Z d4q

�2��4
k2 � 2kq

�k� q�2�q4 � �4�




�
��� �

q�q�
q2

�
: (60)

Note that the integral in Eq. (60) is ultraviolet finite. Thus,
in the infrared, k � 0, one gets
-6
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�1� ��k��jk�0 �
3g2k2

4

Z d4q

�2��4
1

q2�q4 � �4�

�
3g2k2

128��2 : (61)

It remains now to discuss the factor B of Eq. (57). Making
use of the dimensional regularization in the MS scheme,
one observes that, due to the form of the off-diagonal
propagator, Eq. (54), the second term of Eq. (57) vanishes.
Concerning now the first term, it is not difficult to see that it
gives a contribution proportional to the Gribov parameter
�2. In fact

Z d4q

�2��4
hA��q�A���q�i � 3

Z d4q

�2��4
q2

q4 � �4

� �3�4
Z d4q

�2��4
1

q2�q4 � �4�

� �
3�2

32�
: (62)

Finally, for the infrared behavior of the off-diagonal ghost
propagator we have

G �k�k�0 �

�
128�

3g2 �
3g2

32�

�
�2

k4 ; (63)

exhibiting infrared enhancement.

IV. INCLUSION OF THE DIMENSION TWO
CONDENSATE hAa�Aa�i

In this section we shall discuss the behavior of the
propagators when the dimension two condensate hAa�Aa�i
is taken into account. This condensate turns out to contrib-
ute to the gluon two-point function, as observed in [48],
within the operator product expansion. As such, it has to be
taken into account when discussing the gluon propagator.

A renormalizable effective potential for hAa�Aa�i in the
maximal Abelian gauge has been constructed and eval-
uated in analytic form in [13]. A nonvanishing condensate
hAa�Aa�i is favored since it lowers the vacuum energy. As a
consequence, a dynamical tree level mass for off-diagonal
gluons is generated. The inclusion of the condensate
hAa�A

a
�i in the present framework can be done along the

lines outlined in [49,50], where the effects of the Gribov
copies on the gluon and ghost propagators in the presence
of the dimension two gluon condensate have been worked
out in the Landau gauge. Let us begin by giving a brief
account of the dynamical mass generation in the maximal
Abelian gauge. Following [13], the dynamical mass gen-
eration is accounted for by adding to the gauge-fixed Yang-
Mills action the following term:

INFLUENCE OF THE GRIBOV COPIES ON THE GLUON . .
085021
S� �
Z
d4x

�
�2

2g2�
�

1

2

�
g�
Aa�A

a
� �

1

8�
�Aa�A

a
��

2

�
: (64)

The field � is an auxiliary field which allows one to study
the condensation of the local operator Aa�Aa�. In fact, as
shown in [13], the following relation holds:

h�i � �
g
2
hAa�A

a
�i: (65)

The dimensionless parameter � in expression (64) is
needed to account for the ultraviolet divergences present
in the vacuum correlation function hA2�x�A2�y�i. For the
details of the renormalizability properties of the local
operator Aa�Aa� in the maximal Abelian gauge, we refer
to [13,14,16,19]. The inclusion of the term S� is the start-
ing point for evaluating the renormalizable effective po-
tential V��� for the auxiliary field �, obeying the
renormalization group equations. The minimum of V���
occurs for a nonvanishing vacuum expectation value of the
auxiliary field, i.e. h�i � 0. In particular, the first order off-
diagonal dynamical gluon mass,

m2 �
h�i
g�

; (66)

turns out to be [13]

m �
�
3

2
e17=6

�
1=4

�MS � 2:25�MS: (67)

The inclusion of the action S� leads to a partition function
which is still plagued by the Gribov copies. It might be
useful to note in fact that S� is left invariant by the local
gauge transformations

�Aa� � �Dab
� !b � g"abAb�!;

�A� � �@�!� g"abAa�!b; �� � gAa�Dab
� !b;

(68)

and

�S� � 0: (69)

Therefore, implementing the restriction to the region C0,
for the partition function, we obtain now

Z �
Z
DAa�DA� det�Mab�A����Dab

� A
b
��


 ��@�A��e
��SYM�S��V �C0�: (70)

To discuss the gluon propagator we proceed as before and
retain only the quadratic terms in expression (70) which
contribute to the two-point correlation functions.
Expanding around the nonvanishing vacuum expectation
value of the auxiliary field, h�i � 0, one easily gets
Zquadr �N
Z
DAa�DA�

d�
2�i

e
���log���1=2�

P
q

A��q�Q����;q�A���q���1=2�
P
q

Aa��q�Pm
���q�Aa���q��

; (71)
-7
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where the factor Q����; q� is the same as given in Eq. (43),
while

P m
���q� � q2��� �m2��� �

�
1�

1

�

�
q�q�: (72)

One sees that the inclusion of the dynamical massm, due to
the gluon condensate hAa�Aa�i, affects only the off-diagonal
sector. As a consequence, the gap equation defining the
Gribov parameter �, Eq. (50), and the diagonal gluon
propagator, Eq. (53), will be not affected by the dynamical
mass m, thus remaining the same. However, the mass m
enters now the expression for the off-diagonal gluon propa-
gator, which becomes of the Yukawa type, as given in
expression (2). Note that, when the gluon condensate is
taken into account, both diagonal and off-diagonal compo-
nents of the gluon propagator are suppressed in the low
momentum region. Finally, the infrared behavior of the
ghost propagator is easily seen to display infrared enhance-
ment

G �k�k�0 � 1=k4: (73)
V. COMPARISON WITH LATTICE NUMERICAL
SIMULATIONS

Having discussed the infrared behavior of the gluon and
ghost propagators, as expressed by Eqs. (1) and (2) and by
Eq. (63), it is worth making a comparison with the results
available from numerical lattice simulations.

The first study of the gluon propagator on the lattice in
the maximal Abelian gauge was made in [9], in the case of
SU(2). The gluon propagator was analyzed in coordinate
space and the Landau gauge was employed in the diagonal
sector. The off-diagonal component of the gluon propaga-
tor was found to be short-ranged, exhibiting a Yukawa-type
behavior, i.e. displaying an exponentially suppression at
large distances by an effective mass moff � 1:2 GeV. The
diagonal component of the gluon propagator was found to
propagate over larger distances, see Figs. 1 and 2 of [9].
These results were interpreted as evidence for the infrared
Abelian dominance [5–8], supporting the dual supercon-
ductivity picture for color confinement.

More recently, a numerical investigation of the gluon
propagator in the maximal Abelian gauge has been worked
out in [10]. Also here, the gauge group is SU(2) and the
Landau gauge has been used for the diagonal sector.
Moreover, the gluon propagator has been investigated
now in momentum space, a feature which allows for a
more direct comparison with our findings. The results
obtained in [10] show that, at low momenta, the diagonal
component of the gluon propagator is much larger than the
off-diagonal one. Several possible fits were studied for the
components of the gluon propagator. In particular, among
the two parameter fits proposed in [10], a Gribov-like fit,
see Eq. (20) of [10], i.e.
085021
Ddiag�q� �
Zdgq2

q4 �m4
dg

; (74)

turns out to be suitable for the diagonal component of the
gluon propagator. For off-diagonal gluons, a Yukawa-type
fit, see Eq. (18) of [10], i.e.

Doff�q� �
Zoff

q2 �m2
off

; (75)

seems to be well succeeded. The scalar functions,Ddiag and
Doff , in Eqs. (74) and (75) parametrize the diagonal and
off-diagonal transverse components of the gluon propaga-
tor in the low momentum region

hA��q�A���q�i � Ddiag�q�
�
��� �

q�q�
q2

�
;

hAa��q�A
b
���q�i � �abDoff�q�

�
��� �

q�q�
q2

�
:

(76)

The mass parameter moff appearing in the Yukawa fit (75)
is 2 times bigger than the corresponding mass parameter
mdg of the Gribov fit (74) [10], namely

moff � 2mdg; (77)

where moff has approximately the same value as that
obtained in [9], moff � 1:2 GeV. Equation (77) implies
that the off-diagonal propagator is short ranged as com-
pared to the diagonal one.

Although the extrapolation of the lattice data in the
region q � 0 is a difficult task, which requires rather large
lattice volumes, our results on the transverse diagonal and
off-diagonal components of the gluon propagator can be
considered in qualitative agreement with the lattice results,
especially with the two parameter fits (74) and (75).
Concerning now the ghost propagator, to our knowledge,
no lattice data are available so far.

We remark here that the authors [10] have also reported
a nonvanishing off-diagonal longitudinal component of the
gluon propagator which, in the low momentum region,
seems to behave in a way similar to the off-diagonal scalar
function of Eq. (75). Nevertheless, the analytical investi-
gation of this issue would require a formulation which goes
beyond the original Gribov’s quadratic approximation for
the form factor ��0; A�, which has been employed in the
present work, see Eqs. (35) and (39). This approximation
enables us to work out a first study of the influence of the
Gribov copies on the infrared behavior of the gluon and
ghost propagators. Moreover, the analysis is by no means
exhaustive and further work is certainly needed. In par-
ticular, this approximation does not allow to take in due
account quantum corrections to the propagators in the
presence of the Gribov horizon. One should remark in
fact that the longitudinal off-diagonal propagator identi-
cally vanishes at the tree level, as it is easily checked from
the Feynman rules stemming from the gauge fixing condi-
-8
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tion Dab
� A

b
� � 0. However, due to the nonlinearity of the

maximal Abelian gauge, one could argue that a nonvanish-
ing off-diagonal longitudinal propagator might arise due to
nonperturbative quantum effects. The transverse diagonal
and off-diagonal propagators, Eqs. (1) and (2), represent a
kind of first order propagators incorporating the effects of
the Gribov horizon as well as of the dimension two con-
densate hAa�Aa�i. These propagators have to be used in
order to investigate higher order quantum corrections as,
for instance, the off-diagonal gluon vacuum polarization
which could give rise to a longitudinal component of the
off-diagonal propagator. Nevertheless, for a consistent
evaluation of these quantum effects, we should have at
our disposal a local and renormalizable action which takes
into account the restriction to the Gribov region C0,
Eq. (24). The construction of such an action has been
achieved by Zwanziger [31,35] in the case of the Landau
gauge, where a suitable horizon function implementing the
restriction to the Gribov horizon has been identified.
Remarkably, the resulting action can be made local and
enjoys the property of being multiplicatively renormaliz-
able. It can be effectively used to evaluate quantum cor-
rections by taking into account the restriction to the first
Gribov horizon, see for instance the recent work [50].
Although being beyond the aim of the present work, we
mention that the study of the horizon function for the
maximal Abelian gauge is under investigation. Its identi-
fication would allow us to properly address the issue of the
existence of a nonperturbative off-diagonal longitudinal
gluon propagator by analytical methods.

VI. CONCLUSION

In this work the effects of the Gribov copies on the gluon
and ghost propagators in SU(2) Euclidean Yang-Mills
theory quantized in the maximal Abelian gauge have
been investigated.

The domain of integration in the path integral has been
restricted to the Gribov region C0, defined as the set of field
configurations fulfilling the gauge conditions (13) and (15),
and for which the Faddeev-Popov operator Mab, Eq. (20),
is positive definite. Gribov’s original statement [26] about
closely related gauge copies located on opposite sides of a
Gribov horizon has been generalized to the maximal
Abelian gauge, see Appendix A, providing thus a support
for the restriction of the domain of integration to the region
C0. The dimension two gluon condensate hAa�Aa�i has also
been taken into account.

The diagonal component of the gluon propagator dis-
plays a Gribov-type behavior in the infrared, Eq. (1). The
off-diagonal transverse component has been found to be of
the Yukawa type, with a dynamical gluon mass originating
from hAa�Aa�i, Eq. (2). Moreover, the off-diagonal ghost
propagator exhibits infrared enhancement, Eq. (63), while
the diagonal ghost propagator remains unaltered.
Concerning the behavior of the transverse diagonal and
085021
off-diagonal components of the gluon propagator, our re-
sults can be considered in qualitative agreement with those
of lattice numerical simulations [9,10].

Finally, we hope that this work will stimulate further
investigation on the behavior of the propagators in the
maximal Abelian gauge from our colleagues of the lattice
community. A look at the off-diagonal ghost propagator
would be of a certain interest for a better understanding of
the role of the Gribov copies in this gauge.
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APPENDIX A: A GENERALIZATION OF GRIBOV’S
STATEMENT TO THE MAXIMAL ABELIAN

GAUGE

This appendix is devoted to the generalization to the
maximal Abelian gauge of Gribov’s statement [26] about
closely related copies located on opposite sides of a Gribov
horizon. Let us begin by reminding that, as pointed out in
[28], the Faddeev-Popov operator Mab,

M ab�A� � �Dac
� �A�Dcb

� �A� � g2"ac"bdAc�Ad�; (A1)

enjoys the property of being Hermitian, being the differ-
ence of two positive semidefinite operators given, respec-
tively, by �Dac

� Dcb
� and g2"ac"bdAc�Ad�. Its eigenvalues

are thus real.
Following [26], we can divide the space of fields ful-

filling the gauge conditions (13) and (15) into regions with
a definite number of bound states, i.e. negative energy
solutions of the operator Mab, see Fig. 1.

Let us look thus at the eigenvalues equation for the
Faddeev-Popov operator Mab, i.e.

M ab b � ��A� a: (A2)

For small values of the gauge fields �A�; Aa��, Eq. (A2) is
solvable for positive ��A� only. More precisely, denoting
by �1�A�; �2�A�; �3�A�; . . . , the eigenvalues corresponding
to a given field configuration �A�; Aa��, one has that, for
small �A�; Aa��, all �i�A� are positive, �i�A�> 0, corre-
sponding to field configurations for which �Dac

� Dcb
� >

g2"ac"bdAc�A
d
�. However, for a sufficiently large value of

the fields �A�; Aa��, one of the eigenvalues, say �1�A�, turns
-9
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out to vanish, becoming negative as the fields increase
further.7 This means that the fields �A�; Aa�� are large
enough to ensure the existence of negative energy solu-
tions, i.e. bound states. For a greater magnitude of
�A�; A

a
��, a second eigenvalue, say �2�A�, will vanish,

becoming negative as the fields increase again. Following
Gribov [26], we may thus divide the functional space of the
fields into regions C0;C1;C2; . . . ;Cn over which the op-
erator Mab has 0; 1; 2; . . . ; n negative eigenvalues. These
regions are separated by lines l1; l2; l3; . . . ; ln on which the
operator Mab has zero energy solutions. The meaning of
Fig. 1 is as follows. In the region C0 all eigenvalues of the
operator Mab are positive, i.e. Mab > 0. At the boundary
l1 of the region C0, the first vanishing eigenvalue appears,
namely, on l1 the operator Mab possesses a normalizable
zero mode. In the region C1 the operator Mab has one
bound state, i.e. one negative energy solution. At the
boundary l2, a zero eigenvalue reappears. In the region
C2 the operator Mab has two bound states, i.e. two nega-
tive energy solutions. On l3 a zero eigenvalue shows up
again, and so on. The boundaries l1; l2; l3; . . . ; ln, on which
the operator Mab has zero eigenvalues are called Gribov
horizons. In particular, the boundary l1 where the first
vanishing eigenvalue appears is called the first horizon.
See [28] for an explicit example of a horizon configuration.

It is useful to emphasize that, in the region C0, the
operator Mab has only positive eigenvalues. Therefore,
this region can be defined as the set of all gauge fields
�A�; A

a
�� fulfilling the gauge conditions Eqs. (13) and (15),

for which the Faddeev-Popov operator Mab is positive
definite, see Eq. (24). Note also that field configurations
belonging to C0 correspond to relative minima of the
auxiliary functional R�A�. This follows by observing that
the Faddeev-Popov operator Mab can be obtained by
taking the second variation of R�A� [28].
7See also the argument presented in Sec. 3 of [28].

085021
Let us proceed with the generalization to the maximal
Abelian gauge of Gribov’s result stating that, for any field
close to a horizon there is an equivalent field, i.e. a gauge
copy, located on the other side of the horizon, close to the
same horizon (see Fig. 2).

Let us start by considering a field configuration �C�;Ca��
located on the first Gribov horizon l1, namely

M ab�C�’b0 � ��D
ac
� �C�D

cb
� �C�

� g2"ac"bdCc�Cd��’b0 � 0;

Dab
� �C��Cb� � 0; @�C� � 0;

(A3)

where’a0 denotes a normalizable zero mode. In the follow-
ing it turns out to be useful to introduce the diagonal
component ’0 which, according to Eq. (21), is defined as

’0 � �g�
ab @�
@2 �C

a
�’

b
0�: (A4)

Let thus �A�; Aa�� be a field configuration located in the
Gribov region C0, close to the horizon l1, Fig. 2. Following
[26] we write

Aa� � Ca� � aa�; A� � C� � a�; (A5)

where �a�; aa�� have to be considered as small perturba-
tions. The fields �A�; Aa�� obey the gauge conditions (13)
and (15) which, neglecting higher order terms in the small
components �a�; aa��, read

Dab
� �C�ab� � g"abCb�a� � 0; @�a� � 0:

The evaluation of the energy eigenvalue ��A� of the
Faddeev-Popov operator Mab�A� corresponding to the
field configuration �A�; Aa�� can be easily handled by
means of perturbation theory, yielding
FIG. 2. The equivalent fields.
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��A� �

R
d4x’a0�2g"

aca�D
cb
� �C�’

b
0 � g

2"ac"db�Cc�a
d
� � C

d
�a

c
��’

b
0�R

d4x’a0’
a
0

: (A6)
Proceeding as in [26], we introduce the fields

~A a
� � Ca� � ~aa�; ~A� � C� � ~a�; (A7)

where

~a a� � aa� �Dab
� �C�’b0 � g"

abCb�’0;

~a� � a� � @�’0 � g"abCa�’b0
(A8)

have to be considered as small as compared to �C�;Ca��. It
is not difficult to verify that, to first order in the small
components �~aa�; ~a��, the fields � ~A�; ~Aa�� obey the same
gauge conditions of �A�; Aa��, namely

Dab
� � ~A� ~A

b
� � 0; @� ~A� � 0: (A9)

The fields � ~A�; ~Aa�� might thus be identified with a Gribov
copy of �A�; Aa��, provided one is able to find a gauge
transformation S such that

~A� � SyA�S� Sy@�S; ~A� � ~Aa�Ta � ~A�T3;

A� � Aa�Ta � A�T3: (A10)
085021
We shall look at S close to unit, in the form

S � 1� ��
�2

2
�O��3�; � � �aTa � �T3;

(A11)

from which we obtain

~Aa� � Aa� � �Dab
� �b � g"abAb��� �

g
2
"ab�b�@��

� g"cdAc��d� �
g
2
"ab�Dbc

� �c �
g2

2
Aa��2;

~A� � A� � �@��� g"
abAa��

b� �
g
2
"ab�aDbc

� �
c

�
g2

2
Aa��

a�:

(A12)

Furthermore, from Eq. (A9), it follows
Mab�A��b �Dab
� �A�

�
�
g
2
"bc�c�@��� g"

deAd��
e� �

g
2
"bc�Dcd

� �
d �

g2

2
Ab��

2

�

�g"ab�@��� g"cdAc��d��Dbe
� �e � g"beAe��� � g"abAb�

�
g
2
"cd�cDde

� �e �
g2

2
Ac��c�

�
� 0;

@�

�
��@��� g"abAa��b� �

g
2
"ab�aDbc

� �c �
g2

2
Aa��a�

�
� 0:

(A13)

In order to express ��;�a� in terms of �’0; ’a0�, we follow [26], and set

�a � ’a0 � ~’a; � � ’0 � ~’; (A14)

with �~’; ~’a� small with respect to �’0; ’a0�. Condition (A13) gives thus

Mab�C�~’b��g"cbDac
� �C��a�’

b
0��g"

aca�D
cb
� �C�’

b
0�g

2"ac"db�Cc�a
d
��C

d
�a

c
��’

b
0�D

ab
� �C�




�
g
2
"bc’c0�@�’0�g"deCd�’e0��

g
2
"bc’0Dcd

� �C�’
d
0�

g2

2
Cb�’2

0

�

�g"ab�@�’0�g"cdCc�’
d
0��D

be
� �C�’e0�g"

beCe�’0��g"abCb�

�
g
2
"cd’c0D

de
� �C�’e0�

g2

2
Cc�’c0’0

�
: (A15)

Note that Eq. (A15) can be cast in the form

@2 ~’a � P a�C; a; ’0� �Qab�C;’0�~’b; (A16)

where P a and Qab are independent from ~’, i.e.

�P a�C;a;’0���g"cbDac
� �C��a�’b0��g"

aca�Dcb
� �C�’b0�g

2"ac"db�Cc�ad��Cd�ac��’b0

�Dab
� �C�

�
g
2
"bc’c0�@�’0�g"deCd�’e0��

g
2
"bc’0Dcd

� �C�’d0�
g2

2
Cb�’2

0

�
�g"ab�@�’0�g"cdCc�’d0�


�Dbe
� �C�’

e
0�g"

beCe�’0��g"
abCb�

�
g
2
"cd’c0D

de
� �C�’

e
0�

g2

2
Cc�’

c
0’0

�
; (A17)
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and

Q ab�C;’0� � 2g"abC�@� � g2"ac"cbC�C�

� g2"ac"bdCc�C
d
�: (A18)

Equation (A16) can be solved recursively for ~’a, namely

~’a �
1

@2 P
a �

1

@2 Q
ab 1

@2 P
b � � � � : (A19)

This allows us to obtain a recursive expression for the
parameters ��;�a� of Eq. (A14), and thus for the gauge
transformation S we are looking for, Eq. (A11). Moreover ,
recalling that

M ab�C�’b0 � 0; (A20)

one finds
085021
Z
d4x’a0M

ab�C�~’b � 0; (A21)

so that

0 �
Z
d4x’a0��2g"aca�Dcb

� �C�’b0 � g
2"ac"db


 �Cc�ad� � Cd�ac��’b0 � g"
ab�@�’0�Dbc

� �C�’c0

� 2g2"ab"cdCb�’c0D
de
� �C�’e0 � g

3"abCb�Cc�’c0’0�:

(A22)

Let us now check on which side of the horizon l1 the
equivalent fields � ~A�; ~Aa�� are located. As done before,
we look at the energy eigenvalue �� ~A�, given by
�� ~A� �

R
d4x’a0�2g"

ac~a�Dcb
� �C�’b0 � g

2"ac"db�Cc�~ad� � Cd�~ac��’b0�R
d4x’a0’

a
0

: (A23)
Finally, from Eqs. (A8) and (A22) it follows that

�� ~A� � ���A�: (A24)

Thus, if the configuration �A�; Aa��, close to l1, is located in
the region C0, ��A�> 0, there is an equivalent field con-
figuration � ~A�; ~Aa��, Eqs. (A7) and (A8), close to l1, which
is located in C1, �� ~A� � ���A�< 0. This derivation,
which can be repeated to fields close to any horizon ln,
generalizes Gribov’s statement to the case of the maximal
Abelian gauge.

APPENDIX B: FADDEEV-POPOV QUANTIZATION
OF YANG-MILLS THEORY IN THE MAXIMAL

ABELIAN GAUGE

We provide here a detailed summary of the Faddeev-
Popov quantization of Yang-Mills theory in the maximal
Abelian gauge. Following [13], let us start by giving the
BRST transformations of all fields, namely

sAa� � ��Dab
� cb � g"abAb�c�;

sA� � ��@�c� g"
abAa�c

b�; sca � g"abcbc;

sc �
g
2
"abcacb; sca � ba; sc � b;

sba � 0; sb � 0;

(B1)

with

s2 � 0; (B2)

where �ca; ca� and �c; c� are the off-diagonal and diagonal
Faddeev-Popov ghosts, while �ba; b� denote the Lagrange
multipliers. For the gauge-fixed Yang-Mills theory, one has

SYM � SMAG � Sdiag; (B3)
s�SYM � SMAG � Sdiag� � 0; (B4)

where

SYM �
1

4

Z
d4x�Fa��Fa�� � F��F���; (B5)

and SMAG; Sdiag being the gauge fixing terms corresponding
to the off-diagonal and diagonal sectors, respectively. They
are given by

SMAG � s
Z
d4x

�
ca
�
Dab
� A

b
� �

�
2
ba
�
�
�
2
g"abcacbc

�

�
Z
d4x

�
ba
�
Dab
� A

b
� �

�
2
ba
�
� caDab

� D
bc
� c

c

� gca"ab�Dbc
� Ac��c� �g"abbacbc

� g2"ab"cdcacdAb�Ac� �
�
4
g2"ab"cdcacbcccd

�
;

(B6)

and

Sdiag � s
Z
d4xc@�A�

�
Z
d4x�b@�A� � c@��@�c� g"abAa�cb��: (B7)

Note that, for renormalizability purposes, a gauge parame-
ter � has to be introduced in the off-diagonal part of the
gauge fixing, Eq. (B6). The maximal Abelian gauge con-
dition, Dab

� Ab� � 0, is recovered in the limit �! 0, which
has to be taken after the removal of the ultraviolet diver-
gences [13]. In fact, some of the terms proportional to �
would reappear due to radiative corrections, even if � � 0.
See, for example, [16]. Moreover, the action (B3) is multi-
-12
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plicatively renormalizable to all orders of perturbation
theory [12,13].

Therefore, for the partition function expressing the
Faddeev-Popov quantization of Yang-Mills theory in the
maximal Abelian gauge we have

Z �
Z
DA�DAa�DbaDbDcaDcDcaDce

��SYM�SMAG�Sdiag�:

(B8)

Taking the limit �! 0 and integrating over the Lagrange
multipliers �ba; b�, one gets

Z �
Z
DA�DA

a
�Dc

aDcDcaDc��Dab
� A

b
����@�A��


 e�SYM exp
�
�
Z
d4x��caDab

� D
bc
� c

c

� g2"ab"cdcacdAb�Ac�� � c@��@�c� g"abAa�cb��
�
:

(B9)

To deal with the diagonal ghosts �c; c� we perform now the
change of variables

c! ~c�c�g
@�
@2 �"

abAa�cb�; ca!ca; Aa�!Aa�;

(B10)

all other fields remaining unchanged. It is easy to check
that

@��@�c� g"
abAa�c

b� ! @2~c; (B11)

and that the Jacobian J corresponding to (B10) is field
independent. In fact

J � det
1 g"ac

@�
@2 cc g"cd

@�
@2 Ac�

0 �ab��� 0
0 0 �bd

0
B@

1
CA � const: (B12)

One sees thus that the transformation (B10) allows us to
085021
decouple the diagonal ghosts from the theory, namely

Z �
Z
DA�DA

a
�Dc

aD~cDcaDc��Dab
� A

b
����@�A��


 e�SYM exp
�
�
Z
d4x��caDab

� D
bc
� c

c

� g2"ab"cdcacdAb�Ac�� � c@2~c�
�
; (B13)

so that they can be integrated out, yielding

Z �N
Z
DA�DAa�DcaDca��Dab

� Ab����@�A��


 e�SYM exp
�
�
Z
d4x��caDab

� D
bc
� c

c

� g2"ab"cdcacdAb�A
c
���

�
; (B14)

where N is an irrelevant constant factor. It is worth
remarking that the change of variables (B10) seems to be
a peculiar feature of the maximal Abelian gauge. One
could try in fact to perform such a kind of transformation
to decouple the Faddeev-Popov ghosts in other cases as, for
instance, the Landau gauge. However, it is straightforward
to check now that the Jacobian of the decoupling trans-
formation is no more field independent. It gives back
precisely the Faddeev-Popov determinant for the Landau
gauge, so that the Faddeev-Popov ghosts show up again.

Finally, integrating over the off-diagonal ghosts �ca; ca�,
it follows

Z �N
Z
DA�DA

a
���D

ab
� A

b
����@�A��


 �det�Mab��e�SYM ; (B15)

where Mab is the off-diagonal Faddeev-Popov operator, as
given in Eq. (20). Expression (B15) will be taken as the
starting point for the implementation of the restriction to
the Gribov region C0 for the maximal Abelian gauge.
[1] G. ’t Hooft, Nucl. Phys. B190, 455 (1981).
[2] A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Nucl. Phys.

B293, 461 (1987).
[3] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J.

Wiese, Phys. Lett. B 198, 516 (1987).
[4] Y. Nambu, Phys. Rev. D 10, 4262 (1974); G. ’t Hooft, in

Proceedings of the High Energy Physics EPS International
Conference, Palermo, 1975, edited by A. Zichichi; S.
Mandelstam, Phys. Rep. 23, 245 (1976).
[5] Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25, 2681 (1982).
[6] T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257

(1990).
[7] T. Suzuki, S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara,

O. Miyamura, and S. Ohno, Nucl. Phys. B, Proc. Suppl.
26, 441 (1992).

[8] S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O.
Miyamura, S. Ohno, and T. Suzuki, Phys. Lett. B 272,
326 (1991); 281, 416 (1992).
-13



CAPRI, LEMES, SOBREIRO, SORELLA, AND THIBES PHYSICAL REVIEW D 72, 085021 (2005)
[9] K. Amemiya and H. Suganuma, Phys. Rev. D 60, 114509
(1999).

[10] V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, S. M.
Morozov, and M. I. Polikarpov, Phys. Lett. B 559, 214
(2003).

[11] H. Min, T. Lee, and P. Y. Pac, Phys. Rev. D 32, 440 (1985).
[12] A. R. Fazio, V. E. R. Lemes, M. S. Sarandy, and S. P.

Sorella, Phys. Rev. D 64, 085003 (2001).
[13] D. Dudal, J. A. Gracey, V. E. R. Lemes, M. S. Sarandy,

R. F. Sobreiro, S. P. Sorella, and H. Verschelde, Phys. Rev.
D 70, 114038 (2004).

[14] J. A. Gracey, J. High Energy Phys. 04 (2005) 012.
[15] K. I. Kondo, Phys. Lett. B 514, 335 (2001).
[16] K. I. Kondo, T. Murakami, T. Shinohara, and T. Imai,

Phys. Rev. D 65, 085034 (2002).
[17] D. Dudal, H. Verschelde, and S. P. Sorella, Phys. Lett. B

555, 126 (2003).
[18] D. Dudal, H. Verschelde, V. E. R. Lemes, M. S. Sarandy,

R. F. Sobreiro, S. P. Sorella, and J. A. Gracey, Phys. Lett. B
574, 325 (2003).

[19] D. Dudal et al., Phys. Lett. B 569, 57 (2003).
[20] M. Esole and F. Freire, Phys. Lett. B 593, 287 (2004).
[21] M. Esole and F. Freire, Phys. Rev. D 69, 041701 (2004).
[22] A. A. Slavnov, Theor. Math. Phys. (Engl. Transl.) 143, 489

(2005) [Teor. Mat. Fiz. 143, 3 (2005)].
[23] A. A. Slavnov, Phys. Lett. B 608, 171 (2005).
[24] D. V. Bykov and A. A. Slavnov, hep-th/0505089.
[25] K. I. Kondo, Phys. Lett. B 619, 377 (2005).
[26] V. N. Gribov, Nucl. Phys. B139, 1 (1978).
[27] I. M. Singer, Commun. Math. Phys. 60, 7 (1978).
[28] F. Bruckmann, T. Heinzl, A. Wipf, and T. Tok, Nucl. Phys.

B584, 589 (2000).
[29] D. Zwanziger, Nucl. Phys. B209, 336 (1982).
[30] D. Zwanziger, Nucl. Phys. B321, 591 (1989).
[31] D. Zwanziger, Nucl. Phys. B323, 513 (1989).
085021
[32] G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B326, 333
(1989).

[33] Semenov-Tyan-Shanskii and V. A. Franke, Proceedings of
the Zapiski Nauchnykh Seminarov Leningradskogo
Otdeleniya Matematicheskogo Instituta im. V.A. Steklov
AN SSSR, 1982 (Plenum Press, New York, 1986), Vol. 120,
p. 159.

[34] G. Dell’Antonio and D. Zwanziger, Commun. Math. Phys.
138, 291 (1991).

[35] D. Zwanziger, Nucl. Phys. B399, 477 (1993).
[36] P. van Baal, Nucl. Phys. B369, 259 (1992).
[37] A. Cucchieri and D. Zwanziger, Phys. Rev. Lett. 78, 3814

(1997).
[38] D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003).
[39] J. Greensite, S. Olejnik, and D. Zwanziger, Phys. Rev. D

69, 074506 (2004).
[40] C. Feuchter and H. Reinhardt, Phys. Rev. D 70, 105021

(2004).
[41] H. Reinhardt and C. Feuchter, Phys. Rev. D 71, 105002

(2005).
[42] R. F. Sobreiro and S. P. Sorella, J. High Energy Phys. 06

(2005) 054.
[43] P. van Baal, Commun. Math. Phys. 85, 529 (1982).
[44] J. Koller and P. van Baal, Nucl. Phys. B302, 1 (1988).
[45] P. van Baal, Nucl. Phys. B351, 183 (1991).
[46] P. van Baal, hep-ph/0008206.
[47] M. Quandt and H. Reinhardt, Int. J. Mod. Phys. A 13, 4049

(1998).
[48] M. J. Lavelle and M. Schaden, Phys. Lett. B 208, 297

(1988).
[49] R. F. Sobreiro, S. P. Sorella, D. Dudal, and H. Verschelde,

Phys. Lett. B 590, 265 (2004).
[50] D. Dudal, R. F. Sobreiro, S. P. Sorella, and H. Verschelde,

Phys. Rev. D 72, 014016 (2005).
-14


