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Thermal operator representation of finite temperature graphs
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Using the mixed space representation �t; ~p� in the context of scalar field theories, we prove in a simple
manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature
diagrams through a simple thermal operator, both in the imaginary time as well as in the real time
formalisms. This result is generalized to the case when there is a nontrivial chemical potential present.
Several interesting properties of the thermal operator are also discussed.
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I. INTRODUCTION

In a series of recent papers [1–3], it was shown for
theories involving scalar as well as fermion fields that
every graph in momentum space at finite temperature in
the imaginary time formalism [4–6] is related to the cor-
responding graph of the zero temperature Euclidean field
theory through a thermal operator which has a rather
simple form. Namely, for a scalar N-point amplitude (at
any loop) at temperature T one has

Z YI
i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p��
�T�
N

�
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p�O�T��
�T�0�
N ; (1)

where

O �T� �
YI
i�1

�1� ni�1� Si��: (2)

Here I characterizes the total number of internal propaga-
tors and V denotes the total number of vertices in the graph
(with the usual relation for the number of loops L � I �
V � 1), ni � n�Ei� corresponds to the thermal distribution
associated with the internal propagator carrying energy

Ei �
�����������������
~k2
i �m

2
q

and Si � S�Ei� is a reflection operator
that changes Ei ! �Ei (namely, it gives a term with Ei !
�Ei). We denote the internal and the external three mo-
menta of a graph generically by � ~k; ~p� respectively and
��3�v �k; p� enforces the appropriate three momentum con-
servation at the vertex v. For simplicity, we have included
in (1) a delta function which reflects the overall conserva-
tion of the external three momenta. Furthermore, ��T�0�

N
represents the zero temperature graph in momentum space
obtained from the Euclidean field theory. This remarkable
result is, of course, calculationally quite useful since the
worrisome sum over the internal discrete energy values
(particularly at higher loops) has already been reduced to
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evaluating zero temperature energy integrals. More than
that, this allows us to study many questions of interest at
finite temperature such as Ward identities, analyticity [7,8]
more directly. The original proof of this result in momen-
tum space [2,3] however, is quite involved and uses regu-
larization procedures that obscure the origin of such a
relation. Furthermore, the proof leaves one with the feeling
that such a relation is particular to the imaginary time
formalism. In this paper, we discuss a simpler proof of
the thermal operator representation both in the imaginary
time formalism [4–6] as well as in the real time formal-
isms [6]. Furthermore, we also extend this relation to the
case when there is a nontrivial chemical potential [5] and
point out various interesting aspects of this relation.

At finite temperature, it is already noted that simplifica-
tions arise when one works not in the energy-momentum
space, but rather in a mixed space where energy has been
Fourier transformed [6,9,10]. We exploit this feature to
give a simpler derivation of the thermal operator represen-
tation in both imaginary time and the real time formalisms
with and without a chemical potential. In this paper, we
will discuss in detail theories involving scalar fields only to
bring out the essential underlying features. The remarkable
feature of the thermal operator relation, in such a repre-
sentation, is that while the finite temperature graph de-
pends on

��T�N � ��T�N �T; Ei; ���; (3)

where ��; � � 1; 2; � � � ; N represent the external time co-
ordinates of the graph, the thermal operator depends only
on �T; Ei� but not on the external time coordinates [the zero
temperature graph depends on �Ei; ��� but not on T]. As a
result, the time derivative operator (with respect to external
times) commutes with the thermal operator and the dis-
cussion of our results holds equally well for theories with
fermions as well as Yang-Mills fields which we will discuss
in detail in a separate publication. Our paper is organized
as follows. In Sec. II, we first discuss the thermal operator
representation in the imaginary time formalism without a
-1 © 2005 The American Physical Society
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FIG. 1. One loop diagram in the �3 theory with N external
time coordinates.
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chemical potential and then with a nontrivial chemical
potential. In this section, we also point out various prop-
erties of the thermal operator which are quite interesting. In
Sec. III, we derive the thermal operator representation in
the closed time path formalism [6,11,12], again with and
without a chemical potential, where the general proof is
really much simpler than the imaginary time formalism. In
Sec. IV, we discuss the thermal operator representation for
a general time contour, that includes the case of thermo-
field dynamics [6,13], where the thermal operator, in gen-
eral, is not as simple as in the imaginary time and the
closed time path formalisms. We conclude with a brief
summary of our results in Sec. V.

II. IMAGINARY TIME FORMALISM

Let us consider a massive real scalar field theory in
Euclidean space. In this case, we know that the zero
temperature propagator in momentum space is given by

��T�0��pE; E� �
1

p2 �m2 �
1

p2
E � E

2 ; (4)

where we have defined

E �
������������������
~p2 �m2

q
: (5)

The energy variable can now be Fourier transformed to
give the propagator in the mixed space at zero temperature
to be

��T�0���; E� �
Z dpE

2�
e�ipE�

p2
E � E

2

�
1

2E
�����e�E� � �����eE��;

�1 	 � 	 1: (6)

At finite temperature in the imaginary time formalism (we
will set the Boltzmann constant to unity for simplicity), the
propagator in the momentum space has the same form as in
(4) with pE � 2�kT where k is an integer. In this case, the
Fourier transform of the propagator leads to

��T���;E��T
X
k

e�i2�kT�

�2�kT�2�E2

�
1

2E
�������n�E��e�E���������n�E��eE��

�
1

2E
�����f�1�n�E��e�E��n�E�eE�g

������fn�E�e�E���1�n�E��eE�g�;

�
1

T
	�	

1

T
; (7)

which is symmetric under �! ��. It is important to
recognize that, in the imaginary time formalism, time is
rotated to the negative imaginary axis and lies between the
interval �0; 1

T� so that the propagator (being a difference of
085006
time coordinates) is defined only within the interval
�� 1

T ;
1
T�. Furthermore, let us note that, in this mixed space

representation, the thermal propagator (7) can be naturally
written as the sum of a zero temperature part and a finite
temperature part much like in the real time formalisms [6]

��T���; E� � ��T�0���; E� ����; E�; (8)

where the finite temperature part has the form

���; E� �
n�E�
2E
�e�E� � eE��: (9)

Furthermore, we note that both the zero temperature propa-
gator (6) and the finite temperature propagator (7) satisfy
the same equation�

@2

@�2 � E
2

�
���; E� � �����; (10)

but the finite temperature propagator satisfies the period-
icity condition

��T��� < 0; E� � ��T�
�
��

1

T
; E
�
; (11)

following from the Kubo-Martin-Schwinger (KMS) con-
dition [14]. It follows, therefore, that � in (8) satisfies the
homogeneous equation�

@2

@�2 � E
2

�
���; E� � 0; (12)

and is responsible for incorporating the periodicity condi-
tion (11).

It follows now from the forms of the propagators in (6)
and (7) that we can write

��T���;E�� �1�n�E��1�S�E�����T�0���;E�

�O�T��E���T�0���;E�; �
1

T
	�	

1

T
; (13)

where we note that the basic thermal operator O�T��E� is
-2
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FIG. 3. Two loop self-energy diagrams in the �3 theory with
internal time coordinates �; ~�.

THERMAL OPERATOR REPRESENTATION OF FINITE . . . PHYSICAL REVIEW D 72, 085006 (2005)
independent of the time coordinate of the propagator. As
we will see, this basic factorization of the finite tempera-
ture propagator in terms of a thermal operator (that con-
tains all the temperature dependence, but no time) and the
zero temperature propagator (which carries all the time
dependence) is at the heart of the thermal operator repre-
sentation of any finite temperature graph. Given the facto-
rization in (13), it immediately follows that any one loop
graph with N external lines (see Fig. 1) would lead to the
thermal operator representation (we consider the�3 theory
for simplicity, neglect the overall coupling constants, as-
sume that all momenta are incoming and identify kN�1 �
k1; pN�1 � p1)

Z YN
i�1

d3ki��3��ki � ki�1 � pi�1��
�T�
N

�
Z YN

i�1

d3ki�
�3��ki � ki�1 � pi�1�


��T���1 � �2; E1� � � ��
�T���N � �1; EN�

�
Z YN

i�1

d3ki�
�3��ki � ki�1 � pi�1�

YN
i�1

�1� ni�1� Si��


��T�0���1 � �2; E1� � � ��
�T�0���N � �1; EN�

�
Z YN

i�1

d3ki��3��ki � ki�1 � pi�1�O
�T���T�0�

N ; (14)

where we have identified

O �T� �
YN
i�1

O�T��Ei� �
YN
i�1

�1� ni�1� Si��: (15)

Similarly, the thermal operator representation immedi-
ately follows from the factorization of the propagator (13)
for any higher loop graph where all the vertices have only
external times (no internal vertices present). It is obvious,
for example, in the case of the graphs shown in Fig. 2 in the
�4 theory.

The difficulty in establishing the thermal operator rep-
resentation for an arbitrary graph arises when there are
internal vertices present for which the internal time coor-
dinates have to be integrated over all allowed values. For
example, in the �3 theory the self-energy graph at two
loops can have diagrams containing internal vertices of the
form shown in Fig. 3 (�; ~� in this case correspond to
FIG. 2. Two loop diagrams in the �4 theory without internal
time coordinates.
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internal time coordinates that have to be integrated over
the allowed values).

Keeping in mind our earlier comments, we note that at
finite temperature, the time integration goes overZ 1=T

0
d�; (16)

while in zero temperature graphs, the internal time needs to
be integrated over Z 1

�1
d�; (17)

and it is not clear a priori how the range of integration (16)
can be extended to (17) in order to establish the thermal
operator relation. Furthermore, the finite temperature
propagator is only defined in the interval �� 1

T ;
1
T�, and it

is not clear if it can be analytically continued to other
regions (preliminary analysis indicates it cannot be done
so consistently). Before giving a general proof that such an
extension of the range of integration can, in fact, be made,
let us work out a simple example to bring out some of the
essential features.

Let us first consider the product of N propagators with a
common time that is being integrated, namely,

I1 �
Z 1=T

0
d�

YN
i�1

��T���� �i; Ei�; (18)

where �i; i � 1; 2; � � � ; N are assumed to be external times
that lie between the interval �0; 1

T�. Using (13), we can write
the above expression also as

I1�
YN
i�1

�1�ni�1�Si��
Z 1=T

0
d�
YN
i�1

��T�0�����i;Ei�

�
YN
i�1

�1�ni�1�Si��
Z 1
�1
d�
YN
i�1

��T�0�����i;Ei��I1;

(19)

where we have defined

I1 �
YN
i�1

�1� ni�1� Si��

"Z 0

�1
d�

YN
i�1

��T�0���� �i; Ei�

�
Z 1

1=T
d�

YN
i�1

��T�0���� �i; Ei�

#
: (20)

We note here that it is because the basic thermal operator
in the factorization of the propagator is independent of
-3
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the time coordinate that it can be taken out of the time
integral. Furthermore, although the finite tempera-
ture propagator cannot be extended beyond its domain,
once we have extracted the thermal operators, the zero
temperature propagators are defined on the entire real
085006
axis, a fact which we have used in the above. Since the
external times satisfy 0 	 �i 	

1
T , using the definition of

the zero temperature propagator in (6) the integrals in the
bracket above can be evaluated in a simple manner and
lead to
�

 YN
i�1

1

2Ei

! Z 0

�1
d�e

P
i

Ei����i�
�
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1=T
d�e

�
P
i

Ei����i�
!

�
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1

2Ei

!
1P
i
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e
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P
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�
P
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Ei
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P
i
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!

�
1P
i
Ei
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i�1

e�Ei�i

2Ei
�
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i�1
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1� ni

eEi�i

2Ei

#

�

 
1�

YN
i�1

ni
1� ni

��Si�

!
1P
i
Ei

YN
i�1

e�Ei�i

2Ei
: (21)

It is now straightforward to show that the thermal operator annihilates (21), namely,YN
i�1

�1� ni�1� Si��
�
1�

YN
i�1

ni
1� ni

��Si�
�

1P
i
Ei

YN
i�1

e�Ei�i

2Ei
� 0: (22)

This, therefore, establishes that for a product of N propagators integrated over a single common time which is integrated,
we can extend the range of integration to write

Z 1=T

0
d�

YN
i�1

��T���� �i; Ei� �
YN
i�1

�1� ni�1� Si��
Z 1
�1

d�
YN
i�1

��T�0���� �i; Ei�: (23)
[We want to emphasize here that even though the basic
thermal operator is independent of time, it is improper to
take the product of the thermal operators inside the integral
in (23) and write it as a product of thermal operators being
integrated over the interval ��1;1� since the thermal
propagators are not defined outside of their domain. Such
an attempt would lead to various divergences as well as
inconsistency problems.] The case when there is a single
internal time integration works out in a simple manner
because the extra terms in (20) do not involve any non-
trivial time ordering as is clear from (21). This is no longer
the case when there are two or more internal time integra-
tions. We can always extend one of the time integrations to
the entire real axis as discussed above. But, once this is
done, the subsequent integrals will involve nontrivial time
ordering. Nonetheless, case by case, one finds explicitly
that the integration range can be extended to the entire real
axis (after factoring out the thermal operator) when two
internal time integrations are involved. This, in turn, sug-
gests that there must be a general proof for such an equiva-
lence for an arbitrary number of internal time integrations
which we discuss next.

A. General proof

We have already seen that when there is one internal
time coordinate that is being integrated, the range of the
integration can be extended from �0; 1
T� to ��1;1� under

the action of the thermal operator. The generalization of
this result to an arbitrary number of internal times that are
being integrated can be carried out in the following way.
First, let us note that since the zero temperature (as well as
the finite temperature) propagator satisfies (10), it follows
that
�
�
@2

@�2
k

� E2
k

�Z 1
�1

d�
YN
i�1

��T�0���� �i; Ei�

�
Z 1
�1

d�
YN
i�1

0
��T�0���� �i; Ei�

�
�
@2

@�2
k

� E2
k

�

 ��T�0���� �k; Ek�

�
Z 1
�1

d�
YN
i�1

0
��T�0���� �i; Ei����� �k�

�
YN
i�1

0
��T�0���k � �i; Ei�: (24)
Here �k is any external time coordinate and the prime on
the product implies the absence of the term with i � k. As
-4
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a result of this identity, we can write

Z 1
�1

d�
YN
i�1

��T�0���� �i; Ei�

�

�
�
@2

@�2
k

� E2
k

�
�1
 YN
i�1

0
��T�0���k � �i; Ei�

!
: (25)

In general, a homogeneous term (a term annihilated by
the differential operator) is allowed on the right-hand side
of (25). However, since a Feynman diagram is a time
ordered quantity, a homogeneous term is not expected on
physical grounds. That this is true mathematically can also
be seen as follows. Let us evaluate the integral (25) in the
momentum space. Using the definition of the Euclidean
propagator in momentum space in (4), we obtain
085006
Z 1
�1
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��T�0���� �i; Ei�
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Z
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dpiE
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eipiE�i

�p2
iE � E

2
i �
:

(26)
The delta function allows us to eliminate one of the piE
variables and lets us choose the dependent variable to be
pkE related to �k. Eliminating this variable, we obtain
Z 1
�1

d�
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i�1

��T�0���� �i; Ei� �
Z YN
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0 dpiE
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2
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�
�1 Z YN
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0 e�ipiE��k��i�

�p2
iE � E
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�

�
�
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@�2
k

� E2
k

�
�1YN

i�1

0
��T�0���k � �i; Ei�; (27)
which is the result obtained in (25). We would like to note
here that the operator ���@2=@�2

k� � E
2
k�
�1 can be thought

of in terms of the standard integral representation as�
�
@2

@�2
k

� E2
k

�
�1
�
Z 1

0
d�e�����@

2=@�2
k��E

2
k�

�
X1
N�0

Z 1
0
d�

e��E
2
k

N!
�N

@2N

@�2N
k

�
1

E2
k

"
1�

X1
N�1

�
1

E2
k

@2

@�2
k

�
N
#
: (28)
The relation (25) is quite useful in proving that the range
of the finite temperature integration can be extended to the
entire real axis under the action of the thermal operator for
any number of internal time integrations. The important
thing to note here is that the differential operator commutes
with the thermal operator (since it is independent of time)
and that the equivalence can be established recursively as
follows. First, we note from (23) that for a single time
integration this is true. Let us assume that we have a
product of propagators with two internal times that are
integrated. The most general form for such a product can
be written as
Z 1=T

0
d�d~�

 YN1

i�1

��T���� �i; Ei�

! YN2

��1

��T���� ~�; ~E��

! YN3

��1

��T��~�� ���; �E��

!

� O�T�
Z 1=T

0
d�d~�

 YN1

i�1

��T�0���� �i; Ei�

! YN2

��1

��T�0���� ~�; ~E��

! YN3

��1

��T�0��~�� ���; �E��

!

� O�T�
Z 1
�1

d�
Z 1=T

0
d~�

 YN1

i�1

��T�0���� �i; Ei�

! YN2

��1

��T�0���� ~�; ~E��

! YN3

��1

��T�0��~�� ���; �E��

!

� O�T�
�
�
@2

@�2
1

� E2
1

�
�1
 YN1

i�2

��T�0���1 � �i; Ei�

!Z 1=T

0
d~�

 YN2

��1

��T�0���1 � ~�; ~E��

! YN3

��1

��T�0��~�� ���; �E��

!
; (29)

where N1; N2; N3 are arbitrary integers. Here we have identified
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O�T� �

 YN1

i�1

�1� ni�1� Si��
� YN2

��1

�1� ~n��1� ~S���

! YN3

��1

�1� �n��1� �S���

!
; (30)

as well as used (25) with �1 as the external time coordinate for simplicity. This shows that the case of two internal time
integrations can be reduced to that of a single time integration where we know from (23) that the range of integration can be
extended to the entire real axis (under the action of the thermal operator) so that we haveZ 1=T

0
d�d~�

�YN1

i�1

��T���� �i; Ei�
��YN2

��1

��T���� ~�; ~E��
��YN3

��1

��T��~�� ���; �E��
�

� O�T�
�
�
@2

@�2
1

� E2
1

�
�1
�YN1

i�2

��T�0���1 � �i; Ei�
�Z 1
�1

d~�
�YN2

��1

��T�0���1 � ~�; ~E��
��YN3

��1

��T�0��~�� ���; �E��
�

� O�T�
Z 1
�1

d�d~�
�YN1

i�1

��T�0���� �i; Ei�
��YN2

��1

��T�0���� ~�; ~E��
��YN3

��1

��T�0��~�� ���; �E��
�
; (31)
where we have used (23) to restore the � integration. This
process can be used recursively to show that the range of
integration can be extended to the entire real axis (under
the action of the thermal operator) for any number of
internal time integrations. This, therefore, proves the ther-
mal operator representation for any arbitrary graph with N
external legs, namely,

Z YI
i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p��
�T�
N

�
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p�O�T��
�T�0�
N : (32)

There are several things to note here. The proof of the
thermal operator representation in the mixed space is more
direct and the origin of this relation can be traced to the
factorization of the thermal propagator in terms of the
basic thermal operator which is independent of time and
the zero temperature propagator. There is no necessity for
classifying the graphs into trees or for introducing any
regularization as one does in the momentum space analysis
(which is quite unusual since the finite temperature results
are not expected to be divergent). As we will show later, the
derivation of the thermal operator representation in the
mixed space is even simpler in the closed time path formal-
ism. We also note here that although this analysis seems to
k,E3 3

k,E2 2

k,E1 1

τ τ~

FIG. 4. Pressure diagram in the �3 theory at two loops.
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suggest that this equivalence holds only for graphs with
external legs, such a relation holds even for graphs without
any external legs which follows in a straightforward man-
ner from the closed time path formalism to be discussed
later. Here we simply note that if we are looking at the
pressure in the �3 theory at two loops at finite temperature
(see Fig. 4) we have the explicit result (neglecting the
overall factors involving the coupling as well as the sym-
metry factor)

P�T� �
Z  Y3

i�1

d3ki
�2��3

!
�2��3��3��k1 � k2 � k3�


 �2��3��3��0�J�T�; (33)

where

J�T� �
Z 1=T

0
d�d~���T���� ~�; E1��

�T���� ~�; E2�


��T���� ~�; E3�

� O�T�
Z 1=T

0
d�d~���T�0���� ~�; E1��

�T�0���� ~�; E2�


��T�0���� ~�; E3�

� O�T�
Z 1=T

0
d�d~�

2�E1 � E2 � E3�

�2E1��2E2��2E3�


��T�0���� ~�; E1 � E2 � E3�: (34)

The thermal operator for this graph is given by

O �T� �
Y3

i�1

�1� ni�1� Si��: (35)

As we have discussed earlier, in the case of a single
integration over time, the range of integration can be ex-
tended to the entire real axis under the action of the thermal
operator. Using this as well as shifting variables of inte-
gration, we obtain
-6
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J�T� � O�T�
Z 1
�1

d�
Z 1=T

0
d~�

2�E1 � E2 � E3�

�2E1��2E2��2E3�


��T�0���� ~�; E1 � E2 � E3�

� O�T�
Z 1=T

0
d~�

Z 1
�1

d�
2�E1 � E2 � E3�

�2E1��2E2��2E3�


��T�0���; E1 � E2 � E3�

� O�T�
1

T
�k0�0;0

Z 1
�1

d�
2�E1 � E2 � E3�

�2E1��2E2��2E3�


��T�0���; E1 � E2 � E3�; (36)

where we have used the basic definition of Fourier trans-
form for a finite interval (k0 is an integer)Z 1=T

0
d~�e�ik0 ~� �

1

T
�k0;0: (37)

Recalling that in the continuum limit

1

T
�k0�0;0 ! 2���0�; (38)

we immediately identify that

J�T� � O�T�J�T�0�; (39)

and the thermal operator representation works even for
graphs without any external legs. This is more directly
seen in the closed time path formalism that we will discuss
later. It is worth noting here that in the imaginary time
formalism, the graphs without any external leg always have
a factor 1

T �k0�0;0 which must be identified with the con-
tinuum case as in (38). This is not necessary in the real time
formalism where time is a continuous variable defined over
the entire real axis.

Let us also comment here on some interesting aspects of
calculations in the mixed space. The calculations in this
case are more like the real time calculations in the sense
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that the amplitudes contain all possible factors of the
statistical distribution function. However, when the results
are Fourier transformed into energy-momentum space,
because of various identities, the number of statistical
distribution functions in an amplitude reduce to one per
internal loop [1,2]. We note that given the thermal operator
representation (32) of a graph in the mixed space, one can
go to the energy-momentum space in the standard manner.
Here, we have to simply remember that the zero tempera-
ture amplitude ��T�0�

N �Ei; ��� is a function of external times
which are restricted to lie between 0 	 �� 	

1
T . As a

result, the Fourier transform needed to go to the energy-
momentum space is that over a finite interval (involving
integer energy) even though we have a zero temperature
amplitude in the Euclidean space.

The thermal operator representation for any graph at
finite temperature is a remarkable result. Physically, a
Feynman graph at finite temperature represents an en-
semble average while a zero temperature graph corre-
sponds to a vacuum expectation value. Therefore, a
relation between the two can exist only if the expectation
value for a string of operators in any complete set of states
(say in the energy eigenbasis) would be proportional to the
vacuum expectation value of the same string of operators.
Although at first sight this seems unlikely, let us show that
this is plausible with the simple example of the propagator
for a massive, real scalar field at the tree level (which will
also explain the factorization for the thermal propagator).
Using the standard field decomposition in the Euclidean
space, we note that we can write (in the mixed space)

���; ~p� �
1������
2E
p �e�E�a� ~p� � eE�ay�� ~p��; (40)

where as before, E �
������������������
~p2 �m2

p
. At zero temperature, this

leads to
h0jT����1; ~p1����2; ~p2��j0i��
�3�� ~p1� ~p2�

1

2E1
����1��2�e

�E1��1��2� ����2��1�e
E1��1��2��: (41)

On the other hand, in any eigenstate of energy containing N quanta of momentum ~p, we have the expectation value

hN; ~pjT����1; ~p1����2; ~p2��jN; ~pi �
1��������������

4E1E2

p hN; ~pj����1 � �2��a� ~p1�ay�� ~p2�e�E1�1�E2�2 � ay�� ~p1�a� ~p2�eE1�1�E2�2�

� ���2 � �1��a� ~p2�ay�� ~p1�eE1�1�E2�2 � ay�� ~p2�a� ~p1�e�E1�1�E2�2��jN; ~pi

� ��3�� ~p1 � ~p2��
�3�� ~p� ~p1�

1

2E1
����1 � �2���1� N�e

�E1��1��2� � NeE1��1��2��

� ���2 � �1��Ne
�E1��1��2� � �1� N�eE1��1��2���

� ��3�� ~p1 � ~p2���3�� ~p� ~p1��1� N�1� S�E1��
1

2E1
����1 � �2�e�E1��1��2�

� ���2 � �1�e
E1��1��2��

� ��3�� ~p� ~p1��1� N�1� S�E1��h0jT����1; ~p1����2; ~p2��j0i: (42)
-7
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This shows that the expectation value of the time ordered
product of two fields in any higher energy state is propor-
tional to the expectation value of the same operators in the
vacuum state and the proportionality factor is reminiscent
of the basic thermal operator. In fact, carrying out the
thermal ensemble average, this proportionality factor in-
deed becomes the basic thermal operator of (13).

B. Some properties of the thermal operator

The basic thermal operator that leads to factorization of
the thermal propagator has several interesting features. In
this section, we discuss some of them that are relevant to a
better understanding of this factorization. This will also be
quite useful in connection with the study of factorization in
the real time formalisms. Let us note some of the basic
properties of the reflection operator. By definition
�S�E��2 � 1 and for the bosonic distribution functions we
have [this is identical to the well known result n��E� �
��1� n�E�� for a bosonic distribution function]

S�E�n�E� � S�E�
1

eE=T � 1
�

1

e�E=T � 1
S�E�

� ��1� n�E��S�E�;

S�E��1� n�E�� � S�E�
eE=T

eE=T � 1
�

e�E=T

e�E=T � 1
S�E�

� �n�E�S�E�:

(43)

Using these basic properties, it is easy to see that the basic
thermal operator can be written in various ways as

O�T��E� � 1� n�E��1� S�E�� � �1� S�E���1� n�E��

� ��1� S�E��n�E�S�E�: (44)

Furthermore, it follows from the definition that

�O�T��E��2 � �1� n� nS��1� n� nS�

� �1� n�2 � n�1� n� � �n2 � n�1� n��S

� �1� n� nS� � O�T��E�: (45)

The basic thermal operator, therefore, is a projection op-
erator. Consequently, the inverse of this operator does not
exist and the thermal operator representation for graphs
does not have an inverse relation. We note from (44) that

S�E�O�T��E� � O�T��E�; (46)

so that we have

1� S�E�
2

O�T��E� � 0;
1� S�E�

2
O�T��E� � O�T��E�:

(47)

Let us note that we can define another operator

O �T��E� � 1� n�E��1� S�E��; (48)

which also corresponds to a projection operator and sat-
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isfies

�O�T��E��2 � O�T��E�;
�1� S�E��

2
O�T��E� � 0;

�1� S�E��
2

O�T��E� � O�T��E�:

(49)

The two projection operators, however, are not orthogonal
and satisfy

O �T��E�O�T��E� � �1� 2n�E��O�T��E�;

O�T��E�O�T��E� � �1� 2n�E��O�T��E�:
(50)

The thermal operators, of course, depend on the tempera-
ture. Denoting the temperature dependence explicitly, we
can write

O �T��E� � 1� n�E; T��1� S�E��: (51)

It can now be directly checked that

O �T2��E�O�T1��E� � O�T1��E�: (52)

At first sight this may seem a bit strange. However, this
result is quite consistent with the underlying physics. Let
us recall that the effect of the thermal operator is to
reproduce an ensemble average. Once the ensemble aver-
age has been done through the operator O�T1��E�, the
resulting amplitude is a scalar (proportional to the identity
operator). The application of a second thermal operator
O�T2��E� to the result is then equivalent to thermal averag-
ing the identity operator which simply results in a multi-
plicative factor of unity.

Finally, to understand the meaning of the thermal op-
erator O�T��E� as a projection operator, let us note from (8)
as well as (13) that

O �T��E���T�0���; E� � ��T���; E�

� ��T�0���; E� � ���; E�: (53)

We know that the zero temperature propagator does not
satisfy the periodicity condition (11). Rather, it is the
temperature dependent term ���; E� that enforces the pe-
riodicity condition. Thus, we can think of the thermal
operator as projecting on to the space of functions satisfy-
ing the periodicity condition. Of course, it follows from the
definition that

O �T��E����; E� � 0; (54)

which is consistent with the fact that ���; E� is the homo-
geneous solution of the Green’s function Eq. (10) (recall
that the thermal operator commutes with the differential
operator). The meaning of the projection operator O�T��E�
is also now clear since it can be directly checked that

O �T��E����; E� � 2�1� n�E�����; E�: (55)
-8
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C. Chemical potential

So far our discussion has been within the context of a
canonical ensemble where there is no chemical potential.
Chemical potentials arise when we have a conserved
charge and we are dealing with a grand canonical en-
semble. In this case, the Hamiltonian in the definition of
the partition function is generalized to [5]

H ! H��Q; (56)

whereQ represents the conserved charge and� the chemi-
cal potential associated with it. In the context of a scalar
field we can introduce a chemical potential if we are deal-
ing with a complex scalar field where there is a natural
definition of a conserved charge. The free Lagrangian
density, for such a theory in the presence of a chemical
potential, can be written as

L � �@t � i�����@t � i���� ~r�� � ~r��m2���:

(57)

It can be checked that the Lagrangian density (57) leads to
the Hamiltonian (56) where Q represents the conserved
charge that generates the global phase transformations of
the system. We note that the addition of a chemical poten-
tial can be viewed as introducing a constant electrostatic
potential into the system. We also recall here that for a
relativistic massive boson, the chemical potential has to
satisfy

� 	 m: (58)

In Euclidean space, the Lagrangian density (57) takes
the form

L E � �@� ����
��@� ����� ~r�� � ~r��m2���;

(59)

which leads to the zero temperature propagator in momen-
tum space to be

��T�0;���pE; E� �
1

�pE � i��2 � E2 ; (60)

where as before we have

E2 � ~p2 �m2: (61)

This can be Fourier transformed to give the mixed space
representation of the zero temperature propagator to be

��T�0;����; E� �
Z dpE

2�
e�ipE�

�pE � i��2 � E2

�
1

2E
�����e��E���� � �����e�E�����: (62)

At finite temperature, the momentum space propagator
continues to be given by (60) with pE � 2�kT where k
is an integer. Fourier transforming this, we obtain the
mixed space representation for the thermal propagator to
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be

��T;����; E� � T
X
k

e�2i�kT�

�2�kT � i��2 � E2

�
1

2E
������ � n�E����e��E����

� ������ � n�E����e�E�����

�
1

2E
�����f�1� n��e

��E���� � n�e
�E����g

� �����fn�e
��E���� � �1� n��e

�E����g�;

(63)

where, for simplicity of notation we have defined

n� � n�E���: (64)

We note here that when � � 0, this reduces to (7) as it
should. However, unlike the real scalar field, here the
propagator carries a direction, namely, the direction of
the charge flow (from � to ��). The propagator is not
symmetric under �$ ��. This is a reflection of the fact
that the chemical potential inherently distinguishes be-
tween particles and antiparticles. However, under the si-
multaneous reflection ��;�� $ ���;��, the propagator is
invariant. Furthermore, both the zero temperature and the
finite temperature propagators satisfy the equation

��@� ���2 � E2���T;����; E� � �����: (65)

The finite temperature propagator, however, satisfies the
periodicity condition (11).

The form of the thermal propagator in the presence of a
chemical potential is rather complicated and it is not clear
whether there will be a factorization in this case. A little bit
of analysis, however, shows that the propagator can, in fact,
be factorized as

��T;����; E� �
1

2E
�����f�1� n��e��E���� � n�e�E����g

� �����fn�e
��E���� � �1� n��e

�E����g�

� Ô�T;���E; @���
�T�0;����; E�; (66)

where

Ô�T;���E; @�� �
�

1�
n� � n�

2
�1� S�E�� �

n� � n�
2


 �1� S�E��
1

E
�@� ���

�
: (67)

We note that the first two terms are similar to the ones in
the thermal operator of the earlier section while the last
group of terms in the above relation is new and vanishes
when � � 0. It is this term that reflects the asymmetry in
the chemical potential for particles and antiparticles. This
basic thermal operator reduces to the one in (13) and
-9
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continues to be independent of the time coordinate.
However, we would like to point out a further simplifica-
tion that takes place in this case.

Let us note from (62) and (63) that the dependence of the
chemical potential in the exponents of the propagators
completely factorizes,

��T�0;����; E� � e����T�0�����; E�;

��T;����; E� � e��
1

2E
�����f�1� n��e

�E� � n�e
E�g

� �����fn�e
�E� � �1� n��e

E�g�; (68)

where ��T�0�����; E� is given in (6). Since e�� factors out
in both zero as well as finite temperature propagators, we
can write a simpler factorization for the thermal propagator
as

��T;����; E� � e��O�T;���E; @���
�T�0�����; E�; (69)

where

O�T;���E; @�� �
�

1�
n� � n�

2
�1� S�E��

�
n� � n�

2
�1� S�E��

1

E
@�

�
: (70)

Furthermore, let us note that in any 1PI graph involving
closed loops, the overall factor e�� would cancel and hence
can be ignored. (There are various ways of seeing this.
Since the time comes back to itself in a closed loop, this
factor reduces to identity. In terms of electrostatic analogy,
if the particle comes back to the starting point, there is no
change in voltage. Such a simplification, however, would
not take place in a tree level graph which is not 1PI.) As we
have argued earlier, the thermal operator representation of
a graph is a reflection of the factorization of the thermal
propagator and so given the factorization in (66) it would
seem that we can write a simple thermal operator repre-
sentation for any finite temperature graph even in the
presence of a chemical potential. In general, however,
because of the time derivative terms in the basic thermal
operator, this factorization is not as simple as in the case
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without a chemical potential. In the case of graphs, where
every propagator is connected to an external time coordi-
nate, the thermal operator representation takes a simple
form for any 1PI graph involving closed loops,Z YI

i�1

d3ki
�2��3

YV
v�1

��3�v �k; p��
�T;��
N

�
Z YI

i�1

d3ki
�2��3

YV
v�1

��3�v �k; p�O�T;���
�T�0���
N ; (71)

where

O �T;�� �
YI
i�1

O�T;���Ei;�@���; (72)

where �� is the external time coordinate to which the
propagator with energy Ei is connected (� in the time
derivative represents the phase that may arise in chang-
ing the argument to the external time coordinate). This
is almost like the case when there is no chemical poten-
tial.

However, if there are propagators in a diagram which
are not connected to an external time, it is not clear
a priori whether a thermal operator representation can be
written for such a graph. The difficulty arises because if
both the time coordinates associated with a propagator are
internal times, it would seem that the basic thermal opera-
tor (70) for a propagator cannot be taken out of the time
integration and, consequently, it is not clear whether a
thermal operator representation of the graph can result.
That such a representation, be it nontrivial, may arise can
be seen from a simple nontrivial graph like the one shown
in Fig. 5.

Let us consider the vertex correction graph at three
loops in the complex �4 theory. The graph involves two
internal times �; ~� that need to be integrated over and there
are two propagators with time coordinates that are com-
pletely internal. We consider the graph with the charge
flows as shown in the figure. In this case, we note that we
can write
��T;��4 �
Z
d�d~���T;����1� �;E1��

�T;����2� �;E2��
�T;���~�� �1; ~E1��

�T;���~�� �2; ~E2��
�T;����� ~�;E���T;����� ~�; ~E�

�
Y2

i�1

O�T;���Ei; @
�Ei�
�i �O

�T;��� ~Ei;�@
� ~Ei�
�i �

Z
d�d~���T�0�����1� �;E1��

�T�0�����2� �;E2��
�T�0����~�� �1; ~E1�


��T�0����~�� �2; ~E2��
�T;����� ~�;E���T;����� ~�; ~E�; (73)
where the superscript on @�i is to specify on which
propagator the time derivative is going to act. To see
how the time derivatives in the last two propagators
can be taken out of the integral, let us note that we can
write
��T;����� ~�;E��
�
X�E��Y�E�

1

E
@�

�
��T�0������ ~�;E�;

(74)

where we have identified for simplicity
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FIG. 5. A three-loop vertex correction diagram in the �����2

theory with two internal time coordinates.
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X�E� � 1�
n� � n�

2
�1� S�E��;

Y�E� �
n� � n�

2
�1� S�E��:

(75)
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Using this as well as using the identities

��T�0������ ~�; E���T�0������ ~�; ~E�

�
2�E� ~E�

�2E��2 ~E�
��T�0������ ~�; E� ~E�

�
1

E
@���T�0������ ~�; E�

1
~E
@���T�0������ ~�; ~E�;

1

E
@���T�0������ ~�; E���T�0������ ~�; ~E�

�
1

E� ~E
@����T�0������ ~�; E���T�0������ ~�; ~E��;

(76)

we can write
��T;����� ~�;E���T;����� ~�; ~E�� �X�E�X� ~E��Y�E�Y� ~E����T�0������ ~�;E���T�0������ ~�; ~E�

��X�E�Y� ~E��X� ~E�Y�E��
1

E� ~E
@���

�T�0������ ~�;E���T�0������ ~�; ~E��: (77)
The � derivative can now be integrated by parts inside the
integral and put on the other propagators where the argu-
ment of the derivative can be changed to an external time
coordinate and can be taken outside the integral. This
shows that although naively we will not expect a factoriza-
tion of the graph in Fig. 5 where there are propagators
containing only internal time coordinates, a thermal opera-
tor representation does exist. However, it is not as simple as
in the case without a chemical potential and furthermore a
closed form of the thermal operator can only be determined
graph by graph. In view of the above analysis, it seems
plausible that such a nontrivial factorization may also hold
for general diagrams.

III. CLOSED TIME PATH FORMALISM

As we have emphasized several times earlier, the ther-
mal operator representation follows much more directly in
the real time formalism of closed time path [6,11,12]. Let
us recall that in the closed time path formalism, the theory
is defined in Minkowski space where time is a continuous
real variable defined over ��1;1�, unlike in the imaginary
time formalism. Of course, the price one has to pay is to
double the number of degrees of freedom, for every field in
our theory (we denote the real scalar field of our theory by
��) we add another field of the same kind ��. (We refer
the readers to [6] for details.) As a result, the propagator
acquires a 2
 2 matrix structure and in the momentum
space has the form

��T��p� � ��T����p� ��T����p�
��T����p� ��T����p�

 !
; (78)

where, for a massive real scalar field, we have
��T����p� � lim
	!0

i

p2 �m2 � i	
� 2�n�jp0j���p2 �m2�;

��T����p� � 2�����p0� � n�jp0j����p2 �m2�;

��T����p� � 2����p0� � n�jp0j����p2 �m2�;

��T����p� � lim
	!0
�

i

p2 �m2 � i	
� 2�n�jp0j���p

2 �m2�;

(79)

with n�jp0j� denoting the bosonic distribution function.
The components at zero temperature follow from this to be

��T�0�
�� �p� � lim

	!0

i

p2 �m2 � i	
;

��T�0�
�� �p� � 2����p0���p2 �m2�;

��T�0�
�� �p� � 2���p0���p2 �m2�;

��T�0�
�� �p� � lim

	!0
�

i

p2 �m2 � i	
:

(80)

These are Minkowski space propagators and the i	
prescription in the diagonal elements specifies the choice
of the contour in the complex energy plane (the two
diagonal elements simply correspond to time ordered and
anti-time ordered propagators). Fourier transforming the
energy variable,

��t; ~p� � ��t; E� �
Z dp0

2�
e�ip0t��p�; (81)

where, as before, E �
������������������
~p2 �m2

p
, for the zero temperature

components we obtain
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��T�0�
�� �t; E� � lim

	!0

1

2E
���t�e�i�E�i	�t � ���t�ei�E�i	�t�;

��T�0�
�� �t; E� �

1

2E
eiEt; ��T�0�

�� �t; E� �
1

2E
e�iEt;

��T�0�
�� �t; E� � lim

	!0

1

2E
���t�ei�E�i	�t � ���t�e�i�E�i	�t�:

(82)

Similarly, the Fourier transform of the finite temperature
propagator yields the components to be

��T����t; E� � lim
	!0

1

2E
���t�e�i�E�i	�t � ���t�ei�E�i	�t

� n�E��e�iEt � eiEt��;

��T����t; E� �
1

2E
�n�E�e�iEt � �1� n�E��eiEt�;

��T����t; E� �
1

2E
��1� n�E��e�iEt � n�E�eiEt�;

��T����t; E� � lim
	!0

1

2E
���t�ei�E�i	�t � ���t�e�i�E�i	�t

� n�E��e�iEt � eiEt��:

(83)

We have carefully kept the i	 terms in the exponent result-
ing from the Feynman prescription which are essential for
the convergence of factors in any calculation.

Looking at the components of the propagators in the
mixed space in (82) and (83) we see that there is natural
factorization of the components of the finite temperature
propagator so that we can write

��T��t; E� � ��T����t; E� ��T����t; E�
��T����t; E� ��T����t; E�

 !

� �1� n�E��1� S�E��L�	��



��T�0�
�� �t; E� ��T�0�

�� �t; E�
��T�0�
�� �t; E� ��T�0�

�� �t; E�

 !

� �1� n�E��1� S�E��L�	����T�0��t; E�

� O�T��E���T�0��t; E�: (84)

Here L�	� is an operator that takes the limit 	! 0 in the
expression on which it acts. If there is no 	 dependence in
the expression, the effect of this operator is that of the
identity operator. Thus, we see that there is a very simple
factorization of the thermal operator in the closed time path
formalism where each component of the matrix propagator
factorizes by the same factor which does not depend on
time and is reminiscent of (13) (we recall that there is no 	
dependence in the imaginary time formalism). This is,
however, not the case in other real time descriptions such
as thermofield dynamics as we will discuss in the next
section.
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A. General proof

Given the simple factorization (84) of the finite tem-
perature matrix propagators, the thermal operator repre-
sentation for any N-point graph now follows immediately.
Let us note that any graph in the closed time path formal-
ism is simply a product of vertices (both ‘‘�’’ and ‘‘�’’
types) and the corresponding propagators with integrations
over internal time coordinates. Since each component of
the propagator has the same simple factorization (84), then
it follows that for any N-point graph (with only � vertices
or� vertices or mixed vertices) where there are no internal
time coordinates,

Z YI
i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p��
�T�
N

�
Z YI

i�1

d3ki
�2��3

YV
v�1

�2��3��3�v �k; p�O�T��
�T�0�
N ; (85)

where ��T�0�
N represents the value of the corresponding

Minkowski space graph after the energy integrations
have been carried out and

O �T� �
YI
i�1

O�T��Ei� �
YI
i�1

�1� ni�1� Si�L�	��: (86)

This is exactly the same as in the imaginary time formal-
ism. When there are internal time coordinates that need to
be integrated over, however, the proof of the thermal
operator representation in the closed time path formalism
is much simpler. In fact, note that here time is a real
variable defined over the entire real axis independent of
whether we are at zero temperature or at finite temperature.
This is the difference from the imaginary time formalism.
As a result, the thermal operator representation (85) con-
tinues to hold even when there are internal time coordi-
nates that need to be integrated over. (Namely, in this case,
we do not have to extend the range of integration and
thereby avoid the complicated proof of equivalence in
extending the range of integration as is needed in the
imaginary time.) We find this proof of the thermal operator
representation by far the simplest. Furthermore, this result
holds for any N-point amplitude including the case when
N � 0. (Namely, we have made no assumption about a
graph having an external leg.) Therefore, the thermal op-
erator representation clearly holds even for graphs without
any external legs (such as pressure). We have not been able
to show this directly in the imaginary time formalism
although we have argued (based on our result of the closed
time path formalism) and shown in simple examples that it
must be true.

It is worth pointing out some features of the action of the
thermal operator at this point. First of all, let us consider a
multiloop graph with all external vertices only of � type.
At finite temperature, we know that there can be internal
vertices of � type. At zero temperature, however, the �
-12



2E E1

E3

+

−
t

t1,

FIG. 6. A two loop self-energy diagram in the �4 theory with
an internal � vertex.
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type internal vertices give vanishing contribution [15].
There are several ways of seeing this. The simplest reason
is probably the most physical, namely, at zero temperature
any amplitude is simply given by the original theory (one
does not need a doubling at zero temperature). Thus,
applying the thermal operator representation to such a
graph would imply

��T������� � O�T���T�0�
������: (87)
Since the zero temperature graphs would not involve any�
type intermediate vertices, this would imply that the finite
temperature result for such an amplitude can be obtained
only from graphs involving � type vertices. This is, how-
ever, in contradiction with the known fact that we need a
doubling of the degrees of freedom at finite temperature.
The resolution of this puzzle is interesting, which also
clarifies the action of the thermal operator in the following
way. Namely, even when a zero temperature graph van-
ishes, one should not set it to zero before applying the
thermal operator to it. Only after the thermal operator has
been applied can the relevant terms be set to zero. This is
also how new channels of reaction [16] at finite tempera-
ture can be seen to arise in the thermal operator repre-
sentation.

Let us illustrate this with the two loop example in the�4

field theory shown in Fig. 6.
At zero temperature, this graph leads to (we factor out

overall factors involving coupling and symmetry factors)

��T�0�
� � �

Z 1
�1

dt��T�0�
�� �t1 � t; E1��

�T�0�
�� �t1 � t; E2�


 ��T�0�
�� �0; E3�

� �
1

�2E1��2E2��2E3�
2���E1 � E2�: (88)
Since both E1; E2 are positive, this is clearly zero and is
consistent with our observation that at zero temperature,
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graphs with internal � type vertices do not contribute. At
finite temperature, however, this graph does contribute and
has the value

��T�� � �
Z 1
�1

dt��T����t1 � t; E1��
�T�
���t1 � t; E2�


��T����0; E3�

� �
1

�2E1��2E2��2E3�
2n1�1� n1��1� 2n3�


 2���E1 � E2�: (89)

If we naively set the zero temperature graph to zero, then
clearly there is a contradiction. On the other hand, if we
apply the thermal operator to the zero temperature result,
we obtain

�1� n1�1� S1���1� n2�1� S2���1� n3�1� S3����1�



1

�2E1��2E2��2E3�
2���E1 � E2�

� �
2�

�2E1��2E2��2E3�
�1� 2n3��f�1� n1��1� n2�

� n1n2g��E1 � E2� � f�1� n1�n2

� n1�1� n2�g��E1 � E2��: (90)

If we now use the fact that both E1; E2 are positive to set
the first group of terms to zero and use the properties of the
second delta function, we obtain the finite temperature
result in (89). This simple example is quite illustrative in
understanding the action of the thermal operator.

B. Chemical potential

The simplicity of the closed time path formalism con-
tinues to hold even in the presence of a chemical potential
as we will show without going into too many details. Let us
recall that the free Lagrangian density for a complex scalar
field with a chemical potential has the form given in (57)

L � �@t � i���
��@t � i���� ~r�� � ~r��m2���:

(91)

In the closed time path formalism, we have to double the
degrees of freedom and so introducing the doubled degrees
of freedom ���; ���� [we label the original fields as
���; ����], we note that the propagator acquires a 2
 2
matrix structure (and carries a direction from � to ��)

��T;���t; E� � ��T;���� �t; E� ��T;���� �t; E�
��T;���� �t; E� ��T;���� �t; E�

 !
; (92)

with
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��T;���� �t; E� � lim
	!0

1

2E
���t�e�i�E���i	�t � ���t�ei�E���i	�t � n�e�i�E���t � n�ei�E���t�

� lim
	!0

ei�t

2E
���t�e�i�E�i	�t � ���t�ei�E�i	�t � n�e�iEt � n�eiEt�;

��T;���� �t; E� �
1

2E
�n�e

�i�E���t � �1� n��e
i�E���t� �

ei�t

2E
�n�e

�iEt � �1� n��e
iEt�;

��T;���� �t; E� �
1

2E
��1� n��e

�i�E���t � n�e
i�E���t� �

ei�t

2E
��1� n��e

�iEt � n�e
iEt�;

��T;���� �t; E� � lim
	!0

1

2E
���t�ei�E���i	�t � ���t�e�i�E���i	�t � n�e

�i�E���t � n�e
i�E���t�

� lim
	!0

ei�t

2E
���t�ei�E�i	�t � ���t�e�i�E�i	�t � n�e�iEt � n�eiEt�:

(93)
Re

Im t

t

2

1

i
T

T
σi−

−

FIG. 7. General time contour in the complex t plane.
Here n� are the distribution functions introduced earlier in
(64).

Once again, it is obvious that component by component,
we have a factorization of the thermal operator as

��T;��ij �t; E� � ei�tO�T;���E; @t��
�T�0���
ij �t; E�; (94)

where i; j � � and

O �T;���E; @t� �
�

1�
n� � n�

2
�1� S�E��L�	�

�
n� � n�

2
�1� S�E��L�	�

i
E
@t

�
: (95)

This simple factorization of every component of the ther-
mal propagator as well as the fact that in the closed time
path formalism, the range of integration over internal time
coordinates is the same at zero as well as at finite tempera-
tures immediately leads to the thermal operator represen-
tation for any 1PI graph. However, as discussed in the case
of the imaginary time formalism, the thermal operator
representation in the presence of a chemical potential is
nontrivial and more involved because of the presence of the
time derivative terms in O�T;���E; @t�.

IV. GENERAL REAL TIME CONTOUR

There are two commonly used real time descriptions of
finite temperature field theory. In the last section, we have
already discussed one of them, namely, the closed time
path formalism [6,11,12] which is quite useful in calculat-
ing various quantities both in thermal equilibrium as well
as out of thermal equilibrium. The other commonly used
real time formalism goes under the name of thermofield
dynamics [6,13] which is inherently an operator formalism
and is quite useful in understanding various operatorial
issues such as the nature of the thermal vacuum and the
thermal Hilbert space etc. for equilibrium systems. It can
also be used for calculations in thermal equilibrium
although its main power lies in understanding operatorial
issues. Both these formalisms correspond to specific time
paths in the complex t plane. In general, one can define a
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thermal field theory with a time contour in the complex t
plane of the form shown in Fig. 7 [17].

Here 
 is a constant and has the value in the range 0 	

 	 1. When 
 � 0 the description of the thermal field
theory coincides with the closed time path formalism while
for 
 � 1

2 , the description corresponds to thermofield dy-
namics. In this section, we will show that a simple facto-
rization of the thermal operator and, therefore, of a thermal
graph takes place only for the cases when 
 � 0; 1. In the
case of closed time path corresponding 
 � 0, we have
already seen this. Here we will study the behavior of the
thermal propagator for a general time path in the complex t
plane.

Let us consider a theory describing a real scalar field.
The doubling at finite temperature simply corresponds to
introducing the fields ��1; �2� on the two paths labeled 1; 2
(the original field that we start out with is considered to be
�1). For a general time contour as shown in Fig. 4, it can be
shown that

��T��p� �
��T�11 �p� ��T�12 �p�

��T�21 �p� ��T�22 �p�

 !
; (96)

where
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��T�11 �p� � ��T����p�; ��T�12 �p� � e
p0=T��T����p�;

��T�21 �p� � e�
p0=T��T����p�; ��T�22 �p� � ��T����p�;
(97)

where ��T�ij �p�; i; j � � correspond to the propagators in
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the closed time path formalism that we have already dis-
cussed in the earlier section. Fourier transforming these
components of the propagator in the energy variable, we
obtain the mixed space propagator for the general contour
to be
��T�11 �t; E� � ��T����t; E�;

��T�12 �t; E� � ��T���

�
t� i



T
; E
�
�

1

sinhET

�
sinh

�
�1� 
�

E
T

�
��T����t; E� � sinh

�

E
T

�
��T����t; E�

�
;

��T�21 �t; E� � ��T���

�
t� i



T
; E
�
�

1

sinhET

�
sinh

�

E
T

�
��T����t; E� � sinh

�
�1� 
�

E
T

�
��T����t; E�

�
;

��T�22 �t; E� � ��T����t; E�:

(98)
We note from (98) that in the limit T ! 0,

��T�12 �t; E� ! e�
E=T��T�0�
�� �t; E� � e

�
�1��E=T���T�0�
�� �t; E�

� �
;0��T�0�
�� �t; E� � �
;1��T�0�

�� �t; E�;

��T�21 �t; E� ! e�
�1��E=T���T�0�
�� �t; E� � e

�
E=T��T�0�
�� �t; E�

� �
;1��T�0�
�� �t; E� � �
;0��T�0�

�� �t; E�: (99)

This shows that if 
 � 0; 1, the off-diagonal components
of the propagator vanish (at T � 0) leading to a decoupling
of the two fields at zero temperature. When 
 � 0; 1, the
off-diagonal elements of the components do not vanish at
zero temperature, nonetheless there is decoupling of the
2 degrees of freedom.

Since each component of the propagator in the closed
time formalism has a simple factorization given by (84), it
follows from (98) that for a general time contour we can
write

��T��t; E� � �1� n�E��1� S�E��L�	��~��t; E�; (100)

where
~� 11�t; E� � ��T�0�
�� ; ~�12�t; E� �

1

sinhET

�
sinh

�
�1� 
�

E
T

�
��T�0�
�� � sinh

�

E
T

�
��T�0�
��

�
;

~�21�t; E� �
1

sinhET

�
sinh

�

E
T

�
��T�0�
�� � sinh

�
�1� 
�

E
T

�
��T�0�
��

�
; ~�22�t; E� � ��T�0�

�� :

(101)
It is clear from the above result that in the general case,
temperature cannot be completely factored out of the
matrix in a simple manner unless 
 � 0; 1. For the case
of thermofield dynamics where 
 � 1

2 , it is easy to show
that

��T��t; E� � �1� n�E��1� S�E��L�	��



1 e�E=2TL�	�

e�E=2TL�	� 1

 !
��T�0��t; E�;

(102)

so that, in this case, the basic thermal operator takes a
matrix form. As a result, the thermal operator representa-
tion for any graph in the formalism of a general contour
(where 
 � 0; 1) is not so simple as in the imaginary time
formalism or the closed time path formalism. However, it
is worth noting that although in such cases there will be no
simple factorization at the level of individual graphs, the
simple factorization will occur for the complete set of
graphs associated with a given physical amplitude (which
follows from the fact that a physical amplitude is the same
in any formalism).
V. SUMMARY

In this paper, we have systematically studied the inter-
esting question of thermal operator representation for
Feynman graphs at finite temperature. By working in a
mixed space ��; ~p� [or �t; ~p�], we have given a simpler
derivation of the thermal operator representation in the
imaginary time formalism. We have traced the origin of
such a simple relation to the fact that the thermal propa-
gator, in this space, has a basic factorization where the
basic thermal operator is independent of time. We have
also generalized the thermal operator representation to the
case where there is a nontrivial chemical potential. In this
case, although the thermal propagator also factorizes, the
basic thermal operator involves a time derivative which
leads to a thermal operator representation for any graph
that is highly nontrivial. We have tried to study various
-15
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properties of the thermal operator and have shown that it is
a projection operator which projects functions into the
space where the KMS periodicity condition is satisfied.
We have also shown that there is a simple thermal operator
representation in the closed time path formalism. The
derivation, in this case, is even simpler than that for the
imaginary time formalism. For a general time contour
(including the one for thermofield dynamics), however,
the thermal operator representation is not so simple as in
085006
the imaginary time formalism and the closed time path
formalism.
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