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Neutrino oscillations in the early universe: A real-time formulation
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Neutrino oscillations in the early universe prior to the epoch of primordial nucleosynthesis is studied by
implementing real-time nonequilibrium field theory methods. We focus on two flavors of Dirac neutrinos,
however, the formulation is general. We obtain the equations of motion for neutrino wave packets of either
chirality and helicity in the plasma allowing for CP asymmetry. Contributions nonlocal in space-time to
the self-energy dominate over the asymmetry for T * 3-5 MeV if the lepton and neutrino asymmetries are
of the same order as the baryon asymmetry. We find a new contribution which cannot be interpreted as the
usual effective potential. The mixing angles and dispersion relations in the medium depend on helicity. We
find that resonant transitions are possible in the temperature range 10 & T � 100 MeV. Near a resonance
in the mixing angle, the oscillation time scale in the medium as compared to the vacuum is slowed down
substantially for small vacuum mixing angle. The time scale of oscillations speeds up for off-resonance
high energy neutrinos for which the mixing angle becomes vanishingly small. The equations of motion
reduce to the familiar oscillation formulae for negative helicity ultrarelativistic neutrinos, but include
consistently both the mixing angle and the oscillation frequencies in the medium. These equations of
motion also allow to study the dynamics of right handed as well as positive helicity neutrinos.
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I. INTRODUCTION

Neutrinos have taken center stage in particle physics and
have become a bridge between astrophysics, cosmology,
particle physics, and nuclear physics [1–5].

A wealth of experimental data have confirmed that neu-
trinos are massive and that different flavors of neutrinos
can mix and oscillate [6–12] thus providing indisputable
evidence for new physics beyond the standard model.

Neutrinos play a fundamental role in cosmology and
astrophysics, and it is now widely accepted that resonant
flavor oscillations due to the Mikheyev-Smirnov-
Wolfenstein (MSW) effect in the sun provide a concrete
explanation to the solar neutrino problem [5,13–15].

Neutrino oscillations in extreme conditions of tempera-
ture and density are an important aspect of big bang
nucleosynthesis (BBN) and in the generation of the lepton
asymmetry in the early universe [4,10,16–18], as well as in
the physics of core-collapse supernovae [6,15,19], and the
formation, evolution, and cooling of neutron stars [20–22].

While accelerator and reactor experiments measure the
difference of the neutrino masses, high precision cosmo-
logical observations of the cosmic microwave background
by Wilkinson microwave anisotropy probe (WMAP) com-
bined with large scale structure suggest that the sum of the
masses of all neutrino species is bound to be smaller than
1 eV [23].
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An important aspect of neutrino oscillations is lepton
number violation, leading to the suggestion that the baryon
asymmetry may actually originate in the lepton sector and
the proposal that leptogenesis can be the main mechanism
that explains the cosmological baryon asymmetry [24–
26].

Neutrino propagation in a cold medium has been first
studied in Ref. [13] wherein the refractive index of electron
neutrinos was computed. The early studies of neutrino
propagation focused on the neutrino dispersion relations
and damping rates in the temperature regime relevant for
stellar evolution or big bang nucleosynthesis [17,27]. Since
then, the work has been extended to include leptons, neu-
trinos, and nucleons in the medium [28]. The matter effects
of neutrino oscillations in the early universe has been
investigated in [29,30].

Since the original study of neutrino oscillations in the
sun [13,14], neutrino oscillations are typically studied
within the single particle quantum mechanical formula-
tion. For two flavors the evolution Hamiltonian is simply
that for a two-state system, where the off-diagonal terms
lead to the mixing and oscillation phenomena. The me-
dium properties are input in this formulation after comput-
ing the contributions from charged and neutral currents in a
medium with leptons, neutrinos, and hadrons or quarks. A
conceptually similar approach underlies the kinetic treat-
ment of oscillations in the early universe wherein the
dynamics is studied from the time evolution of a density
matrix that generalizes the single particle description but
that does not generally account for the subtle aspects of
flavor Fock states addressed in Ref. [31], which introduce a
-1 © 2005 The American Physical Society
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hierarchy of time scales. Recently [32] a set of generalized
semiclassical Boltzmann equations for the single particle
distribution functions, supposedly applicable to neutrino
transport in core-collapse supernovae have been proposed,
but where the mixing term must be obtained separately
from the underlying field theory. For a thorough discussion
of the kinetic approach to mixing and relaxation and the
approximations involved, the reader is referred to
[17,32,33].

The dynamics of neutrino mixing in the presence of a
background of neutrinos requires in general a full non-
linear treatment, which has so far been studied within a
self-consistent single particle framework [34] in the form
of approximate kinetic equations for the reduced density
matrix [17,33]. Such study revealed a wealth of novel
nonlinear phenomena such as self-synchronization [34].
An approximate treatment of background neutrinos within
the framework of equilibrium finite temperature field the-
ory has also been proposed in Ref. [35]. However, a con-
sistent treatment must necessarily rely on a nonlinear
kinetic description, which has not yet been developed in
the full field theory framework.

A calculation of the neutrino dispersion relations in a hot
and dense medium implementing the techniques of quan-
tum field theory at finite temperature was provided in
Ref. [27]. This treatment was extended in Ref. [35] to
study the propagation of mixed neutrinos of negative he-
licity in a neutrino background, up to lowest order in
g2=M2

W . In Ref. [36] the quantum fields for Dirac neutrinos
propagating in a cold but dense medium and the dispersion
relation for both chirality components were obtained, again
considering the medium corrections to the dispersion rela-
tions up to order g2=M2

W .
The study of dynamics of neutrino mixing in the litera-

ture is mostly carried out within the framework of a single
particle description, wherein the dynamical evolution is
described in terms of an effective Hamiltonian for either a
two or three level system (depending on the number of
flavors). However, a single particle formulation is inade-
quate in a hot and/or dense medium where collective many
body effects may be predominant. The main point in the
above discussion is to highlight that there is a leap in the
current approach to study neutrino oscillations in a me-
dium: the result of a quantum field theory calculation of the
index of refraction or effective potentials in the medium is
input into a single particle quantum mechanical description
of oscillations and mixing based on Bloch-type equations.

We have previously reported on a study of oscillations in
a hot and/or dense neutrino gas directly from the under-
lying quantum field theory [31] in free field theory. Such
study, even at the free field level revealed quantum inter-
ference phenomena and subtle many body aspects respon-
sible for a hierarchy of time scales that cannot be captured
within the single particle description. In particular, the
subtle aspects of the Fock representation of the distribution
function as well as interference and coherence phenomena,
085016
leading to widely different time scales has not been fully
included in the treatments in Refs. [17,32,33].

More recently, novel collective neutrino excitations in
the standard model (namely without masses and mixing)
near the critical temperature were studied [37]. Collective
phenomena requires a systematic and consistent treatment
implementing the methods of quantum field theory at finite
temperature and density. Furthermore, the real-time dy-
namics of mixing and oscillations requires a nonequilib-
rium formulation of quantum field theory specially suited
to study the real-time evolution as an initial value problem
[38–42].

There are at least four fundamental reasons to study
neutrinos in the early universe at a deeper level:
i) neutrino mixing may be the mechanism by which baryo-
genesis is a result of leptogenesis [24–26], ii) big bang
nucleosynthesis is particularly sensitive to the spectrum
and oscillations of neutrinos [18,29,43], iii) just like the
cosmic microwave background, there is a cosmic neutrino
background left over from the big bang, and iv) neutrinos
masses and mixing are the most clear experimental con-
firmation of physics beyond the standard model. All of
these reasons warrant a complete quantum field theory
study of neutrinos in the early universe.

A. The goals of this article

The full quantum field theory treatment of neutrino
mixing in hot and/or dense media has not yet received
the same level of attention as the more familiar single
particle treatment, which however, is not suited when
collective many body phenomena become relevant as is
typically the case in extreme environments.

Previous quantum field theory studies [17,27,35,36] ad-
dress either the dispersion relations or mixing phenomena
under restrictive approximations to lowest order in g2=M2

W .
In this article we provide a systematic quantum field

theory study of neutrino propagation and oscillations in the
early universe directly in real time. Because in the early
universe the lepton asymmetries are expected to be typi-
cally of the same order of the baryon asymmetry �B=�� �
10�9 a consistent description of neutrino propagation and
oscillations requires to include corrections nonlocal in
space-time of order g2=M4

W in the dispersion relations
[27] and mixing angles. We focus our study on the case
of two flavors of Dirac neutrinos, taken to be the electron
and muon neutrinos, this study can be generalized to more
flavors or to Majorana-Dirac mass matrices without any
conceptual difficulty. Our main goals are: i) To provide a
systematic and consistent study of the real-time dynamics
of neutrino oscillation and mixing directly in quantum field
theory in conditions of temperature and lepton/neutrino
asymmetries applicable to the early universe prior to the
nucleosynthesis era. This is achieved by formulating an
initial value problem via linear response and implementing
real-time field theory methods at finite temperature and
-2
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density. ii) To obtain the dispersion relations and in-
medium mixing angles including the nonlocal contribu-
tions from the neutrino self-energies up to order g2=M4

W .
The one-loop self-energy is expanded to lowest order in
�!; k�=MW . We find a new contribution which cannot be
interpreted as the usual effective potential. These contri-
butions are necessary since the typical asymmetries in the
early universe are very small and these nonlocal (in space-
time) contributions can be of the same order or larger than
the local contributions. iii) To obtain the in-medium
Dirac spinors for both helicities and study the evolution
of oscillations and mixing for both helicity components
directly in real time. iv) Two different temperature
regimes are studied in detail: i) me � T � m�,
ii) me;m� � T � MW . The first regime is just prior to
big bang nucleosynthesis. Lepton and hadron (proton and
neutrons in nuclear statistical equilibrium) or quark asym-
metries are included in the one-loop self-energy. We assess
in detail the temperature and energy regime for which a
resonance in the mixing angle is available in the medium.
The second temperature regime is above the QCD phase
transition and we include two flavor of (light quarks) with
their respective asymmetries. In this regime the mixing
angle becomes small. In both cases we also study the
mixing and oscillations of positive helicity as well as
right-handed neutrinos, which are typically neglected in
the literature. We also obtain the loop corrections to the
oscillation frequencies thereby providing a complete de-
scription of oscillation and mixing that includes correc-
tions to both the mixing angle and the oscillation
frequencies. v) We obtain general oscillation formulae
derived directly from the real-time evolution in quantum
field theory. These formulae reveal the limit in which the
usual quantum mechanical single particle description is
reliable as well as the corrections to them.

B. Main approximations

Since our study relies on a one-loop self-energy compu-
tation including leptons and neutrinos, the inclusion of a
neutrino background must necessarily imply some approx-
imations for consistency.

We do not yet consider absorptive contributions, which
in the temperature regime studied here are of two-loop
order, postponing the study of the interplay between oscil-
lations and relaxation to a forthcoming article.

Since we obtain the nonlocal (in space-time) contribu-
tions from the one-loop self-energy we must address the
issue of the neutrino propagators in the neutral current
contributions. Because of mixing, the neutrino propagator
in the flavor basis, in which the weak interactions are
diagonal, does not correspond to the propagation of mass
eigenstates and in principle the nonequilibrium propaga-
tors obtained in Ref. [31] must be used. The question of
equilibration of a neutrino gas with mixing is one of time
scales: the weak interactions are diagonal in the flavor
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basis, therefore weak processes tend to equilibrate flavor
neutrinos with a typical weak interaction relaxation rate at
high temperature [27] ��G2

FT
5. Oscillations, on the other

hand mix flavors and tend to redistribute flavor neutrinos
into mass eigenstates of energy E on a time scale �osc �
E=�M2. Combined fitting of the solar and KamLAND data
yield [44] j�M2j � 7:9� 10�5 �eV�2, therefore consider-
ing E� T, we find ��osc � 10 �0:1T=MeV�6. This com-
parison of time scales suggests that for T * 10 MeV
neutrinos are equilibrated as flavor eigenstates. Flavor
eigenstates created at local weak interaction vertices will
reach thermal equilibrium on time scales far shorter than
those required for oscillations into mass eigenstates for
temperatures larger than �10 MeV. Since in a loop inte-
gral the typical momenta are of order T, and assuming the
validity of this estimate, we consider the neutrino propa-
gators in the neutral current self-energy loop to be diagonal
in the flavor basis, massless, and in thermal equilibrium.

For temperatures T & 10 MeV and certainly below
freeze-out T < 1 MeV a full kinetic description that in-
cludes oscillations and expansion [17,29] is required. The
study of the kinetic equations will be the subject of forth-
coming work. In this article we restrict our study to the
temperature regime T * 10 MeV.

We also assume that the lepton and neutrino asymme-
tries are of the same order as the baryon asymmetry,
namely Li � �ni � �ni�=n� � 10�9. For a relativistic spe-
cies the asymmetry is proportional to �i�1	 �2

i =�
2� with

�i 
 �i=T, therefore under this assumption �i � 10�9 and
we can safely neglect the contribution to the chemical
potential in the nonlocal (in space-time) terms of order
g2=M4

W .

C. Brief summary of main results

The main results obtained in this article are: i) We obtain
the equation of motion in real time for initially prepared
wave packets of neutrinos. Both chiralities and helicities
are treated on equal footing. The self-energy is expanded
up to lowest order in the frequency and momentum yield-
ing nonlocal contributions to the equations of motion.
These happen to be larger than those from the lepton and
neutrino asymmetries for T * 5-10 MeV. ii) We studied
two different temperature regimes: me � T � m� within
which we show that there is the possibility of resonant
oscillations of test neutrinos, and me;m� � T � MW

within which the mixing angle for active neutrinos effec-
tively vanishes. For T � 10 MeV resonant flavor oscilla-
tions occur for neutrino energies in the few MeV range.
iii) Mixing angles in the medium not only depend on
energy but also on helicity. The dispersion relations of
propagating neutrinos in the medium also depend on he-
licity. Assuming that the lepton and quark asymmetries are
of the same order as the baryon asymmetry in the early
universe, the nonlocal (in space-time) terms in the self-
energies dominate over the asymmetry for typical energies
-3
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of neutrinos in the plasma for T * 3-5 MeV. iv) The
oscillation time scale in the medium is slowed down near
the resonance, becoming substantially longer than in the
vacuum for small vacuum mixing angle. For high energy
neutrinos off-resonance the mixing angle becomes vanish-
ingly small and the oscillation time scale speeds up as
compared to the vacuum. v) The equations of motion
reduce to the familiar oscillation formulae for ultrarelativ-
istic negative helicity neutrinos, but they consistently in-
clude the mixing angles and the oscillation frequencies in
the medium. We obtain general oscillation formula for
either chirality or helicity. These equations also describe
the oscillation dynamics of right-handed neutrinos, which,
while suppressed as consequence of the small masses, are
not sterile.

The article is organized as follows: in Section II we
obtain the equations of motion for initially prepared neu-
trino wave packets by implementing the methods of non-
equilibrium field theory and linear response. In Section III
we obtain the one-loop self-energy contributions from
charged and neutral currents. Section IV is devoted to
obtaining the dispersion relations, mixing angles, and os-
cillation time scales in the medium and a study of the
possibility of resonances. In Section V we study the real-
time evolution of neutrino wave packets as an initial value
problem. Section VI presents our conclusions, summarizes
our results, and presents some conjectures and further
questions. The detailed calculation of the self-energy is
presented in an appendix.
II. EFFECTIVE DIRAC EQUATION FOR
NEUTRINO PROPAGATION IN A MEDIUM

The propagation of a neutrino in a medium is determined
by the effective Dirac equation which includes the self-
energy corrections. Its solution yields the real-time evolu-
tion as an initial value problem. The correct framework to
study the dynamics is the real-time formulation of field
theory in terms of the closed-time-path integral [38–42].
In this section we implement this method combined with
linear response to obtain the effective equation of motion
for an expectation value of the neutrino field. The main
concept in this approach is the following, consider cou-
pling an external c-number Grassman source to the neu-
trino field and switching this source adiabatically up to
time t � 0. This source induces an expectation value of the
neutrino field, after switching off the external source at t �
0, the expectation value evolves in time as a solution of the
effective Dirac equation in the medium with the initial
condition determined by the source term.

The main ingredient in this program is the retarded self-
energy which enters in the effective Dirac equation. The
real-time formulation of field theory directly leads to
causal and retarded equations of motion. It is important
to highlight the difference with the S-matrix approach
which describes transition amplitudes from in to out states,
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the real-time formulation yields the equations of motion
for an expectation value and these are fully causal [38–42].

The self-energy is obtained in the unitary gauge in which
only the correct physical degrees of freedom contribute and
is manifestly unitary [45]. Previous calculations of the
neutrino self-energy in covariant gauges (one of which is
the unitary gauge) have proven that although the self-
energy does depend on the gauge parameter, the dispersion
relations are gauge-invariant [28].

As mentioned above we restrict our discussion to the
case of two flavors of Dirac neutrinos, namely, the electron
and muon neutrinos. The subtle CP violating phases asso-
ciated with the case of three active neutrinos will not be
considered here. However, the method can be generalized
to three active neutrinos, sterile neutrinos, or even
Majorana neutrinos without any conceptual difficulty and
will be postponed for further discussion elsewhere.

For Dirac neutrinos, mixing and oscillations can be
implemented by a minimal extension of the standard model
adding a Dirac mass matrix to the standard model
Lagrangian which is off-diagonal in the flavor basis. The
relevant part of the Lagrangian density is given by

L � L0
� 	L0

W 	L0
Z 	LCC 	LNC; (2.1)

where L0
� is the free field neutrino Lagrangian minimally

modified to include a Dirac mass matrix

L 0
� � �a�i6@�ab �Mab��b (2.2)

with a, b being the flavor indexes. For two flavors of Dirac
neutrinos the mass matrix Mab is given by

M �
mee me�

me� m��

� �
: (2.3)

L0
W;Z are the free field Lagrangian densities for the vector

bosons in the unitary gauge, namely

L 0
W � �

1

2
�@�W

	
� � @�W

	
� ��@

�W�� � @�W���

	M2
WW

	
�W

��; (2.4)

L 0
Z � �

1

4
�@�Z� � @�Z���@

�Z� � @�Z�� 	
1

2
M2
ZZ�Z

�;

(2.5)

and the charged and neutral current interaction Lagrangian
densities are given by

L CC �
g���
2
p ��a��LlaW	� 	 la��L�aW�� �; (2.6)

L NC�
g

2cos	w
��a�

�L�aZ�	fa�
��gVa �g

A
a�

5�faZ��;

(2.7)

where L � �1� �5�=2 is the left-handed chiral projection
operator, gV;A are the vector and axial vector couplings for
-4
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quarks and leptons, l stands for leptons, and f generically
for the fermion species with neutral current interactions.

For two flavors, the diagonalization of the free field
Dirac Lagrangian for neutrinos, (2.2) is achieved by a
unitary transformation to mass eigenstates. Considering,
flavor and mass doublets, respectively

�e
��

� �
;

�1

�2

� �
;

related by unitary transformation

�e
��

� �
� U

�1

�2

� �
; (2.8)

with the unitary transformation given by the 2� 2 matrix

U �
cos	 sin	
� sin	 cos	

� �
; (2.9)

where 	 is the vacuum mixing angle.
In the basis of mass eigenstates (�1, �2) the mass matrix

Mab becomes diagonal

M1 0
0 M2

� �
:

The elements mee, m��, and me� in the mass matrix (2.3)
are related to the vacuum mixing angle 	 and masses of the
propagating mass eigenstates M1 and M2 as follows

mee � C2M1 	 S2M2; m�� � S2M1 	 C2M2;

me� � ��M1 �M2�CS; (2.10)

where C � cos	 and S � sin	.
For later convenience, we introduce

M �
M1 	M2

2
; �M2 � M2

1 �M
2
2: (2.11)

The current value for the average of the vacuum masses
obtained by WMAP [23] and oscillation parameters from
the combined fitting of the solar and KamLAND data are
[44]:

M � 0:25 �eV�; j�M2j � 7:9� 10�5 �eV�2;

tan2	 � 0:40: (2.12)

For these values of the masses and more generally if there
is an almost degeneracy in the hierarchy of neutrino masses
the ratio

j�M2j

M2
� 1: (2.13)

The smallness of this ratio in the nearly degenerate case
will lead to important simplifications.

Our goal is to obtain the effective Dirac equation for
neutrinos propagating in the medium and extract the in-
medium mixing angles, propagation frequencies, and the
wave functions of the propagating modes in the medium.
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The real-time effective Dirac equation in the medium is
derived from linear response by implementing the methods
of nonequilibrium quantum field theory described in [42].

Following this approach, we introduce an external
Grassmann-valued source that couples linearly to the neu-
trino field via the Lagrangian density

L S � �a�a 	 �a�a; (2.14)

whence the total Lagrangian density is given by L	LS.
The external source induces an expectation value for the
neutrino field which, in turn, obeys the effective equation
of motion with self-energy modifications from the thermal
medium [42].

To study the dynamics of the system, it is the expectation
values rather than the in-out S-matrix elements that are
necessary [39]. This requires a generating function for the
real-time correlation functions. Denoting generically by �
the fields (fermions, or gauge bosons), a path integral
representation of this generating functional is given by

Z �j	; j�� �
Z
D�	D��ei

R
�L��	;j	��L���;j���; (2.15)

and the path integrations over the fields � will be taken
along the forward (	 ) and backward (� ) time branches,
in the presence of the sources j [38–42]. Here, the
sources j are coupled linearly to the fields � and thus
the real-time correlation functions can be obtained from
the functional derivatives of this generating functional with
respect to these sources. Functional derivatives with re-
spect to j	 and j� give the time-ordered and anti-time-
ordered correlation functions, respectively.

The sources j are introduced to compute the real-time
correlation functions and will be set to zero after the
calculations. However, the external Grassman source �
and hence the expectation value induced to the neutrino
field will remain the same along both time branches ( ).
For further discussions on the general method, see
Ref. [38,40–42].

The equation of motion for the expectation value of the
neutrino field induced by the external Grassman source is
derived by shifting the field

�a �  a 	�a ;  a � h�

a i; h�a i � 0; (2.16)

and imposing h�a i � 0 order by order in the perturbation
theory [40–42]. Carrying out this implementation up to
one-loop order, we find the following equation of motion

�i6@�ab�Mab	�tad
ab L� b� ~x;t�

	
Z
d3x0

Z
dt0�ret

ab � ~x� ~x0;t� t0� b� ~x0;t0����a� ~x;t�;

(2.17)

where �ret
ab � ~x� ~x0; t� t0� is the real-time retarded self-

energy given by the exchange one-loop contributions, the
first two diagrams displayed in Fig. 1 and �tad

ab L is the
-5
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FIG. 1. One-loop diagrams contributing to the neutrino self-
energy.
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tadpole contribution from the last two diagrams in Fig. 1.
The expectation value of the neutrino field in the medium
describes a beam or wave-packet of test neutrinos, namely,
these are neutrinos that are injected in the medium, for
example, by the decay of a neutron or any other heavy
particle, but have not (yet) thermalized with the plasma.
This is precisely the manner in which linear response leads
to a study of real-time phenomena.

Because of the translational invariance of the medium in
thermal equilibrium, the retarded self-energy is simply a
function of ~x� ~x0 and t� t0. Hence, the equation can be
written in frequency and momentum space by introducing
the space-time Fourier transform of the expectation value
and the source

 a� ~x; t� �
1����
V
p

X
~k

Z
d! a� ~k; !�e

i ~k� ~xe�i!t;

�a� ~x; t� �
1����
V
p

X
~k

Z
d!�a� ~k;!�ei

~k� ~xe�i!t:

(2.18)

Furthermore, due to the rotational invariance of the thermal
medium, it implies that all physical quantities depend on
j ~kj 
 k.
085016
We have argued in the introduction that for temperatures
T * 10 MeV the relaxation via the weak interaction is
faster than the time scales of (vacuum) oscillations. The
validation of this assumption requires a deeper study of the
interplay between neutrino oscillations and damping pro-
cesses in the medium including the two-loop self-energy,
which will be the subject of a forthcoming article.
Assuming the validity of this estimate, the neutrinos in
the loop are in thermal equilibrium as flavor eigenstates
and at the temperatures of interest we consider them mass-
less. Under this assumption, the self-energy is diagonal in
the flavor basis.

As a result, the effective Dirac equation for neutrino
oscillations in the medium is obtained as

���0!� ~� � ~k��ab �Mab 	�tad
ab L

	 �ab�!; k�L� b�!; k� � ��a�!; k�; (2.19)

with

��!; k� � �W�!; k� 	�Z�!; k�;

�tad � ��etad 	 ���tad 	�ftad;
(2.20)

where �ftad is the total tadpole contribution from all
fermions other than neutrinos in the loop.

The details of the calculation of the self-energy are
presented in the appendix.
III. ONE-LOOP SELF-ENERGIES

A. Charged and Neutral Currents

From Eqs. (A28)–(A32) in the appendix, we found that
the self-energies �W;Z�!; k� can be written in the disper-
sive form

�W;Z�!; k� �
Z dk0

�
Im�W�k0; k�
k0 �!� i


; (3.1)

with
Im�W�k0; k� �
g2�

2

Z d3p

�2��3
1

4Wq!p
f�1� Nf�!p� 	 Nb�Wq�� 6Q� ~p; ~q���k0 �!p �Wq� 	 �1� �Nf�!p�

	 Nb�Wq�� 6Q�� ~p;� ~q���k0 	!p 	Wq� 	 �Nf�!p� 	 Nb�Wq�� 6Q� ~p;� ~q���k0 �!p 	Wq�

	 � �Nf�!p� 	 Nb�Wq�� 6Q�� ~p; ~q���k0 	!p �Wq�g; (3.2)
where we have defined

Q�� ~p; ~q� � p� 	 2q�
Wq!p � ~q � ~p

M2
W

;

q� � �Wq; ~k� ~p�; !p �
���������������������
j ~pj2 	m2

f

q
;

Wq �

��������������������������������
j ~k� ~pj2 	M2

W

q
:

(3.3)

The corresponding contribution from neutral currents can
be obtained from the above expression by setting
g���
2
p !

g
2 cos	w

; MW ! MZ �
MW

cos	w
; (3.4)

with 	w being the Weinberg angle.
In the limit T � MW;Z, the abundance of vector bosons

is exponentially suppressed, hence we neglect the terms
that feature Nb�Wq�. The imaginary part of the one-loop
self-energy vanishes on the neutrino mass shell at one-loop
level. A nonvanishing damping rate (nonvanishing imagi-
nary part of the self-energy at the neutrino mass shell) at
-6



TABLE I. Coefficients of gV for fermions.

Particles gV

�e, ��, ��
1
2

e, �, � � 1
2	 2sin2	w

p 1
2� 2sin2	w

n � 1
2

u, c, t 1
2�

4
3 sin2	w

d, s, b � 1
2	

2
3 sin2	w
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temperatures T � MW arises at two-loop level. Thus we
focus solely on Re�W�k0; k� when studying the dispersion
relation and propagation of neutrinos in the medium.

The form of Im�W�k0; k� suggests that Re�W�!; k� can
be written as

Re �W�!; k� � �0�0
W�!; k� � ~� � bk�1

W�!; k�; (3.5)

where �0
W�!; k� and �1

W�!; k� can be obtained by taking
traces on both sides.

Dropping the T � 0 part and using the dispersive rep-
resentation (3.1), we find that for any fermion f in the loop,

�0
W�!;k���

g2

2

Z d3p

�2��3
1

4Wq!p

�
Nf�!p�

�

�
Q0� ~p; ~q�

Wq	!p�!
	

Q0� ~p;� ~q�
Wq�!p	!�

�
� �Nf�!p�

�

�
Q0� ~p; ~q�

Wq	!p	!
	

Q0� ~p;� ~q�
Wq�!p�!

��
; (3.6)

�1
W�!;k���

g2

2

Z d3p

�2��3
1

4Wq!p

�
Nf�!p�

�

� bk � ~Q� ~p; ~q�
Wq	!p�!

	
bk � ~Q� ~p;� ~q�
Wq�!p	!

�
	 �Nf�!p�

�

� bk � ~Q� ~p; ~q�
Wq	!p	!

	
bk � ~Q� ~p;� ~q�
Wq�!p�!

��
: (3.7)

In the thermalized medium with temperature T, the domi-
nant loop momenta is of order p� T, therefore we neglect
the neutrino masses since T * 3-5 MeV. The self-energy
is expanded in a power series in the external frequency and
momentum !, k, we refer to terms of the form !=MW ;
k=MW as nonlocal terms (in space-time) since they repre-
sent gradient expansions in configuration space.
Furthermore, we neglect the contribution from leptons
with masses mf � T since these will be exponentially
suppressed, but we calculate the self-energies up the order
�g2=M4

W;Z��mf=T�
2 for leptons with masses mf � T and

all higher order terms will be dropped. A straightforward
but lengthy calculation gives

�0
W�!; k� � �

3GF���
2
p �nf � n �f� 	

7�2

15
���
2
p

GF!T
4

M2
W

;

�1
W�!; k� � �

7�2

45
���
2
p

GFkT
4

M2
W

�
1�

30

7�2

�mf

T

�
2
�
;

(3.8)

where GF �
���
2
p g2

8M2
W

is the Fermi constant, and nf � n �f is

the particle-antiparticle number density difference for any
fermion f defined as

nf � n �f � 2
Z d3p

�2��3
�Nf�!p� � �Nf�!p��: (3.9)

The contribution to�1
W�!; k� of order g2=M2

W vanishes as a
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consequence of the isotropy of the equilibrium distribution
functions. In calculating the nonlocal (in space-time) terms
proportional to !=MW ; k=MW we have neglected the
chemical potentials under the assumption that all asymme-
tries (leptons and neutrinos) are of the same order as the
baryon asymmetry, in which case �=T � 10�9 where � is
the chemical potential for the corresponding species.

In Ref. [27] the equivalent to �0 is quoted as the coef-
ficient bL, but no equivalent to �1 was provided there, this
is a difference between our results and those of Ref. [27].
The contribution�1�!; k� is new and it cannot be identified
with an ‘‘effective potential’’ (which is proportional to �0)
and it will be a source of helicity dependence on frequen-
cies and mixing angles which has not been appreciated in
the literature.

To obtain the corresponding expressions for the neutral
current interactions, we can simply apply the replacement
Eq. (3.4). The tadpole contributions have been previously
obtained in Ref. [27] where we refer the reader for more
details. The result of the tadpole diagrams is summarized
by the expression

�ftad �
2GFg

V���
2
p �nf � n �f��

0; (3.10)

where the coefficient gV for the different species of lep-
tons, hadrons, and quarks are given in Table I.

Writing �ftad�!; k� in the same form as (3.5), we obtain

�0
tad �

2GFgV���
2
p �nf � n �f�; �1

tad � 0; (3.11)

and tadpoles with quark loops acquire an extra factor 3
from color. The tadpole contribution is proportional to
nf � n �f, which is the signature of a CP asymmetric me-
dium. It is customary and convenient to express nf � n �f in
terms of its relative abundance to the photons in the uni-
verse. At any temperature T, the photon number density in
the universe is given by

n� �
2

�2 ��3�T
3 (3.12)

and the particle-antiparticle asymmetry for any fermion
species f is defined as
-7
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Lf �
nf � n �f

n�
: (3.13)

The magnitude of the observed baryon asymmetry is LB ’
10�9. Since B� L is conserved in the standard model, it is
natural to expect that the lepton asymmetries should be of
the same order as LB. Although there is no a priori reason
to expect the neutrino asymmetries to be of the same order,
we will henceforth assume that all the lepton and neutrino
asymmetries Le, L�, L�e , and L�� are of the order of the
baryon asymmetry �10�9.

The next step is to compute the contributions from the
one-loop exchange diagrams. We focus on two different
temperature regimes, me � T � m� in which only the
electron is ultrarelativistic and me;m� � T � MW in
which both leptons are ultrarelativistic.

1. me � T� m�

This temperature limit is interesting because it is the
energy scale right above BBN. The efficiency of BBN is
sensitive to the amount of electron neutrinos which, in turn,
depends on the detailed dynamics of neutrino oscillations.
As it will be discussed below in detail, in the temperature
regime T * 5 MeV the nonlocal (in space-time) terms
proportional to !, k from the exchange diagrams (both
charged and neutral currents) dominate the contributions of
the lepton and neutrino asymmetries assuming all of them
to be of order 10�9.

In the temperature limit with me � T � m�, the con-
tribution from� leptons to the exchange one-loop diagram
is exponentially suppressed and we neglect it. Apart from
electrons and neutrinos, the thermal background does con-
tain protons and neutrons in nuclear statistical equilibrium
since for T * 1 MeV the weak interactions lead to equili-
bration on time scales shorter than the Hubble time scale
via the reactions

n$ p	 e� 	 ��e; p	 ��e $ n	 e	;

p	 e� $ n	 �e:
(3.14)

In the basis of flavor eigenstates, the total one-loop self-
energy contribution is of the form

Re ��!; k� � ��0A�!� � ~� � bkB�k��L (3.15)

where A�!; k� and B�!; k� are 2� 2 diagonal matrices in
the neutrino flavor basis given by

A �!� �
Ae�!� 0

0 A��!�

� �
;

B�k� �
Be�k� 0

0 B��k�

 !
:

(3.16)

Extracting nonlocal terms (in space-time) up to O�!=T�,
O�k=T� we find the following matrix elements,
085016
Ae�!� � �
3GF���

2
p Le n� 	

7�2

15
���
2
p

GF!T4

M2
W

�
3GF

2
���
2
p L�e n�

	
7�2

30
���
2
p

GF!T
4

M2
Z

	
GF���

2
p L�e n� 	

GF���
2
p L�� n�

	
2GF���

2
p

�
�

1

2
	 2sin2	w

�
Le n�

	
2GF���

2
p

�
1

2
� 2sin2	w

�
Lp n� �

GF���
2
p Ln n�; (3.17)

A��!� � �
3GF

2
���
2
p L�� n� 	

7�2

30
���
2
p

GF!T4

M2
Z

	
GF���

2
p L�e n�

	
GF���

2
p L�� n� 	

2GF���
2
p

�
�

1

2
	 2sin2	w

�
Le n�

	
2GF���

2
p

�
1

2
� 2sin2	w

�
Lp n� �

GF���
2
p Ln n�;

(3.18)

Be�k���
7�2

45
���
2
p

GFkT4

M2
W

�
1�

30

7�2

�
me

T

�
2
�
�

7�2

90
���
2
p

GFkT4

M2
Z

;

(3.19)

B��k� � �
7�2

90
���
2
p

GFkT
4

M2
Z

: (3.20)

We purposely displayed the individual terms in the above
expressions to highlight that the first line in Ae;��!� as well
as the expressions for Be;��k� arise from the exchange
diagrams (the two top diagrams in Fig. 1), while the second
and third lines in Ae;��!� arise from the tadpole diagrams
(bottom two diagrams in Fig. 1). We have assumed that the
flavor neutrinos are in thermal equilibrium and have con-
sistently neglected neutrino masses. The correction term
�me=T�

2 is displayed so that one can estimate the error
incurred when this term is dropped for T � me, the error is
less than 1% for T * 5 MeV. In what follows we will
neglect this contribution in the temperature range of inter-
est for this section.

Charge neutrality requires that Le � Lp, hence

�e tad 	 �p tad � 0: (3.21)

Therefore, the expressions for Ae and A� simplify to the
following:

Ae�!� �
GFn����

2
p

�
�Le 	

7�4

60��3�
!T

M2
W

�2	 cos2	w�
�
;

(3.22)

A��!� �
GFn����

2
p

�
�L� 	

7�4

60��3�
!T

M2
W

cos2	w

�
; (3.23)
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Be�k� � �
GFn����

2
p

7�4

180��3�
kT

M2
W

�2	 cos2	w�; (3.24)

B��k� � �
GFn����

2
p

7�4

180��3�
kT

M2
W

cos2	w; (3.25)

where

�Le � �
1

2
L�e 	 L�� � 3Le � Ln;

�L� � �
1

2
L�� 	 L�e � Ln;

(3.26)

where in the temperature regime me � T � m� we con-
sistently neglected the muon contribution to the nonlocal
terms proportional to !, k in the exchange diagrams.

The above expressions also reveal the importance of the
temperature region T * 5 MeV. Assuming that all asym-
metries are of the same order as the baryon asymmetry,
namely Li � 10�9, we see that for !� k� T the factor
T2=M2

W � 10�9 for T * 5 MeV.
We will discuss below that in this region there is also a

resonance in the mixing angle in agreement with the results
in [29].

NEUTRINO OSCILLATIONS IN THE EARLY . . .
085016
2. me;m� � T�MW

This temperature region is important because the non-
local contributions are much larger than that of the lepton
and neutrino asymmetries, assuming both to be of the same
order �10�9 and are the same for both leptons if their
masses are neglected. Therefore, if the contribution from
the lepton and neutrino asymmetries is neglected, and
terms of O�m2

e=T2�; O�m2
�=T2� are neglected, the matrices

A, B become proportional to the identity. In this case the
mixing angle would be the same as in the vacuum. We will
see however, that keeping terms of O�m2

e=T2�; O�m2
�=T2�

leads to a very different result, namely, the vanishing of the
mixing angle for negative helicity neutrinos or positive
helicity antineutrinos in this temperature range.

For T � m� � 100 MeV the temperature is larger than
the critical temperature for deconfinement in QCD Tc �
160 MeV. Therefore, the medium contains free quarks but
no nucleons. Since both u and d quarks have masses
smaller than 10 MeV, their masses can be neglected. We
only include in our description the two lightest quark
degrees of freedom consistently with keeping only a
weak doublet. We also assume that there is vanishing
strangeness in the medium.

As a result, the corresponding Ae;��!�, Be;��k� are now
given by
Ae�!� � �
3GF���

2
p Le n� 	

7�2

15
���
2
p

GF!T4

M2
W

�
3GF

2
���
2
p L�e n� 	

7�2

30
���
2
p

GF!T4

M2
Z

	
GF���

2
p L�e n� 	

GF���
2
p L�� n�

	
2GF���

2
p

�
�

1

2
	 2sin2	w

�
Le n� 	

2GF���
2
p

�
�

1

2
	 2sin2	w

�
L� n� 	

6GF���
2
p

�
1

2
�

4

3
sin2	w

�
Lu n�

	
6GF���

2
p

�
�

1

2
	

2

3
sin2	w

�
Ld n�; (3.27)

A��!� � �
3GF���

2
p L� n� 	

7�2

15
���
2
p

GF!T
4

M2
W

�
3GF

2
���
2
p L�� n� 	

7�2

30
���
2
p

GF!T
4

M2
Z

	
GF���

2
p L�e n� 	

GF���
2
p L�� n�

	
2GF���

2
p

�
�

1

2
	 2sin2	w

�
Le n� 	

2GF���
2
p

�
�

1

2
	 2sin2	w

�
L� n� 	

6GF���
2
p

�
1

2
�

4

3
sin2	w

�
Lu n�

	
6GF���

2
p

�
�

1

2
	

2

3
sin2	w

�
Ld n�; (3.28)
Be�k���
7�2

45
���
2
p

GFkT
4

M2
W

�
1�

30

7�2

�
me

T

�
2
�
�

7�2

90
���
2
p

GFkT
4

M2
Z

;

(3.29)

B��k� � �
7�2

45
���
2
p

GFkT
4

M2
W

�
1�

30

7�2

�m�

T

�
2
�

�
7�2

90
���
2
p

GFkT4

M2
Z

: (3.30)

Charge neutrality of the medium leads to the constraint
4Lu � Ld � 3Le � 0, which leads to the following sim-
plified expressions:

Ae�!� �
GFn����

2
p

� g�Le 	
7�4

60��3�
!T

M2
W

�2	 cos2	w�
�
;

(3.31)
A��!� �
GFn����

2
p

�
�gL� 	

7�4

60��3�
!T

M2
W

�2	 cos2	w�
�
;

(3.32)
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Be�k� � �
GFn����

2
p

7�4

180��3�
kT

M2
W

�
2	 cos2	w �

60

7�2

�

�
me

T

�
2
�
;

(3.33)

B��k� � �
GFn����

2
p

7�4

180��3�
kT

M2
W

�
2	 cos2	w �

60

7�2

�

�m�

T

�
2
�
;

(3.34)

where

�fLe � �
1

2
L�e 	 L�� � 3Le 	 �1� 4sin2	w��2Le � L��

� �1� 8sin2	w�Lu � 2Ld; (3.35)

�gL���
1

2
L��	L�e�3L�	�1�4sin2	w��2Le�L��

��1�8sin2	w�Lu�2Ld: (3.36)

In the limit when T � me;� both leptons become ultra-
relativistic and a CP-symmetric medium becomes flavor
blind to the weak interactions. In this case we must keep
terms of O�me;�=T� to understand the nature of oscillations
and mixing.
IV. DISPERSION RELATIONS, MIXING ANGLES,
AND RESONANCES IN THE MEDIUM

The neutrino dispersion relations and mixing angles in
the medium are obtained by diagonalizing the homogene-
ous effective Dirac equation in the medium, namely, by
setting ��!; k� � 0 in Eq. (2.19). Using the results ob-
tained above, the homogeneous Dirac equation in fre-
quency and momentum becomes

��0!1� ~� � bkk1�M	 ��0A�!�

� ~� � bkB�k��L� �!; k� � 0; (4.1)

where 1 is the 2� 2 identity matrix in the flavor basis in
which the field  �!; k� is given by

 �!; k� �
�e�!; k�
���!; k�

� �
; (4.2)

with �e�!; k� and ���!; k� each being a 4-component
Dirac spinor.

If we multiply the effective Dirac Eq. (4.1) by the chiral
projectors R and L, respectively from the left, we obtain

��0W� ~� � bkK� L �M R � 0; (4.3)

��0!1� ~� � bkk1� R �M L � 0; (4.4)
085016
where we have defined the flavor matrices

W � !1	 A; K � k1	 B: (4.5)

The set of Eqs. (4.3) and (4.4) couple  L and  R together.
To solve the equations, we first multiply (4.3) by ��0!�

~� � bkk�1 from the left and use Eq. (4.4) to obtain an
equation for  L which can be written in terms of the

helicity operator ĥ�bk� � �0 ~� � bk�5; as follows

�!W� kK	 ĥ�bk��!K�Wk� �M2� L � 0; (4.6)

and the right-handed component is given by

 R�!; k� �M�0 �!	 ĥ�
bk�k�

!2 � k2  L�!; k�: (4.7)

It is convenient to separate the Dirac and flavor structure to
simplify the study. This is achieved most economically in
the chiral representation of the Dirac matrices, in which

�0 �
0 �1

�1 0

� �
; �5 �

1 0
0 �1

� �
; (4.8)

~� � bk � 0 ~� � bk1
� ~� � bk1 0

 !
;

ĥ�k� � ~� � bk 1 0

0 1

 !
;

(4.9)

and by introducing the two component Weyl spinors

v�h��bk� eigenstates of helicity,

~� � bkv�h��bk� � hv�h��bk�; h � 1: (4.10)

These spinors are normalized so that

�v�h��bk��yv�h0��bk� � �h;h0 : (4.11)

In terms of these helicity eigenstates, a general flavor
doublet of left (L) and right (R) handed Dirac spinors
can be written

 L �
X
h�1

0
v�h� � ’�h�

� �
; (4.12)

and

 R �
X
h�1

v�h� � ��h�

0

 !
; (4.13)

where ’�h�; ��h� are flavor doublets. We have purposely left
the arguments unspecified because this expansion will be
used in real time as well as for the Fourier and Laplace
transforms, respectively. We need both positive and nega-
tive helicity eigenstates because the four independent de-
grees of freedom for each flavor are positive and negative
energy and positive and negative helicity.
-10
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Projecting Eq. (4.6) onto the helicity eigenstates v�h��bk�
we obtain an equation for the flavor doublet ’�h��!; k�,
namely

��!2 � k2�1	 �!� hk��A	 hB� �M2�’�h��!; k� � 0:

(4.14)

Projecting Eq. (4.7) onto helicity eigenstates yields the
relation

��h��!; k� � �M
�!	 hk�

!2 � k2 ’
�h��!; k�: (4.15)

Writing the doublet ’�h��!; k� in the flavor basis as

’�h��!; k� � ��h�e �!; k�
��h�� �!; k�

 !
; (4.16)

leads to the following matrix form for Eq. (4.14)

a�h� b
b c�h�

 !
��h�e
��h��

 !
� 0; (4.17)

where the matrix elements in the flavor basis are given by

a�h� � !2 � k2 	 �!� hk��Ae 	 hBe� �
1

2
�M2

1 	M
2
2�

�
1

2
�M2

1 �M
2
2� cos�2	�; (4.18)

b �
1

2
�M2

1 �M
2
2� sin�2	�; (4.19)

c�h� � !2 � k2 	 �!� hk��A� 	 hB�� �
1

2
�M2

1 	M
2
2�

	
1

2
�M2

1 �M
2
2� cos�2	�: (4.20)

Let us introduce a doublet of mass eigenstates in the
medium

�h��!; k� �
�1�!; k�
�2�!; k�

� �
; (4.21)

related to the flavor doublet ’�h��!; k� by a unitary trans-
formation U�h�m with

U�h�m �
cos	�h�m sin	�h�m
� sin	�h�m cos	�h�m

 !
; (4.22)

’�h��!; k� � U�h�m �h��!; k�;

��h��!; k� � U�h�m � �h��!; k�:
(4.23)

The mixing angle in the medium for states with helicity h,
	�h�m is obtained by requiring that the unitary transformation
Eq. (4.22) diagonalizes the matrix Eq. (4.17). The eigen-
value equation in diagonal form is given by
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�
!2 � k2 	

1

2
Sh�!; k� �

1

2
�M2

1 	M
2
2� �

1

2
�M2

��
cos2	

�
�h�!; k�

�M2

�
2
	 sin22	

�
1=2
� 1 0

0 �1

��
�h��!; k� � 0;

(4.24)

where Sh�!; k�, �M2, and �h are, respectively, given by

Sh�!;k�� �!�hk��Ae�!�	A��!�	hBe�k�	hB��k��;

(4.25)

�M2 � M2
1 �M

2
2; (4.26)

�h�!;k���!�hk��Ae�!��A��!�	hBe�k��hB��k��:

(4.27)

The mixing angle in the medium is determined by the
relation

tan�2	�h�m � �
2b

c�h� � a�h�
�

�M2 sin�2	�

�M2 cos�2	� ��h�!; k�
;

(4.28)

or alternatively by the more familiar relation

sin2	�h�m �
sin2	��

cos2	� �h�!;k�
�M2

�
2
	 sin22	

�
1=2
: (4.29)

We note that the neutrino mass eigenvalues as well as the
mixing angle depends on k as well as on the helicity
eigenvalue h. This is one of the novel results which has
not been obtained before simply because only left-handed
negative helicity neutrinos were considered in the literature
[1,11–15].

The right-handed components are obtained from the left-
handed ones by performing the unitary transformation
Eq. (4.22) on Eq. (4.15). The relation (4.15) leads to the
following expressions

� �h��!;k���
!	hk

!2�k2M
�

1	
�M2

4M2

�
C S
S �C

��
�h��!;k�;

(4.30)

where M � 1
2 �M1 	M2� and

C � cos�2	�h�m � 2	�; S � sin�2	�h�m � 2	�: (4.31)
-11
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A. Eigenvectors and dispersion relations

Equation (4.24) has the following eigenvectors in the
basis of mass eigenstates:

�h�1 �!; k� � ��h�1 �!; k�
1
0

� �
; (4.32)

� �h�1 �!; k� � ��
�h�
1 �!; k�

!	 hk

!2 � k2 M
��

1
0

�
	
�M2

4M2

�
C
S

��
;

(4.33)

and

�h�2 �!; k� � ��h�2 �!; k�
�

0
1

�
; (4.34)

� �h�2 �!;k����
�h�
2 �!;k�

!	hk

!2�k2M
��

0
1

�
	
�M2

4M2

�
S
�C

��
:

(4.35)

The corresponding doublets in the flavor basis can be
obtained by the unitary transformation Eq. (4.22).

The eigenvalues are found in perturbation theory con-
sistently up to O�GF� by writing

!�h�a �k;� � �Ea�k� 	 �!
�h�
a �k;��; a � 1; 2

(4.36)

with

E1;2�k� �
���������������������
k2 	M2

1;2

q
: (4.37)

We find,

�!�h�1 �k;� � �
1

4E1�k�

�
Sh�E1�k�; k� � �M

2

���
cos2	

�
�h�E1�k�; k�

�M2

�
2
	 sin22	

�
1=2
� 1

��
;

(4.38)

�!�h�2 �k;� � �
1

4E2�k�

�
Sh�E2�k�; k� 	 �M2

���
cos2	

�
�h�E2�k�; k�

�M2

�
2
	 sin22	

�
1=2
� 1

��
:

(4.39)

It is important to highlight that whereas the mixing angle
only depends on �h, the medium corrections to the fre-
quencies also depend on Sh. This is important because even
when in the case when the matrices A, B become propor-
tional to the identity, in which case �h � 0 and the mixing
angle in the medium coincides with that of the vacuum, the
frequencies and, in particular, the oscillation frequency
still receives medium corrections.
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B. Resonances

The condition for resonant oscillations is that the mixing
tan�2	�h�m � reaches a maximum (infinity) as a function of a
parameter, temperature, density, or energy. From Eq. (4.28)
a resonance takes place when

�h�!; k�

�M2
� cos2	; (4.40)

where ! � !�h�a �k;� correspond to the dispersion rela-
tions for the propagating modes in the medium, given by
Eq. (4.36). To leading order in GF the in-medium disper-
sion relation can be approximated by the free field disper-

sion relation !�h�a �k;� � 
���������������������
k2 	M2

1;2

q
. The relativistic

limit is warranted because the neutrino momenta in the
plasma is k� M1;2 � eV. Furthermore, under the assump-
tion that the hierarchy of vacuum mass eigenstates is nearly
degenerate, namely j�M2=M2j � 1, as seems to be sup-
ported by the experimental data, the dispersion relations
can be further approximated as follows

!�h�a �k;� � �k
�
1	

M2

2k2

�
; � � 1: (4.41)

It is convenient to introduce the following notation

L 9 � 109�Le �L��; (4.42)

�5 � 105

�
�M2

eV2

�
: (4.43)

If the lepton and neutrino asymmetries are of the same
order of the baryon asymmetry, then 0:2 & jL9j & 0:7 and
the fitting from solar and KamLAND data suggests j�5j �
8. Using the approximations leading to Eq. (4.41) the ratio
�h=�M2 can be written compactly from Eq. (4.27).

We study separately the cases me � T � m� and
me;m� � T � MW .

1. me � T� m�
(a) C
-12
ase I: ! � k	 M2

2k , h � �1, positive energy,
negative helicity neutrinos:

�h

�M2
�

4

�5

�
0:1T
MeV

�
4 k
T

�
�L9 	

�
2T

MeV

�
2 k
T

�
;

(4.44)

where we have neglected M2

k2 . For fixed temperature,
the resonance condition Eq. (4.40) is fulfilled for the
value of neutrino momentum given by

k �
�MeV�2

8T

�
L9 	

�
L2

9

	 16�5 cos2	
�
200 MeV

T

�
2
�

1=2
�
: (4.45)

Hence, for �5 cos2	 > 0, there is always a reso-
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nance. If jL9j & 1, then for neutrino momenta such
that

������
Tk
p

> 1 MeV the nonlocal term dominates
over the asymmetry and the resonance occurs for
k� 25

������������������
�5 cos2	

p
�MeV�3=T2. For example, if T �

10 MeV, the resonance occurs for k� 1 MeV. If
�5 cos2	 < 0 there can also be a resonance provided

jL9jT
200 MeV

> 4
���������������������
j�5 cos2	j

q
: (4.46)

However this inequality requires a large value of
jL9j, for example, for T � 10 MeV it requires that
jL9j * 140.

2

(b) C
ase II: ! � k	 M
2k , h � 1, positive energy, posi-

tive helicity neutrinos:

�h

�M2 �
10�16

�5

�
T

MeV

�
2
�
M
eV

�
2

�

�
�L9

T
k
	 2

�
T

MeV

�
2
�
; (4.47)

where we have neglected terms of higher order in
M2

k2 . Because M� 1 eV and 100 MeV� T �
1 MeV a resonance would only be available for k�
10�16 MeV which is not a relevant range of mo-
menta for neutrinos in the plasma. Therefore, posi-
tive helicity neutrinos mix with the vacuum mixing
angle.

2

(c) C
ase III: ! � �k� M
2k , h � �1, positive energy,

negative helicity antineutrinos:

�h

�M2
�

10�16

�5

�
T

MeV

�
2
�
M
eV

�
2
�
L9

T
k
	 2

�
T

MeV

�
2
�
:

(4.48)

Again in this expression we have neglected higher
order terms in M2

k2 . A conclusion similar to that of
Case II above holds in this case. No resonance is
available for relevant values of neutrino momenta
within the temperature range in which these results
are valid. For the Cases II and III the ratio
j�h=�M

2j � 1 for all relevant values of the neu-
trino momentum within the temperature range in
which these results are valid. Therefore, negative
helicity antineutrinos mix with the vacuum mixing
angle, just as positive helicity neutrinos.

2

(d) C
ase IV: ! � �k� M
2k ; h � 1, positive energy,

positive helicity antineutrinos:

�h

�M2
�

4

�5

�
0:1T
MeV

�
4 k
T

�
L9 	

�
2T

MeV

�
2 k
T

�
; (4.49)

where we have neglected higher order terms in M2

k2 .
The position of the resonance in this case is obtained
from that in Case I above by the replacement L9 !
�L9, namely, for fixed temperature the resonance
condition is fulfilled at the value of k given by
085016-13
k �
�MeV�2

8T

�
�L9 	

�
L2

9

	 16�5 cos2	
�
200 MeV

T

�
2
�

1=2
�
: (4.50)

Again in the temperature range 1 MeV� T �
100 MeV there is a resonance if �5 cos2	 > 0 (as-
suming that j�5 cos2	j � 1). Just as in Case I, if
jL9j & 1 the nonlocal term dominates over the
asymmetry contribution for

������
Tk
p

* 1 MeV and the
resonance occurs for k� 25

������������������
�5 cos2	

p
�MeV�3=T2.

Cases III and IV reveal an interesting feature: only
the asymmetry contribution changes sign between
neutrinos and antineutrinos whereas the nonlocal (in
space-time) term remains the same.
Together these expressions confirm that if the lepton
and neutrino asymmetries are of the same order as
the baryon asymmetry, namely 0:2 & jL9j & 0:7,
then the nonlocal terms from the exchange diagrams
dominate the self-energy for T * 3-5 MeV unless
the neutrino in the plasma has a momentum k such
that

������
kT
p

� 0:5 MeV.

In summary, for me � T � m� resonances occur in

Cases I and IV when h� < 0 (� is the sign of the energy
eigenvalue). For h� > 0 (Cases II and III) no resonance is
available for neutrino momenta k� T � few MeV and
mixing angle in the medium coincides with the vacuum
value.

2. me;m� � T�MW

We use m� � 106 MeV and find the following simple
expressions

2

(a) C
ase I: ! � k	 M
2k , h � �1, positive energy,

negative helicity neutrinos:

�h

�M2
�

0:4� 1012

�5

�
T

GeV

�
4 k
T

�
4:83

k
T
	 10�3L9

�
:

(4.51)

In this case no resonance is available but for neu-
trinos with extremely low energy and not relevant
for the plasma. For example for T � GeV only
neutrinos with energy of a few eV would be poten-
tially resonant, but this momentum range is not a
relevant one for neutrinos in the plasma. For neu-
trinos with energy larger than a few keV the mixing
angle effectively vanishes. Therefore, we conclude
that in this temperature regime the mixing angle in
the medium for negative helicity neutrinos vanishes.

2

(b) C
ase II: ! � k	 M
2k , h � 1, positive energy, posi-

tive helicity neutrinos:

�h

�M2 � �
10�7

�5

�
T

GeV

�
2 T
k

�
M
eV

�
2

�

�
4:83

k
T
� 10�3L9

�
: (4.52)
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It is clear that for the relevant regime of neutrino
momenta in the plasma j�h=�M

2j � 1. Hence the
mixing angle in the medium coincides with the
vacuum mixing angle. Thus the conclusion in this
case is similar to that in the case described by
Eq. (4.47), namely, positive helicity neutrinos
undergo oscillations in the medium with the vacuum
mixing angle.

2

(c) C
ase III: ! � �k� M
2k , h � �1, positive energy,

negative helicity antineutrinos:

�h

�M2 � �
10�7

�5

�
T

GeV

�
2 T
k

�
M
eV

�
2

�

�
4:83

k
T
	 10�3L9

�
: (4.53)

The result in this case is similar to that of Case II
above, negative helicity antineutrinos oscillate in
the medium with the vacuum mixing angle.

2

(d) C
ase IV: ! � �k� M
2k , h � 1, positive energy,

positive helicity antineutrinos:

�h

�M2
�

0:4� 1012

�5

�
T

GeV

�
4 k
T

�
4:83

k
T
� 10�3L9

�
:

(4.54)

The conclusion in this case is similar to that of the
case described by Eq. (4.51) above, the mixing angle
effectively vanishes and oscillations of positive he-
licity antineutrinos are suppressed in the medium in
this temperature range.
Taken together the above analysis reveals that there is a
resonance in the oscillation of negative helicity neutrinos
and positive helicity antineutrinos (that is h� < 0) in the
temperature range me � T � m� with a typical neutrino
momentum k� T � few MeV. For me;m� � T � MW

the mixing angle for negative helicity neutrinos and posi-
tive helicity antineutrinos (that is h� < 0) effectively van-
ishes in the medium, and in both temperature ranges
positive helicity neutrinos and negative helicity antineutri-
nos undergo oscillations in the medium with the vacuum
mixing angle. We cannot yet conclude that positive helicity
neutrinos and negative helicity antineutrinos are sterile,
before studying the corrections to the oscillation
frequencies.

C. Oscillation frequencies and time scales

The oscillation time scale in the medium is given by
��h�m �k; �� �
1

j!�h�1 �k; �� �!
�h�
2 �k; ��j

�
1

jE1�k� � E2�k� 	 �!
�h�
1 �k; �� � �!

�h�
2 �k; ��j

;

(4.55)
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where E1;2�k� �
���������������������
k2 	M2

1;2

q
and � � 	1 and � � �1

correspond to neutrino and antineutrinos, respectively.
The vacuum oscillation time scale is

�v�k� �
1

jE1�k� � E2�k�j
; (4.56)

therefore, in order to understand the loop corrections to the
oscillations time scales, it is convenient to study the ratio

�v�k�

��h�m �k; ��
�

��������1	
�!�h�1 �k; �� � �!

�h�
2 �k; ��

E1�k� � E2�k�

��������: (4.57)

Typical neutrino momenta in the plasma are ultrarelativis-
tic, hence we approximate

E1�k� � E2�k� �
�M2

2k
�
�5

2

10�11 eV

�k=MeV�
; (4.58)

furthermore to leading order inGF we replace !�h�a �k; �� �
�k in the arguments of Ae;��!�.

The term �!�h�1 �k; �� � �!
�h�
2 �k; �� represents the cor-

rection to the vacuum oscillation time scale due to the
medium effect. While the general form of these corrections
are cumbersome, we can extract simplified expressions in
three relevant limits.
(a) I
-14
. Resonant case: �h��E1;2;k�
�M2 � cos2	: In

Section IV B above we found that resonant flavor
oscillations can occur only for � � 	1, h � �1
and � � �1, h � 	1. In both these cases we ob-
tain,

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� �
�M2

8k2 �Ae�k� 	 A��k� 	 Be�k� 	 B��k��

�
�M2

2k2

�
1	

M2

2k2

�
k�1� sin2	�: (4.59)
(b) I
I. Vanishing mixing angle : j �h��E1;2;k�
�M2 j � 1: In

this limit, 	�h�m � 0 and neutrino flavor mixing is
suppressed. In Section IV B above, we found that
this occurs only for � � 	1, h � �1 or � � �1,
h � 	1. Furthermore, �h��E1;2; k� is always posi-
tive definite in both temperature limits considered
here me � T � m� and me;m� � T � MW . In
this case we obtain

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� �
�M2

8k2 �Ae�k� 	 A��k� 	 Be�k� 	 B��k��

	 sign��M2��Ae�k� � A��k�

� Be�k� 	 B��k��: (4.60)
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(c) I
II. Vacuum mixing: j �h��E1;2;k�
�M2 j � 1: In this limit

	�h�m � 	. In Section IV B above we found that this
case occurs for � � 	1, h � 	1 or � � �1, h �
�1. In both these cases we find

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� �
�M2

8k2 �Ae�k� 	 A��k� 	 Be�k� 	 B��k��

�
M2

4k2 cos2	�Ae�k� � A��k�

	 Be�k� � B��k��: (4.61)
We now study these simplified expressions in the differ-
ent regimes of temperature and for the different helicities
components. The most relevant cosmological regime cor-
responds to momenta of the order of the temperature,
hence we will focus on the regime in which the nonlocal
(in space-time) contributions from the exchange diagrams
dominate over the lepton-neutrino asymmetries. Taken
together these simplifications allow us to study the relevant
cosmological range of neutrino energies in a clear manner.

1. me � T� m�
(a) C
ase I: !1;2�k; �� � ��k	
M2

1;2

2k �; � � 	1, h � �1
and � � �1, h � 	1: As observed in Section IV B
the nonlocal terms become dominant for

������
Tk
p

�
1 MeV which is of course consistent with the ultra-
relativistic limit M2=2k2 � 1. Furthermore in the
temperature range of interest in this study, the fac-
tors Ae;��k� and Be;��k� are of the order
GFkT4=M2

W � 10�9�T=GeV�4k� k. Therefore,
near the resonance which occurs when T2k�
25

������������������
�5 cos2	

p
MeV3, the expression (4.59) simpli-

fies to

�!�h�1 �k; �� � �!
�h�
2 �k; �� � �

�M2

2k
�1� sin2	�:

(4.62)

The ratio of the oscillation time scales (4.57) be-
comes

�v�k�

��h�m �k; ��
� j sin2	j< 1: (4.63)

Therefore, for small vacuum mixing angle there is a
considerable slow down of oscillations. Resonant
flavor mixing in the medium occurs on longer
time scales than in the vacuum. For large neutrino
energy, well outside the resonance region for T2k�
25

���������������������
j�5 cos2	j

p
MeV3, Eq. (4.44) indicates that

j�h��E1;2; k�=�M2j � 1. In this high energy re-
gime we find that

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� sign��M2��Ae�k� � A��k� � Be�k�

	 B��k�� (4.64)
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� sign��M2�
28�2

45
���
2
p

GFkT4

M2
W

(4.65)

’ 7:9� 10�15eVsign��M2�
k

MeV

�
T

MeV

�
4

(4.66)

therefore neutrino oscillations are suppressed by a
vanishingly small mixing angle and the ratio of time
scales (4.57) becomes

�v�k�

��h�m �k; ��
�

��������1	
10�3

j�5j

�
kT2

MeV3

�
2
��������: (4.67)

A considerable speed-up of oscillations occurs for
kT2 * 100 MeV3 since then ��h�m �k; �� � �v�k�. In
this case, off-resonance flavor mixing is suppressed
not only by a small mixing angle in the medium but
also by a rapid decoherence and dephasing of the
oscillations.

M2
(b) C
ase II: !1;2�k; �� � ��k	 1;2

2k �; � � 	1, h � 	1
and � � �1, h � �1: The results of Section IV B
(see Eq. (4.47)) indicate that in this case
j�h��E1;2; k�=�M2j � 1, corresponding to the mix-
ing angle in the medium being the same as in the
vacuum. As a result,

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� �
M2

4k2 cos2	�Ae�k� � A��k� 	 Be�k�

� B��k�� (4.68)

� �
M2

4k2 cos2	
14�2

45
���
2
p

GFkT
4

M2
W

(4.69)

’ �6:1� 10�29 eV cos2	
�
k

MeV

�
�1
�
T

MeV

�
4
;

(4.70)

and the ratio of time scales (4.57) becomes

�v�k�

��h�m �k; ��
’

��������1�
10�17 cos2	

�5

�
T

MeV

�
4
��������� 1:

(4.71)

Therefore, for positive helicity neutrinos and nega-
tive helicity antineutrinos medium oscillations are
the same as vacuum oscillations both in the mixing
angle as well as in the oscillation time scales. In this
regime of temperature positive helicity neutrinos
and antineutrinos are sterile in the sense that these
do not interact with the medium.
2. me;m� � T�MW
(a) C
ase I: !1;2�k; �� � ��k	
M2

1;2

2k �; � � 	1, h � �1
and � � �1, h � 	1: This case describes negative
helicity neutrinos and positive helicity antineutri-
nos. Equation (4.51) indicates that in this case,
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j�h��E1;2; k�=�M
2j � 1 corresponding to vanish-

ing mixing angle in the medium. Therefore, we
obtain

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� sign��M2��Ae�k� � A��k� � Be�k� 	 B��k��

(4.72)

� sign��M2�
2GFkT2

3
���
2
p

�m�

MW

�
2

(4.73)

’ 9:6� 10�6 eVsign��M2�

�
k

MeV

��
T

GeV

�
2

(4.74)

and the ratio of time scales is given by

�v�k�

��h�m �k; ��
’ j1	

1012

j�5j

�
kT

GeV2

�
2
j � 1: (4.75)

Hence there is a considerable speed-up in the oscil-
lation time scale in the medium. Again, in this case
oscillations are strongly suppressed not only by a
vanishingly small mixing angle but also by the rapid
dephasing in the medium.

2

(b) C
ase II: !1;2�k; �� � ��k	
M1;2

2k �; � � 	1, h � 	1
and � � �1, h � �1: This case describes positive
helicity neutrinos negative helicity antineutrinos.
Equation (4.52) shows that in this case
j�h��E1;2; k�=�M

2j � 1, the mixing angle in the
medium is the same as in the vacuum. We find for
this case

�!�h�1 �k; �� � �!
�h�
2 �k; ��

� �
M2

4k2 cos2	�Ae�k� � A��k�

	 Be�k� � B��k�� (4.76)

�
M2

4k2 cos2	
2GFkT2

3
���
2
p

�m�

MW

�
2

(4.77)

’ 1:5� 10�19eV cos2	
�
k

MeV

�
�1
�
T

GeV

�
2
; (4.78)

where we have taken M� 1 eV. The ratio of time
scales in this case is given by

�v�k�

��h�m �k; ��
� j1	

3� 10�8 cos2	
�5

�
T

GeV

�
2
j � 1:

(4.79)

Again in this temperature regime we find that posi-
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tive helicity neutrinos and negative helicity antineu-
trinos are almost ’’sterile’’ in the sense that neither
the mixing angle nor the oscillation time scales
receive substantial loop corrections. Thus the com-
bined analysis of mixing angle and propagation
frequencies in the medium in the temperature re-
gime under consideration indicates that in-medium
corrections for positive helicity neutrinos and nega-
tive helicity antineutrinos are very small. These
degrees of freedom are effectively sterile in that
their dynamics are (almost) the same as in the
vacuum.
V. LAPLACE TRANSFORM AND REAL-TIME
EVOLUTION

The main purpose to obtain the Dirac equation in real
time is to study the oscillations of neutrinos in the medium
as an initial value problem. As described in Section II this
is achieved by adiabatically switching the sources �, �
from t � �1 and switching them off at t � 0. The adia-
batic switching on of the sources induces an expectation
value, which evolves in the absence of sources for t > 0,
after the external source has been switched off. It is con-
venient to write the effective Dirac Eq. (2.17) in terms of
spatial Fourier transforms. Using the results of the appen-
dix A3 we find��
i�0 @

@t
� ~� � ~k

�
�ab �Mab 	�tad

ab L
�
 b� ~k; t�

	
Z t

�1
dt0�ab� ~k; t� t0�L b� ~k; t0� � ��a� ~k; t�; (5.1)

where the results of appendix (A3) yield

�� ~k; t� t0� � i
Z 1
�1

dk0

�
Im�� ~k; k0�e

�ik0�t�t0�;

�� ~k; k0� � �W� ~k; k0� 	�Z� ~k; k0�:

(5.2)

For an external Grassmann-valued source adiabatically
switched on at t � �1 and off at t � 0

�a� ~k; t� � �a� ~k; 0�e
t	��t�; 
! 0	: (5.3)

It is straightforward to confirm that the solution of the
Dirac Eq. (5.1) for t < 0 is given by

 a� ~k; t < 0� �  a� ~k; 0�e
t: (5.4)

Inserting this ansatz into the Eq. (5.1) it is straightforward
to check that it is indeed a solution with a linear relation
between  a� ~k; 0� and �a� ~k; 0�. This relation can be used to
obtain  a� ~k; 0� from �a� ~k; 0�, or alternatively, for a given
initial value of the field at t � 0 to find the source �a� ~k; 0�
that prepares this initial value. For t > 0 the source term
vanishes, the nonlocal integral in Eq. (5.1) can be split
into an integral from t � �1 to t � 0 plus an integral
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from t � 0 to t. In the first integral corresponding to t < 0
we insert the solution Eq. (5.4) and obtain the following
equation valid for t > 0��

i�0 @
@t
� ~� � ~k

�
�ab �Mab 	�tad

ab L
�
 b� ~k; t�

	
Z t

0
dt0�ab� ~k; t� t0�L b� ~k; t0�

� �
Z 	1
�1

dk0

�
Im�ab� ~k; k0�

k0
e�ik0tL b� ~k; 0�: (5.5)

This equation can be solved by Laplace transform.
Introduce the Laplace transforms

e � ~k; s� � Z 1
0
dte�st � ~k; t�;

e�� ~k; s� � Z 1
0
dte�st�� ~k; t� �

Z 	1
�1

dk0

�
Im�� ~k; k0�

k0 � is
;

(5.6)

where we have used Eq. (5.2) to obtain the Laplace trans-
form of the self-energy, which leads to the analyticity
relation (see Eq. (3.1)),e�� ~k; s� � �� ~k;! � is� i
�: (5.7)

In terms of Laplace transforms the equation of motion
becomes the following algebraic equation

��i�0s� ~� � ~k��ab �Mab 	 �tad
ab L	

e�ab� ~k; s�L� e b� ~k; s�
� i

�
�0�ab 	

1

is
�e�ab� ~k; s� � e�ab� ~k; 0��L

�
 b� ~k; 0�:

(5.8)

Consistently with the expansion of the self-energy in fre-
quency and momentum up to order !=MW , and using
Eq. (5.7), we replace the expression in the bracket in
Eq. (5.8) by

1

is
�e�ab� ~k; s� � e�ab� ~k; 0��

��������s�0
�
@�� ~k;!�
@!

��������!�0


 �0� ~k; 0�: (5.9)

Using the representation (3.15) for the real part of the self-
energy, the Eq. (5.8) can be written as

���0is� ~� � ~k�1�M	 �0eA�s�L� ~� � bkB�k�L� e b� ~k; s�
� i�0�1	 A0�0�L� b� ~k; 0�; (5.10)
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where

eA�s� � A�! � is�; A0�0� �
dA
d!

��������!�0
: (5.11)

The real-time evolution is obtained by the inverse Laplace
transform,

 � ~k; t� �
Z

�

ds
2�i

e � ~k; s�est; (5.12)

where � is the Bromwich contour in the complex s plane
running parallel to the imaginary axis to the right of all the

singularities of the function e � ~k; s� and closing on a large
semicircle to the left. We now follow the same steps as in
Section IV, namely, projecting onto right and left compo-
nents and onto helicity eigenstates. After straightforward
manipulations we arrive at the following set of equations

���s2 	 k2�1	 �is� ĥ�bk�k��eA	 ĥ�bk�B� �M2� e L� ~k; s�
� i�0M R� ~k; 0� 	 i�is� ĥ�bk�k�D L� ~k; 0�; (5.13)

where D � 1	 A0�0�, and

e R� ~k; s� � �
is	 ĥ�bk�k
s2 	 k2 �M�0 e L� ~k; s� 	 i R� ~k; 0��:

(5.14)

We now follow the same steps as above to separate the
Dirac and flavor structures by introducing the flavor dou-

blets e’� ~k; s�, e�� ~k; s� which are the Laplace transform of the
flavor doublets ’� ~k; t�, �� ~k; t� introduced in the expansion
of the Dirac spinors in Eqs. (4.12) and (4.13), projecting
onto the Weyl spinors eigenstates of helicity, the above
equations become

���s2 	 k2�1	 �is� hk��eA	 hB� �M2�e’�h�� ~k; s�
� �iM��h�� ~k; 0� 	 i�is� hk�D’�h�� ~k; 0�; (5.15)

e� �h�� ~k; s� � � is	 hk
s2 	 k2 ��Me’�h�� ~k; s� 	 i��h�� ~k; 0��:

(5.16)

The solution to Eq. (5.15) is obtained as

e’�h�� ~k; s� � eS�h��k; s���iM��h�� ~k; 0�
	 i�is� hk�D’�h�� ~k; 0��; (5.17)

where the propagator is given by
eS h�k; s� �
1

�2
h�k; s� � �

2
h�k; s�

�h�k; s� 	 ��k; s� cos2	�h�m ��h�k; s� sin2	�h�m
��h�k; s� sin2	�h�m �h�k; s� � �h�k; s� cos2	�h�m

 !
; (5.18)
in which it will prove convenient to introduce the following quantities
-17
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�h�k;s��
�
!2�k2	

1

2
Sh�!;k��

1

2
�M2

1	M
2
2�

�
!�is�i


;

(5.19)

�h�k; s� �
1

2
�M2

��
cos2	�

�h�!; k�

�M2

�
2

	 sin22	
�

1=2
��������!�is�i


: (5.20)

The inverse Laplace transform Eq. (5.12) can be done
straightforwardly, the singularities of ~’�h�� ~k; s� in the com-
plex s plane are determined by the singularities of the

propagator eS�h��k; s�. Up to the order in weak interactions
considered here, these singularities are isolated poles along
the imaginary axis at the positions s � �i!�h�a �k;� given
by Eq. (4.36), (4.37), (4.38), and (4.39). As a relevant
example of the real-time evolution, let us consider that
the initial state corresponds to a wave packet of left-handed
electron neutrinos of arbitrary helicity h, with no muon
neutrinos. This could, for example, be the case relevant for
nucleosynthesis in which a neutron beta decays at the
initial time. In this case

’�h�� ~k; 0� � ��h�e � ~k�
1
0

� �
; ��h�� ~k; 0� �

0
0

� �
; (5.21)

and we find

e’ �h�� ~k; s� � ��h�e � ~k�
i�is� hk��1	 A0e�0��

�2
h�k; s� � �

2
h�k; s�

�
�h�k; s� 	 �h�k; s� cos�2	�h�m �

��h�k; s� sin�2	�h�m �

 !
; (5.22)

e��h�� ~k; s� � ���h�e � ~k� i�1	 A0e�0��

�2
h�k; s� � �

2
h�k; s�

�M
�h�k; s� 	 �h�k; s� cos�2	�h�m �

��h�k; s� sin�2	�h�m �

0@ 1A: (5.23)

In order to avoid cluttering the notation, we have not
included the frequency argument in the mixing angle in
the medium 	�h�m but such dependence should be understood
throughout.

The term ��h�k; s� � �h�k; s���1 features poles at s �
�i!1�k;� and the term ��h�k; s� 	 �h�k; s���1 features
poles at s � �i!2�k;�.

We neglect terms of order GFT4=M2
W � �T=MW�

4 � 1
since in the regime in which the approximations are valid
T � MW . The residues of these poles are respectively
2!1;2�k;� and the inverse Laplace transform yield within
these approximations,
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’�h�� ~k; t� � ��h�e � ~k�
X
��

�
!�h�1 �k; �� � hk

4!�h�1 �k; ��

1	 C�h�1;�

�S�h�1;�

0@ 1A
� e�i!

�h�
1 �k;��t 	

!�h�2 �k; �� � hk

4!�h�2 �k; ��

�
1� C�h�2;�

S�h�2;�

0@ 1Ae�i!�h�2 �k;��t
�
; (5.24)
��h�� ~k; t� � ���h�e � ~k�
X
��

�
M

4!�h�1 �k; ��

1	 C�h�1;�

�S�h�1;�

0@ 1A
� e�i!

�h�
1 �k;��t 	

M

4!�h�2 �k; ��

�
1� C�h�2;�

S�h�2;�

0@ 1Ae�i!�h�2 �k;��t
�
: (5.25)

For economy of notation, we introduce the following short-
hand

C�h�a;� 
 cos�2	�h�m �!
�h�
a �k; ����;

S�h�a;� 
 sin�2	�h�m �!
�h�
a �k; ����

(5.26)

for a � 1, 2, helicity components h �  and positive and
energy components � � .

The above expressions yield a direct comparison with
the usual oscillation formulae in the literature. To leading
order we set !1;2�k; �� � �k�1	M2

1;2=2k2� in the prefac-
tors in the expressions above thereby neglecting terms of
order GF. Since the dependence of the mixing angle on the
frequency and momentum appears at order GF, we can set
!1;2�k; �� � �k in the argument of the mixing angles,
therefore to leading order C�h�1;� � C�h�2;� 
 C�h�� and S�h�1;� �

S�h�2;� 
 S�h�� . With these approximations, for an initial left-
handed electron state of helicity h � � we find

’�� ~k; t� � ��e � ~k�
�

1

2

� 1	 C�	
�S�	

�
e�i!

�
1 �k;	�t

	
1

2

� 1� C�	
S�	

�
e�i!

�
2 �k;	�t

	
M2

1

8k2

� 1	 C��
�S��

�
e�i!

�
1 �k;��t

	
M2

2

8k2

� 1� C��
S��

�
e�i!

�
2 �k;��t

�
; (5.27)
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’	� ~k; t� � �	e � ~k�
�
M2

1

8k2

� 1	 C		
�S		

�
e�i!

	
1 �k;	�t

	
M2

2

8k2

� 1� C		
S		

�
e�i!

	
2 �k;	�t

	
1

2

� 1	 C	�
�S	�

�
e�i!

	
1 �k;��t

	
1

2

� 1� C	�
S	�

�
e�i!

	
2 �k;��t

�
: (5.28)

The exponentials e�i!�k�t correspond to positive energy
(� ) neutrino and positive energy (	 ) antineutrino com-
ponents, respectively. Therefore, the expressions above
reveal that for negative helicity the relevant components
in the relativistic limit correspond to positive energy neu-
trinos, while for positive helicity they correspond to posi-
tive energy antineutrinos.

The upper component of the expressions above corre-
spond to wave packets of negative and positive helicity,
respectively, for a left-handed electron neutrino, namely
��e � ~k; t� while the lower components correspond to a left-
handed muon neutrino, namely ���� ~k; t�.

For the right-handed components � the leading order can
be obtained by setting M � M1 thereby neglecting terms
of order �M2=M2. This approximation yields,

��� ~k;t�����e � ~k�
M
4k

��
1	C�	
�S�	

�
e�i!

�
1 �k;	�t

	

�1�C�	
S�	

�
e�i!

�
2 �k;	�t�

�1	C��
�S��

�
e�i!

�
1 �k;��t

�

�1�C��
S��

�
e�i!

�
2 �k;��t

�
: (5.29)

The upper and lower components correspond to wave
packets for right-handed negative and positive helicity
electron and muon neutrinos, respectively.

From the expression (5.27) we can read off the proba-
bility for relativistic left-handed, negative helicity electron
and muon neutrinos as a function of time,

j��e;L� ~k; t�j
2 � j��e � ~k�j

2

�
1� sin2�2	�m�k��

� sin2

�
1

2
�!��k;	�t

�
	O

�M2
1;2

k2

��
; (5.30)

j���;L� ~k; t�j
2 � j��e � ~k�j2

�
sin2�2	�m�k��

� sin2

�
1

2
�!��k;	�t

�
	O

�M2
1;2

k2

��
: (5.31)

The probability for left-handed relativistic positive helicity
electron and muon antineutrinos as a function of time are
read off from Eq. (5.28)
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j�	e;L� ~k; t�j
2 � j�	e � ~k�j

2

�
1� sin2�2		m��k��

� sin2

�
1

2
�!	�k;��t

�
	O

�M2
1;2

k2

��
; (5.32)

j�	�;L� ~k; t�j
2 � j�	e � ~k�j

2

�
sin2�2		m��k��

� sin2

�
1

2
�!	�k;��t

�
	O

�M2
1;2

k2

��
; (5.33)

where

�!�k;� �
�M2

2k
	 �!1 �k;� � �!


2 �k;�: (5.34)

The corrections �!a �k;� had been studied in detail in
Section IV C above. Finally, Eq. (5.29) determines the
probabilities of finding right-handed positive and negative
helicities neutrinos as a function of time. This equation
makes manifest that this probability is suppressed by a
factor M=k with respect to the left-handed component,
indeed it is the mass term that is responsible for generating
a right-handed component from a left-handed one and must
therefore be suppressed by one power of the ratio M=k.
For a typical neutrino momentum k * 1 MeV this sup-
pression factor is of order 10�6. Equations (5.24) and
(5.25) provide a complete field theoretical description of
oscillations in real time. Equations (5.30) and (5.31) are
obviously reminiscent of the familiar oscillation equations
obtained in the simplified quantum mechanical two level
system, however there are some important aspects that
must be highlighted, namely, the field theoretical formula-
tion introduced here led directly to these oscillation for-
mulae in terms of the mixing angles in the medium and the
correct oscillation frequencies that include the quantum
loop corrections. Furthermore, the oscillation formulae
obtained above reveal the nature of the approximations
and allow a consistent inclusion of higher order effects as
well as describe the oscillation of all helicity components
as well as the dynamics of the right-handed component.
The usual oscillation formula obtained within the single
particle quantum mechanical description emerge cleanly in
suitable limits and the nature of the corrections is readily
manifest.
VI. CONCLUSIONS AND FURTHER QUESTIONS:

We have provided a systematic treatment of neutrino
oscillations and mixing directly from quantum field theory
in real time in a regime of temperature and density relevant
for early universe cosmology prior to big bang nucleosyn-
thesis. While we have focused on two flavors (electron and
muon) of Dirac neutrinos the formulation can be general-
ized straightforwardly to more flavors and to Majorana-
Dirac mass matrices.
-19
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We have obtained the medium corrections to the disper-
sion relations and mixing angles of propagating neutrinos.
Implementing methods from real-time nonequilibrium
quantum field theory at finite temperature and density we
have systematically obtained the equations of motion for
the neutrino field and studied the real-time evolution as an
initial value problem. The major advantage of this ap-
proach, as compared to the usual approach based on single
particle quantum mechanics is that it consistently and
systematically includes the medium corrections to the
dispersion relations and mixing angles directly into the
real-time evolution and treats left and right-handed fields
and both helicity components on equal footing. We have
argued that collisional relaxation yields thermalization of
neutrinos in flavor eigenstates for temperature T *

5-10 Mev for which the relaxation time scale via weak
interactions is shorter than the oscillation time scale.
Assuming the validity of this argument, we obtained the
neutrino self-energies up to one loop including the asym-
metries from leptons, neutrinos, hadrons, and quarks, as
well as nonlocal (in space-time) terms arising from the
expansion of the self-energy loop in the external frequency
and momentum. We have consider these nonlocal terms up
to leading order in !=MW ; k=MW since these terms are of
the same order of or larger than the contribution from the
asymmetries for T * 5 MeV if all asymmetries are of the
same order as the baryon asymmetry. This is yet another
indication that this is an important temperature regime in
the early universe.

Our main results are summarized as follows:

(a) I
mplementing the methods from nonequilibrium

real-time field theory at finite temperature and
density we obtained the equations of motion for
the neutrino fields in linear response. This formula-
tion includes consistently the self-energy loop cor-
rections to the dispersion relations and mixing
angles in the medium and treat left and right-handed
fields with both helicity components on equal
footing.
(b) W
e have focused on a temperature regime prior to
nucleosynthesis T * 5-10 MeV in which we argued
that neutrinos are thermalized as flavor eigenstates.
We studied two different temperature regimes:
me � T � m� within which we have shown that
there is the possibility of resonant oscillations of test
neutrinos, and me;m� � T � MW within which
the mixing angle for active neutrinos effectively
vanishes.
(c) A
n expansion of the self-energy in terms of the
neutrino frequency and momentum is carried out
to lowest order in !=MW ; k=MW thus extracting
the leading nonlocal (in space-time) contributions.
We find a new contribution which cannot be identi-
fied with an effective potential. The mixing angles
and propagation frequencies in the medium are
found to be helicity dependent. It has been recently
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pointed out [46] that a neutrino helicity asymmetry
could be a very important ingredient in successful
seesaw models of thermal leptogenesis.
(d) I
f the lepton and quark asymmetries are of the same
order as the baryon asymmetry in the early universe,
we have shown that the nonlocal (in space-time)
terms in the self-energies dominate over the asym-
metry for typical energies of neutrinos in the plasma
for T * 3-5 MeV.
(e) T
he oscillation time scale in the medium is slowed
down near the resonance, becoming substantially
longer than in the vacuum for small vacuum mixing
angle. For high energy neutrinos off-resonance the
mixing angle becomes vanishingly small and the
oscillation time scale speeds up as compared to the
vacuum. At high temperature, in the region T �
me;m� the mixing angle for active neutrinos effec-
tively vanishes and there is a considerable speed-up
of oscillations, which are then suppressed by a van-
ishingly small mixing angle and a rapid dephasing.
(f) W
e have obtained the general equations of motion
for initially prepared wave packets of neutrinos
of arbitrary chirality and helicity. These equations
reduce to the familiar oscillation formulae for
ultrarelativistic negative helicity neutrinos, but
with the bonus that they consistently include the
mixing angles and the oscillation frequencies in
the medium. These equations not only yield the
familiar ones but also quantify the magnitude of
the corrections. Furthermore these equations also
describe the evolution of right-handed neutrinos
(of either helicity) which is a consequence of a
nontrivial mass matrix and usually ignored in the
usual formulation.
Further questions: The next step in the program is to
provide a solid assessment of the reliability of the argu-
ment that suggests that for T * 10 MeV neutrinos ther-
malize as flavor eigenstates. The phenomenon of slow-
down of oscillations near a resonance found in this work,
suggests that this argument is consistent at least near
resonances. We are currently studying the relaxational
dynamics by including two-loop corrections to the self-
energy which account for collisional processes in the me-
dium. We are also studying how to obtain the kinetic
equations that describe simultaneously oscillations and
relaxation systematically within a field theory approach
that accounts for the subtle aspects of the Fock representa-
tion necessary to understand the concept of the flavor
distribution functions [31].
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APPENDIX A: REAL-TIME PROPAGATORS AND
SELF-ENERGIES
1. Fermions

Consider a generic fermion field f� ~x; t� of mass mf. The
Wightmann and Green’s functions at finite temperature are
given as

iS>�;�� ~x� ~x0; t� t0� � hf�� ~x; t�f�� ~x0; t0�i

�
1

V

X
~p

ei ~p�� ~x� ~x
0�iS>�;�� ~p; t� t

0�; (A1)

iS<�;�� ~x� ~x0; t� t0� � �hf�� ~x0; t0�f�� ~x; t�i

�
1

V

X
~p

ei ~p�� ~x� ~x
0�iS<�;�� ~p; t� t

0�;

(A2)

where �, � are Dirac indices and V is the quantization
volume.

The real-time Green’s functions along the forward (	 )
and backward (� ) time branches are given in terms of
these Wightmann functions as

hf�	�� � ~x; t�f
�	�
� � ~x

0; t0�i � iS		� ~x� ~x0; t� t0�

� iS>� ~x� ~x0; t� t0���t� t0�

	 iS<� ~x� ~x0; t� t0���t0 � t�;

(A3)

hf�	�� � ~x; t�f
���
� � ~x

0; t0�i � iS	�� ~x� ~x0; t� t0�

� iS<� ~x� ~x0; t� t0�: (A4)

At finite temperature T, it is straightforward to obtain these
correlation functions by expanding the free fermion fields
in terms of Fock creation and annihilation operators and
massive spinors. In a CP asymmetric medium, the chemi-
cal potential �f for the fermion f is nonzero. Particles and
antiparticles obey the following Fermi-Dirac distribution
functions, respectively

Nf�p0� �
1

e�p0��f�=T 	 1
; �Nf�p0� �

1

e�p0	�f�=T 	 1
:

(A5)

The fermionic propagators are conveniently written in a
dispersive form

iS>�;�� ~p; t� t
0� �

Z 1
�1

dp0�
>
�;�� ~p; p0�e

�ip0�t�t0�; (A6)

iS<�;�� ~p; t� t
0� �

Z 1
�1

dp0�
<
�;�� ~p; p0�e

�ip0�t�t0�; (A7)

where we have
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�>�;�� ~p; p0� �
�0p0 � ~� � ~p	mf

2p0
�1� Nf�p0��

� ��p0 �!p� 	
�0p0 � ~� � ~p	mf

2p0

� �Nf��p0���p0 	!p�; (A8)

�<�;�� ~p; p0� �
�0p0 � ~� � ~p	mf

2p0
Nf�p0���p0 �!p�

	
�0p0 � ~� � ~p	mf

2p0
�1� �Nf��p0��

� ��p0 	!p�; (A9)

with !p �
���������������������
j ~pj2 	m2

f

q
. Using the relation �Nf��p0� �

1� Nf�p0�, we can write

�>�;�� ~p; p0� � �1� Nf�p0���
f
�;�� ~p; p0�; (A10)

�<�;�� ~p; p0� � Nf�p0��
f
�;�� ~p; p0�; (A11)

where the free fermionic spectral density �f� ~p; p0� is given
by

�f� ~p; p0� �
6p	

2!p
��p0 �!p� 	

6p�
2!p

��p0 	!p�;

(A12)

6p� �0!p � ~� � ~pmf: (A13)
2. Vector bosons

Consider a generic real vector boson field A�� ~x; t� of
mass M. In unitary gauge, it can be expanded in terms of
Fock creation and annihilation operators of physical states
with three polarizations as

A�� ~x; t� �
1����
V
p

X
�

X
~k


�� � ~k����������
2Wk
p �a ~k;�e

�iWktei ~k� ~x

	 ay~k;�e
iWkte�i ~k� ~x�; k�
�;�� ~k� � 0; (A14)

where Wk �

���������������������
j ~kj2 	M2

q
and k� is on shell k� � �Wk; ~k�.

The three polarization vectors are such that

X3

��1


�� � ~k�

�
��
~k� � P��� ~k� � �

�
g�� �

k�k�

M2

�
: (A15)

It is now straightforward to compute the Wightmann func-
tions of the vector bosons in a state in which the physical
degrees of freedom are in thermal equilibrium at tempera-
ture T. These are given by

hA�� ~x; t�A�� ~x0; t0�i � iG>
�;�� ~x� ~x0; t� t0�; (A16)
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(�x↪ t)(�x↪ t) (�x′↪ t′) (�x′↪ t′)−
(+) (−)(+) (+)

(+) (−)(+) (+)

FIG. 2. Retarded self-energy for charged current interactions.
The wiggly line is a charged vector boson and the dashed line a
lepton. The labels ( ) correspond to the forward (	 ) and
backward (� ) time branches. The corresponding propagators
are iS;� ~x� ~x0; t� t0� and iG�� � ~x� ~x0; t� t0� for leptons and
charged bosons, respectively.
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hA�� ~x0; t0�A�� ~x; t�i � iG<
�;�� ~x� ~x0; t� t0�; (A17)

where Gh;i can be conveniently written as spectral integrals
in the form

iG>
�;�� ~x� ~x0; t� t0� �

1

V

X
~k

ei ~k�� ~x� ~x
0�
Z 1
�1

dk0e
�ik0�t�t0�

� �1	 Nb�k0������k0; ~k�; (A18)

iG<
�;�� ~x� ~x0; t� t0� �

1

V

X
~k

ei ~k�� ~x� ~x
0�
Z 1
�1

dk0e�ik0�t�t0�

� Nb�k0�����k0; ~k�; (A19)

where

Nb�k0� �
1

ek0=T � 1
; (A20)

and the spectral density is given by

����k0; ~k� �
1

2Wk
�P��� ~k���k0 �Wk� � P���� ~k�

� ��k0 	Wk��: (A21)

In terms of these Wightmann functions, the real-time cor-
relation functions along the forward and backward time
branches are given by

hA�	�� � ~x; t�A
�	�
� � ~x0; t0�i � iG>

�;�� ~x� ~x0; t� t0���t� t0�

	 iG<
�;�� ~x� ~x0; t� t0���t0 � t�;

(A22)

hA�	�� � ~x; t�A
���
� � ~x0; t0�i � iG<

�;�� ~x� ~x0; t� t0�: (A23)

For the charged vector bosons, the correlation functions
can be found simply from those of the real vector boson
fields described above by writing the charged fields as
linear combinations of two real fields A1;2, namely

W� � ~x; t� �
1���
2
p �A1

�� ~x; t�  iA
2
�� ~x; t��: (A24)

It is straightforward to find the correlation function

hW	� � ~x; t�W�� � ~x0; t0�i � G>
��� ~x� ~x0; t� t0�; (A25)

and similarly for the other necessary Wightmann and
Green’s functions.

3. Retarded self-energies for charged and neutral
current interactions

The diagrams for the one-loop retarded self-energy from
charged current interactions are displayed in Fig. 2. A
straightforward calculation yields for the charged current
contribution the following result
085016
�CC
ret � ~x� ~x0; t� t0� �

ig2

2
R���iS		� ~x� ~x0; t� t0�

� iG		�� � ~x� ~x0; t� t0�

� iS<� ~x� ~x0; t� t0�

� iG<
��� ~x� ~x0; t� t0����L; (A26)

with

R �
1	 �5

2
; L �

1� �5

2
:

A similar result is obtained for the neutral current contri-
bution to the self-energy by simply replacing g=

���
2
p
!

g=2 cos	w and MW ! MZ � MW= cos	w.
Using the representation of the fermion and vector boson

propagators given above the retarded self-energy (A26)
can be written as

�ret� ~x� ~x0; t� t0� �
i
V

X
~k

Z 1
�1

dk0R��W� ~k; k0�

	 �Z� ~k; k0��Le
i ~k�� ~x� ~x0�

� e�ik0�t�t0���t� t0�: (A27)

The contributions from charged and neutral vector bosons
are given by

�W� ~k; k0� �
g2

2

Z d3q

�2��3
Z
dp0

Z
dq0��p0 	 q0 � k0�

� ���f� ~k� ~q; p0��W��� ~k�� ~q; q0�

� ���1� Nf�p0� 	 Nb�q0��; (A28)

�Z� ~k; k0� �
g2

4cos2	w

Z d3q

�2��3
Z
dp0

Z
dq0

� ��p0	 q0� k0��
��f� ~k� ~q; p0��

Z
��� ~q; q0�

� ���1�Nf�p0� 	Nb�q0��; (A29)

where �W;Z� ~q; q0� are the vector boson spectral densities
given by Eq. (A21) with M 
 MW;Z, respectively. It is
clear that �W;Z� ~k; k0� corresponds to a vectorlike theory.

Using the integral representation of the function ��t�
t0�, the retarded self-energy can be written in the following
-22
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simple dispersive form

�ret� ~x� ~x0;t� t0��
1

V

X
~k

Z 1
�1

d!
2�

ei ~k�� ~x� ~x
0�e�i!�t�t

0�

�R��W� ~k;!�	�Z� ~k;!��L; (A30)

�W;Z� ~k;!� �
Z
dk0

�W;Z� ~k; k0�

k0 �!� i

; (A31)

where 
! 0	. Hence, from the above expression, we
identify

�W;Z� ~k;!� �
1

�
Im�W;Z� ~k;!�: (A32)
085016
Furthermore, since R�mf�L � 0, the factor mf in
the free fermionic spectral density defined in Eqs. (A12)
and (A13) can be ignored when we compute R��W� ~k;!� 	
�Z� ~k;!��L. The signature of the fermion mass mf is only
reflected in the factors of !p in the spectral density.
Ignoring the factor mf from now on, the fermionic spectral
density is proportional to the � matrices only and does not
feature the identity matrix or �5. Therefore, there is the
following simplification

R��W� ~k;!� 	�Z� ~k; !��L � ��W� ~k;!� 	 �Z� ~k;!��L:

(A33)
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