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We work out the one-loop U(1), anomaly for noncommutative SU(N) gauge theories up to second
order in the noncommutative parameter #*”. We set 8% = 0 and conclude that there is no breaking of the
classical U(1), symmetry of the theory coming from the contributions that are either linear or quadratic in
6#7. Of course, the ordinary anomalous contributions will be still with us. We also show that the one-loop
conservation of the nonsinglet currents holds at least up to second order in 8#”. We adapt our results to
noncommutative gauge theories with SO(N) and U(1) gauge groups.
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I. INTRODUCTION

Some of the peculiar and beautiful properties of QCD in
the low-energy regime can be explained with the help of
the famous U(1), anomaly equation. A conspicuous in-
stance of this state of affairs is the occurrence of the
interaction through instantons between left-handed quarks
and right-handed antiquarks; a phenomenon which is her-
alded by the existence of the U(1), anomaly. That inter-
action process provided the solution given in Ref. [1] to the
so-called U(1), problem. Other instances that show the
importance of the U(1) 4 anomaly in particle physics can be
found in Ref. [2].

Many are the pitfalls that one meets when constructing
noncommutative gauge theories [3—7]. In particular, it is
not easy to build noncommutative field theories for SU(N)
gauge groups. Alas. The Moyal product of two local in-
finitesimal SU(N) transformations is not a local infinitesi-
mal SU(N) transformation [8]. Further, charges different
from +1, 0, —1 do not fit in the standard noncommutative
setup as developed for U(N) groups [9—11]. These prob-
lems were addressed and given a solution in Refs. [12,13],
where the appropriate framework was developed: the
framework is based on the concept of Seiberg-Witten
map. Both the noncommutative standard model [14] and
the noncommutative generalizations [15,16] of the ordi-
nary SU(5) and SO(10) grand unified theories have been
constructed within this framework. These noncommutative
generalizations of ordinary theories are not renormalizable
[17,18], so that they must be formulated as effective quan-
tum field theories. A nice feature of these theories is that
their chiral matter content make them free from gauge
anomalies [19,20]. The study of the phenomenological
consequences of the noncommutative standard model has
just begun: see Refs. [21-23]. The reader is further referred
to Refs. [24,25] for other noncommutative models that
generalize the ordinary standard model and are formulated
within the standard noncommutative framework for
U(N)—not SU(N)—groups. Now a point of terminology:

*Electronic address: carmelo@elbereth.fis.ucm.es
TElectronic address: ctamarit@fis.ucm.es

1550-7998/2005 /72(8)/085008(30)$23.00

085008-1

PACS numbers: 11.30.Rd, 11.10.Nx, 11.15.Bt

by noncommutative SU(N) gauge theories we shall mean
field theories constructed, for SU(N) groups, within the
framework in Refs. [12,13]. Noncommutativity is defined
by the relationships [x#, x”], = ih6*", with *¥ constant
and where £ is an auxiliary parameter introduced to keep
track of the perturbative expansions.

The U(1), anomaly and its consequences have been
intensively studied for nocommutative U(N) theories
within the standard noncommutative setup, i.e., the
Seiberg-Witten map is not used to define the noncommu-
tative fields. The reader is referred to Refs. [26—35] for
further information. However, no such study has been
carried out for noncommutative SU(N) gauge theories as
yet. The purpose of this paper is to remedy this situation
and work out the anomaly equation for the U(1), canonical
Noether current up to second order in the noncommutative
parameter h—i.e., second order in #*” —and at the one-
loop level. This is a highly nontrivial issue since already at
first order in A there are candidates to the U(1), anomaly
whose Wick rotated space-time volume integral does not
vanish for a general field configuration with nonvanishing
Pontriagin index. An instance of such candidates reads

OPT g1 23y Tr[-f”ﬂlfl'l’z/l‘3fpl"4]‘

At second order in 4 the situation worsens.

We shall also discuss the relationship, both at classical
and quantum levels, between this canonical Noether cur-
rent and other U(1), currents that are the analogs of the
U(1), canonical Noether currents—see Refs. [26—-30]—
that occur in noncommutative U(N) gauge theories with
fermions in the fundamental representation. These analogs,
unlike the canonical Noether current of the noncommuta-
tive SU(N) theory, are local *-polynomials of the non-
commutative fermion fields only. Barring a concrete
instance, we shall not be able to give expressions for the
U(1)4 anomaly equation valid at any order in & since the
type of Feynman integrals to be computed depends on the
order in A. This was not the case for chiral gauge anoma-
lies—see Ref. [20]—since there the gauge current is of the
planar kind and, thus, the one-loop Feynman integrals to be
worked out are of the same type at any order in 4. We shall

© 2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.72.085008

C.P. MARTIN AND C. TAMARIT

show besides that the nonsinglet chiral currents are con-
served at the one-loop level and, this time, at any order in /.

Our noncommutative SU(N) theory will be massless and
will have N, fermion flavors, all fermions carrying the
same, but arbitrary, representation of SU(N). The general-
ization of our expressions to more general situations is
achieved by summing over all representations carried by
the fermions in the theory. The layout of this paper is as
follows: The first section is devoted to the study, at the
classical level, of the chiral symmetries of the theory and
the corresponding conservation equations. In this section,
we introduce as well several currents that are either con-
served or covariantly conserved as a consequence of the
rigid U(1), symmetry of the action. In Sec. II, we compute
the would-be anomalous contributions to the classical con-
servation equations of these currents. In Sec. III, we dis-
cuss the conservation of the nonsinglet currents at the one-
loop level. Then comes the section which contains a sum-
mary of the results obtained in this paper and where our
conclusions are stated. In this last section we also adapt our
results to SO(10) and U(1) noncommutative gauge theo-
ries. Finally, we include several appendices that the reader
may find useful in reproducing the calculations presented
in the sequel.

II. CLASSICAL CHIRAL SYMMETRIES AND
CURRENTS

The classical action of the noncommutative SU(N)
gauge theory of a noncommutative gauge field A, mini-
mally coupled to a noncommutative Dirac fermion V¥,
which we take to come in N flavors, is given by

N
1 S
S=fd4x—@TrF“V*FMV+ Z\I’f*l¢*‘l’f
f=1

2.1

F,, denotes the field strength, F,, =d,A, —3d,A,
i[A,, A,]s, and P, stands for the noncommutative Dirac
operator, J, = y*(d, — iA,*). The symbol * denotes
the Weyl-Moyal product of functions:

i

£ ) = ep(3h00 5 S)0e0) | @2)

y—x

and [A,, A, ], =A,*xA, —A,xA,. We shall assume
that time is commutative—i.e., that 8% =0, i = 1,2, 3,
in some reference system—so that the concept of evolu-
tion is the ordinary one. Further, for this choice of 8#” the
action can be chosen to be at most quadratic in the first
temporal derivative of the dynamical variables at any order
in the expansion in 1—see the paragraph after the next—
and, thus, there is one conjugate momenta per ordinary
field. This makes it possible to use simple Lagrangian and
Hamiltonian methods to define the classical field theory
and quantize it afterwards by using elementary and stan-
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dard recipes. If time were not commutative the number of
conjugate momenta grows with the order of the expansion
in & and then the Hamiltonian formalism has to be gener-
alized in some way or another [36,37]. This generalization
may affect the quantization process in some nontrivial way
and deserves to be analyzed separately, perhaps along the
lines laid out in Ref. [36].

The noncommutative fields A, and ¥, are defined by
the ordinary fields (i.e., fields on Minkowski space-time)
ay,, the gauge field, and lﬂf» the Dirac fermion—via the
Seiberg-Witten map. We shall understand this map as a
formal series expansion in h:

A,) = a, (0 + > WA, 9, a,](0),

n=1

Wi(x) = dp(x) + Z R (M, 64, a,, 3, 1) (x),
n=1

\Pf(x) = lzf(x) + Z hn(M(n)[,yp’ 0/1/\’ ay, aa']{;zf)(x):
n=1

(2.3)

where  M@W[y?, 6°% a,, d,]¢; is obtained from
M®@[y?, 6P, a,, d,]¥; by means of Dirac conjugation.
Although the ordinary gauge field takes values on the Lie
algebra, su(N), of the group SU(N), the noncommutative
gauge field defined in Eq. (2.3) takes values on the envel-
oping algebra of su(N). Both W,(x) and ¢,(x) belong to
the same vector space. Note that we made a restrictive,
although natural, choice for the general structure of the
Seiberg-Witten maps above: the map for the gauge fields
does not depend on the matter fields and the map for the
fermion fields is linear in the ordinary fermion. Also note
that  AU[6°4, 9, a,](x), M®@[y?, 00, 9,,a,], and
M®[yr P2, 9, a,]contain n powers of #”*. On the other
hand, M™W[y?, 072, 9, a,] and MW[y?, 972, 9, a,] are
differential operators of finite order:

2n
M@[y?, 604, a,,8,1=M"[y*,07,a,]p+ >

s=1

XM(”)['yp, gp/\’av]mn_mam L2

2n
M®[y?, 600, a,,0,]=M""[y?, 0/, 0,1+ >

s=1
XM(”)*['yP, gp/\’ay]ﬂl“%au. e QM
2.4

The symbol * in the previous equation stands for complex
conjugation.

Using the results in Ref. [38], it is not difficult to show
that if 6% =0, i =1,2,3, the Seiberg-Witten map in
Egs. (2.3) and (2.4) can be appropriately chosen so that
only the first temporal derivative, dga;, i = 1,2, 3, of the
ordinary fields a; occurs in the map and that, besides, only
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AE)")[GP)‘, d,, a,] depends on dya;; this dependence being
linear. For this choice —or rather choices, see next para-
graph—of the Seiberg-Witten map the action in Eq. (2.1)
has a quadratic dependence on dga; and a linear depen-
dence on dgyy at any order in h. Hence, standard
Hamiltonian and path integral methods can be used to
quantize the theory. This is not so if time were
noncommutative.

The Seiberg-Witten map is not uniquely defined. There
is an ambiguity to it [13-15,39—-44]. At order h, we shall
choose the form of the map that leads to the noncommu-
tative Yang-Mills models, the noncommutative standard
model, and the noncommutative grand unified theories
models of Refs. [13-15], respectively. Thus we shall take

AY and MO in Eq. (2.3) as given by
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1
1 «
AS") = _Zg ’B{aa» aﬁa,u + fﬁ/,L}:
: . (2.5)
M(l) = —Eﬂaﬁaaaﬂ +%0"‘ﬁaaa5,

where f,,(x) = d,a, — d,a, — ila,, a,] is the commu-
tative field strength.

Several expressions—reflecting the ambiguity issue—
for the Seiberg-Witten map at order h? have been worked
out in several places [13,39,40,45], but only in Ref. [45]
has the action been computed at second order in /. Here we
shall partially follow Ref. [45] and choose the following

forms for Af) and M@ in Eq. (2.3):

1 .
Af‘%) = 500,3075({{61)“ aSaa} - {.fyop Clg}, aﬁa,u,} - 21[6761&, a5aﬁa,u, + an,B,u,] - {aou {aﬁfy,u,’ 615} + {fy,u,’ aﬁaﬁ}
- {aﬁay) aﬁa,u,} - {ay) aﬁ(aﬁa,u. + f,B/.L) + gﬁfﬁﬂ}} - z{aa) {fﬁyr f,u.ﬁ}} - {fa/.u {ay: aﬁaﬁ} - {fy,B) 615}}),

i
M® = — 50“3075((87610[ tia,a,)dgds + i(—0yanap + freap — agdya, + 2apf,, — 2ia,a,ag + ia,aga,)ds)

1
- 3—20“5075(2(%% +iaga,)dsag — 2id,azasag + il[d,a,, agl as] + 4iagf,.as — a,asaag

1
+ zayaaaﬁaﬁ) - a Haﬂgyé(faﬁfyﬁ - 4fy0zf5ﬂ)-

Substituting Egs. (2.5) and (2.6) in Eq. (2.1), one obtains
[45] the following expression for the fermionic part of the
action at second order in h:

Ny
Stomi = > [ 1B+ iR+ iy, @)
=i

where
D=y, —iAy),
1 1
R = heaﬁ(_ Zfoz,8¢ - EypfpaDB)y
1 1
58' = hz’yﬂeaﬁey(s(ﬁ{@,u.fya’ fS,B} - a{@,u.faﬂ’ fyB}
1 1 1
- gfayfﬁy,D,B - Zfa,ufﬁ'yDﬁ - gfaﬁfyuDB
i i
+ £ Dufpy DD, + 5D, waBD;;).
The symbol © , will stand for 9, — i[a,,, ] throughout this
paper.
The action in Eq. (2.7) is invariant under the group

SU(Ny)y X SU(Np)4 X U(L)y X U(1)4 of the following
rigid transformations:

(2.6)

[
W = (e T)pppy, P = (),

lﬂ/f = eiml,[/f, lﬂ;c = e*iozysgbf'

{1}, are the Hermitian generators of SU(N/) in the fun-
damental representation and ys = iy’y!y?

(2.8)

y'v?y3. According
to the Noether theorem there exist currents which are
classically conserved as a consequence of the symmetry.
That the currents associated to the vectorlike transforma-
tions, SU(Ny)y X U(1)y, are conserved at the quantum
level can be seen by using, for instance, dimensional
regularization. The nonsinglet axial current which comes
with SU(Ny), is also conserved—at least at the one-loop
level—see Sec. IV. As for the singlet axial current attached
to the U(1), group, we shall show in the next section that it
is not conserved at the quantum level.

Promoting « in the U(1), transformation in Eq. (2.8) to
an infinitesimal space-time dependent parameter and
working out the variation of Sg.,; under such local trans-
formation, one obtains

OSrms = [ a0 @9)

(cn)pu

where the Noether current j5 ™ is given by
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Z ),

(Cn),u (x) =

PHYSICAL REVIEW D 72, 085008 (2005)

jemm = (/ffwyswf—mﬁf(e B Fup? + 5 eawpfpa)yst/ff 120198 1y ys[wf,;yl) + 2Dy funl

+ égafyvl)ﬁ - gf'yafﬁv - Zfavfﬁy - gfozﬁfyv:|¢lf + h2éaﬂygaﬁ(av(‘r/_/f’yy')/Sgafﬁwa')

- 1 -
+ alB(wf’yV’YSQafyvlﬁf)) + hzg0a'3075¢fyM75®afoD6¢f'

As usual, we introduce the chiral charge which is defined
by

Q" (1) = ] P70, 7). (2.11)
This is a classically conserved quantity, whose properties
upon quantization give us significant clues as to the dy-
namics of the quantum theory.

There is an ambiguity in the definition of the Noether
current. Indeed, the current

TE@) = j" () + YA (x)

would also be a gauge-invariant object that verifies
Eq. (2.9) and would also yield the same chiral charge as

(2.12)

ng")" (x), if Y#(x) were a gauge-invariant quantity that
satisfies

@9, Y#*(x) =0 and (b) ] SRR =0. (2.13)

The current J(°")“ (x) is usually called the canonical
Noether current since

JEME(x) = Z 5(8’u¢ )y5¢(x)f,

with £ being the Lagrangian. Following Refs. [46,47], one
may also relax a bit the constraints on Y# and assume that
d,,Y*(x) = 0 holds only along the classical trajectories,
while (b) in Eq. (2.13) holds for any field configuration, not
only for those that are solutions to the equations of motion.
Of course, this j& will not satisfy Eq. (2.9), but it will be a

conserved current such that its associated charge Q(C")

generates the action of the chiral transformations on the
fields:

{0 (1), (1, X)) = —ysu(t, 3.

{, } denotes the Poisson brackets. The latter current jg‘ may
be also called a Noether current.

In connection with the rigid (also called global) chiral
symmetry U(1),, two currents have been introduced in
noncommutative U(N) gauge theories when defined with-
out resorting to the Seiberg-Witten map. These currents are
Wi % (y#ys5)y, W, and —W; % W, (y#ys),,, where W, is a

(2.10)

[

noncommutative Dirac fermion transforming under the
fundamental representation of U(N). At the classical level,
these currents are conserved and covariantly conserved,
respectively, as a consequence of the rigid chiral invariance
U(1), of the action. Further, unlike the current ]5 cn)m (x),
they are local objects in the sense of noncommutative
geometry, for they are *-polynomials of the noncommuta-
tive fields. For the theory defined by the action in Eq. (2.1),
we have the following analogs of the previous currents

(np)u _ Z J(”P)M ), ]gI;J)M _ Z]gz})l;;

j(np),u — \Iffsi * (’)/’u' 'ys)stqff”"

G = =W i % W1y (ry5)se

Now, W ,; denotes a noncommutative Dirac fermion of our
noncommutative SU(N) theory. The reader may wonder
why we should care about a non-gauge-invariant current
such as > ( J(p )%).i. We shall see in the next section that
computing the quantum corrections to the conservation
equation of the chiral charge associated to it can be done
easily at any order in % and that, as we shall see below, this

charge, even at the quantum level, is the same at any order
(np)p

(2.14)

in & as the chiral charge of Jsf and is also equal to the

chiral charge of ](C")“ (x), at least at second order in /.

We shall show next that the currents in Eq. (2.14) are
conserved and covariantly conserved, respectively, at the
classical level and that this conservation comes from the
invariance of the action under some type of transforma-
tions. To do so, we shall need the equation of motion for the
ordinary fermion fields with action S in Eq. (2.1), where the
noncommutative fields are defined by the Eq. (2.3). Under
arbitrary infinitesimal variations of ¢, and l/_/f, the action S
remains stationary if

Ny
65 ="y fd“x[alzf(l +MYip, ¥,
f=1

+ W B (1 +M)dy]=0.

The symbol MT stands for the formal adjoint of M, ob-
tained by Dirac conjugation supplemented with formal

085008-4



U(1); ANOMALY IN NONCOMMUTATIVE SU(N) THEORIES

operator Hermitian conjugation. Taking into account that
IT+M) '=1+3% (-1)'M" and (1 + M) 1 =1+
S (—=1)*(MT)" formally exist as expansions in /4, one
easily shows that the previous equation is equivalent to

iPV ] =0 PV [, ]=0.

These are the equations of motion for ¢, and l,ﬁf, whose
left-hand sides are to be understood as formal power ex-
pansions in h. We use the notation ¢*‘I'f =
d M‘I’f[zl_/f]y” + l.\i’f[l,[_f‘i] * A. Recall that the noncommu-
tative spinors W, and W, depend on the ordinary spinors
s and iy ,—see Eq. (2.3).

The equations of motion in Eq. (2.15) yield the follow-
ing conservation equations:

z(’mf’””),,(x) =0.

(2.15)

9,57 (x) = 0, (2.16)

Here ®,,;; = 0,8;; — i([A,, 1);;- The currents in the pre-

vious equation are defined in Eq. (2.14). Note that the

Py

current js;;- is covariantly conserved since it transforms

covarlantly under noncommutative gauge transformations.
On the other hand, the current j'”* is gauge invariant.

We shall show next that the conservation equations of
Eq. (2.16) are a consequence of the action in Eq. (2.1) being
chiral invariant under rigid transformations. Let us define

the following infinitesimal variations of \iff[lpf] and

Wy l:

oWy = —iys¥ilyglra, 8V = —ia* W [Jlys.

(2.17)

Here « is an infinitesimal arbitrary function of x. Note that
for arbitrary «(x) neither ¥, nor & g + can be obtained by
applying the Seiberg-Witten map in Eq. (2.3) to infinitesi-
mal local variations of the corresponding ordinary fields,
but this has no influence on our analysis. See however that
if a(x) = a = constant, then the variations in Eq. (2.17)
can be obtained by applying the Seiberg-Witten map of
Eq. (2.3) to the rigid chiral transformations of Eq. (2.8).
The variations of the previous equation induce the follow-
ing change of the action in Eq. (2.1).

N, o
88 = jd“x D La* Wi lys * BV liy]
=

+ ‘I'f[l/_ff] * P (ysV ] * )]

Now, by partial integration one shows that

(2.18)

88 = fd“ Z[a * ‘I’f[l//f]Ys * DY ]

- ﬁ*‘l'f[‘ﬁf] * sVl * al
Next, the right-hand side of equation Eq. (2.18) can be cast
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into the form
Ny o

88 = fd“x Z[a * Weliplys * BVl
=1

= W[ lys *x (B [ghs]) *
+ WL eyl o,.al

By setting a(x) = a = constant in this equation, one
easily shows that S in Eq. (2.1) is invariant under the chiral
transformations of Eq. (2.8). Finally, by combining
Egs. (2.18) and (2.19), and choosing ¢, and (/_/f to be
solutions to the equation of motion—see Eq. (2.15)—
one concludes that

(2.19)

[ Z[\vf[ebf]*wys\lff[u/f]a o] =

We have thus shown that the first identity in Eq. (2.16)
holds as a consequence of the invariance of the action
under rigid chiral transformations. A similar analysis can
be carried out for the transformations

SV, = —iysa* V] 8V = —iV ] * ays,
and explain the identity

2@, J)ix) =0 (2.20)

as a by-product of the rigid chiral invariance of § in
Eq. (2.1). Of course, one can use the previous equation to
introduce a new current, which is conserved, not cova-
riantly conserved. Let %, denote the Moyal product ob-
tained by changing ¢ for & in Eq. (2.2). Starting from the
identity

PYCWIZCRIEDY I it A, 1)
one obtains

pXEWEGRER [ 2 [ artia, 01000 )

from where it is easily derived that

> (2w i) = aﬂ(zjé’;?“ + %ewz

f dr({A,, 351(1))”}*”)1'1')-

Then, one may introduce the current

jee = Zféff“ - aMBZ f dr{A,, 058" )i

(2.21)
which is conserved if Eq. (2.20) holds. Unfortunately,
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]g“ew)” is not gauge invariant, not even along the classical
trajectories, so one would rather use the currents ](C") # and
]("” ' in Egs. (2.10) and (2.14) to analyze the properties of

the theory. That ]( WK is not gauge invariant can be seen as
follows: Let us express the right-hand side of Eq. (2.21) in
terms of the ordinary fields by using the Seiberg-Witten
map of Eq. (2.5) and let us impose next the equation of
motion of the fermion fields, then

N

jgnew)p, _ . jgl}ew)/l«’
=
new)p _ L h6°5 Do)
]Sx}ew n %f’)’“?’sl//‘f + Eha BDalﬁf’y#'ysDﬁiﬁf (2 22)
— ih0%P 3 i " ys gty
— ihO*B g y” 50,y

+ ih0*B 3,1 y" ys0 gty + o(h?).

The previous expression is not gauge invariant. It can be
seen that the current obtained from Eq. (2.21) by using the
most general Seiberg-Witten map differs from the current
in Eq. (2.22) in gauge-invariant contributions. So changing
the expression of the Seiberg-Witten map does not help in
getting a gauge-invariant ]g "W And yet, for 6% = 0 and
for fields that go to zero fast enough as | ¥ |— o0, one can
use > ( J(P I );i(x) to define a conserved gauge-invariant
charge:

0 () = ] /00, 3). (2.23)

|

1 _
+ hzeaﬁaﬂ”[g a9,y v’ DD ytpy) —

1 _
g ap(l//fylu ysDa{Dﬁ’ Drr}lr//f)
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Indeed, in this case

oY (1) = Q") (1), (2.24)

with

00" (1) = f B3P0, 7). (2.25)
To obtain Eq. (2.24) we also have assumed that the fermion
fields are already Grassmann variables in the classical field
theory. We have followed Ref. [47] in making this assump-
tion for it positions us in the right place to start the
quantization of the field theory.

Let us now compute the difference js° (enn _ ]é"” % with-
out imposing the equation of motion. Taking into account
that

. T i D U,
](SV}P)M = JpyPysiy + EhgaBDawfyﬂysDB‘pf
1 -
= P0°P07 DD,y ysDpDs iy

i _
- thaaﬁayaDa%ﬁfﬁ’”?’sfﬁyDé%l’f

- %hz@aﬂmasz?’”?’s(faﬁfya —4f oy fps)ls
+ o(h?),
one concludes that
J5 (np)p _ J(cn)u y;f, (2.26)

where

h = h roa h au (1 ./ .~V I, AV
_lzaa(eaﬁl//fY"“?’SDﬁl//f) + lzaa(m‘ﬁlﬁf’)’ Y’ Dgipy) + 159 KDy y" Y’ Dotby + py" v’ DD, iry)

1 I 5
- Zaa(‘/f.f?’”?’ DgD,D, i)

o o -t
+ 3 0aly" YD, DaD ) |+ IR0 0,y Y Daf ) + 30Ty Y Daf )|

_ i i i
- hZeaBeMplpf,yv,),S[g SaprDV + ggpfavD,B + ggafpVDﬁ:|¢f

_ 1 1
+ hzﬁaﬂﬁ“piﬁfy"ys[‘i‘ gfoalpy ¥ farfp +

Let us show next that ]("” Jn

1
sl o by + 0B

also can be interpreted as a Noether current, although not as the canonical current, if % = 0,

i = 1,2, 3. First, one can prove by exphclt computation that y;f is conserved along the classical trajectories, which is not

(np)p _

surprising since 9, Jsg =0=29, ]gf #. Secondly, if % =

Vo - 0R;
Ri =

0,i=1,2, 3, then

o A |
f _lieulﬂf)’O)’sDjlﬁf + h?6'0" <+§3i'¢f7075Dij'¢f - glﬁﬂ’o?’sDi'{Dﬂ: Dby

1- 1-
- Zlﬁf’yo’ySD]Dl/D]/lﬂf + Zlﬂfyo’ySDl/D]Djlgbf)
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Hence,
;fd%'zyg - ;fﬁ%a; —0

if the fields go to zero fast enough at spatial mﬁmty We
thus conclude that, if time is commutative, ](C") * and jg (np)n
define the same charge, at least up to order h2 Bes1des for
commutative time, we saw above that j&* and j K yield
the same chiral charge at any order in 4. We thus come to
the conclusion that for commutative time, and at least up to
order h?, j (”')“ ]g” )X and Js (P are such that

Q(cn) Q(np) Q(p)

Q(C"), ("p ) and Qgp ) have been defined in Egs. (2.11),
(2.25), and (2.23), respectively. We shall take advantage of
the previous equation to make a conjecture on the form of
the anomalous equation satisfied by the quantum chiral
charge at any order in h—see Sec. V.

To close this section, we shall discuss the consequences
of Q(SC")(t) being a constant of motion when we analyze the
evolution of the fermionic degrees of freedom from ¢t =
—o0 to ¢t = oo in the background of a gauge field a,(x).
With an eye on the quantization of the theory, we shall
introduce the following boundary conditions for a,,(z, X) in
the temporal gauge ay(z, X) = O:

a;i(t = *00, %) = ig.(%)9,83' (%),

(2.27)

. c . .
la;(t, X)| = = as |xX| — oo, i=1,223.

|X|
g+«(X) is a element of SU(N) for every X and
g+ (] X |= 00) = e—e being the identity of SU(N). These
boundary conditions arise naturally in the quantization of
ordinary gauge theories when topologically nontrivial con-
figurations are to be taken into account [48,49]. The bound-
ary condition g. (| X |= 00) = e makes possible the
classification of the maps g.(X) in equivalence classes
which are elements of the homotopy group II;(SU(N)).
At t = *oo the ordinary gauge field yields pure gauge
fields a; (X) with well-defined winding numbers, n, given
by

i
ne =i (2.28)
The reader should note that by keeping the same boundary
conditions for the ordinary fields a, in the noncommuta-
tive theory as in the corresponding ordinary gauge theory,
we are assuming that the space of noncommutative fields is
obtained by applying the Seiberg-Witten map—under-
stood as an expansion in powers of A—to the space of
gauge fields of ordinary gauge theory. At least for U(N)
groups, this approach misses [50] some topologically non-
trivial noncommutatative gauge configurations [51], and it
is not known whether it is possible to modify the boundary
conditions for the ordinary fields so as to iron out this

32 ijk + ox o+
]d X" Tr(a; a;ai ).
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problem. Here, we shall be discussing the evolution of
the fermionic degrees of freedom given by the action in
Eq. (2.1) in any noncommutative gauge field background
which is obtained by applying the 6-expanded Seiber-
Witten map to a given ordinary field belonging to the space
of gauge fields of ordinary gauge theory. For SU(N)
groups, this is interesting on its own, but, as with U(N)
groups, it might not be the end of the story.

From Egs. (2.10), (2.11), and (2.27), we conclude that,
up to second order in A, we have

0" (1 = zo0) = Z]ﬁ%wr—+mn

X Y5lr//f(t = *oo, )C).

Recall that Q(SC")(I) is a gauge-invariant object so that the
choice of gauge has no influence on its value. Here we have
chosen the gauge ay(x) = 0. In the quantum field theory,
the right-hand side of the previous equation yields the
difference between the fermion number ny of asymptotic
right-handed fermions and the fermion number nj of
asymptotic left-handed fermions. Hence, if Qg”‘)(t) were
conserved upon second quantization, the following equa-
tion would hold in the quantum field theory:

0= Q™1 = 00) — 0§t = ~co)

= (ng — ng) — (nf —ny). (2.29)

We saw above—see discussion below Eq. (2.8)—that the
vector U(1)y, symmetry of the classical theory survives
renormalization. So, in the quantum theory we have

(1 = ~e0)

= (n} —ng) + (nf —ny).

0= Q7)1 = o0) -
(2.30)

The reader should notice that Q‘“”)(¢) can be obtained from

(C”)(t) by stripping the latter of its s matrix. Now, by
combining Eqgs. (2.29) and (2.30), we would reach the
conclusion that in the presence of a background field
satisfying the boundary conditions in Eq. (2.27), if we
prepare a scattering experiment where we have ny right-
handed fermions at ¢+ = —oo, there will come out ny right-
handed fermions at t = +00. The same analysis could be
carried out independently for left-handed fermions, reach-
ing an analogous conclusion. The conclusions just dis-
cussed are a consequence of the fact that in the massless
classical action right-handed fermions are not coupled left-
handed fermions. However, as we shall see below, quantum
corrections, when computed properly, render Eq. (2.29)
false, if the difference of winding numbers n, — n_ does
not vanish. Thus, quantum fluctuations introduce a cou-
pling between right-handed and left-handed fermions.
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III. ANOMALOUS U(1), CURRENTS

This section is devoted to the computation of the one-
loop anomalous contributions to the classical conservation
equations

Z@w(’”‘%(x) =0, 084" =0,
3.
0,uJ5"" (x) = 0.

(P (np)p (cn)pu

The currents jo ", j5 ", and j5 " are given in Eqgs. (2.14)
and (2.10). The anomalous contributions to the first con-
servation equation in Eq. (3.1) will be computed at any
order in h, whereas the anomalous contribution to the
remaining equalities in Eq. (3.1) will be worked out only
up to second order in 4. To carry out the computations we
shall use dimensional regularization and its minimal sub-
traction (MS) renormalization algorithm as defined in
Refs. [52,53]—see also Ref. [54] and references therein;
for a brief list of identities see Appendix B. Hence, our y;
in D dimensions will not anticommute with y#. The di-
mensionally regularized #” will be defined as an intrinsi-
cally “four-dimensional” antisymmetric object:

grr = —gvm,  grrg, = 0. (3.2)

Before we plunge into the actual computations, we need
some definitions and equalities that hold in dimensional
regularization. Let (O(a w Yy \Tff)>(A) be the vacuum ex-
pectation value (v.e.v.) of the operator O(a,, ¥/, \Tff) in
the noncommutative background A, as defined by

(O(a,, ¥, V)Y = _— l_[diﬁfdlﬂf@(aw b )

[A]
X els[\l,f'qlf'A]Fermi, (3.3)
The partition function Z[A] reads
3.4

Z[A] = fl_[dl/jfd(/_ffei‘g[\l’f’q’f A]]]-?pkmn
¥

In the two previous equations, S[‘lff, W, AIRR . denotes
the fermionic part of the action in Eq. (2.1) in the
“D-dimensional” space-time of dimensional regulariza-
tion, 1.€.,

- Nf -
SIWy, Wy ARR =D f dPxV, % iV,  (3.5)
f=1

The noncommutative fields A,,, ¥, and ‘i’f are given by
the Seiberg-Witten map of Eq. (2.3) with objects defined in
the D-dimensional space-time of dimensional regulariza-
tion. Next, by changing variables from (¢, ;) to
(¥, \i’f) in the path integrals in Egs. (3.3) and (3.4), we
conclude that the following string of equalities hold in
dimensional regularization:

PHYSICAL REVIEW D 72, 085008 (2005)
- 1 -
(Olay, Wy, U)W = ] [d¥,a¥, deq1 +M]
za) L

X det[1 + M]O(a

X eiSIYYrARE

. ) ]
= o f l;[d‘l’fd‘l’f@(aw v, b))

X eiS[\Pf’lI,f’A]l[:)elimi .

w ¥y V)

(3.6)

The operators M and M are equal, respectively, to the
formal power expansions in &, 3 ,A”"M™[y?, 04, a,,d,],
and 3 ,hA"M"[y?, 074 a,,d,], which are given in
Eq. (2.3), but with objects defined as D-dimensional
Lorentz covariants. Note that the last equality in Eq. (3.6)
is a consequence of the fact that in dimensional regulari-
zation we have

det[1 + M] = det[1 + M] = 1.

Of course, in dimensional regularization, we also have

Z[A] — fl_[dqffd\iffels[wf'wf A]]]‘?gml (3.7)
f

if Z[A] is as defined in Eq. (3.4). To simplify the calcu-
lations as much as possible, we shall compute the anoma-
lous contributions to the three classical conservation
equations in Eq. (3.1) keeping in the computation the
ordering dictated by the latter equation.

A. Anomalous Ward identity for ](" n

The variation of S[W;, ¥, AR . in Eq. (3.1) under the
chiral transformations

reads
BSPltmi = j dPx [Z@M“),m +23 (D, W),
f

* ‘I’f”(?“‘yS),s:|a(x),

This result and the invariance of Z[A] in Egs. (3.7) under
the previous transformations leads to

Z(@#Ug”)“)“))ﬁ = _2Z<(D,uqff)xi * ‘i’zi(f’#ys)zﬁw-
i f
3.8)

The v.e.v. in the noncommutative background A, (- - A,
is defined by the last line of Eq. (3.6). Always recall that
this definition is equivalent to the definition in Eq. (3.3), if
dimensional regularization is employed. Note that the
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right-hand side of Eq. (3.8) contains an evanescent opera-
tor—see Ref. [55], page 346—so it will naively go to zero
as D — 4, yielding a covariant conservation equation. And
yet, this evanescent operator will give a finite contribution
when inserted in a divergent loop. This is how the anoma-
lies come about in dimensional regularization.

The minimal subtraction scheme algorithm [52,53,55]
applied to both sides of Eq. (3.8) leads to a renormalized
equation in the limit D — 4:

J

2(— 1)" (i/z)hzfli °q;
e =

PHYSICAL REVIEW D 72, 085008 (2005)
Z@ UL = =25, W ) x W (74 y5),008
f

(3.9

The Feynman diagrams that yield the right-hand side of
Eq. (3.8) are given in Fig. 1.

With the help of the Feynman rules in Appendix A, we
conclude that the Feynman diagram in Fig. 1(a) represents
the following Feynman integral

9/[” = Nf n! TrA,u](ql)A/,Lz(qZ)"'A,un(q”)
Pp VBV B~ 4B~y — o)y (b= S ) 410
e? " P a0l —a -4 p - S '
The Feynman diagram in Fig. 1(b) yields the following Feynman integral
2(—1)" (t/2)th,°q]
B, =8 S e 00)A (004,000 - A, (0,)
&y ysYE By (B — d) v (B —dy — ) ..y (p — 21)4)
= 3.11
O (TR A LR P S G

In Egs. (3.10) and (3.11) we have used g; © g; as shorthand
for 6#”q,;q,.;- Note that from the point of view of its "
dependence the diagrams in Fig. 1 are planar diagrams.
Hence, no loop momenta is contracted with 8*” in the
corresponding Feynman integrals. This feature of the dia-
grams contributing to the right-hand side of Eq. (3.8)
makes feasible their computation at any order in h. Let
us remark that in keeping with the general strategy adopted
in this paper the exponentials involving h6#*” are always
understood as given by their expansions in powers of A.

The technical details of the computation of the right-
hand side of Eq. (3.9) from the Feynman integrals in
Egs. (3.10) and (3.11) are given in Appendix E. The final
result is

N
A
Z(S <J(p)#>1(vlg . 67);2 €M IR, * Fy .
(3.12)
My gy
p
Wy 9o
90
p-2qi
”’n qn
(a)
FIG. 1.

(i>1)

[
This equation looks like the corresponding equation for

U(N) groups—see Eq. (9b) in Ref. [26]. This similarity
comes from the fact that in both cases no loop momenta is
contracted with #”, and currents and interaction vertices
are the same type of polynomials with respect to the Moyal
product. However, there are two striking differences. First,
the theory in Ref. [26] need not be defined by means of the
Seiberg-Witten map, but the theory considered in this
paper is unavoidably constructed by using the Seiberg-
Witten map. Secondly, the object F, , belongs to the
Lie algebra of U(N) in the theory of Ref. [26], whereas it
belongs to the enveloping algebra of SU(N), not to its Lie
algebra, in the case studied here.

Equation (3.12) leads to the conclusion that, at least at
the one-loop level, the classical conservation equation for

J¥* in Eq. (3.1) should be replaced with
N 3
Z(@ NI  Tus)i = 8—77’_; TeF, % Fpyy (3.13)

LR

NANANNN q,

p-24qi
Un 9dq

(b)

Diagrams that give the right-hand side of Eq. (3.8).
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where N[ ]y denotes normal product of operators in the
MS scheme [53,55] and Frike =letimmmp
Equation (3.13) tell us that for commutative time, i.e.,
0% = 0, the charge Qgp )is no longer conserved but verifies
the following anomalous equation

(p)(t — —o0)

N 4
= 8 Q2 fd XTrFﬂlﬂz FM3M4'

The charge Q(5P )(t) was defined in Eq. (2.23). To obtain the
left-hand side of the previous equation, we have integrated
the left-hand side of Eq. (3.13) and assumed that the fields
vanish fast enough at spatial infinity so as to make the
following identity

] PED, * )1, 7) = ] P7D, (1, DD, (1, %)

valid for %" such that §% = 0. This choice of asymptotic
behavior is standard in noncommutative field theory [9—
11] and renders the kinetic terms of the fields in ordinary
and noncommutative space-time equal.

Using the techniques in [38], it is not difficult to show
that

(p)(t = +o0) —

(3.14)

4 = 4 £
fd xTrF,U«le FM3M4 - fd XTrfﬂ«lef,U«3M4’

at least for the boundary conditions in Eq. (2.27). This
equation was obtained for the U(1) gauge group in
Ref. [56]. Now, by combining the previous equation with
Eq. (3.14), and then using the temporal gauge and the
boundary conditions in Eq. (2.27), one concludes that

(p)(t = +o0) — (p)(t = —)

Ny 4
= 8 Q2 fd XTrfMI,U«szW«A = 21Vf(n+ —no)
(3.15)
The integers n. are defined in Eq. (2.28).

B. Anomalous Ward 1dent1ty for ]("” n

The variation of S[‘Iff, \Pf, in Eq. (3.5) under the
chiral transformations

Ferml

PHYSICAL REVIEW D 72, 085008 (2005)

reads

SSPR =

Fermi

- f de[<an§"P>“><x> -2 (¥,
f
* Py Vs‘l’f)(x)}a(X)-

Now, Z[A]in Eq. (3.7) is invariant under the previous chiral
transformations. That §Z[A] = 0 and that SSEX . be given
by the previous expression leads to

8,087 D () = 23 (T K JEysD, VD (). (3.16)
f

The v.e.v. in the noncommutative background A, (- - )4, is
defined by the last line of Eq. (3.6), which in dimensional
regularization is equivalent to the original definition in
Eq. (3.3). Note that either side of Eq. (3.16) is invariant
under SU(N) gauge transformations of a,; here the MS
scheme algorithm of dimensional regularization will yield
a gauge-invariant result when applied to either side of that
equation.

The right-hand side of Eq. (3.16) contains an evanescent
operator, which upon MS dimensional renormalization
will give a finite contribution when inserted in UV diver-
gent fermion loops. In this subsection we will compute this
finite contribution up to second order in 4.

The Feynman integrals that yield the right-hand side of
Eq. (3.16) at order A" can be worked out by extracting the
contribution of this order coming from the ‘“master”
Feynman diagrams in Fig. 2. The dimensionally regular-
ized object that these diagrams represent can be obtained
by using the Feyman rules in Appendix A. In these rules
and in all our expressions the exponentials e!("/2%1°k2  with
ky o ky = 0"k, ,k,,, are actually shorthand for their se-
ries expansions 35 £ (ky o k)"

The master Feynman diagram in Fig. 2(a) represents the
following object:

n+l (i/2)h() gioq; o jmpm D m
3 =, 2 e 0A ) A ) SO [Gap(Srea)
: k
VBby (b — 4y (b — dy — d) ...y (b = S4)

X tr
PP —q)*p—q1— q)*...

(p—>q)

(3.17)

The master Feynman diagram in Fig. 2(b) corresponds to the expression that follows:
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gy

Uy 92
qn+1

p-2di
Un dn

(a)

PHYSICAL REVIEW D 72, 085008 (2005)

Hyq;

Wy q2

LUn qdn

(b)

FIG. 2. Diagrams that give the right-hand side of Eq. (3.16).

2( )n+l (1/2)h(qu°qJ 0 mhm
G =Ny T T A (a4 A (e S i B(2rea)
YV BBy (b — 4Dy (b~ — )y (B~ 2
i<n+ 318
o P(p—=q)*(p—q1 = q2)*...(p ~ 3 1)611-)2 19

At first order in h, we shall work out every Feynman
diagram giving, in the D — 4 limit, a nonvanishing con-
tribution to the right-hand side of Eq. (3.16). To make this
computation feasible at order h2, we will take advantage of
the gauge invariance of the result and compute explicitly
only the minimum number of Feynman diagrams needed.
We shall denote by 22f<‘iff * &“FySDM\Iff);j}; the re-
normalized object obtained by applying to the right-hand
side of Eq. (3.16) the minimal subtraction algorithm of
|

A0 = 2 AW =

Nf FrT N
) XTrf o f s

XA = Nf2 €M1 a3 e gAa gPT Tr[

967

N
. f
- ’@afm#zfprrf#sm} + 0672

+ if//v#]fV,Uqule i|

Let us remark that X* is a gauge-invariant quantity.
Finally we conclude:

3, (U (x )— Trf,LlM(X)fMM( x)

+ h2 9y XA (x). (3.21)
The subscript MS signals the fact that the previous equa-
tion has been computed by applying the minimal subtrac-
tion algorithm of dimensional regularization [52,53,55] to
both sides of Eq. (3.16). Equation (3.21) shows that the
classical conservation equation in Eq. (2.16) no longer
holds at the quantum level and should be replaced with

Pfﬂ«l.lh@ glffﬂzlm + lfMl,U«s Pflizlmffm o

[
dimensional regularization. This object is to be understood
as an expansion in #4:

23Ty x 4 ysD, VN = AQ + h AW + 2 AQ
f

+ o(h?). (3.19)

The technical details of the computations are given in
Appendix F; the results turn out to be the following:

ﬂ(z) = GAX)‘,

i
Z @afpgf#lﬂzf#3ﬂ4

emmmm{ep}}‘epUgWTr@(r[ 2 QDD s waps + DS s DS a)

(3.20)

9, N[ Jys(x) = Trf,wz( O F o, ()

+ hzaAX)‘(x). (3.22)

Where N[ ]("p J#us () is the normal product operator—see
[53,55]—obtained from the regularized current J(S 2 (x)
by MS renormalization. However, the term 9, X*(x) is not
an anomalous contribution since, as a consequence of the
gauge invariance of X*(x), we may introduce a new re-
normalized gauge-invariant current

T UPH(x) = NP Tys(x) — h2XA(x),

which verifies the standard U(1), anomaly equation. Note

(3.23)
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that, for % = 0, N[ ](”p n ]Msgx) and J gnp ) (x) lead to the
same renormalized charge QJ'", at least up to order h?.
Indeed, if time commutes X"(x) = 0. By employing the
temporal gauge ay(x, t) = 0, integrating both sides of
Eq. (3.22) over all values of x and taking into account the
boundary conditions in Eq. (2.27), one gets

05" (1 = +00) = Q"1 = —o0)
= 8—77{2 fd4XTrf#1M2 (x)fﬂ«z,lm (X)
= 2Ny(n, — n_). (3.24)

n. are defined in Eq. (2.28). To obtain the left-hand side of
the previous equation, we have assumed that the fields go
to zero fast enough as |X| — o0 so as to make sure that there
are no surface contributions at spatial infinity. Note that

f P70, Xi(x) =0,

even for gauge fields that vanish as 1/|X| when |X| — oo.
Equation (3.24) looks suspiciously similar to Eq. (3.15).

They are actually the same equation. Indeed, in the MS

scheme, as we shall show below, the quantum charges

oY )(t) and Q("” (1) are equal if #% = 0. To show that

Q(Sp (1) = ('”’ )(1), we shall need some properties of the
MS normal product operation—see Ref. [53,55]—that we
recall next. Let N[ ]y denote the MS normal product
operation acting on monomials of the fields and their
derivatives, then

N[c|0y + ¢,0,] ms = ¢ N[O ]ys + ¢2N[0s ]y,
N[d,, 0" ]ys = 9,N[O*] yis,
N[GMVOVp]MS = QMVN[OVp]MS’

(3.25)

where ¢, and ¢, are numbers which do not depend on D
and Oy, O,, O*, and O,,, are monomials of the fields and
their derivatives. It is clear that in dimensional regulariza-
tion

]g”lﬂ)ﬂ« = jgp)# + Z Z[‘Pfsi’ \an']*(’)’M ')’5)”,
f i
and that

Sy Prile = aﬂ[%e”ﬁz j;)h di
7T 7

X ({W sy aﬁ\p‘fti}*,)ii :|

PHYSICAL REVIEW D 72, 085008 (2005)

Now, upon using the Seiberg-Witten map, the right-hand
side of this equation is an infinite sum of monomials of the
ordinary fields and their derivatives with coefficients not
depending on D. Then, taking into account Eq. (3.25) and
the equations below it, one concludes that

NLEP Jas = NS s + 0,07 NLOSS (v# )5 uss.
m

(3.26)

COE)"S’; are the monomials of the ordinary fields and their
derivatives we have just mentioned and m collects all the
indices needed to label them. In the previous equation we
have already used the equality §% = 0. Setting u = 0 and

integrating over all values of %, leads to

) (1) = [ PEINLIP N F, 1) = [ PEINL s, 1)

= 0% ().

Note that the integral of the second term on the right-hand
side of Eq. (3.26) vanishes for fields that decrease suffi-
ciently rapidly as |X| — oo.

C. Anomalous Ward identity for J(C" n

In this subsection we shall compute 9, ]é‘")“ Y4 in the
MS scheme of dimensional regularization at second order

in 4. To carry out this calculation we shall employ the

results obtained for ]( P in the previous subsection. To do

so, let us find first the relation between the two currents at
hand in the dimensionally regularized theory. For the time
being, ](L”)“ will denote the natural dimensionally regular-
ized current obtained from its four-dimensional counter-

part in Eq. (2.10). This ](L”)“ is given by an expression
which is exactly the expression displayed in Eq. (2.10)
provided the objects that make it up live in the
“D-dimensional space-time” of dimensional regulariza-
tion. The object #*” in dimensional regularization was

defined in Eq. (3.2) as an intrinsically four-dimensional

object. We shall use the same symbol for the current ]("p n

and for its dimensionally regularized counterpart, the con-
text will tell us clearly for what the symbol stands. The
difference between the dimensionally regularized currents

JEME and jU"P* is given by the following equations:
(cmp _ (np)u + Yw 3.27
it j YK, (3.27)
where
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ye =3[ ~i3

f

1 _
+ hzaaﬁeﬂ”[ +3 900, (ry* Y’ DD yifs) — 3

3,y v D {Dg, DY)

PHYSICAL REVIEW D 72, 085008 (2005)

_ h = h Al . o~ I AV
90y Y’ Dgiy) + lzaa(ewlﬁf‘ya?’sDﬁlﬁf) + 159 “(Dypy" Y’ Dby + by v’ Do Do i)

1 I 5
- Z aa(’#f’yu’y DBDpDonbf)

1 - ] - ] -
+ 8l 7" YD, DD ) |+ h20“ﬂeﬂﬂ[§ay(m”f@afgpwf) + 0807 Duf ) |

- h20a30,up¢_f,yv,y |: “—’af,BpD +3 ~pfaVDB @afvaﬁi|¢f + hZHaBQ;Lplp_f,yv,yS

1 1
X |:+ gfpafﬂv + Zfavfﬁp + gfaﬂfpu:|¢f:| + 0(h3)-

In the previous equation all objects live in the
D-dimensional space-time of dimensional regularization.
It was shown long ago [52] that the equations of motion
holds in the dimensionally regularized theory. Using the
equations of motion and Eqs. (3.28), one gets that

I, Yr=09,X%

where

XU— z|:+lh0p(r(lﬂf YSDpDV¢f)
f

+ 12000078 = 20,9 sD, D)
1 PR
+18B(¢nyYSDaDpDV¢f)
i -,
+ 2 UV YsfapDpDyify
i -
+ 1 by’ vsf gaDpD s

n éﬁf.yﬂys@p fﬁaDylpf-H. (3.29)

Note that at variance with the result for the classical theory,
the dimensionally regularized difference 9, ](50")“ —
A, ]5 Ik — g xY# does not vanish upon imposing the
equation of motion. The operator 9, X7 is an evanescent

operator —it vanishes as D — 4—so it may yield—and,
|

Alen)(1) = 0, AN = angB,

7B = + QB YPT 1243 ks Tr[2® D

1536 2 Pfl/«l,U«z

+ i@afm,uzfptffmw -
+D

i@afﬂ]ﬂzfﬂ3ﬂ4fp”] +
o 4if/t#sz3fm#4]‘

Mfl/«l#s@"fﬂ«zlm

512

(3.28)

[
indeed, it will—a D — 4 finite contribution when inserted
into an UV divergent fermion 100 In summary, quantum
corrections will make 9,( J(C")” )us different from the re-
normalized 9 < joe );{,}‘g Let us work out this difference.

Since X is an invariant quantity under SU(N) gauge
transformations, it so happens that the MS renormalized
I (XA is equal to a 0, A7, with A7 being a
gauge-invariant function of @, and its derivatives. Alenn
has mass dimension equal to 3. To compute 9,47 we
shall follow the strategy used in the computation of A ®?
and explained in the Appendix F. We shall thus use gauge
invariance and the result obtained by explicit computation
of appropriate Feynman diagrams to reconstruct
3y Al

Let us introduce some more notation and denote by
An) and AW the o(h) and o(h?) contributions to
a,fﬂ(”‘)”. Then,

(X7 = g, Alens — p An) 4 p2 A (),

(3.30)

The diagrams that need to be computed in order to calcu-
late A1 and A ysing locality and gauge invari-
ance are the ones displayed in Figs. 3 and 4, respectively.

The calculations constitute the content of Appendix G.
The results obtained are the following:

o-f,uz,u4 + IOZVPfM1M3f0'CVf,U«2M4 + 21®Pfll«1#3fﬂ«zﬂ4f0'a

Finally, taking into account Egs. (3.27), (3.30), and (3.31) one comes to the conclusion that

0,05 ™" s =

Haﬁgptfemuzmmg o8 Trd,, 2D nyﬂlmf#m1
(3.31)
LT = 1A 0 632

Let N[ ](‘”)“ Ims(x) and N []("” Ju Jums(x) be renormalized operators—called normal products [53,55]—constructed by MS
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'\/\/\/\/\/\/‘Ml q,

ANANANNNRY ()

FIG. 3. Diagram that contributes Alen) jp Eq. (3.30).

renormalization from the dimensionally regularized cur-
rents j(SC" #(x) and ]g P (%), respectively. Then, the pre-
vious equation shows that the difference between
N[ ](C")M Jus(x) and N[ J("p Jh1us(x) is an operator, say
N[Y*], which does not verify 9, N[Y*]ys(x) = 0, even
upon imposing the equations of motion. This is in contra-
diction to the classical case. And yet, as we shall see below,
both currents, defined in terms of normal products, yield, if
6% = 0, the same chiral charge up to order /2. But first, let

PHYSICAL REVIEW D 72, 085008 (2005)

us see that the ##”-dependent contributions in Eq. (3.32)
are not anomalous contrlbutlons but finite renormaliza-
tions of the current N[ js" Ju (x)]. Indeed, Egs. (3.32) and
(3.22) lead to

9, N[/ s (x) = Trf,mx)f,w()

+ hzé)‘x}\(.x) + hzaIBZ’B,

where X*(x) and ZP are the gauge-invariant vector fields
in Egs. (3.20) and (3 31), respectively. Then, we introduce a
new current, say J SC")” defined as follows

N s (x) — h2 XA (x) — B2 ZH(x).

(3.33)

T () =

This new current is to be understood as a finite renormal-
ization of N[js (emr (%), and satisfies the ordinary U(1),
anomaly equation:

npq
DANANNNN () My dy AV VN S B \,\/\"‘,\M t
p
) P » \’\’\'\,\/\(“2 4,
e oo
[e€
u YAV VAV Vol N )
2 92 "ANANNNR) () AANANN~H3 3
Hq
, 1 1 5W\MMH1 q, ’W\N\/\/‘ul q; "\/\/\./\N\/‘ul q;
p P P
(¢S o5 Ly 4y o (DANANNNL, () o5 WHZ q,
/\/‘N\N H2 Q@2
L\,\"V\M By g3 M3 q3 ANANANNAHS (3 ONANANNNUS (3
“1 ql i;/\/\N'\/\/‘Hl q2 “l q2
p
qi
Uy qp ANNAANNSO)
M3 qs3 AAAAAA~ H2 a3 DANANANN By q3

VNV )

~AAAANANN N, (3

FIG. 4. Diagrams that yield A W@ in Eq. (3.30).
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9 J(Cﬂ),u( )_

Trf,”«]//vz (x)f/h#«zt( ) (334)

It is plain that X° = 0 = ZO, if % = 0. Hence, if time is
commutative both J¢ em () and N[ j(C")“ Tus (x) give rise to
the same chiral charge Q™. Integrating both sides of
Eq. (3.34) over all values of x, one concludes that, unlike
its ordinary counterpart, the quantum Q is no longer
conserved in the presence of topologically nontrivial field
configurations:

05" (1 = +00) = Q5" (1 = —0)

Ny 5
=5 fd4xTrfM1M2fM3,u4 = 2N (ny —n_).
(3.35)

The integers n. are defined in Eq. (2.28). To obtain the
result in the far right of the previous equation we have used
the temporal gauge ay(x) = 0 and the boundary conditions
in Eq. (2.27). Again, Eq. (3.35) is the spitting image of
Eq. (3.24). This is no wonder s1nce as we shall see next, the
MS renormalized Q "(f) and QS"p (¢) agree up to second
order in h, at the least. Using the identities in Eq. (3.25),
one can show that the following equations hold for 8% = 0:

N [](Cn)o]Ms N [](np)o]Ms = 9;R".

R denotes the operator
AT 0
—ZEWN[‘M’ ¥sD ;¥ lvs
o 1 -
+ h26igli [‘f‘ gaﬂN[lM’O?’sD,’Dﬂlﬁ]Ms

1 _
- gN['/WOYsDi'{Dj’r D} lvs

17 o
- ZN[EZW YsDjDi’Dj'l//]Ms

1 -
+ g NLIY 5D DD s | + o),

Then,
gcn) — ‘[d3)—C>N[j(Scn)0]MS
_ (np)0 329 pi — (ﬂp) 3
f N[ Ius + [d X0,R + o(K?).

We have assumed that the fields go sufficiently rapidly to
zero at spatial infinity so that the last integral vanishes.

IV. NONSINGLET CHIRAL CURRENTS ARE
ANOMALY FREE

The SU(Ny), canonical Noether current, i.e., the ca-
nonical nonsinglet chiral current, reads

PHYSICAL REVIEW D 72, 085008 (2005)

(cn)ap __ N
Js" = D H T,
ff

where H is the object that is left after removing from jfz ")

in Eq. (2.10) the fields (Zf and ¢;. We also have the non-

singlet current J("p )% Wwhich is the analog of the singlet

current ](5"”)“ in Eq. (2.14):

(nplap __ i
jak = Z\I’fT;f,ys * W
1f

These two nonsinglet currents are divergenceless classi-
cally since the classical theory has the SU(Ny), symmetry
in Eq. (2.8). The dimensionally regularized currents con-
structed from ](C")““ jnplap

equatlons

and j; above verify the following

8, YD = g, (jUPHND 1 9, Xk

i . 4.1

8#02 P)aM>(A) = ZZ<\Iff * Tjajf/ Han ')’SD,u\Pf'yA)- 4.1)
ff'

Here, Xﬁﬁ) = > by KT¢pp. K is obtained by strip-

ping &f and i off the right-hand side of Eq. (3.29). Now,
since the kinetic terms and vertices of our noncommutative
theory are in flavor space proportional to the identity, it is
clear that the contributions to the right-hand side of the
equalities in Eq. (4.1) can be obtained from the correspond-
ing singlet contributions by multiplying them by Tr7¢—
see Egs. (3.19), (3.20), and (3.29) and diagrams in Figs. 1—-
3. But, TrT“ = 0, so that

9, YA =0, g, (I @ = o,

We have thus shown that, at least at the one-loop level and
second order in &, the quantum nonsinglet currents of the
SU(Ny)4 classical symmetry of the theory are anomaly
free.

V. SUMMARY AND CONCLUSIONS

In this paper we have obtained, at the one-loop level and
second order in ##”, the anomaly equation for the canoni-
cal Noether current— j(;")“ in Eq. (2.10)—of the classical
U(1), symmetry of noncommutative SU(N) gauge theory
with massless fermions. Throughout this paper the physical
67 has been considered to be of “magnetic’ type: 87 =
0. We have shown that the current ](”W can be renormal-

ized to a current— J gm)“ in Eq. (3.33)—such that the
anomalous contribution to the fourdivergence of the latter
is just the ordinary anomaly. This is a highly nontrivial
result since, a priori, there are 8*”-dependent candidates to
the U(1), anomaly such as
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OPT 1o 3 g Tr[.fUM]f}Lz,lL3fﬂ/.L4]’

QABYPT 12 i3ty Tr[f,uly,zfu3y,4fapfﬁo']r etc.

We have shown that all these would-be anomalous contri-
butions neatly cancel among themselves—see Eqgs. (F9),
(F20), and (F25). We have also studied the anomaly equa-
tion for other noncommutative currents that are classically
(covariantly) conserved as a consequence of the U(1)y
invariance of the classical action. These currents go under
the names of ](p )% and ]("p )% and their (covariant) four-
divergences in the MS scheme are given in Egs. (3.13) and
(3.22). Classically, the current j(S"p )4 is also a Noether
current, for it is related with the canonical Noether current

(‘")” by Eq. (3.26)—see also Eq. (2.12). This relationship
does not hold for the MS renormalized currents. However,
at the one-loop level, we have been able to introduce a

Pk in Bq. (3.23)—which is obtained by non-
(np)p

current—

minimal renormahzatlon of jg and whose difference

with ]g‘")” is a certain Y* satisfying the criteria in
Eq. (2.13).

We also have shown that, at least up to second order in
0+7, all the U(1)4 currents considered above yield the
same chiral charge, say Q(;'")(t), if 8% = 0. Of course,
this classically conserved charge is not conserved at the
quantum level, but verifies the following equation:

Q" (1 = +00) = Q5" (1 = —o0)

Ny 4
8 Q2 fd XTrfﬂvllefﬂszzt = 2Nf(n+ —n-).
G.D

To obtain the result in the far right of the previous equation,
the temporal gauge, a,(x) = 0, has been used and the
boundary conditions in Eq. (2.27) have been imposed.
The integers n. are defined in Eq. (2.28). The identity on
the far right of Eq. (2.29) puts us in the position of giving to
Eq. (5.1) aclear physical meaning. What Eq. (5.1) shows is
that in any quantum transition from ¢t = —oo to t = +o0
that involve a change in the topological properties of the
asymptotic gauge fields—i.e., n, — n_ = n # 0—there
is, for (n <0)n >0, a transmutation of the (right-) left-
handed fermionic degrees of freedom at ¢t = —oo into (left-
) right-handed degrees at t = oo. For instance, take n > 0,
then, if in that transition the fermionic part of the physical
state at 1 = —oo is constituted by nN left-handed fermi-
ons, then, the fermionic part of the physical state at ¢t =
+oo will be made of nN; right-handed fermions. Of
course, there will be “compulsory” creation of fermion-
antifermion pairs at r = +oo, if there are no fermionic
degrees of freedom at t = —oo. It is well known that these
phenomena also occur in ordinary space-time, so introduc-
ing noncommutative space-time does not change the quali-
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tative picture; it does change, however, the quantitative
analysis of these phenomena. For instance, upon Wick
rotation the dominant contribution to the path integral
coming from the gauge fields is a certain #*” deformation
of the ordinary Belavin, Polyakov, Schwarz, and Tyupkin
(BPST) instanton. This deformation, in turn, gives rise to a
6#7-dependent effective "t Hooft vertex. We shall report on
these findings elsewhere [57].

Next, taking into account that we have shown that

(‘”)(t) = Q("p (1) = Q(” )(t) is verified at least up to sec-
ond order in #*” and the fact that Eq. (3.15) is valid at the
one-loop level and any order in 8*”, it is not foolish to
conjecture that Eq. (5.1) will hold at any order in 6*”.

Now, since in our computations the actual properties of
T9—the generators of SU(N)—have played no role, bar-
ring its Hermiticity and the cyclicity of trace of any product
of them, we conclude that all our expressions are valid for
SO(N) groups. Our expressions are also valid for U(1)
provided we replace a, with Qa,, Q being the charge of
the fermion coupled to the U(1) field a,,.

Finally, it is quite obvious how to generalize our ex-
pressions to encompass the situation where several repre-
sentations—Ilabeled by R —of the gauge group are at
work in the fermionic action. Let us give just one instance.

Assume that we have N (R) fermions which couple to the

gauge field aﬁLR) in the R representation of the gauge
group. Then, Eq. (3.34) will read:

(R)
(cn)M( ) = Z - Trfgl{;)q () f ﬁZm(x)’

with

(Scn),u ZN[]('R)(C")M s(x) — h2ZX(R)M(x)
R

— W2y ZRn (),
R

The gauge fields in ng)(C")”, X®w and ZR# are all in
the R representation of the gauge group.
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APPENDIX A: FEYNMAN RULES

In this appendix we give the Feynman rules needed to
turn into mathematical objects the Feynman diagrams dis-
played in this paper. These Feynman rules are in Fig. 5.
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u 0
h
< i(yH)gp e 2

Auii(q)

=
<

P q

& =2ipy (P 7 )ap 8 €797

© = 2ip, (V9" )ap 8 € 27

& = h6*B(p - @) papv 8
(YS?V)KT

< i(Y")ap
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n
q H

> —% (Y )op gpac(@pu+

au,ij (q)

Bo +polguap(q) — gpau(@l};

& =L OPo (Y1) up { ppas(P)au (@) + % rulapg(p)as(q) + ap(q)as(p)]+ puap(p)as(q)-
—ppau(pPlas(q) + relay(p)ap(q) — ap(P)a,u(Q)]}ij

© =20 (V") op Ay ij (@)

o5 @+ P)op’ p=i%qop

=20 (V) op A p,ij (@)

oiaP (P'+a) ,~i%gop

o -h6"P(p+ g-pp
(pv ag + ay(qo + pa))ij

('YV'YS)KI

2
9P (p+ g — p)p (YWY )kr {(Gpa — qudp)PoDy
_(Qpac - CIGGp)p(va — JoqploPv — 2(po, + Cloc)Pc(C]vap - CIpav)
—(P+ q-P)sl(qugp + 26pPa + Papp)av + (quap + 2appo)pvl};

i h*
& === 67670~ D (P~ Do PappPy By (17 )i

FIG. 5. Feynman rules.

APPENDIX B: BASIC IDENTITIES IN
D-DIMENSIONAL SPACE

In this appendix we display some equalities verified by
the D-dimensional Lorentz covariants introduced in
Ref. [52], which are used in our computations. The usual
D-dimensional Lorentz covariants g,,,, p,, ¥, are consid-
ered formal objects satisfying the standard algebraic iden-

tities valid in spaces of integral dimension. Along with
8uv» anew metric g, is introduced, which can be consid-
ered as a (D-4)-dimensional covariant vanishing in the
limit D — 4. The € tensor is a purely four-dimensional
covariant object, and we consider a noncommutativity
tensor 6#” which is also four dimensional; this assumption
is compatible with the usual axioms of dimensional regu-
larization. The identities used in the computations are

085008-17



C.P. MARTIN AND C. TAMARIT

shown next:

Vs — oM oM — vpo 5 —
g,u 8vp = 8p>» g#—zf, errr go’n_o’

{y*, vV = 2gM"1, {ys, v} = {ys ¥} = 2ys9*,

[ys. 9#1=0, (B1)
1
tr»)/sfj\//’“l »)//’“2 .. »)//’“2]{ = E[tr’ys{»j\/ﬂ'l’ »y/LZ}'yMS .. '}/Mzk
+ trysyRe{ PP, yrsh Lyt L

{p#, y#21]
tr»-ysryful ’)/MZ = O’ tr»'ys'y/"’lfyﬂz fy:un? = O,

trysyHr .. LyMe = gtrletr-,

trysy* ...yt = trl]z:(—l)q*"

rP<q

+ trysy*2 ...

X 6#1--~M,)—1M,;+1~--Mq—1,U«q+1~--lb6g,U«qu'

(B2)

APPENDIX C: INTEGRALS

Here we include the list of the dimensionally regularized
integrals that are needed to work out the would-be anoma-
lous contributions The dimensional regularization regula-
tor € is equal to 254 Contrlbutlons that vanish as € — 0
are never 1ncluded The symbol “~" shows that we have
dropped contributions of the type %0, where O is an
evanescent tensor, for they are not actually needed: they
are subtracted by the renormalization algorithm;

dD ]52
,[(277)0 (p—a)*(p—b)*(p — ¢)?
d®p p*p?
QmP (p — a)*(p — b)*(p — ¢)*(p — d)*
—i

e
de ﬁapﬁ _ —i N
QmP pX(p — a)(p — b?  6Amte P

d®p P*Papp
QmP (p — a)*(p — b)*(p — ¢)*(p — d)*

—i 1.
= o8 * s

/ d? P*p’pa
(ZW)D (p —a)’(p — b)*(p — c)*(p — d)?

1
{(a-i— rd), tga ... +d),,},
€

~ 6(dn)
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dPp PP’ parp
QmP (p —a)*(p — b)*(p — )*(p — d)*(p — ¢)?
—i

I,
= W{gaﬂ + Egaﬁ};

dPp P*papp
@mP (p — a)*(p — b)*(p — ¢)*
i 4 . 1 .
=——_ + — + - h
2(4 )2 {ZAaﬁ ZBap EgaﬂA,U«}

24(4 )2(a +b024+c2—a-b—a-c—b-c)

1,
X {gaﬁ + ;gaﬁ}’

1 1
AQ,B = E(aaaﬁ + bab,B + CaC,B) + ﬁ(aabﬁ + asCp

+ baCB + a — B),
d’p P*Pappp, i
QmP (p —a)*(p — b)*(p — o)*(p — d)* 413277
X{gapla+b+c+d),+gala+b+c+dpg

+ggpla+b+c+d),}

] dP P P papg
(27T)D (p—a)l(p—b)*(p—c)*(p—d)*
~384 s8apla* + 0>+ +d*—a-(b+c+d)
—b'(c—l—d)—c-d},

+ [aa(b-i-c—i-d)ﬁ +ba(c+d)ﬁ +cqdg+ae Bl

d’p P PaPpPpPo —i
QmP pX(p — a)*(p — b)*(p — *(p — d)? 15367

X {goz,ngO' + gong,Btr + gaogﬁp}'

APPENDIX D: SYMMETRY RELATIONSHIPS

In this appendix we shall work out a number of identities
relating traces of products of ordinary field strenghts f,,,,
contracted with the € tensor.

Let 7, 4,-.., be an object with indices w;, i = 1---n,
where w; =0,1,2,3 Vi and n>4. Then, if
[ipms - -+ w,] stands for antisymmetrization of the indi-
ces, we have

Ny, = O

Taking into account the previous identity, the cyclicity of
Tr and the antisymmetry properties of e*1#2#3/4 one
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obtains the collection of beautiful identities displayed below:

0P et 12 Trf o i Fuap] = O
1
= 0P7 MMk Tr|:f0'/L1sz,U«3fﬂM4 B ZflLleflL3M4fa'Pi| =0. (Dl)

eI TED o f oo D g f o wsps] = 0
= efitalab Tr[{gafptf@ﬁfm#zfusm + Z{Qafpm @Bf,uszuw
+ 200 fpus Vpf o f ] = 0.
MBI TED o flpu, D S pypsf pile = 0
= e TH2D o f o, Dpf pspsf s T 2P af s D8 pspf o
+ Daf i DpS S o] = 0,
€M TED , flop, DpS1plusf wams] = 0
= e TH2D o f o D pf ppnS wsps T 2P af wyus Vg pusS o,
+ DS s D8 pof win] = 0.

(D2)

ettt T op fotof wiusf waud =0
L ettt Tr[fagfpafmuzfﬂsw +2fapfpuif sapsf pao 2fa[>’fpﬂ3fuwfuluz] =0,

et Trf o f ptof oS wspa] =0
= !PT f o f oS w oS s + 2F paf unf wapsf use T 2f paf pus paof il = 0,

eSS TLf o flaplf oS wspa] = O
= !PT f o fapf ol usus T 2 oS apfusps wsoe T 2F ppsfapfusofpmpn] =0,

eIt Trf o g flou, fiplusf waps) =0
= MMl TH2f oo f o foun wsps + 2Fapf w oS pusfuse T Fapfusme pof i) =0,

et bSESTrf oo 1ol f o pnf s3] =0
= e 18T f oo fanf e sf s + 2 e f o wonef s & 2f s 0 s s ] =0,
et b BSTef o 1o, J181moS wapa =0
= eI T2 f p o f o S puad wams + 2 paf wiwad Busf wio + 2f paf i o i1 =0,
e ST oo flad i S 18l oS wsma1 = 0
= e BT f o fa S s f s T 2F pus fapn BusS s ¥ 2F ppsS api o 11 =0,
e 2B ESTf oo floli, 1810 a1 =0
= eH1H2tst Tr[faafp,ulfﬁﬂzfmw Y2 ap fopnt puaS uso + FasF pusd pof s
+fa,u4fP0'fﬁl‘«1f,U«2M3] =0. .

We shall also need the following identities:
€1kt 9P OPTTID D f 1y DD f e, = €41#245840°P 0PI TH D (D f 1y D p D f i)
+ i@af#m;fptfgﬁfﬂzm]’

1
112833 0B OPTTED o f 1y D oS o = Emmmmoaﬂepgﬂ[gp(fuluagafuzu4fﬁ0) - Egafmm@ﬁfmffmm

i i
+ Efmmfpafuszﬁo o Efmusfmwfpafﬁff} (D4)
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APPENDIX E: COMPUTATION OF THE ANOMALY
ASSOCIATED TO

The anomaly is given by Eq. (3.8), where the right side is
obtained using the Feynman diagrams appearing in Fig. 1,
whose corresponding mathematical expressions are given
by the integrals 2(,,, B, displayed in Egs. (3.10) and (3.11).

The diagrams having nonzero contributions can be iden-
tified by examining their UV degree of divergence. It turns
out that the UV degree of divergence at D = 4 of the
integral that is obtained from %, by replacing # with p
is negative if n > 4. Then, for n > 4, U, vanishes as D —
4. The same type of power-counting arguments can be
applied to *B,, to conclude that these integrals, if n > 3,
go to zero as D — 4. Now, using the trace identities in
Eq. (B2), one easily shows that ; = B, = 0. After a little
Dirac algebra, one can show that the contributions to 3,
and B that involve integrals that are not finite by power-
counting at D = 4 are all proportional to contractions of
the type g M,,e”’”". Since these contractions vanish—see
Eq. (B1)—we have B, = B; = 0. In summary, in the
limit D — 4, only 2l,, 25, and 24 may give contributions
to the right-hand side of Eq. (3.8), and, indeed, they do so.
After some Dirac algebra—see Appendix B
the help of the integrals in Appendix C, one obtains the
following results for 2,, 5, and 2, in position space and
in the dimensional regularization minimal subtraction
scheme:

A, = — Nf Hipaps s T a A ,x J, A
) = Wf r w3y
e = —i Nf it ksts T 9 A *A *A
3 = 14 2 € r[ 2y 3

+ All«l *Al‘«z * 8M4AM3]’

A _ N Mikakska TrA . * A, %A, *A
4_m6 - AL, o w3 s

Substituting these results in the right-hand side of Eq. (3.9),
one gets

N
Z(S <J(P)M>1(CI% i 67);2 RLETETE VY RS S
APPENDIX F: COMPUTATION OF THE ANOMALY
ASSOCIATED TO j"?

The anomaly is given by Eq. (3.16). The result is com-
puted using the Feynman diagrams appearing in Fig. 2,
whose mathematical expressions are given by the integrals
& &, showed in Egs. (3.17) and (3.18). The MS sub-
straction scheme is used for the computations.

First, let us see that the MS dimensional renormalization
algorithm [52,53,55] sets to zero at D = 4 any contribution
coming from &, in Eq. (3.18). Using the identities in
Egs. (B1) and (B2), one can work out the trace over the
gamma matrices and show that
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unﬁwwwﬁ—ﬁwmw—m—ﬁﬂnw(ﬁ—zﬁj

_p,uT,U«] /L,x+ZgMM,TM1 M= Mt M”_'_Z MT,U«l B

T,, T,;, and T; are ‘“Lorentz covariant tensors” in the
D-dimensional space-time of dimensional regularization.
The expression on the right-hand side of the previous
equation shows that any contribution coming from &,
that does not vanish as D — 4 matches one of the follow-
ing ‘““tensor’ patterns

1 A
D_4 t'{leM" TrA’ul(ql) .. AMk(qk) .. 'A,LL,,(ql’l)’
(F1)
D—4 t;lul o TrquAMl (ql) e 'A,u,i(qi) U Ay,”(qn)'

It is important to bear in mind that #"*" and £5,"'""*" must
be linear combinations of Lorentz covariant tensors with
coefficients that do not depend on (D — 4). For instance, a
tensor like #"#¢ = (D — 4)et1#2#3k4 ghsis s not to be
admitted, for this type of #; tensor, when substituted back
in the first equality in Eq. (F1), yields a contribution that
does not go to zero as D — 4. Now, the MS dimensional
regularization algorithm removes from &, any contribu-
tion of the types shown in Eq. (F1). Every &, is thus
renormalized to zero at D = 4 in the MS renormalization
scheme.

The identities in Egs. (B1) and (B2) can be used to
remove from &, any term that upon MS renormalization
will go away as D — 4. The trace over the Dirac matrices
of &, in Eq. (3.17) is given by

R A e R AR R Y
= HIRM1-Hn 4 ZﬁMiS;LI'"/'LFI/LHI'NMn + Zﬁ ,qiTl{uI-uﬂn'

(F2)

R, S, and T are also Lorentz covariant tensors in the
D-dimensional space-time of dimensional regularization.
Redoing the analysis regarding the B, diagrams for the
case at hand—mutatis mutandis—one shows that the
contributions that go with the “tensors” § and T in
Eq. (F2) can be dropped. This is so since, after MS renor-
malization, they will go to zero as D — 4. Hence, upon MS
renormalization, all nonvanishing contributions at D = 4
coming from §,, in Eq. (3.17) will be furnished by the term
p*R*+n in Eq. (F2). And yet, these contributions will
also vanish as D — 4 unless the integration over p yields a
pole at D = 4 when p? is replaced with p wPv- Now, make
the latter replacement in the integrals of ,. Then, some
power-counting at D = 4 tell us that all the integrals thus
obtained are UV finite if our %, is such that n >4 + m—
this m indicates that we are dealing with a term of order /™.
After contraction with g#”, these integrals will vanish at
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D = 4. In summary, to compute, at order 4™, the nonzero
contribution to the MS renormalized right-hand side of
Eq. (3.16), only the values of the ¥, objects verifying

&, suchthat n=m+4 (F3)

are actually needed.

The computation of the anomaly will be done order by
order in A, using the notation introduced in (3.19). As
stated in the beginning of Sec. B, A© and h A" are
obtained computing all the contributing Feynman dia-
grams. In the case of A® the number of contributing
diagrams is significantly higher, and we will take advan-
tage of gauge invariance to simplify the computation in
such a way that only a minimum number of them will have
to be computed. Let us show next that if we have a gauge-
invariant expression, say A ®[a ], that matches the con-
tribution obtained by explicit computation of the diagrams
involving fewer than five fields a,,, then there is no room

for the Feynman diagrams with five or more fields a,

giving a contribution not included in A®. The standard
Becchi, Rouet, Stora (BRS) transformation reads:

sa;i = soa — slaw soa;ﬂ = Iuc“, E4)
syay = —ifab sc® = jfabechee,

Then, the gauge invariance of ﬂl(z)[aﬂ], SAD =0, is
equivalent to the following set of equations

Soﬂ(zz) = Soﬂgz) = Slﬂ(zz)’
soﬂf) = slﬂL§2>, soﬂgz) = slﬂf),
soﬂlg) = sl./’zlgz), so.ﬂgz) = slﬂgz),
WAD = A9 5 AD =g

(F5)

The symbol .7[512), n=23,4,5,6,7, and 8 denotes the
contribution to A@[a ] involving n fields, and its deriva-
tives, a u

8
2
AOa,]=Y APla,]

n=2
Dimensional analysis shows that n < 9. Indeed, .ﬂ.SIZ) has

. : @ _ 72
dimension four and A~ = h*g*r20rsiaf o La,],
f iy mapspal @, ] being a gauge-invariant polynomial of a,,
and its derivatives. The fact that the generators of a unitary
representation of SU(N) are traceless implies that n > 1.
Let B = p2gmirzgrsrag . [a,]be a gauge invari-
ant—i.e., sB? = 0—polynomial of a,
tives which is equal to A up to contributions with more
than four a s OF derivatives of it, and has dimension four:

4 8
> APla,]+ S Ba,]
n=2 n=>5

and its deriva-

B =

PHYSICAL REVIEW D 72, 085008 (2005)

B denotes the contribution involving n fields a,, or
derivatives of it. Let C 5,2) stand for the difference J’Zlff) —

BEE), n=2>5,6,7,and 8. Then, the BRS invariance of both
A®@ and B? —use Eq. (F5)—leads to

s0C<52> =0, SOC? = le(Sz), sOC(72) = leéz),
soCP =5,C¥,  5,c¢ =0 (F6)

Now, the cohomology of the operator s, over the space of
polynomials of aj, ¢ and their derivatives has been
worked out in Refs. [58,59]. The nontrivial part of this

cohomology is given by polynomials of f alfree)

= d,a5 —

a,a4, and/or its derivatives and/or ¢*. Since C g 'b belongs to
the nontrivial part of the cohomology of s, and does not
depend on c“, we conclude that it should be either zero or a
polynomial of f4™ and its derivatives. This last
possibility will never be realized in the case under
scrutiny since one can show by dimensional analysis
that ng) can contain only two partial derivatives, i.e.,

C(Z) must be a linear combination of monomials of

the type d,a%9, aba ad a$, and/or of the form

d,0,a%abas al at, We have thus shown that C(z) ac-
tually Vanlshes Substltutlng this result in Eq. (F6) one
obtains the following equation for C(62): sOC(62) = (. The

same kind of analysis that yielded a vanishing ng) =0

leads to the conclusion that Céz) = (0. And so on, and so

forth. We have thus shown that Cgf) = ( for all n. Hence,
A® = B Notice that our strategy would have failed if
we had decided not to compute diagrams with four gauge
fields (or derivatives of it) a,. Indeed, son) = 0, with

CP = AP — BY, does not imply C? =0, since C?
may be a nonvanishing linear combination of monomials

of the type lel(lt/'rlee) fzzz(lf/'rzee) f;t%(gee) fltll,:(gee).

A is given by the well-known ordinary U(1), anom-
aly:

Ny
877 Q2 /d4XTrf,U~1M2f,U~3M4'

1. The computation of AW

According to Eq. (F3), we shall need the F,’s in
Eq. (3.17) with n = 5. We will sort out the contributions
coming from these §,’s into two categories. The first type
of contributions will be obtained by removing from the
infinite sum > %_ in 3§, any term with m > 0. Hence, the
first type of contributions will be furnished by the terms of
order i in —2,, U, being given in Eq. (3.10). We thus
conclude that the terms in A1) that constitute the first
category can be computed by expanding at first order in &
the right-hand side of Eq. (3.12):
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N, N
My Mo 3 g = —_f PO g1 M3 hy

T TrF % F s | 2 077 € {Tr[amaﬂaoamamam T a,0,,000,,0,,a,,

T 04,000,,0,0,,a,, +050,,0,,a,0,.a,, —3,,0,0,,a,0,,a,,
i

+0,,,0,,0,0,,0,0,,] = ) Trl~a,a,,0,,a,,0,,a, = 2a,a,0,,a,,0,.4,,
- 2a0'aﬂ«3al'«4apaﬂlaﬂz o agaﬂlaﬂaﬂzaﬂ«salm + aUaMzaMzza#zaMlaP
= 2a40,,0,,0,,a,0,, = 450, a,0,,0,,0,, —20,a,,a,,a,.9,,a,
—2050,,0p0,,0 4,0, = 2050,,0,,0,0,,0y, —2050,,0,,d,,0,,0,
+ 260a#1al’«28#3a#4aﬂ + 260a#4apaﬂlaﬂ«zaﬂ3 + 2806M1aﬂzaﬂ3aﬂ4aﬁ’

+20,0,,a,,a,a, a

139 pa Ay,

+20,.a,0

2

o9,y

M3 all«4

ad

M2 M3

M2a,Uv3

+ 0

o a,a +d,,a.a a, dp

f

The second type of contributions that make A () up are obtained by setting & to zero everywhere in &,,, but in the term that
goes with (3, p o ¢;)™, with m = 1. These substitutions yield the following expression:

+a a, a

O, gy + 0,0 wap a

Mg P«la

aga,

a,a,.a

P, Qs A, T apa

P& (F7)

a,a, a

+ zaa'altla M2 ™3

1+0,,Trla,aa,,a,,a,,

2(_ 1)n+1 de )
! @m)P l@p o)
VEEy (b — )y b —d — o).y (B =3 4)
Plr=a)p—a1—4)...(p =X q.)
Recall that we saw above that only for n = 2, 3, 4, and 5 may we obtain a nonvanishing output. Using the identity in
Eq. (F2), the results in Appendix C and adding the contributions generated by the appropriate permutations of the external

Tra, (q1)a,,(q))...a,, (q,) f

X tr

momenta, one concludes that J,, I3, I, and Js give rise to the following terms in A 1):

N
X~ X~ f PO by o 3 Ly
J,~0, Jy~> + 477_249 € Trd,,0,0,,a,0, a,, + 0,0, a,,9,.a,.a,+ d,a,0, a,,d,.a,,]
Sy — i oo eminamsns Tifg 0 + 9,0 +9 9 +9 9
~4 a2’ € HAT050y, Ay, 0y 0y, dp o0y Ap,Gply, Ay, oy Ay, dp9y, Ay, clplp, Au,0us Ay,
+ aﬂ'almaPaMlaleaMs + aﬂ'aﬂlaﬂzaﬂsa#Aaﬂ + ao'apaﬂla,u«zal%alm + agaﬂzaﬂsaﬂutaﬂa#l]’
Nems — Ny 9P7 ehiHa3 s Trg [ ] F8
~s a2V € A0 lapay, Ay, Ay, Ay, ) (F8)

4772

Before working out the results above, the reader may find it useful to read again the discussion below Eq. (F2).
Adding the results in Eqgs. (F7) and (F8), one obtains that AW actually vanishes:

N 1
D —"'f - =
AW = e OPT g1 M2 k3 s Tr|:f0'p,1f,u2,u3fpu4 ZfMIMZfM3/’“4fUp} = 0.

See Eq. (D1).

2. The computation of A?

We saw at the beginning of this subsection—see dis-
cussion that begins just above Eq. (F5)—that to recon-
struct A we need gauge invariance and the computation
of the values of the Feynman diagrams with fewer than five
a,,. This implies that only the contributions to A® com-
ing from %, in Eq. (3.17) with 2 < n < 4 will be worked
out by computation of the corresponding dimensionally

(F9)

{
regularized Feynman integrals. This heavy use of the gauge
invariance of A ®? makes the computation feasible; other-
wise—see Eq. (F3)—one would have to compute the
Feynman integrals in s and 4, which would involve
the calculation of the trace of long strings of gamma
matrices.

The terms in , in Eq. (3.17) that will interest us will be
distributed in two sets. In the first set, we shall put the
contributions that have no (3, p o ¢,)" with m = 1. These
contributions will be obtained by extracting from —2I,
every term of order h2. 2, is in Eq. (3.10). We shall denote
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the contributions in the first set by S 511)’ n being the number of fields a,, that occur in it. Since it was the 2[,’s that gave the

right-hand side of Eq. (3.12), it is clear that

5(2‘) _ Ny el Maks s TrF *xF i
]6772 1 3V2%] M3 1.aa

st = Ny el Ty F

16772 M2

s — Nf_2 et absks TrF

* FM3M4 ’

167 M2 12.aaa

(F10)
* F

M3 Mg

h2,aaaa

The subscript h? stands for terms of order 42 and the subscripts aa, aaa, and aaa tell us that only contributions with two,

three, and four fields a,, are kept, respectively.

The second set of contributions is made up of the expressions, generically denoted by 52 and 89, given below:

>

(2 — (=D" a a a —de .0 (g, o o :
Si Ny Tray, (4)a,,(q2) - “"(q”)f(zw)DK;q’ q,><§p Qk>+<gl) qk> }
VBEy (b — 4y (b — b — do) ... v (b~ 34
S PR PR LU R SR
_1\n+1 D
D = 20 N T A ) A o) [ 5(S o a)

VBEy (b — 4y (b — dh — do) ... v (b — 54

X tr

Pp—a)*(p— a1 — ¢)*...(p = Xq.)

Notice that here n = 2, 3, and 4, for SE,Z), and n = 2 and 3,
if it is S§,3) that we are talking about.

Let us introduce some more notation. S,, S3, and S, will
denote the contributions to A carrying two, three, and

four fields a e respectively. Then,
S, = 5(21) n S(22),MS’ Sy = S(Sl) n S(32),MS i 5(23)'MS|

+ S(33),MS|

aaa’

Sy =S + SPMS 4 gPIMS| (F12)

aaaa aaaar

where S, n = 2, 3, and 4 have been defined in Eq. (F10)
and Sﬁ,z)’Ms, n = 2,3, and 4, stand for the MS renormalized
quantities obtained, respectively, from quz), n=273and 4
in Eq. (F11). After minimal subtraction, § (23) yields

SOM) L and  SEMS and S
S(33),MS|

gives rise to

aaaa»

aaaa-*

The symbols Sg ), ngv), and ™ will stand for gauge-
invariant functions of a, that verify the following equa-
tions:

Sg[w)laa = SZ; Sgim])laaa = S3 - S(QinV)laaa,

(F11)

Ll“he subscripts aa, aaa, and aaaa indicate that a restric-
tion is made to terms with 2, 3, and 4 fields a,, respec-
tively. Besides, we shall assume that the minimum number
fields in S(zinv), S(;"V) , and Sffnv) is 2, 3, and 4, respectively.
Furnishing ourselves with these definitions and recalling
the discussion that begins right above Eq. (F5), one con-
cludes that

A @ = gim) 4 glim) 4 glinv), (F14)

We have computed S,, S5, and S, by carrying out the
lengthy Dirac algebra involved with the help of the iden-
tities in Appendix B and using the values of the dimen-
sionally regularized integrals in Appendix C. Many
involved algebraic operations that occur in these calcula-
tions have been performed with the assistance of the alge-
braic manipulation program MATHEMATICA. We shall not
bother the reader displaying all the intermediate calcula-

S<inv)| g S(inv)l B S(inv)l (F13)  tions since they are not partic.ula.rly inspiring. S, defined in
4 laaaa = 94 2 laaaa 3 laaaa: | Eq. (F12) turned out to be given by
S, = + Ny iR B3 s §EBOPT Trd 9 9 920 _ N BikaRspa ) BOPT gV T 13 9 nd 9.9.9
27 T 96,2 € ; 100004, Apu;98960u,p, 242 < ) 8 M 5098900009 u, A,
1 1
+ Zaﬁaﬂamamanavaﬂzam + Zauavamausaﬁaaamam T0,0,080,,a,,050,,a,,
1 1
5 005000, 09,0 4,0, + zaﬂavaﬁaaamamam%} (F15)
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Let [uv] indicate antisymmetrization with respect to u and ». Then, making the following replacements
8[#61,,] —>f’u,,, 8pa[ﬂa,,] i @pf'u,,, apaga[#av] i (a)@(,@pf”,, or (b)@l)@(,fﬂ,, (F16)

in Eq. (F15), one obtains a gauge-invariant object verifying the first equality in Eq. (F13). This object will be our S(zinv):

A N
SI) = L eramamanagaBero TrD D f 0 DD f o
3847 s s

f

T 102 etiratatisf BOPTeh” THD LD, fru s Do D pyny + DDV f s D D g

+ Zgﬁgﬂgvfmm@tffmw + @B@tr@,ufmmgvfmm + @B@tf@;t@vfmmfﬂzw]'

All along the computation of the previous result, we have taken advantage of the ambiguity that occurs in the replacement
in the second line of Eq. (F16) and chose in each instance the substitution that leads, at the end of the day, to a simpler
result. The expression between brackets, Tr{- - -], on the right-hand side of the previous equation can be expressed as a
double total covariant derivative. Hence,

. N,
— f N
S(QmV) - 384772 etttk eaﬁepoTrgagpfﬂlﬂs@ﬁgaf,uzl-ht

N
B 3841;7-2 6”"""2”3/"4GpBQPUgMVTr@B@0[2@,“@”]“”]#3]“”2#4 + Qufmm@vfuzm]' (F17)

To avoid displaying redundant and unnecessarily long expressions we shall provide the reader with the value of S; —
S (2“"’) | ;aa that came out of our computations:

Sy — S = 4 i N mmnsnsgab oo T + 100 a ap0,a, 0, ay — 0,0,a, 050, 000, a
3 2 laaa 82 9 et pHm BT e s T Fuy 5 CaTp Sy BT s o Py

1 1
+-5040,,a,080,.0,0, a,, +-0,0,a,0,0,,a,,0pa4,

1
~ 5949 aﬂaﬁaﬂ'aﬂ3a#1a#4 5 Yatus g YT s Ve C g

201,“2

1 1 1
o gaaaﬂ«la#s 0p0u,dp,0pds T gaaaﬂlaﬂ3aﬁaﬂzaﬂzxaﬂaﬂ' + gaaaﬂlaﬂsaﬂapa(’aﬂzalm

3 M3 Mo 4871 M3 My

— 9g050y,a,0%a,,0,,a,, = 0p00,a,,0,,a%0,,a,, T 0p050,,a,0,,a"0,,a,,

1 N,
+ 5 0,0,a,050, a,.0 aM}%—l 5 etirabana{g WBOPT T +00,0,a,,0"a,,0, a,,

+20p0,a,,050a,,0,,a,, —2050,,a,0,0%a,,0,,a,, —20p0,0,,050,,a"0,,a,,

+2050,,0,050,,0%0,,ay, + 05050,a,,0,,a,,0 a0, — 05050,,a,0, a,,0"a,,

—0p050,a,,0,,a,,0,,0" +05050,,a,0,,a,,0,,0" + gdsd, ay,0,a,, 0%a,,

—aﬂa 0 au28ﬂ3aM6“aﬂ4—658 J aﬂzaua 8M4a/‘+856 0 amama Jd, a*

o %y % 3 o, wO
+2050,a,,0,0, a,,0%a,, —2dp0,,a,0,9, a,,0*a,, —20gd,a,,0,0, a,.0,, a"
+2050,,a,0,0, a,,0d,,a* +2dgd, a,,d,0,a, 0"a,, —20d, a, 0,9, a,0"a,,
—2030,,a,,0,0,a,.0,.a" +2050, a,,0,0,.a,0, a"].

Applying to this result the substitutions in Eq. (F16), one obtains
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ginv) — s Ny mimapsi 9aBgro Tr| + IS D + L D + Is D
30 T Ty o€ ’ r gwpfmm af wonif po gwafmm S uwapif po gwafmm S oot o
1
+ ggafpagﬁfﬂlﬂ3fﬂzﬂ4 + Safpuzgﬁfoﬂ3fﬂluai|
4 Ny pikaps e YBYPT gV T 1 DD + D
"ag 2 € p g M5 ~p oS wunf v f s T Ppf VoS vpsf

1 1
+ Egﬁgvfumfmmfvm + Egﬂgafulﬂzfumfvm + Qﬁfﬁvmgfffmmfvw + Sﬂfmuzgofumfvw}

Using the cyclicity of the trace and the antisymmetric character of some of the objects in the previous expression, one may
express the term that goes with {6 p}ﬁ 0°7gH” as a double covariant derivative. Thus, we have

. N, 1 1 1
(nv) _ 4 . "Vf o o ‘ ¢ q ‘ ¢
S5 = +i 3072 ekt B P Tr[g D f s Dk popif por + ggafmmgﬂfﬂzwfptr + gQafm,usgﬂfptffﬂzm

1
+ 6 gafpﬁgﬁfmmfmm + gafpnzgﬂf”mfmm}

N
i 7fT S etrrabanslg VBGPT gi? TeD gD [y Fousfuapa) (F18)

Note that the minimum number of fields in S(;“V) is 3, as we had assumed when writing Eq. (F14).
Using the Feynman integrals in Appendix C, we have computed S, and obtained the following result:

St = S v = S = L emimnisiisgoBorr Tol ap a, 1010, 1015a,10 + 0,a,,19 el ]9
4 3 laaaa 2 laaaa _WE ’ B O 19[abu,]19[8% ;190 G p,y] [ 1s]10uy G319l 1989 ]

1 1
3 I A1 o A1 9180 ) Ol F 5 O A} 0% 91a ) o Ao

1 1
3 U1 419141V a ) F 5 O] Oy ] O A1 I8 )

1

1
3 0290190 191481910 o] ~ 15 O ] O O] 91a 191 o]

1 1
+ 15 O 31910401, i) 91840 ~ 57 9 am]a[aaﬂ]a[uzam]a[pao]}'

The substitutions in Eq. (F16) applied to the previous equation yield an object that verifies by construction the last equality

in Eq. (F13) and has four or more gauge fields a,,. This object is our Sff“v):

. N, 1
(l v) _ f o T
S4n - @ gtikakatgaf gp Tr[fpulfwzfﬁmffrm + fpuzfmusfamfﬁ(r + ifmuzfp,usfﬁmfw
1 1 1 1
+ Efm,uzfﬁmfamfptf + Efp,uzfm,uafﬁtffaw + Efamfmmfpfrfﬁm o gf,usz,ulmfpﬁfafr

1 1 1
a ﬁfﬂlﬂzfﬂzﬁmfaﬂfﬂﬂ' + Ef#1M3fPaf,U«2M4fBU' o ﬂfﬂlﬂ3faﬁfﬂzﬂ4fpo':|' (F19)
Substituting the right-hand side of Eqgs. (F17)—(F19) in Eq. (F14) one obtains
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DD

N 1
A0 = - I emimanspg gaB oo Tr|: 57 @a@pfmm

U'fl/«zlm 96 Pfﬂll’vz ““af/fvzl/«Af,BU'

i i
+ 1972 gafmm@ﬁ‘fﬂzwfpo + @ Qafﬂlﬂzgﬁfpﬂf#zﬂ4 @ gafpvgﬁfmmfﬂzm

i 1 1 1
+ ﬁ :Dafpuzsﬁfwzfmm + Efpmfwzfﬁmfaw + Efpuzfmmfamfﬁv + ﬁfmuzfﬂmfﬁmfw

1 1 1 1
+ _fm,uzfﬁmfamfprf + _fp,uzfmmfﬁrrfam + _fwzfmmfprffﬁm - ﬁfuszmmfpﬁfmf
192fﬂlmfm#4faﬁfp0 192fmmfpafm#4fﬂtr - 384fmmfa/3f#zﬂ4fp0}

N .
o ;J; 6M1#2M3#4{0p}ﬂ0p” Tr@B@ [_ (23 ~ fmmfmm + Qﬂfﬂlﬂz@ f,uzm) %fﬂmfﬂmfﬂzm i|
(F20)

The previous result can be simplified using the symmetry relationships displayed in Appendix D. Substituting the
equations in (D4) into Eq. (F20), one gets

N
_f
A@ = ;) ettats ks gaB gra Tr|: ® (gpfmm MBSUf/wu p(fmm Otfﬂz/mfﬁo)
i i

i
+ ﬁ @af#mz Bf#szptr 9 afptf“’ﬁfmmfmm 32 @afp#zgﬁfﬂmfmm

1 1
+ Efpmfauzfﬁmfvm + Efpmfmmfamfﬁa + ﬁfmuzfpmfﬂmfw + _fmuzfﬁmfamfptf
1 1 1
*fpuzfmusfﬁtffam + *fwzfmmfptffﬁm - afﬂszmmfpﬁfw - 192fmmfuzu4faﬁfp0
N 1
384fM1.U«3faﬂfM7M4fP0'i| o ; EM1M2M3M4{0 }Bepa'g,u Tr~,3‘“a'|: 384 (zgﬂgvfﬂlﬂsfﬂzﬂ4

i
MfM1M3 Vf,UﬂMA) 9_6f,UvM1fVM2fM3,U«4 :| (F21)
Let us introduce next the following shorthand
x| = ef1makatty geBgro Tr[gafprr@ﬁfmmfmm]’ Xy = et1makatt QaBgro Tr[@afmm@ﬁfpofmml
X3 = eMiHaka geBgro Tr[gafmm Bfuz/mfpv] Xq = et1akatty geBgro Tr[gafpm Sﬁ‘fthfmm]’
X5 = eMirakat geBgro Tr[@afpm @BfmmeJ’ Xg = €MiHakat geBgro Tr[gafmuz@ﬁfpmfow]'

The objects x;, i = 1, - -, 6 are not linearly independent. They are related by the three identities in Eq. (D2). These
identities read

X1 — 2x5 - 2X4 = O, _2X5 - 2X6 + X3 = O, _2X4 - 2x6 + Xy = 0.
This linear system can be solved yielding the following result:
1 1 1
X4 =Z(x1 +xy = X3), Xs =z(x1 — Xy + x3), X6 =Z(—X1 + xy + x3).
It is not difficult to convince oneself that x;, x,, and x; are linearly independent. We shall employ the previous result to

express the sum of the terms on the right-hand side of Eq. (F21) with only two covariant derivatives as follows:

i i
@@afmm@ﬂfﬂzwfpo afpfr BfMIF'SfMH"A ﬁ ~afpm Bftwsfmw
i i i i i i ( " i ( ) 22
= —s—X3— —=X =Xy = 5 X =Xy — —Xx3 = —x — Xy — x3).
3847 19271 T 3274 3847 T 1287 9677 384! Y g2 B

Using Eq. (D2) and the cyclicity of the trace, one can show that
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x| — Xy = etz s gaBgpo Tr[@ﬁ(gafpﬂfﬂlﬂzfﬂ3ﬂ4)]’

— = etii2i3pagaBgro Ty D) ) ) — i + i (F23)
Xy T X3 T € 1| Dp(Daf o pof uspa Zfaﬁfm#zfpfffmm zfmmfaﬁfpvfmm ]

Substituting Eq. (F22) in Eq. (F21), and then using the identities in Eq. (F23), one obtains the following intermediate
expression for A ?:

N 1
AL = 7Tz [ emimansis gap goo Tr[ Do (Dpf s VDS ) + 9 oSy DS pyps o)

i, 1
384 QB(Qafptffmmfmw) % gﬁ(gafmuzfpafmw) + Efpmfauzfﬁmftfm + Efp,uzfmmfamfﬁv

1 1
+ 3_2fﬂl/-’~2fpﬂ3fﬁ/-‘4fa” + —fﬂlﬂzfﬁl"Sfa/-MfP(T + _fpﬂzfﬂlﬂ3fﬁ”fa#4 + 3_2fa#zfm#3fprffﬁm

1 Nf M1 M3 g B po gLV DD
__f,uzﬂsfmwfpﬂfatr o fmmfaﬂfﬂszptr _77._6 {0 o Trogd,

128

[@ 2% ®VfM1M3f,U«2M4 + gﬂfﬂlﬂq Vf,uzm) %fﬂmfwzfmw } (F24)

Let us finally show that the contributions on the right-hand side of the previous identity which are of the type €00 Trfff f,
with obvious notation, add up to zero. To make the discussion as clear as possible, we shall introduce the following
notation:

yi = ekrratata g BOrT T f o nf porf s unf woms ) vy = ekrkatata 9 BOPT T f oo f o foof wus b
y3 = etrratata 9 BOrT T fonf i fusuaf oo vy = ekrratata g BOPT T f o f o forunf usus b
ys = et1ratata @@ BOrT T f o nf oo fousf o) Vo = €1#2tata 92 BOPT T f oo f oo f s nf ]
y7 = et1ratata Qe BOPT T f o f 1o fpof usms ) yg = et1ratata9eBOPT T f o f o Founf s

yo = €123t 9 BOPTTH(f o o Forunf uaps ) yip = €123t 9 PGP T f o f o Fpusfousd
yi = et1#2batsQBOPT o f o fpu fousf o d yip = €t1#2bats QBOPT o f o f b F o ops )

>

These objects are not linearly independent since they verify the linear equations in Eq. (D3). These linear equations read
Y1~ 2ys—2y3 =0, Yo — 2y9 = 2y3 =0, yi—2ys =2y, =0, Y2~ 2y; = 2ys =0,
Yo — 2y10 — 2y9 =0, y7 = 2y8 = 2y10 =0, Y3~ 2y11 — Yio — Y9 =0, Y8 ~2y12 T yio — ¥4 =0,

where the symbols y; have been introduced above. The previous linear system can be solved in terms of, say, y, y,, yg, and
y7. The solution is the following:

1 1 1 1 1 1 1
y3 = Z)’zy Va4 = 5)’1 - Z)’z» Ys 4J’2)’8 4)’% Yo = 5)’6 - Z)’%
1 1 1 1 1 1
Yio =77 Y=gy~ 1V Y2 = T +§y2+4_1y7'

Using this result, one can easily show that the following equation holds:
Hikap3 s e gpo T 1 + 1 + 1 + 1
€ ‘ f Efpmfauzfﬁmfﬂﬂa prﬂzfmmfamfﬁﬂ 3_2fmnzfpmfﬁu4fmf _fmnzfﬁmfamfw

1 1 1
ﬁfpuzfulusfﬁvfam + 3_2fauzfmu3fp<ffﬁm - 6_4fmmfmu4fpﬁfw - 128 fmmfaﬁfuszﬂtf}

1

= — = 0.
16 Y2

1 1 1
+—Vot+ —=Vio—==Vs + =Yg —==V3 — =Y + ==
Y11 16)’9 32)’10 32)’5 32)’8 32)’3 64)’6 128

By substituting this result in Eq. (F24). one obtains the following final result for A ®):

085008-27



C.P. MARTIN AND C. TAMARIT

967

PHYSICAL REVIEW D 72, 085008 (2005)

N 1
= ¢ N < i ¢
A = 5 etirarstsgaB oo Tr[~|— Zga(gpfmmgﬁgfffmm) 0D, (f s DV sy s por)

) N
+ %@B(@afptffmmfmm) + igﬂ(@afm,uzfptffﬂwﬂ} - fz emuzmm{gp}ﬂgmr Tr@3@0

1
X |:Z (2@#@#fﬂ«1#3f#2#4 + gﬂfﬂlﬂ3gﬂfﬂzﬂ4) - ifﬂ«#lf’uﬂzfﬂnm j|’

which can be written as a total derivative:

./,4(2) = G)LXA,

967
(F25)

N 1 . i
Xt = —fQ ettt gragrT TI‘|:+ Zgﬂfﬂlﬂ3@a®0’fﬂzﬂ4 + lf,U«le gpfﬂzlmfl"a o Zgafptrf,ulp«zf,ug,w

967

. N 1
- lgﬂfﬂ«lﬂ«zfﬂﬂ'fﬂzﬂ«a} + L e (0,)" 077 g Tr@g[ "2 QDD s woms T DS i D0 sy

96772
+ ifﬂﬂlfVﬂzfﬂ3M4 i|

APPENDIX G: COMPUTATION OF THE
ANOMALY ASSOCIATED TO j"*

The anomaly has to be computed using Egs. (3.30) and

(3.29). The vertices associated to the operator X7 and the
diagrams contributing to the calculation are shown in
Appendix A and in Figs. 3 and 4, respectively. If we adjust
to the case at hand the analysis that begins just above
Eq. (F4), we will conclude that the Feynman diagrams
that must be unavoidably computed have two gauge fields,
in the case of the contribution of order /, and two and three
gauge fields in the case of the contribution of order 4%. The
terms with four, five, etc., gauge fields are obtained by
using locality, gauge invariance, the replacements in
Eq. (F16), and the results concerning the cohomology of
5o quoted right below Eq. (F6).

The diagram with two gauge fields that gives the two-
field terms in A () is depicted in Fig. 3. With the help of
the Feynman rules in Appendix A and the Feynman inte-
grals in Appendix C, one shows that this two-field contri-

bution vanishes in the limit D — 4 in the MS scheme.
|

N,
8ﬁT§ = alg{—fzeaﬁapa'e#lﬂzl’-sﬂqgapg,ulfTr|:a 9.0.-9. a. 9. a

967

+4d,0,0,a,0d,0,a

+ Ny QB etitasba Trl —9 9 9 d .0
%62 € rlr 960, Ap;0p0p,

MHEVEOT Ty T L T ey

1
p0r0p, @, 050,,a,, + aﬁ(iaﬂavamausamam

[

Hence, gauge invariance leads to the conclusion that in
this renormalization scheme:

A (en1) = (,

Let 95T f and 0 BTf be the contributions to A ("?
carrying two and three gauge fields, respectively. Let us
introduce local gauge-invariant functions T(va)ﬁ and

T™8 such that TS and 0, T B verify
aBT(QinV)'Blaa _ GBTB,
(inv)B B (inv)B Gh
mv mv
aﬂT3 |aaa = aﬂTB - a,BTZ |aaa-

Let us further assume that the minimum number of fields in
T8 is thee. Then, one can show that

A = g, T 45 TE (G2
The Feynman diagrams that give o B’.Tf are the diagrams
with two wavy lines depicted in Fig. 4. Some Dirac algebra
and the integrals in Appendix C lead to

T 0,050,,a,,0,0,,a,,

1
+—86a68a>}

4MM1M3VM2,U«4

3
Auy — av(iaaamamapamam + 2apaaamamauzau4>ﬂ'

The replacements in Eq. (F16) turn the previous equation into the following identity:

: N
9 /J’(m")ﬁ =9 f
po2 Pl38472

Ny
+
512772

3
OB OPT i1 ka3 s Tr[ga@pfmm@rrfﬂzm — a”|:_

T P P VO N lgl’vf/‘ﬂ/%@’/fﬂz/’%]}'

2 @af#|#3@/7fﬂ«z#4 + zgpgafﬂl/i3f#z/i4i|i|

(G3)

The computation of the Feynman diagrams in Fig. 4 with three gauge fields a, gives 9 BT f . By performing that

computation, we have obtained the following result:
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B _ (inv)B — —
9Ty = 05T 3" Nuwa = aﬁ{ ettt TH60 0 0101010 )0, Gy — 0900100010 4,0 00y,

967

T 6040,,0,,0[,0,,)000,,) T 7900,,a,,0,,0,,0,05 + 30,0, 0,,00,04)0,,0,,

+58aamamépaaamaﬂ4 +604,0,0,0,,0,,9,,d,,]

64 €M1M2M2M4g g,U«Va Tr[a[,u Mz]a[’/ ,u;]a }

Applying to the right-hand side of the previous equation the replacements in Eq. (F16), one gets that

(an)ﬁ f o o 1 e __ ¢ c
a T aﬁ{ 96772 0 /309 efrfatali Tr|:3®afﬂﬂzflfﬂ3f#1#4 3®afp#2f/1«1#3fff.“«4 + 3®afﬂ«1#2fpﬂ«3fff#4

7 3 5, 3
+ ggﬂfﬂll’v}fﬂzlﬂfpl’v} + ngf,ul,wfoaqu,w + g Saf,u«l#sfpo'fﬂ2ﬂ4 + Z gafﬁﬂ'fﬂlﬂ3fﬂ2ﬂ4i|

12877' eifiliga, 8t Tr[fuuzfvmfmm]} (G4)

It is clear that 9 BTgnv)ﬁ verifies Eq. (G1).
Substituting Egs. (G4) and (G3) in Eq. (G2), one obtains the following result:

3
cn)(2) — a o ‘ ‘
A( @ = aﬁ{ 384 2 0 Bep E#IMZM3M4<Tr®an1M% PfM7M4 + (9,,TI’|i2 af/-tl,U«z Pf,uz/-t4 + 2®P®afﬂlﬂsfﬂzﬂ4 i|>
Ny
* 51277 eaﬁepJGMlMZMsluag gl“}a TI'[Z@ @Vf,ul.“3fﬂ«2#4 + @,U«fﬂll’«3fﬂ«zﬂ4]

. Nf o To (
+ ’Wﬁ POTT griratstts Tr[3@afp#zftfu3fulu4 - 3@afpmfm#3f0m + 3®01f,“1l’«2fﬂ#3f0'/1«4

7 3 5 3
+ ggafmmfuszptf + ngfmmftmfuzm + ggafmmfptffuzm + Zgafptffmmfuzm}

12877- eMitabsbag g,U« 9 Trfymfvmfmm}

Using linear equations that can be derived quite easily from Egs. (D3), one may simplify the previous equation and obtain:

A nQ) = 8523,
where
28 = I gabgoo mmnsii T2, D +10iD +2iD
153672 € I pF s Do s 10, f pusfoaf wap 100 f s oS ra
+iDof u o pof sy = IDak wyusf usif pol + 512 etiabatag  eb Tro o[ 2D, D fu un s
Mf//vll/«% VszM4 4ifMszVM3fM1M4]'
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