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Harmonic generation from laser-driven vacuum
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We investigate the feasibility that, in the field of a superstrong standing laser wave, high-order
harmonics of the pumping laser are generated from vacuum. Analytical calculations employing adiabatic
perturbation theory show that, for laser electric fields larger than Ecr � m2c3=@e � 1:3� 1016 V=cm,
high-order harmonics are generated. The harmonic spectrum shows a wide plateau followed by a cutoff.
The cutoff starts approximately at photon energies @!M �

��������������
@ecEL
p

, with EL being the amplitude of the
laser field. In the opposite limit EL � Ecr, the emission of high harmonics is very unlikely. In this case, a
feasibility analysis for the experimental observation of the photon-photon scattering process using x-ray
free electron lasers shows that the requirements are much less restrictive than those required to observe
electron-positron pair creation.
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I. INTRODUCTION

Strong laser radiation is a powerful tool opening exciting
perspectives. Available tabletop terawatt and petawatt la-
sers are employed for laser acceleration of electrons and
ions [1], for the creation of new radiation sources in the x-
ray and �-ray domains [2], for the initiation of nuclear
reactions [3], as well as for advanced fusion concepts [4].
Moreover, proposals are in a stage to advance laser inten-
sities further [5] even to achieve the fantastic Schwinger
field limit of Ecr � m2=e � 1:3� 1016 V=cm, with �e <
0 and m being the electron charge and mass, respectively
(throughout this paper, conventional units with @ � c � 1
are used if it is not stated otherwise). The ‘‘critical’’ field
Ecr provides an electron with an energy m in the Compton
wavelength �c � 1=m, enabling spontaneous electron-
positron pair creation from vacuum and making vacuum
unstable [6]. Below the critical field vacuum is stable but
still can exhibit nonlinear properties due to the virtual
electron-positron pair creation. In the electromagnetic field
�EL;BL� of a plane wave, vacuum is linear because both of
the electromagnetic invariants E2

L � B
2
L and EL � BL are

zero in this field [6]. The vacuum nonlinearity in the field
of two photons, that in the lowest order is the photon-
photon scattering, is known since Euler’s seminal work
[7–9]. Another effect of vacuum polarization is the scat-
tering of a photon in a Coulomb field, and it is known as
Delbrück scattering [10]. Since then, a large number of
light-by-light scattering processes has been considered. A
variety of this process is the photon splitting in a strong
external field. The photon splitting process in a strong
constant magnetic field was investigated in Ref. [11]. For
low photon energies !� m and arbitrary field strengths,
the Euler-Heisenberg (E-H) effective Lagrangian [12] has
been used [13,14], while for higher photon energies the
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exact Green function of the electron in the external mag-
netic field must be considered [15]. The same process is
treated in Ref. [16] by means of the operator diagram
technique. Also, the photon splitting process in crossed
constant electric and magnetic fields was considered in
Ref. [17]. Finally, the same process in a laser field with
strength EL was studied in Ref. [18], employing expan-
sions in the parameters EL=Ecr and!=m, with! the initial
photon energy. When the strong magnetic field is time-
dependent, it can create photons directly from vacuum.
Thus, photon production in a rotating magnetic field was
considered in Ref. [19], employing adiabatic perturbation
theory and the E-H effective Lagrangian approach, which
is reliable for created photon energies !� m. The photon
creation process in a strong electric field is distinguished
by the fact of the vacuum instability. Particularly, the
production of a photon becomes possible in a constant
and uniform electric field when it is accompanied by the
electron-positron pair production [15]. Instead, this process
is forbidden in the presence only of a constant and uniform
magnetic field.

Of course, the cross section of the light-by-light scatter-
ing process is much smaller than the photon scattering by
atoms. In fact, if E and ! are the typical electric field
strength and photon energy in the process, the light-by-
light scattering cross section is proportional to some
powers (depending on the particular process) of the pa-
rameters E=Ecr and !=m that are usually very small in
experimental situations. The experimental observation of
vacuum polarization effects has been succeeded so far only
for the Delbrück scattering of � rays on a heavy nucleus
[20] and for the connected process of the �-photon splitting
in the field of a heavy nucleus [21]. An experiment on the
photon-photon scattering at optical energies [22] was able
to determine only an upper limit of the cross section with
95% of confidence level. We should also mention the
PVLAS project being under way for the experimental
investigation of vacuum nonlinearities in a constant mag-
netic field [23]. Experimental results from the PVLAS
-1 © 2005 The American Physical Society
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project about the rotation of light polarization in vacuum
have been already reported in Ref. [24].

The present paper considers harmonic generation in
vacuum in the strong field of two counterpropagating laser
waves: The photon-photon scattering would be the lowest
order process in which two laser photons simply interact,
giving rise to two other photons with the same frequency
but propagating in different directions. Our formalism can
be applied for any generated frequencies and also for laser
electric fields EL * Ecr. The main approximation used is
the adiabatic perturbation theory, which is valid when the
laser frequency !L is much smaller than the characteristic
energy m and the characteristic frequency! of the emitted
photons. In the ultrastrong field regime, n photons from
each laser wave can be absorbed (merged) to generate two
counterpropagating high-energy photons with frequency
!n � n!L [25]. In this view, harmonic generation is the
inverse process of photon splitting in vacuum. We inves-
tigate the discrete spectrum of the vacuum harmonic gen-
eration. As we will see, the typical electric field strengths
needed to observe the vacuum high-order harmonic gen-
eration (VHHG) are larger than the critical field Ecr.
Though VHHG due to light-light nonlinear interaction
and atomic high-order harmonic generation (AHHG) due
to atom-light nonlinear interaction are very different in the
scale of nonlinearity, nevertheless, as we will see, similar
features of AHHG spectra can be traced in VHHG spectra.
Namely, VHHG spectra also show a plateaulike structure
followed by a cutoff, as in AHHG [27]. The physical
interpretation of the cutoff position can be considered
analogously to AHHG. In fact, as we will see, VHHG is
due to the absorption of a large number of laser photons by
an electron-positron virtual pair and the successive emis-
sion of two high-energy photons through the pair annihi-
lation, and, analogously to AHHG, the cutoff position
corresponds to the maximal energy that the virtual pair
can acquire in the laser field before the ‘‘rescattering’’
annihilation.

In the presence of such strong electric fields EL * Ecr

required for VHHG, spontaneous electron-positron pair
creation from vacuum takes place, and, from this point of
view, we always assume that somehow the intensity of the
laser field is kept constant. As we have mentioned, in the
presence of an electric field, there is an additional channel
for the photon production different from VHHG: the cre-
ation of a photon simultaneously with an electron-positron
pair [15]. The photon spectrum via this channel is continu-
ous in contrast to the discrete VHHG spectrum. Moreover,
in this process one photon is generated, while in VHHG a
pair of correlated photons is created. Therefore, the VHHG
spectrum, in which our concerns lie, is distinguishable
from the photon spectrum generated simultaneously with
the electron-positron pair production.

In the weak laser field regime EL � Ecr, which still
corresponds to the electric fields of the strongest available
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lasers, the VHHG spectra have perturbative nature. We
analyze in this regime the feasibility of the experimental
observation of the scattering of two counterpropagating
laser beams using x-ray-free-electron lasers and optical
lasers.

The paper is organized as follows. In the next two
sections, we will describe the theoretical approach we
have followed to calculate the VHHG spectra. In Sec. IV,
we will use the E-H effective Lagrangian approach to deal
with the low-photon energy region (!� m) of the spec-
trum: Both the cases of weak (EL � Ecr) and strong
(EL 	 Ecr) laser fields are considered. In Sec. V, the
general approach is followed to deal with larger harmonic
orders in the strong field regime. In Sec. VI, we study
qualitatively the other process leading to one photon plus
one electron-positron pair production in the presence of a
strong constant and uniform electric field. Finally, in
Sec. VII, we summarize our conclusions, and in the two
appendixes, we give the details of some calculations that
would have made the main text heavier.

II. THEORETICAL MODEL

We consider the interaction of two strong counterpropa-
gating laser beams in vacuum. The two monochromatic
waves with the same amplitude EL=2 and the same fre-
quency !L propagate along the x axis. By indicating the
resulting electromagnetic field as �E�x; t�;B�x; t��, then

E�x; t� �
�
EL
2

cos�kLx�!Lt� 

EL
2

cos�kLx
!Lt�
�

ẑ

� EL coskLx cos!Ltẑ; (2.1)

B�x; t� �
�
�
EL
2

cos�kLx�!Lt� 

EL
2

cos�kLx
!Lt�
�

ŷ

� �EL sinkLx sin!Ltŷ; (2.2)

with ŷ and ẑ the units vectors in the y and z directions,
respectively. In general, we are interested in the yield of
photons with frequency ! much larger than !L. These
photons are created in a volume with a typical length � �
2�=!much smaller than �L � 2�=!L, and, if we imagine
that the photon production process takes place around the
x-axis origin, then jkLxj � 1 in Eqs. (2.1) and (2.2). At the
zero order we can write these equations as

E �x; t� ’ EL cos!Ltẑ � EL�t�ẑ; (2.3)

B �x; t� ’ 0: (2.4)

Another consequence of the previous approximation is that
the electric field EL�t� changes slowly with time with
respect to the field describing the photons with which we
want to deal. Now we have to write a suitable Lagrangian
density to describe the process in which a certain number
of laser photons merge to give at least two higher energy
photons. In general, this Lagrangian density has to account
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for the interaction between a strong classical electromag-
netic field of the laser waves and a quantized radiation field
of the emerging photons. We indicate with A��x� and
A��x� the four-potentials describing the strong classical
field and the radiation field, respectively [28]. In
Appendix A, we show that, by starting from the one-loop
effective action of the total electromagnetic field A��x� 

A��x� and by neglecting the self-interactions of the ra-
diation field, it is possible to obtain a quadratic effective
action of the radiation field itself that takes into account
exactly its interaction with the classical field. We are
interested in frequencies of the radiation field much larger
than the frequency !L of the electric field EL�t�, and we
will take into account the time dependence of EL�t� via
adiabatic perturbation theory. Consequently, the zero-order
effective Lagrangian density of the radiation field is as-
sumed to contain the strong classical field as a constant and
uniform electric field EL. Then the corresponding effective
Lagrangian density of the radiation electromagnetic field
F ���x� � @�A��x� � @�A��x� is given by:

L �x;�L� � i Im�L�E�H���L�� 
LM�x� 
 �L�x;�L�;

(2.5)

where �L � EL=Ecr and where

Im �L�E�H���L�� �
m4

�2��3
�2
L

X1
n�1

1

n2 e
�n�=�L ; (2.6)

LM�x� � �
1

4
F ���x�F���x�; (2.7)

�L�x;�L� � �
1

2

Z
dx0A��x��

���x� x0;�L�A��x
0�;

(2.8)

with ����x� x0;�L� the photon polarization tensor in the
presence of the external electric field EL � �LEcr. Before
giving the explicit expression of the photon polarization
tensor, we make some observations about Eqs. (2.5), (2.6),
(2.7), and (2.8). First, it is worth stressing that we have not
made any assumption concerning the frequencies of the
photon field with which we can deal. When in treating
nonlinear QED effects one starts from the E-H Lagrangian
density [12], which is valid for constant and uniform fields,
then one is forced to consider frequencies much less than
the electron mass. As a consequence, our interaction
Lagrangian density (2.8) is, unlike the E-H Lagrangian
density, nonlocal in space-time. In Sec. IV, we will show
that for photon energies much less than m our results
reduce to those obtained by starting from the E-H
Lagrangian density. Second, the term i Im�L�E�H���L�� in
Eq. (2.5) results from the one-loop E-H Lagrangian of the
constant field EL [13]. It is a constant term but, since it is
imaginary, it cannot be dropped because it has a physical
meaning: It takes into account the fact that, in the presence
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of the electric field EL, spontaneous pair production from
vacuum occurs.

We can now give the expression of the photon polariza-
tion tensor ����x� x0;�L� in Eq. (2.8), and we refer to the
notation used in Ref. [14] [see also the original papers
[29,30]]. As we have pointed out, since the external field is
constant and uniform, the polarization tensor depends only
on the 4-coordinates difference x� x0; then by putting

����x� x0;�L� �
Z dk

�2��4
eik�x�x

0�����k;�L�; (2.9)

it can be shown that ����k;�L� can be written in the form
[13]

����k;�L� � c�k;�L�P���k� 
 c?�k;�L�P
��
? �k�


 ck�k;�L�P
��
k
�k�: (2.10)

In this expression, we have defined the four-dimensional
matrices

P���k� � g��k2 � k�k�; (2.11)

P��? �k� � g��? k
2
? � k

�
?k

�
?; (2.12)

P��
k
�k� � g��

k
k2
k
� k�

k
k�
k
; (2.13)

with

g�� � diag��1; 1; 1; 1�; k� � �k0; k1; k2; k3�; (2.14)

g��
k
� diag��1; 0; 0; 1�; k�

k
� �k0; 0; 0; k3�; (2.15)

g��? � diag�0; 1; 1; 0�; k�? � �0; k
1; k2; 0�; (2.16)

and the coefficients

c�k;�L� �
�

2�

Z 1
0

ds
s

Z 1

�1

d�
2
�e�i�s=�L�	�s;�;k�F�s; ��

� e�is=�L�1� �2�; (2.17)

c?�k;�L� �
�

2�

Z 1
0

ds
s

Z 1

�1

d�
2
e�i�s=�L�	�s;�;k�F?�s; ��;

(2.18)

ck�k;�L� �
�

2�

Z 1
0

ds
s

Z 1

�1

d�
2
e�i�s=�L�	�s;�;k�Fk�s; ��;

(2.19)

with � � e2=4� the fine-structure constant, and

	�s; �; k� � 1

k2
?

2m2

1� �2

2



k2
k

2m2

coshs� cosh�s
s sinhs

;

(2.20)

F�s; �� �
s

sinhs
�cosh�s� � sinh�s coths�; (2.21)
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F?�s; �� �
s

sinhs
��1� �2� coshs� cosh�s


 � sinh�s coths; (2.22)

Fk�s; �� �
s

sinhs

�
2

coshs� cosh�s

sinh2s
� cosh�s


 � sinh�s coths
�
: (2.23)

Before going on and introducing the time dependence in
the electric field, we also express the interaction
Lagrangian density (2.8) like the Maxwell Lagrangian
density in terms of the electromagnetic field F���x� in-
stead of the four-potential A��x�. Also, this will render it
easier to recover the results in the low-energy limit, where
the E-H effective Lagrangian holds, because it is also
expressed in terms of the electromagnetic field. Now we
observe that the action corresponding to the interaction
Lagrangian density (2.8) is given by

���A;�L �
Z
dx�L�x;�L�

� �
1

2

Z
dxdx0A��x�����x� x0;�L�A��x0�:

(2.24)

By performing two integrations by parts, for example, in
the term containing P���k� [see Eq. (2.10)], we obtainZ

dxdx0eik�x�x
0�A��x�P

���k�A��x
0�

�
1

2

Z
dxdx0eik�x�x

0�F ���x�F ���x0�: (2.25)

By using the same argument for the terms containing
P��? �k� and P��

k
�k�, it is easy to show that the action in

Eq. (2.24) is completely equivalent to the following one
(we use the same symbol to denote it):

���F ;�L

��
1

4

Z
dxdx0F ���x�����
�x�x0;�L�F �
�x0�; (2.26)

where

����
�x� x0;�L� �
Z dk

�2��4
eik�x�x

0�����
�k;�L�

(2.27)
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and

����
�k;�L� � c�k;�L�P���
 
 c?�k;�L�P
���

?


 ck�k;�L�P
���

k

; (2.28)

with

P���
 � g��g�
; (2.29)
P���
? � g��? g�
? ; (2.30)
P���

k

� g��
k
g�

k
: (2.31)

Now we can introduce the time dependence of the external
field and we will do that in the following section.
III. CALCULATION OF THE SPECTRUM

As we have said, to take into account the time depen-
dence of the external electric field, we apply adiabatic
perturbation theory. We have to be careful as our
Lagrangian density corresponding to the action (2.26) is
nonlocal in space-time. The Lagrangian density has two
characteristic time scales. One corresponds to the virtual
pair creation; it is of order 1=m and it is expressed via the
quantity t� t0 in the argument of the polarization operator.
Another time scale is the period of the slowly varying
external electric field expressed via the time dependence
of the field �L�t� � EL�t�=Ecr. If we want to consider
created photons with arbitrarily high frequencies, then
we have to take into account exactly the dependence of
the Lagrangian on the first time scale. Meanwhile, the slow
variation of the external field, i.e. !L � !, m, allows the
application of the adiabatic approximation on the second
time scale [31,32]. Thus, we proceed by introducing the
Fourier transform of the radiation field

F ���x� �
Z dk

�2��4
eikxF ���k� (3.1)

and by making the change of variable x� � �x� x0�=2.
Then Eq. (2.26) reads
���F ;�L��4
Z
dx�dx


dk1

�2��4
dk2

�2��4
eik1�x

x��F ���k1��

���
�2x�;�L�F �
�k2�e
ik2�x
�x��

��
1

4

Z
dx

dk1

�2��4
dk2

�2��4
ei�k1
k2�xF ���k1��

���
��k2�k1�=2;�L�F �
�k2�: (3.2)

In this way, from the relation ���F ;�L�
R
dx�L�x;�L�, we obtain the following expression of the interaction

Lagrangian density which is local in space-time but not in momentum space:
-4
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�L�x;�L� � �
1

4

Z dk1

�2��4
dk2

�2��4
ei�k1
k2�x

�F ���k1��
���
��k2 � k1�=2;�L�F �
�k2�:

(3.3)

The Hamiltonian density arising from the total Lagrangian
density (2.5) with �L�x;�L� given by the previous equa-
tion has to be calculated by means of the usual Legendre
transformation. If we restrict to laser amplitudes such that
EL � ��=��Ecr ’ 5:6� 1018 V=cm, it can be shown that
the interaction Lagrangian density �L�x;�L� can be
treated as a small perturbation of the Maxwell
Lagrangian density LM�x� [14]. In this not very restrictive
assumption, the corresponding Hamiltonian density is
given by

H �x;�L���iIm�L
�E�H���L��


1

2
�E2
B2���L�x;�L�:

(3.4)

Also, the amplitude of the production from vacuum of two
photons in the states � � �k; �� and �0 � �k0; �0� in the
presence of the oscillating field EL�t� � EL cos!Lt is
given up to first order both in the laser frequency !L and
in �L�x; j�L�t�j� by
AP��;�

0;�L���e
�N��L�=2

Z
dx

1

!
!0

�h��0j�@�L�L�x;j�L�t�j�j0i _�L�t�e
i�!
!0�t;

(3.5)
where! � jkj and!0 � jk0j and where the absolute value
of �L�t� reminds us that the polarization tensor depends on
the amplitude of the external electric field [14]. In the
previous equation, we have used the fact that, when the
external electric field EL in Eq. (3.4) is assumed to be time-
depending, then �L�x; jEL�t�j� is the only operator that
depends explicitly on time and that can account for the
transition from the vacuum to the two photons state.
Therefore, in the present approximation, up to first order
in �L�x; j�L�t�j�, all the other quantities in the amplitude
(3.5) can be calculated by quantizing the photon field
starting from the zero-order Lagrangian density
i Im�L�E�H��j�L�t�j�� 
LM�x� [see Eqs. (2.6), (2.7), and
(2.8)]. In this respect, the presence of the term
i Im�L�E�H��j�L�t�j�� in the Lagrangian density results in
the exponential exp��N��L�=2�, where N��L� is given by
[see Eq. (2.6)]

N��L� � 2
Z
dx Im�L�E�H��j�L�t�j��

� V
m4

4�3 �
2
L

X1
n�1

1

n2

Z T=2

�T=2
dt cos2!Lte�n�=�L cos!Lt

� 4VT
�
m
2�

�
4
�2
L

�
X1
n�1

1

n2

Z �=2

��=2
d� cos2�e�n�=�L cos�; (3.6)
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with VT the space-time volume occupied by the laser
electric field [see discussion at the end of Sec. IVA]. In
fact, in the presence of an external electric field, the
vacuum state becomes unstable and exp��N��L�� corre-
sponds exactly to the vacuum-vacuum persistence proba-
bility as given in Ref. [15] for constant fields. For what it
concerns the process under consideration, this implies that
many new transition channels open like the creation of the
two photons and one electron-positron pair, the creation of
the two photons and two electron-positron pairs, and so on.
In this respect, Eq. (3.5) has to be interpreted as the
amplitude that two photons with quantum numbers � and
�0 are created without any electron-positron pair. By in-
dicating the corresponding probability as W��; �0; 0�, it is
expressed as the product of the vacuum persistence proba-
bility W�0� � exp��N��L�� and the probability of the
photon production W��; �0� � W��; �0; 0�=W�0�.
Likewise, one can deduce that the probability W��; �0; 1�
of the second process mentioned, i.e. the creation of the
two photons and one electron-positron pair, will be ex-
pressed as a product of the probability W�1� of one pair
creation and the probability of the two photon production:
W��; �0; 1� ’ W��; �0� �W�1�. Since the total probability
of the pair production must be one, that is,

P
nW�n� � 1,

then W��; �0� can be interpreted as the total probability of
two photon production irrespective of the number of cre-
ated electron-positron pairs. This probability is given by
the square modulus of the amplitude (3.5) without the
exponential factor, that is,

A��; �0;�L� � �
Z
dx

1

!
!0

� h��0j�@�L�L�x;�L�t��j0i _�L�t�e
i�!
!0�t:

(3.7)

Now if the external field vanishes both in the remote past
and in the remote future, then

A��; �0;�L� � i
Z
dxh��0j�L�x; j�L�t�j�j0ie

i�!
!0�t:

(3.8)

By using the inverse Fourier transform of the radiation field
[see Eq. (3.1)], it is easy to write the amplitude (3.8) as

A��; �0;�L� � �
i
4

Z
dxdx0ei�!
!

0��t

� h��0jF���x�����
�x� x0; j�L��t�j�

�F �
�x0�j0i; (3.9)

with �t � �t
 t0�=2 the mean instant between t and t0. By
quantizing the electromagnetic field in a finite volume V, it
can be shown that
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A��; �0;�L� �
i
2

Z
dxdx0

�e�������������
2V!
p e�i�k�r�!�t�

Z dp

�2��4
eip�x�x

0��c�p; j�L��t�j��g
��k
k

0
 � k�k0��


 c?�p; j�L��t�j��g
��
? k?
k

0

? � k

�
?k
0�
? � 
 ck�p; j�L��t�j��g

��
k
kk
k

0

k
� k�

k
k0�
k
�
�e�0 ������������

2V!
p e�i�k

0�r0�!0 �t� 
 �$ �0

�
i
2

�k;�k0

2!

Z 1
�1

dte2i!t�ek;����c�~k; j�L�t�j��g��k
k0
 � k�k0�� 
 c?�~k; j�L�t�j��g
��
? k?
k

0

? � k

�
?k
0�
? �


 ck�~k; j�L�t�j��g
��
k
kk
k

0

k
� k�

k
k0�
k
��e�k;�0 �� 
 �$ �0; (3.10)
where �e��� and �e�0 �� are the polarizations of the two
produced photons, and ~k� � �k� � k0��=2 � �0;k� is the
difference of their four-momenta k� � �!;k� and k0� �
�!;�k� divided by two. In fact, since the external electric
field is uniform, the two emitted photons have equal and
opposite momenta k and k0 � �k and then the same
energies ! � !0. Finally, the notation 
�$ �0 indicates
that the same expression on its left has to be summed but
with � and �0 exchanged.

By choosing the vector k as k �
!�sin# cos’; sin# sin’; cos#� with # and ’ the polar
angles and the polarizations of the photons as �ek;��

� �
�0; êk;�� with

ê k;? �
ẑ� k
jẑ� kj

� �� sin’; cos’; 0�; (3.11)

ê k;k �
k� êk;?

jk� êk;?j
� �� cos# cos’;� cos# sin’; sin#�;

(3.12)

one sees that the two photons have to be created with the
same polarization. In particular, they can be produced both
with the electric field perpendicular to the plane deter-
mined by the two vectors ẑ (where the laser electric field
lies) and k or with the electric field in this plane. These two
modes are called ‘‘perpendicular’’ and ‘‘parallel,’’ respec-
tively, and the two relative production amplitudes are given
by

A?�k;k0;
L; �L� �
i
2
!�k;�k0

Z 1
�1

dte2i!t�2c�~k; j�L�t�j�


 sin2#c?�~k; j�L�t�j�; (3.13)

Ak�k;k0;
L;�L� � �
i
2
!�k;�k0

Z 1
�1

dte2i!t�2c�~k; j�L�t�j�


 sin2#ck�~k; j�L�t�j�; (3.14)

where we have pointed out also the dependence on the laser
frequency !L [which is actually hidden in �L�t� �
�L cos!Lt] through the adimensional variable 
L �
!L=m. Also, the total production probability is obtained
by integrating on the photon momenta, summing on the
polarizations, and dividing by two to take into account that
the created photons are identical particles:
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P�
L; �L� �
1

2

�
V

�2��3

�
2 Z

dkdk0�jAk�k;k0;
L; �L�j2


 jA?�k;k0;
L; �L�j2: (3.15)

By recalling that the external electric field is periodic in
time, we can expand the coefficients c�~k; j�L�t�j�,
c?�~k; j�L�t�j�, and ck�~k; j�L�t�j� in Fourier series. By doing
that, it is easy to show that the total number of photons
produced per unit volume and unit time can be written as

dN�
L; �L�
dVdt

�
X1
q�1

dNq�
L; �L�

dVdt
; (3.16)

where

dNq�
L;�L�

dVdt
�
�qm
L�4

8�

Z �=2

0
d#sin#�j2c2q�#;
L;�L�


sin2#c?;2q�#;
L;�L�j2
j2c2q�#;
L;�L�


sin2#ck;2q�#;
L;�L�j2 (3.17)

is the number of photons produced per unit volume and
unit time with frequency!q � q!L. In this expression, we
have introduced the Fourier coefficients

cq�#;
L; �L� �
1

�

Z �=2

��=2
d�eiq�c�#; q
L;�L cos��;

(3.18)

c?;q�#;
L; �L� �
1

�

Z �=2

��=2
d�eiq�c?�#; q
L;�L cos��;

(3.19)

ck;q�#;
L; �L� �
1

�

Z �=2

��=2
d�eiq�ck�#; q
L;�L cos��;

(3.20)

where c�#; q
L;�L�, c?�#; q
L;�L�, and ck�#; q
L;�L�
are determined by Eqs. (2.17), (2.18), and (2.19). For later
convenience, we introduce the function h�s; �; #� defined
as

h�s; �; #� � �is
�
sin2#

1� �2

4



cos2#
2

�
coshs� cosh�s

s sinhs

�
; (3.21)
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and we observe that [see Eqs. (2.17), (2.18), (2.19), and
(2.20)]

�i
s
�L
	�s; �; ~k� ! �i

s
�L



2

�L
h�s; �; #�; (3.22)

with 
 � !=m. It is worth writing an equivalent expres-
sion of the coefficient (2.17) because, even using the
prescription m2 ! m2 � i", the integral

R
1
0
ds
s e
�is=�L di-
085005
verges logarithmically in the limit s! 0. Now, if m2 !
m2 � i", we can introduce the exponential integral func-
tion [33]

Ei
�
�
is
�L

�
� �

Z 1
s

ds0

s0
e�is

0=�L : (3.23)

By performing an integration by parts in the variable s in
Eq. (2.17), we obtain
c�#; q
L;�L� �
�

2�
lim
�!0

Z 1

�1

d�
2

�Z 1
�

ds
s
e�is=�Le��q
L�

2=�Lh�s;�;#�F�s; �� � �1� �2�
Z 1
�

ds
s
e�is=�L

�

� �
�

2�

Z 1
0
dsEi

�
�
is
�L

�Z 1

�1

d�
2
e��q
L�

2=�Lh�s;�;#�
�
�q
L�

2

�L
F�s; ��

@h�s; �; #�
@s



@F�s; ��
@s

�
: (3.24)
Now, as is evident from Eq. (3.16), the produced photons
are emitted with a frequency multiple of the laser fre-
quency !L. This is due to the fact that in the process
only two photons are created and necessarily with the
same energy. As a consequence, each final photon has
exactly one-half of the energy of all the initial photons
absorbed. In this respect, it is worth recalling that because
of Furry theorem the number of initial photons absorbed is
even [26]. Also, we find that both even and odd harmonics
of the laser field are present in VHHG spectra. This is a
difference with respect to the typical AHHG spectra that
show only odd harmonics. This feature of AHHG spectra
essentially originates from the fact that atomic levels have
definite parity. Here, from the expression of the interaction
Lagrangian density (2.8) and with the help of the last
Feynman diagram in Fig. 6, we can conclude that the
mechanism leading to the generation of the qth harmonic
is the creation of a virtual electron-positron pair, which
absorbs 2q photons and then annihilates emitting two
photons with energy q!L. In this picture, there are no
selection rules that force the virtual pair to emit only odd
harmonics of the pumping laser.

Finally, the previous expression of the total number of
photons created is quite general but very unwieldy. For this
reason, in the following we will consider different physical
situations where the expressions (2.18), (2.19), and (3.24)
can be simplified.
IV. LOW FREQUENCIES: EFFECTIVE
LAGRANGIAN APPROACH

Let us consider the limit of low-order harmonic genera-
tion q!L � m, i.e. q
L � 1. Then we can make the
approximation

e�is=�L
��q
L�
2=�Lh�s;�;#� ’ e�is=�L (4.1)

in Eqs. (2.17), (2.18), and (2.19). In this approximation, the
integral in the variable � in the coefficients cq�#;
L; �L�,
c?;q�#;
L; �L�, and ck;q�#;
L; �L� can be performed ex-
actly, and Eqs. (3.18), (3.19), and (3.20) can be written as
cq�#;
L; �L� ’
1

�

Z �=2

��=2
d�eiq�c�E�H���L cos��

� c�E�H�
q ��L�; (4.2)

c?;q�#;
L; �L� ’
1

�

Z �=2

��=2
d�eiq�c�E�H�

? ��L cos��

� c�E�H�
?;q ��L�; (4.3)

ck;q�#;
L; �L� ’
1

�

Z �=2

��=2
d�eiq�c�E�H�

k
��L cos��

� c�E�H�
k;q ��L�; (4.4)

with [see also [34]]

c�E�H���L cos�� �
�

2�

Z 1
0

ds
s
e�is=�L cos�

�

�
coths
s
�

1

sinh2s
�

2

3

�
; (4.5)

c�E�H�
? ��L cos�� �

�
2�

Z 1
0

ds
s
e�is=�L cos�

�

�
1

sinh2s
�

�
1

s
�

2

3
s
�

coths
�
; (4.6)

c�E�H�
k

��L cos�� �
�

2�

Z 1
0

ds
s
e�is=�L cos�

�

�
2s coths� 1

sinh2s
�

coths
s

�
; (4.7)

independent of both # and 
L. It is not surprising that the
same result would have been obtained by starting from the
E-H effective Lagrangian density [13]. In fact, the E-H
Lagrangian density is rigorously applicable only for con-
stant and uniform electromagnetic fields. Nevertheless, the
same Lagrangian density can be used for the total electro-
magnetic field

E T�r; t� � E�r; t� 
 ELẑ; (4.8)
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B T�r; t� � B�r; t�; (4.9)

by assuming that it varies not much in a Compton length;
i.e. its typical frequencies are much less than the electron
mass. In this way, one starts by writing the E-H Lagrangian
density L�E�H��FT�r; t�; G2

T�r; t��. Being the E-H
Lagrangian density a true Lorentz scalar, it can depend
only on the two electromagnetic invariants of the total field

FT�r; t� �
1

2
�E2

T�r; t� � B
2
T�r; t�; (4.10)

G2
T�r; t� � �ET�r; t� �BT�r; t��2: (4.11)

Finally, by expanding L�E�H��FT�r; t�; G2
T�r; t�� up to sec-

ond order in the radiation field �E�r; t�;B�r; t��, one finds
that the coefficients c�E�H���L� , c�E�H�

k
��L�, and

c�E�H�
? ��L� can be expressed in terms of the derivatives

c�E�H���L� � �
@L�E�H��FT;G

2
T�

@FT

��������FT �r;t���E2
L=2;G2

T �r;t��0
;

(4.12)

c�E�H�
? ��L� � �2E2

L

�
@L�E�H��FT;G

2
T�

@G2
T

��������FT �r;t���E2
L=2;G2

T �r;t��0
;

(4.13)

c�E�H�
k

��L� � E2
L
@2L�E�H��FT;G

2
T�

@F2
T

��������FT �r;t���E2
L=2;G2

T �r;t��0
:

(4.14)

The complete quadratic Lagrangian density, corresponding
to the quadratic Lagrangian density (2.5), is given in this
case by

L�E�H��x;�L� � i Im�L�E�H���L�� 
LM�x�



1

2
�c�E�H���L��E2 �B2�

� c�E�H�
? ��L��ẑ �B�2


 c�E�H�
k

��L��ẑ � E�2; (4.15)

with Im�L�E�H���L�� and LM�x� given in Eqs. (2.6) and
(2.7), respectively. To obtain the other terms from the
general interaction Lagrangian density (2.8), it is easier,
actually, to start from the expression (2.26) of the interac-
tion action expressed in terms of the electromagnetic field
instead of the four-potential A��x�.

So far the procedure is similar to that used in Ref. [19] in
dealing with an external magnetic field. But in the present
case, because of the possible spontaneous vacuum decay,
085005
the coefficients (4.5), (4.6), and (4.7) are, in general, com-
plex numbers. For this reason, it would be impossible to
proceed as in Ref. [19] by quantizing the photon field in the
presence of the external static field EL and then by apply-
ing adiabatic perturbation theory with EL ! EL cos!Lt. In
that case, there would not be any limitation on the strength
of the external field. Instead, here, as in the general case
treated before, we are forced to consider field strengths less
than ��=��Ecr. This condition guarantees here that

jc�E�H���L�j; jc
�E�H�
? ��L�j; jc

�E�H�
k

��L�j � 1 (4.16)

in such a way that the corresponding terms in Eq. (4.15)
can be treated perturbatively and the fact that they are
complex can be dealt with [35,36]. Not surprisingly, the
final expression of the amplitude of the qth harmonic is
[see Eq. (3.17)]

dN�E�H�
q �
L; �L�
dVdt

�
�qm
L�

4

8�

Z �=2

0
d# sin#�j2c�E�H�

2q ��L�


 sin2#c�E�H�
?;2q ��L�j

2


 j2c�E�H�
2q ��L�


 sin2#c�E�H�
k;2q ��L�j

2; (4.17)

with c�E�H�
q ��L�, c

�E�H�
?;q ��L�, and c�E�H�

k;q ��L� given in
Eqs. (4.2), (4.3), and (4.4). The physical meaning of the
terms contributing to the amplitude (4.17) of the qth har-
monic can be understood by looking at the expression of
the quadratic effective Lagrangian density (4.15). In fact,
the contribution of the coefficient c�E�H�

2q ��L� arises be-
cause the energies of the photons undergo a correction
due to the presence of the laser field, and, in general, this
correction is complex due to the fact that the electric field
can prime spontaneous pair creation from vacuum.
Meanwhile, the other two coefficients c�E�H�

?;2q ��L� and

c�E�H�
k;2q ��L� are more directly connected with the produc-

tion of the photons in the two different perpendicular and
parallel polarizations [see Eqs. (3.11) and (3.12)].

We want to recall here that the general expression of the
harmonic amplitude (3.17) is calculated by taking into
account the nonlocality of the interaction between the
external laser field and the radiation field [see Eqs. (2.24)
and (3.2)]. Including nonlocality means taking into account
also memory effects that introduce into the expression of
the harmonic amplitude (3.17) the dependence on the
frequency of the emitted harmonic [see the papers [37]
for a discussion about memory effects in electron-positron
pair production]. In fact, on the one hand, Eq. (3.17) is
proportional to!4

L, but this dependence originates from the
phase space dependence and from the use of the adiabatic
perturbation theory. On the other hand, it also depends
through the coefficients c2q�#;
L; �L�, c?;2q�#;
L; �L�,
and ck;2q�#;
L; �L� on the harmonic frequency q!L, and
-8
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this dependence originates from taking into account mem-
ory effects. Instead, since the number of photons expressed
by Eq. (4.17) is calculated employing the E-H effective
Lagrangian, then the interaction is assumed to have local
character, and, consequently, no memory effects are re-
tained in Eq. (4.17). That is expressed by the fact that the
coefficients c�E�H�

2q ��L�, c
�E�H�
?;2q ��L�, c

�E�H�
k;2q ��L� depend

only on the harmonic number q and the laser field strength
�L but neither on the laser frequency !L nor on the
harmonic frequency q!L. This is analogue to the case of
absence of dispersion for a wave propagation in a medium
with very fast relaxation time. Concerning these memory
effects, it must be also pointed out that both Eq. (4.17) and
the general expression (3.17) do not depend on the number
of photons already created in the past. In fact, this comes
from the use of the first order adiabatic perturbation theory
in which the transition amplitude at a given time depends
on the other amplitudes but calculated at the initial time
[32]. Up to second order adiabatic perturbation theory, we
would have taken into account the ‘‘depletion’’ of the
vacuum due to the photon production itself. In this case,
the harmonic amplitude would be less than Eq. (3.17), the
correction being !L=m� 1 smaller than Eq. (3.17).

In the low-frequency limit, we want to study here vari-
ous representations can be given of the coefficients
c�E�H�
q ��L�, c

�E�H�
k;q ��L�, and c�E�H�

?;q ��L� that are more use-
ful depending on the strength of the laser electric field that
is on �L � EL=Ecr. Finally, it is worth pointing out that the
time-independent counterparts of the coefficients
c�E�H���L cos��, c�E�H�

k
��L cos��, and c�E�H�

? ��L cos��
[see Eqs. (4.5), (4.6), and (4.7)] have been already calcu-
lated [34,38]. The novelty of our approach is to use their
analogous time-depending expressions to evaluate via the
Fourier transforms c�E�H�

q ��L�, c
�E�H�
k;q ��L�, and c�E�H�

?;q ��L�

the photon yield from vacuum.

A. Weak electric fields: �L � 1

If �L � 1, the integrals in Eqs. (4.5), (4.6), and (4.7) can
be evaluated as asymptotic series in powers of �L. To do
this, one can start from the well known expansion [33]

coths �
1

s


X1
k�1

2B2k

�2k�!
�2s�2k�1; jsj<� (4.18)

with the Bernoulli numbers B2k, along with the analogous
expansion for 1=sinh2s. Although in Eqs. (4.5), (4.6), and
(4.7) the variable s runs from zero to infinity, one can apply
the above mentioned expansions, and, by exploiting the
m2 � i" prescription, one obtains the following asymptotic
expansions [see also [38]]:

c�E�H���L� �
�

2�

X1
k�1

��1�k

k

B2�k
1�

2k
 1
�2�L�

2k; (4.19)
085005
c�E�H�
? ��L� �

�
2�

X1
k�1

��1�k

k

�
B2k

3
�

2B2�k
1�

2k
 1

�
�2�L�2k;

(4.20)

c�E�H�
k

��L� �
2�
�

X1
k�1

��1�k

2k
 1
B2�k
1��2�L�2k: (4.21)

For notational simplicity, we have written the time-
independent counterpart of the coefficients because the
time-dependent ones are simply obtained by substituting
�L ! �L cos� with � � !Lt. Furthermore, by using the
integral

1

�

Z �=2

��=2
cos2k�e2iq� �

�
0 if k < q
1
4k
� 2k
k�q� if k � q (4.22)

one can also obtain the corresponding asymptotic expan-
sions of the Fourier amplitudes (4.2), (4.3), and (4.4) in the
form

c�E�H�
2q ��L� �

�
�

X1
k�q

��1�k

k

B2�k
1�

2k
 1

�
2k

k� q

�
�2k
L ; (4.23)

c�E�H�
?;2q ��L� �

�
2�

X1
k�q

��1�k

k

�
B2k

3
�

2B2�k
1�

2k
 1

��
2k

k� q

�
�2k
L ;

(4.24)

c�E�H�
k;2q ��L� �

2�
�

X1
k�q

��1�k

2k
 1
B2�k
1�

�
2k

k� q

�
�2k
L : (4.25)

It can easily be shown that the previous series are non-
alternating and diverging, and this is an indication of the
fact that the original integrals in Eqs. (4.5), (4.6), and (4.7)
contain an exponentially small and imaginary contribution
nonperturbative in �L [39]. In fact, by performing a clock-
wise Wick rotation of an angle �=2 in Eqs. (4.5), (4.6), and
(4.7), we have to take into account the presence of the poles
of the resulting integrands at sn � �n�, with n a positive
integer. By using the residue method, one obtains the
following expressions for the imaginary parts of the coef-
ficients c�E�H���L�, c

�E�H�
? ��L�, and c�E�H�

k
��L�:

Im �c�E�H���L�� �
�
2

X1
n�1

�
1

n��L



2

�n��2

�
e�n�=�L ;

(4.26)

Im �c�E�H�
? ��L����

�
6

X1
n�1

�
2


3

n��L



6

�n��2

�
e�n�=�L ;

(4.27)

Im �c�E�H�
k

��L�� �
�
2

X1
n�1

�
1

�2
L



1

n��L

�
e�n�=�L ; (4.28)
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that contain, in fact, nonperturbative exponentials in �L.
Despite the previous expansions in Eqs. (4.19), (4.20), and
(4.21), these series are clearly converging for any finite
value of �L, but they are very useful in the weak field limit
�L � 1 because the first term is exponentially larger than
the others then

Im �c�E�H���L�� ’
�

2�
1

�L
e��=�L ; (4.29)

Im �c�E�H�
? ��L�� ’ �

�
2�

1

�L
e��=�L ; (4.30)

Im �c�E�H�
k

��L�� ’
�
2

1

�2
L

e��=�L (4.31)

and, correspondingly,

Im�c�E�H�
2q ��L�� ’

�

2�2

Z �=2

��=2
d�

1

�L cos�
e��=�L cos�
i2q�

�
�

2�2

������
2

�L

s
e��=�L
2�Lq2=�; (4.32)

Im�c�E�H�
?;2q ��L�� ’ �

�
2�

Z �=2

��=2
d�

1

�L cos�

� e��=�L cos�
i2q�

��
�

2�2

������
2

�L

s
e��=�L
2�Lq2=�; (4.33)

Im�c�E�H�
k;2q ��L�� ’

�
2�

Z �=2

��=2
d�

1

��L cos��2

� e��=�L cos�
i2q�

�
�

2�

������
2

�3
L

s
e��=�L
2�Lq2=�; (4.34)
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where the stationary phase method has been used to give
the asymptotic estimate of the integrals. By summarizing,
in the weak field case we obtain

c�E�H�
2q ��L� �

�
�
��1�q

q

B2�q
1�

2q
 1
�2q
L


 i
�

2�2

������
2

�L

s
e��=�L
2�Lq2=�; (4.35)
c�E�H�
?;2q ��L� �

�
2�
��1�q

q

�B2q

3
�

2B2�q
1�

2q
 1

�
�2q
L

� i
�

2�2

������
2

�L

s
e��=�L
2�Lq2=�; (4.36)
c�E�H�
k;2q ��L� �

2�
�
��1�q

2q
 1
B2�q
1��

2q
L


 i
�

2�

������
2

�3
L

s
e��=�L
2�Lq2=�; (4.37)

where we have kept only the first term in the asymptotic
expansions (4.23), (4.24), and (4.25). In this case, the form
of the spectrum is determined mainly by the real part of the
coefficients because the vacuum is stable with a very good
approximation and the imaginary parts of the coefficients
c�E�H�

2q ��L�, c
�E�H�
?;2q ��L� and c�E�H�

k;2q ��L� are tiny. By per-
forming the remaining elementary integral on the angle #
in Eq. (4.17), we obtain the following expression of the
amplitude of the qth harmonics:
dN�E�H�
q �
L;�L�
dVdt
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q2�2q
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6
�
B2�q
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2q
1

���
: (4.38)
The spectrum corresponding to !L � 2:4� 10�6m �
1:2 eV and EL � 10�4Ecr � 1:3� 1012 V=cm is shown
in Fig. 1 and, in fact, it has the typical shape of a perturba-
tive spectrum. The amplitude of the harmonics decreases
monotonically as the harmonic order increases. Before
going on, we only quote that we have also studied the
angular distribution of the harmonic emission with respect
to the polar angle #. Actually, the results are not so
interesting: All the harmonics show a symmetric angular
distribution around # � �=2 with a maximum at this point
and two minima at # � 0 and # � � in which there is no
emission.

It is clear that the production of high harmonics in this
regime is very unlikely. For this reason, we concentrate on
the q � 1 term. We have to remind that, as we have pointed
out below Eqs. (2.1) and (2.2), our theory is valid for q	
1. Nevertheless, we have shown explicitly that for the q �
1 term, by using the exact field (2.1) and (2.2), we obtain
for the probability per unit volume and unit time the
expression
-10



FIG. 1. Harmonic spectrum as given by Eq. (4.38) in cm�3 s�1

for !L � 2:4� 10�6m � 1:2 eV and EL � 10�4Ecr �
1:3� 1012 V=cm.
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dP�E�H�
sw;1 �
L; �L�

dVdt
�

47

288000�
�m
L�

4

�
�
�

�
2
�4
L; (4.39)

where the index ‘‘sw’’ reminds us that we have used the
exact ‘‘standing wave’’ configuration as external field. It is
worth stressing that Eq. (4.39) coincides with the proba-
bility of the photon-photon scattering in the low-frequency
limit and for initial photons with the same polarizations as
calculated in Refs. [7–9,14] by means of the usual pertur-
bation theory.

1. Experimental observation of photon-photon scattering

We want to analyze if the photon-photon scattering is
experimentally observable by using the presently available
or near future laser technology. Because of the dependence
of the probability (4.39) on 
4

L, one realizes that x-ray
lasers are more suitable than optical lasers. Also, as has
been observed in Ref. [40], the main problem with x-ray
free electron lasers is the focusing. For this reason, as an
indicator, we estimate the minimum laser beam size�L;min,
at which at least one scattering event is possible during the
interaction, the other laser parameters being fixed. To do
this, we have to give an estimate of the space-time VT
where the laser electric field amplitude is not substantially
reduced from the maximal focused value EL. We assume
T � , with  the laser pulse duration, and V � ��2

L �
cc, with c the laser coherence time and�L the laser beam
size (for the sake of clarity, we will use here below cgs
units). In this way, the minimum laser beam size needed to
obtain one photon-photon scattering event is obtained by
multiplying Eq. (4.39) times VT and putting the result
equal to one, then

�L;min’10�7

�
PL

1 GW

��
1 nm

�L

�
2
�������������������������


1 fs

��
c
1 fs

�s
nm; (4.40)
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where PL is the laser peak power expressed in gigawatts.
By referring, for example, to the laser parameters indicated
as ‘‘goal’’ in Table 1 in Ref. [40]: �L � 0:15 nm, c �
80 fs, and PL � 5 TW, we obtain for a pulse duration of
 � 100 fs that the photon-photon scattering can be ob-
tained already with a beam size �L;min � 2 nm ’ 13:3�L.
This value is more than one order of magnitude larger than
that required for electron-positron pair creation (�L ’ �L),
and this makes our result very interesting because, as is
pointed out in Ref. [40], the main problem in achieving the
goal parameters is just the focusing of the x-ray laser beam
up to �L.

We can obtain an even better result by making three
lasers collide. The resulting process is a sort of ‘‘laser-
assisted’’ or ‘‘laser-stimulated’’ photon-photon scattering
[22]. If we consider, for simplicity, three equal lasers, the
expression of the number of photons scattered per unit
volume and unit time is obtained by Eq. (4.39) times the
number of photons of the third ‘‘assisting’’ laser. In this
way, we can obtain the minimum peak power PL;min that
each laser must have to observe at least one photon scat-
tered as

PL;min ’ 33:5
�
�L

1 nm

��
�L

1 nm

�
2=3
�
1 fs



�
1=3
�

1 fs

c

�
2=3

GW:

(4.41)

By substituting the laser parameters of a typical focused
optical laser: �L � �L � 1 �m and  � c � 100 fs, we
obtain PL;min ’ 30 TW, which is a value today available
for optical lasers. From this point of view, assisted photon-
photon scattering could be observed today but a caveat is in
order: By using three identical lasers, the scattered photon
would have the same frequency of the laser photons, mak-
ing its detection impossible. Nevertheless, this problem
can be overcome by changing the frequency of the assist-
ing laser and the angle between the other two lasers [see
also [22]]. Finally, by substituting in Eq. (4.41) the laser
parameters of a focused x-ray-free-electron laser [40]:
�L � �L � 0:4 nm,  � 100 fs, with a coherence time
of c � 80 fs [as given in the goal column in Table 1 in
Ref. [40]], we obtain in this case PL;min ’ 1:2 GW, which
is slightly larger than the power of the planned x-ray-free-
electron laser self-amplified spontaneous emission (SASE-
5) at Deutsches Elektronen-Synchrotron equal to 1:1 GW
[40].

B. Strong electric fields: �L 	 1

The previous representations (4.19), (4.20), (4.21),
(4.26), (4.27), and (4.28) of the real and imaginary parts
of the coefficients c�E�H���L�, c

�E�H�
? ��L�, and c�E�H�

k
��L�

are not suitable to deal with the strong field case. Instead,
by using the integrals given in Appendix D in Ref. [14],
one obtains the following exact representations of the
coefficients:
-11
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(4.43)

Re�c�E�H�
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��L�� �
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�
4n

1
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; (4.44)

with � � 0:57721 . . . the Euler constant and L1 � 0:24875 . . . and

Im �c�E�H���L�� �
�

2�

�
�

1

�L
log�1� e��=�L� � 2

Z 1
1=�L

dt log�1� e��t�
�
; (4.45)

Im�c�E�H�
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coth

�
2�L
� 1

��
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coth

�
2�L
� 1

��
: (4.47)
Actually, these imaginary parts can also be obtained by
summing the series (4.26), (4.27), and (4.28). In this re-
spect, a derivation of the coefficients c�E�H�

? ��L� and
c�E�H�
k

��L� can be found in Refs. [34,38], and, since
c�E�H���L� can be obtained analogously, we have given
only the final results. In particular, the expansions of the
real parts come from the identity concerning the phase of
the gamma function [41]

arg���a
 ib�� � b �a� 

X1
n�0

�
b

a
 n
� arctan

b
a
 n

�
;

(4.48)

with a and b real numbers and  �a� � �0�a�=��a�.
From the previous expressions, it is easy to obtain the

asymptotic expressions for the coefficients in the strong
field regime:

c�E�H���L� �
�

2�

�
�

2

3
log�L 
 8L1 �

1

3
�

2

3
log2

�

 i

�
6
; (4.49)
c�E�H�
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�� 8L1
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�L; (4.50)
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c�E�H�
k

��L� � �
�
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 i

�
2�

1

�L

�
1� log�
 log�L

�
:

(4.51)

The spectrum in this regime is determined mostly by the
imaginary part of c�E�H�

? ��L cos��, which is linear in the
laser field amplitude �L. By performing its Fourier trans-
form, we obtain [see Eqs. (4.3) and (4.17)]

dN�E�H�
q �
L;�L�
dVdt

�
�qm
L�

4

15�

�
��L
3�

�
2
��������Z �=2

��=2
cos�e2iq�

��������2

�
4�2

135�5
�m
L�4�2

L
q4

�4q2�1�2
: (4.52)

In this case, the spectrum becomes flat for higher frequen-
cies. If this formula held for any q, the total emitted energy
would be infinite. But we have to recall that, actually, it is
valid only for harmonic orders such that q!L � m. The
previous result indicates that, in the strong field regime, the
VHHG spectra show the presence of a plateau, and they
share this feature with AHHG. In the next section, we will
also see that, for very high harmonics, also the VHHG
spectra show a rapid cutoff of the emission like AHHG
spectra.

Before concluding this low-energy part, we want to
make two final remarks. First, we quote that the production
of harmonics in this particular low-energy regime has also
been studied in Refs. [42,43]. The authors consider the
-12
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exact initial field configuration (2.1) and (2.2) with differ-
ent mutual polarizations of the two plane waves, but they
evaluate the harmonic amplitudes only for the first har-
monics. The second remark is more technical. In fact, the
imaginary parts of the coefficients c�E�H���L�, c

�E�H�
? ��L�,

and c�E�H�
k

��L� in the series form (4.26), (4.27), and (4.28)
or in the integral form are very suitable for their numerical
evaluation. Instead, apart from in the small field regime,
the asymptotic series (4.19), (4.20), and (4.21) of the real
parts of the coefficients themselves cannot be used for their
085005
numerical evaluation. Also the series (4.42), (4.43), and
(4.44) are quite problematic to be dealt with numerically.
For this reason, we want to conclude by deriving another
converging series of the real parts of c�E�H���L�,
c�E�H�
? ��L�, and c�E�H�

k
��L�. To do this, we consider a

generic constant and uniform electromagnetic field
�E;B� described by the two invariants F and G2 defined
analogously to Eqs. (4.10) and (4.11). Then we consider the
following converging series of the real part of the E-H
Lagrangian density [44– 46]:
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2
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�
; (4.53)

which is expressed in terms of the secular invariants a and b defined as a
 ib �
����������������
F
 iG
p

and of the sine, cosine, and
exponential integrals [41]. At this point, by using the general definitions (4.12), (4.13), and (4.14) of the coefficients
c�E�H���L�, c

�E�H�
? ��L�, and c�E�H�

k
��L� in terms of the derivatives of the E-H Lagrangian density, we obtain
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that are valid for any value of the external electric field. In
particular, in Ref. [45] it is possible to find a deep numeri-
cal analysis on how to deal with the series in Eq. (4.53) and
on how to accelerate its convergence. Analogous tech-
niques can be used to evaluate numerically the series
(4.54), (4.55), and (4.56).

V. INTERMEDIATE AND HIGH FREQUENCIES

We have seen in the previous section that, for fields
much smaller than Ecr, the harmonic spectrum is mono-
tonically decreasing, as perturbation theory predicts.
Instead, for fields larger than Ecr, the nonperturbative
effects dominate and the spectrum is flat. Obviously, this
cannot hold for larger and larger frequencies because,
otherwise, an infinite amount of energy would be pro-
duced. In fact, the results of the previous section are valid
for harmonics with energies less the electron rest mass. We
want to consider now the general case in which no assump-
tions are made on the harmonic frequencies. Taking into
account that for weak laser fields the generation of higher
harmonics with energy larger than m is completely negli-
gible, we will consider only the strong field case.

In the following we will distinguish the two cases of
intermediate frequencies �q
L�2 � �L and of high fre-
quencies �q
L�2 	 �L. For the sake of clarity, we recall
that 
L � !L=m and �L � EL=Ecr.

A. Intermediate frequencies: Strong fields

In this subsection, we limit ourselves to the generation of
photons whose frequencies are not necessarily much less
than the electron mass but nevertheless are restricted by the
following condition: �q
L�2 � �L. Taking into account
that the low harmonics q
L � 1 have been treated in the
previous section and recalling the general assumption
-13



FIG. 2. Function fq�
L� [see Eq. (5.6)] with 
L � 0:025 cor-
responding to !L � 12:5 KeV.
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�L � �=� ’ 430 [see discussion below Eq. (3.3)], we
realize that the number of harmonics belonging to the
present frequency ‘‘window’’ is not very large. In any
case, it is important to consider this case because one
sees how the harmonic spectrum changes with respect to
the low-frequency region. Also, the relevant frequency
region of gamma rays q!L � 1 MeV can be dealt with in
the present formalism.

We start from Eqs. (2.18), (2.19), and (3.24) and perform
the change of variable s! s�L cos�. Then one sees from
the resulting expressions (2.21), (2.22), and (2.23) of the
functions F�s�L cos�; ��, F?�s�L cos�; ��, and
Fk�s�L cos�; �� that the largest contribution in the limit
�L 	 1 comes from F?�s�L cos�; ��, which goes linearly
with the laser electric field. In this approximated picture,
we also neglect the terms proportional to exp���1�
j�j�s�L cos�� because the absolute value of the variable
� is always less than one except that at the integration
limits. As a result, we take into account only the contribu-
tion of the coefficient c?;2q�#;
L; �L� that in this limit is
given by

c?;2q�#;
L;�L��
1

�
�

2�
�L
Z �=2

��=2
d�e2iq�cos�
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Z 1

0
d��1��2�

Z 1
0
ds

�exp
�
�i
�

1
�q
L sin#�2
1��2

4

�
s
�
:

(5.1)

It is worth pointing out that the condition �q
L�2 � �L has
been used to make the approximation [see Eqs. (2.18),
(3.21), and (3.22)]

e��q
L�
2=�L cos�h�s�L cos�;�;#� ’ e�is�q
L sin#�2�1��2�=4: (5.2)

By performing the integrals in Eq. (5.1) on s by means of
the usual Wick rotation and on �, we obtain
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4q2 � 1
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L sin#�21��2

4

: (5.3)

This remaining integral can also be done exactly:
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Z 1
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 y2

p arcsinhy
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(5.4)

and then, in the present approximations, the amplitude of
the qth harmonic is given by [see also Eq. (3.17)]
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In this regime, the form of the spectrum does not depend on
the amplitude of the laser field. Also, for small harmonic
orders such that q
L � 1, we recover the effective
Lagrangian result Eq. (4.52). We underline that the region
of applicability of Eq. (5.5) is quite restricted because in
our approximations, as we have said, �L � �=� ’ 430.
Further, we derive useful information on the general be-
havior of the spectrum in this regime by calculating the
first two corrections to the effective E-H Lagrangian result.
First, we introduce the function fq�
L� defined as

fq�
L� �
135

32

Z �=2

0
d# sin5#I2�q
L sin#=2�; (5.6)

then [see Eq. (4.52)]

dNq�
L; �L�

dVdt
� fq�
L�

dN�E�H�
q �
L; �L�
dVdt

: (5.7)

The first corrections to the E-H result for harmonic orders
such that q
L � 1 are obtained through the expansion

fq�
L� ’ 1�
12

35
�q
L�

2 

1408

3675
�q
L�

4: (5.8)

As expected from Eq. (5.3), the first correction is negative,
then the spectrum decreases. Nevertheless, the second
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correction is positive so that the decreasing of the harmonic
yield is slow. This is confirmed by Fig. 2, where we show
the function fq�
L� with 
L � 0:025 corresponding to
!L � 12:5 KeV. Finally, as in the previous section, also
in this regime the harmonics show a symmetric angular
distribution around # � �=2. Also, here the photons are
emitted mostly in the x-y plane # � �=2, while there is no
photon emission along the laser electric field # � 0 and
# � �.
B. High frequencies: Strong fields

In this subsection, we study the VHHG spectra in the
high frequency region �q
L�2 	 �L in the strong field
limit �L 	 1. We find the asymptotic behavior of the
harmonic yield and show that it is exponentially decaying.
We have to calculate the relevant amplitudes [see
Eq. (3.17)]

A?;2q�#;
L; �L� � 2c2q�#;
L; �L�


 sin2#c?;2q�#;
L; �L�; (5.9)

Ak;2q�#;
L; �L� � 2c2q�#;
L; �L�


 sin2#ck;2q�#;
L; �L�: (5.10)

We derive explicitly only the expression of the coefficient
c2q�#;
L; �L�, because the expressions of the other coef-
ficients can be derived analogously. We start from the
expression (3.24) of the coefficient c�#; q
L;�L� which
is valid for a constant field �L. Since �q
L�2 	 �L, we can
evaluate the double integral in Eq. (3.24) by using the
saddle point method. The calculation is lengthy, and it is
presented in Appendix B. We obtain the following asymp-
totic estimate of the coefficient c�#;
L; �L� [see
Eq. (B14)]:
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with [see Eqs. (B13), (B15), and (B16)]
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and s� � x� � i� and �� � 0 the saddle points of the
function h�s; �; #� [see Eqs. (B4), (B5), and (B8)].
Finally, by performing the Fourier integral (3.18), we
obtain that the asymptotic behavior of c2q�#;
L; �L� is
given by

c2q�#;
L; �L� �
1

�

Z �=2

��=2
d�e2iq�c�#; q
L;�L cos��

�
1

�
c�#; q
L;�L�

�
Z 1
�1

d�e��q
L�
2=�Lh�s�;��;#��2=2

�
1

�
c�#; q
L;�L�

����������������������������������������
�

2��L
q2
2

Lh�s
�; ��; #�

s
:

(5.15)

Also, the asymptotic estimates of the other two coefficients
c?;2q�#;
L; �L� and ck;2q�#;
L; �L� can be obtained in
the same way:

c?;2q�#;
L; �L� �
1

�
c?�#; q
L;�L�

�

�������������������������������������������
�

2��L
�q
L�2h�s�; ��; #�

s
; (5.16)

ck;2q�#;
L; �L� �
1

�
ck�#; q
L;�L�

�

�������������������������������������������
�

2��L
�q
L�

2h�s�; ��; #�

s
; (5.17)

with

c?�#; q
L;�L� �
�
2

�L
�q
L�2

�
e��q
L�

2=�Lh�s�;��;#�e�i�=4e�i��
��#�=2��������������������������������
sin# tan#K�#�

p
�

coshs� � 1

sinhs�
e�is

�=�L ; (5.18)

ck�#; q
L;�L� �
�
2

�L
�q
L�

2

�
e��q
L�

2=�Lh�s�;��;#�e�i�=4e�i��
��#�=2��������������������������������
sin# tan#K�#�

p
�

�
2

coshs� � 1

sinh2s�
� 1

�
e�is

�=�L

sinhs�
: (5.19)

In this way, we observe that in the strong field limit �L 	
1 we can write the two amplitudes (5.9) and (5.10) in the
form
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A?;2q�#;
L; �L� � �
�
�L
q2
2

L

�
3=2
�B�#� log�L


 B?�#�e
��q
L�2=�Lh�s�;��;#�; (5.20)

Ak;2q�#;
L; �L� � �
�
�L
q2
2

L

�
3=2
�B�#� log�L


 Bk�#�e
��q
L�2=�Lh�s�;��;#�: (5.21)

First, we observe that the term proportional to log�L arises
from the expansion of the function Ei��is=�L� contained
inG�s; �; #;�L� in the limit �L 	 1 [41]. Second, we have
not quoted the exact expressions of the very involved
complex functions B�#�, B?�#�, and Bk�#�. In fact, while
for # � �=4 it results jB�#�j � jB?�#�j � jBk�#�j � 1,
instead the final integral on the polar angle # in
Eq. (3.17) results to be diverging near # � 0 and # �
�=2, and it cannot be performed neither numerically.
Actually, this is not surprising. In fact, in general, in
applying the saddle point method to evaluate an integral
one tacitly assumes that all the other parameters entering
the integral are fixed or, at least, that they run in intervals
such that the method is always applicable. In our case, in
particular, one sees from Eq. (3.21) that the method cannot
be applied in the limit cases with # � 0 and # � �=2.
These two cases have to be treated separately. Actually, the
case # � 0 is not very interesting: It covers the production
of photons in the direction of the laser electric field. Also,
an exact evaluation of the coefficients c2q�# � 0;
L; �L�,
c?;2q�# � 0;
L; �L�, and ck;2q�# � 0;
L; �L� would
give obviously a finite result. Then, since in Eq. (3.17),
they are multiplied by sinn# with, at least, n � 1, we can
conclude that there is no photon emission in that direction.
Finally, the case # � �=2 covers the production of pho-
tons in the x-y plane. Starting from Eqs. (3.21) and (3.24),
we can say qualitatively that, if # � �=2 and if
�q
L�

2=�L 	 1, the situation is formally analogous to
that encountered in Sec. IVA in dealing with small fields
and small frequencies with the substitution �L !
�L=�q
L�2. From this point of view, we can conclude
that the number of photons emitted in the x-y plane with
energy q!L scales qualitatively as ��L=q2
2

L�
4q.

Finally, by using the two expressions (5.20) and (5.21), it
is easy to show that the final number of photons produced
with frequency q!L per unit volume and unit time in the
direction # can be written as

dNq�#;
L; �L�

dVdtd#
�

�2

16�
�qm
L�

4 sin#
�
�L
q2
2

L

�
3

� e����q
L�
2=�Lsin2#�jB�#� log�L


 B?�#�j2 
 jB�#� log�L 
 Bk�#�j2:

(5.22)

In contrast to the E-H effective Lagrangian case, the num-
ber of photons with high frequency q!L * m in the pre-
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vious equation and in Eq. (5.5) is calculated by taking into
account the nonlocality of the interaction between the
external laser field and the radiation field. Accordingly,
the amplitude of the qth harmonic in Eqs. (5.5) and (5.22)
depends not only on the harmonic number q, as in
Eq. (4.17), but explicitly on the emitted frequency q!L.
Instead, since the laser field again is assumed to be slowly
varying (!L � m; q!L), the memory effects connected
with the number of photons already created are not
included.

From Eq. (5.22) it is clear that in the present situation the
yield of the harmonics is exponentially decreasing. From
this point of view, we can conclude that the cutoff of the
emission is roughly at
!M �m
������
�L
p

�
���������
eEL

p
; (5.23)
corresponding to the maximum harmonic order qM ��������������������
�Lm=!L

p
, with �L � eEL=m!L the so-called adiabatic-

ity parameter. This maximum value is independent of the
electron mass and this is because we are working in the
strong field regime EL 	 Ecr.

As mentioned at the end of Sec. III, it is quite natural to
interpret the photon production process as the creation of a
virtual electron-positron pair which, after absorbing a large
number of laser photons, annihilates by emitting only two
very energetic photons. The difference between the VHHG
cutoff and that via AHHG is that in AHHG the electron
‘‘excursion’’ in the laser field is real, while in VHHG it is
virtual, confined by the uncertainty relation t� 1=!.
While the cutoff energy may be estimated by the maxi-
mally attained energy to be released as radiation, its actual
evaluation differs from that for AHHG. The cutoff formula
for VHHG (5.23) can be roughly estimated by equating the
typical energy emitted with the typical energy that the laser
field can supply to the electron (positron): !M � eELv

�t�,
with v� and t� the velocity and the annihilation time,
respectively, and by using the typical values v� � 1 and
t� � 1=!M. The previous expression !M �

���������
eEL
p

gives
the order of magnitude of the cutoff position. To check it
better, we show in Fig. 3 a VHHG spectrum with �L � 10,
corresponding to EL � 1:3� 1017 V=cm, and 
L �
0:025, corresponding to !L � 12:5 KeV. From a numeri-
cal point of view, it is a very difficult task to evaluate the
general expression of the spectrum (3.17) in the whole
frequency range because of the integral on the variable s
in the coefficients cq�#;
L; �L�, c?;q�#;
L; �L�, and
ck;q�#;
L; �L� [see Eqs. (2.18), (2.19), and (3.24)]. For
this reason, we decided to use our analytic estimates
Eqs. (5.5) and (5.22). Actually, to plot homogeneous quan-
tities we obtained from Eq. (5.5) the number of photons
created per unit time, unit volume, and unit angle #
-16



FIG. 3. VHHG spectrum with �L � 10 corresponding to EL �
1:3� 1017 V=cm, 
L � 0:025 corresponding to !L �
12:5 KeV and # � �=4. We used Eq. (5.24) for the first
80 harmonics, Eq. (5.22) for the harmonics 550–800, and a
5-order polynomial interpolating function in the remaining part
(dotted part of the curve). The dotted vertical line corresponds to
the cutoff formula (5.23) and the solid one to the corrected value
qM � 553 obtained from Eq. (5.25).

FIG. 4. Feynman diagram of the photon plus electron-positron
pair production in the presence of a constant and uniform electric
field. The thick fermion lines indicate that the electron and
positron states have to be calculated in the presence of the
external field.
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dNq�#;
L; �L�

dVdtd#
’

�2

16�5
�m
L�4�2

L
q4

�4q2 � 1�2

� sin5#I2�q
L sin#=2�; (5.24)

and we evaluated by means of this expression the first
80 harmonics. The value of the polar angle # was put
equal to �=4 [see discussion below Eq. (5.21)]. At this
value, we can safely put B�#� � B?�#� � Bk�#� � 1 in
Eq. (5.22) and use it to evaluate the harmonics from 550 to
800. The remaining part of the spectrum was obtained by
interpolation (we used a 5-order polynomial function). The
dotted vertical line in Fig. 3 shows the harmonic order
corresponding to the cutoff rule (5.23). The order of mag-
nitude is correct, but a better estimate can be obtained by
equating Eq. (5.24) with Eq. (5.22). Of course, this is not
rigorous because the two expressions hold in different
frequency regions, but it is enough to obtain an estimate.
A numerical solution of the resulting nonlinear equation

q2
Me
��q2

M

2
L=2�L �

1

2�4


2
L

�L�log�L 
 1�2
(5.25)

gives the better value qM � 553, represented by the solid
vertical line in Fig. 3.

We have considered so far the laser field EL�t� as a given
external field. We want to estimate here how large the
backreaction of VHHG can be to distort the applied ap-
proximation [see the papers [37] for a discussion about
backreaction effects in electron-positron pair production].
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The laser energy density " transformed per unit time into
the emitted vacuum high-order harmonic spectrum can be
estimated from Eq. (4.52) by using the expression (5.23) of
the cutoff

d"
dt
�
XqM
q�1

!q
dN�E�H�

q �
L; �L�
dVdt

’
�2

135

m5

8�5
��L
L�

3:

(5.26)

If  is the laser pulse duration, then the total energy density
transformed in VHHG is ��d"=dt�. Finally, the ratio �
between this quantity and the initial mean laser energy
density E2

L=4 is given by � � 2�3�L
2
L!L=�135�4�.

By using the same data as those used in Fig. 3 and a typical
pulse duration  � 100 fs, we obtain �� 10�7 and we can
conclude that the backreaction of VHHG on the external
laser field is negligible at the considered conditions.
VI. COMPETING MECHANISM OF PHOTON
PRODUCTION

Here we want to quote another mechanism of photon
production from vacuum in the presence of a strong (also
constant) electric field and to make a qualitative compari-
son with that discussed in the paper. In fact, also in a
constant and uniform electric field EL, the process repre-
sented by the Feynman diagram in Fig. 4, i.e. the photon
plus electron-positron pair production from vacuum, takes
place [15]. The total probability dP�k;�L�=dk of photon
creation per unit of photon momentum k obtained by
summing on all the electron and positron states can be
evaluated by using the optical theorem [15,26]. By adapt-
ing the notation of Ref. [15] to ours, the number of photons
created per unit of photon momentum can be written as

dN�k;�L�
dk

� 2 Im�Lin�k;�L��; (6.1)

where

Lin�k;�L��
Z

�c��a
ds1

�
Z

�c��2��3

ds2 sgn�b�L�s1;s2;k;�L�; (6.2)

with
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L�s1; s2;k;�L� �
�

����
�
p

2�2��5
m2VT
!

e�i�s1
s2�=�L

s1s2 sinhs1 sinhs2

�

�
2 coshs1 coshs2
 i

�L
sinhs1 sinhs2

@
@b


 i
�L

cosh�s1� s2�

@
@a

�
I�s1; s2;k;�L�;

(6.3)

a �
s1 
 s2

s1s2
; (6.4)

b � coths1 
 coths2; (6.5)

I �s1; s2;k;�L� �
1

ab
e�i�


2=�L�sin2#�1=a�1=b��
�
1

2
; i

2

�Lb

�
;

(6.6)

and 
 � !=m � jkj=m, and ��x; z� is the incomplete �
function [41]. Also, the complex paths where the integrals
in Eq. (6.2) are performed are

�c � �0;
1�; (6.7)

�a � �0� i�;
1� i��; (6.8)

�2 �

�
�1� i

�
2
;
1� i

�
2

�
; (6.9)

�3 � �0� i�;�1� i��; (6.10)

and along them the variable b results are always real [see
Eqs. (6.2) and (6.5)]. In general, the result obtained by
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integrating Eq. (6.1) on k is plagued by different kinds of
divergences [39] and to cure them is not a trivial task [15].
For this reason, we content ourselves with a qualitative
comparison between our previous results and the number
of photons produced per unit volume and unit time in a
given frequency range corresponding to Eq. (6.1). Since
our spectrum is discrete, it is sensible to compare the
amplitude of the qth harmonic with the quantity

dNq�k;�L=2�

dVdT
�

2

VT
!2
q�!

Z
d� Im�Lin�kq;�L=2��;

(6.11)

with � the solid angle, !q � jkqj � q!L and �! � !L

(we have considered the previous quantity as calculated at
�L=2 to compensate for the fact that in our case the electric
field is oscillating).

Now, if �q
L�2 	 �L, the main contribution to the
double integral in Lin�k;�L� comes from that along the
path �c. In fact, from Eqs. (6.4) and (6.6) one sees that the
integrals along �a, �2, and �3 contain damping exponen-
tials. Also, we perform in the remaining double integral
along �c the derivatives with respect to a and b, and we
make the change of variables

s1 � s
1� �

2
; (6.12)

s2 � s
1
 �

2
: (6.13)

By observing from Eqs. (6.4) and (6.5) that

1

a
� s

1� �2

4
; (6.14)

1

b
�

1

2

coshs� cosh�s
sinhs

; (6.15)

and by looking at Eq. (6.3), one realizes that the relevant
functions for an order-of-magnitude evaluation of the
quantity in Eq. (6.11) are the following ones:
F 1�s; �; #; q
L;�L� � e�is=�Le�i��q
L�
2=�Lsin2#�s�1��2�=4��coshs�cosh�s�=2 sinhse�i��q
L�

2=�L�coshs�cosh�s�=2 sinhs

� e�is=�L
��q
L�
2=�Lh�s;�;#�; (6.16)

F 2�s; �; #; q
L;�L� � e�is=�Le�i��q
L�
2=�Lsin2#�s�1��2�=4��coshs�cosh�s�=2 sinhs�

�
1

2
; i
�q
L�2

�L

1

2

coshs� cosh�s
sinhs

�

� F 1�s; �; #; q
L;�L��
�
1

2
;
1

2
; i
�q
L�

2

�L

1

2

coshs� cosh�s
sinhs

�
; (6.17)
where the function h�s; �; #� is defined in Eq. (3.21) and
��x1; x2; z� is the confluent hypergeometric function [33].
In this way, we can conclude that the frequency region
where the photons are emitted through the two mecha-
nisms at hand are expected qualitatively to be not so differ-
ent. In particular, in the cutoff region �q
L�2 	 �L, the
function F 2�s; �; #; q
L;�L� gives a contribution negli-
gible with respect to that of F 1�s; �; #; q
L;�L�, because
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in this limit [41]

�
�
1

2
;
1

2
; i
�q
L�

2

�L

1

2

coshs� cosh�s
sinhs

�
�

������
�L
p

q
L
� 1:

(6.18)

In the weak field regime �L � 1, the photon yield from
this process is completely negligible with respect to that of
the process treated before, because here an electron-
positron pair must be also created and, if �L � 1, this
process is very unlikely. Instead, the order of magnitude of
the quantity in Eq. (6.11) in the strong field regime and for
q
L � 1 is given by

dNq�k;�L=2�

dVdT
�

�

�2��5
�2
Lq


2
Lm

4: (6.19)

This expression, of course, holds when the external field is
rigorously constant, but at zero order we can say that a
slowly varying external field gives the same probability but
modulated in time. This is not true in the process we have
discussed previously, because at zero order in the laser
frequency the process is not primed. We can compare
the number of photons given by Eq. (6.19) with the ampli-
tude of the qth harmonic as given by Eq. (4.52). In this
way, we see that the number of photons given by Eq. (4.52)
is �
2

L=q� 1 less also because this second process
involves only one QED vertex (see Fig. 4) and then
dNq�k;�L=2�=dVdT is proportional to �. Despite this,
two observations are in order. First, this second process
gives rise in the presence of an oscillating electric field to a
spectrum also ‘‘oscillating’’ in amplitude that does not
always overcome the spectrum due to the first process.
Second, the two processes are very different. On the one
hand, in this second process the spectrum is continuous,
because together with the photon two other particles (an
electron-positron pair) are created. On the other hand, in
the first process two correlated photons are always created
in the opposite direction, while here only one photon is
created. In conclusion, at least in principle, the two pro-
cesses are distinguishable also from an experimental point
of view.
FIG. 5. Feynman diagram corresponding to the amputated one-
loop n-point function (A3) with n � 8.
VII. SUMMARY AND CONCLUSIONS

We have studied the possibility of high-order harmonic
generation in the field of two equally strong counterpropa-
gating laser beams. The mechanism responsible for this
vacuum high-order harmonic generation is the creation of a
virtual electron-positron pair that absorbs a certain number
of laser photons and then annihilates by producing a
smaller number of high-energy photons. In various limiting
situations, a closed expression for the harmonic yield has
been obtained analytically. Actually, the phenomenon of
VHHG is primed only for very strong laser fields such that
EL 	 Ecr. In this case, we have found that, for frequencies
smaller than the electron mass, the spectrum shows a flat
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behavior (plateau) (see Sec. IV B). At energies of the order
of the electron mass, the spectrum decreases slowly (see
Sec. VA). This behavior continues for larger harmonics,
but roughly at !M �

���������
eEL
p

a strong reduction (cutoff) of
the radiation takes place. For larger harmonic orders, an
exponential decreasing of the harmonic yield is found (see
Sec. V B). In general, the physical situation is quite differ-
ent from the atomic high-order harmonic generation. In
AHHG, obviously, the photons are emitted by real particles
(electrons), while here they are emitted by a virtual
electron-positron pair. This explains the difference in the
two cutoff scaling laws. Also, atomic energy levels have in
conventional conditions definite parity, and for this reason
only odd harmonics of the laser frequency are predicted
theoretically and observed experimentally in AHHG.
Instead, here we found that both even and odd harmonics
are generated [see Eq. (3.17)].

For laser electric fields much less than Ecr, the harmonic
spectrum decreases as the power law �EL=Ecr�

4q also for
the first harmonics (see Sec. IVA). From a theoretical point
of view, this case is less interesting than the strong field
case. Nevertheless, we have shown that from an experi-
mental point of view this is, at the moment, the most
interesting case. In fact, because of the very high value
of Ecr � 1016 V=cm, it is impossible today to go beyond
the weak field limit EL � Ecr. In this regime, we have seen
that from an experimental point of view, contrary to the
pair creation process, photon-photon scattering requires a
much less extreme laser focusing. Finally, we have also
shown that laser-assisted photon-photon scattering could
be obtained experimentally by using three optical lasers
with characteristics today available.
APPENDIX A

In the present appendix, we want to give some details to
derive the expression of the effective Lagrangian density
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(2.5) [see also Eqs. (2.6), (2.7), and (2.8)]. We assume that
the total electromagnetic field is described by the four-
potential

A�T �x� � A��x� 
A��x�; (A1)

where x denotes here the four space-time coordinates,
A��x� represents a strong classical field and A��x� the
radiation field. The space-time dependence of the classical
field A��x� is assumed to be assigned, while the effective
action of the radiation field has to be determined. In
general, the effective action corresponding to the total field
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A�T �x� is given up to the one-loop approximation by [13]

�1�AT��M�AT� i
X1
n�1

1

n!

Z
dx1 ���dxn

���n�1;�1����n
�x1; . . . ;xn�A

�1
T �x1����A

�n
T �xn�; (A2)

where �M�AT is the classical Maxwell action and
��n�1;�1����n

�x1; . . . ; xn� are the amputated one-loop n-point
functions (see Fig. 5)
��n�1;�1����n
�x1; . . . ; xn� � ��1��n� 1�! tr��e��1

�G�x1; x2� � � � �e��n
�G�xn; x1�; (A3)

with ��i
the Dirac matrices, G�xa; xb� the electron propagator in vacuum, and the symbol ‘‘tr’’ denoting the trace on the

Dirac matrices [the factor �n� 1�! represents all the topologically inequivalent graphs that have to be taken into account].
Now, if we neglect the self-interactions of the radiation field with respect to its interactions with the strong external field,
we look for linear equations of motion for the field A��x�. In consequence, the corresponding action ��A of the
radiation field can be obtained by expanding Eq. (A2) and keeping only terms up to second order in A��x�:

��A � i Im��1�A� 
 �M�A �
i
2

Z
dx1dx2��2�1;�1�2

�x1; x2�A
�1�x1�A

�2�x2�

�
i

3!

Z
dx1dx2dx3��3�1;�1�2�3

�x1; x2; x3�A
�1�x1�A

�2�x2�A
�3�x3�

�
i

3!

Z
dx1dx2dx3��3�1;�1�2�3

�x1; x2; x3�A
�1�x1�A

�2�x2�A
�3�x3�

�
i

3!

Z
dx1dx2dx3��3�1;�1�2�3

�x1; x2; x3�A
�1�x1�A

�2�x2�A
�3�x3� 
 . . . : (A4)
In the previous equation, we have dropped the real terms
independent of A��x� that do not contribute to its equa-
tion of motion and the linear term in A��x� that after
quantization does not give contribution, too. Instead,
although it is independent of the radiation field, the imagi-
nary part of the one-loop effective action of the field A��x�
has to be kept, because it takes into account that sponta-
neous electron-positron pair creation from vacuum can
arise in the presence of the field A��x� itself. Finally, the
dots indicate the remaining terms quadratic in A��x� but
containing all the powers of the external field A��x� that is
taken into account exactly. From Eq. (A3) and from the
cyclic property of the trace, we see that
��3�1;�1�2�3
�x1; x2; x3� � ��3�1;�2�3�1

�x2; x3; x1�

� ��3�1;�3�1�2
�x3; x1; x2�: (A5)

In this way, the effective action (A4) can be written as

��A � i Im��1�A� 
 �M�A

�
1

2

Z
dx1dx2A

�1�x1���1�2
�x1; x2;A�A�2�x2�;

(A6)

with
��1�2
�x1; x2;A� � i��2��1�2�x1; x2� 
 i

Z
dx3��3��1�2�3�x1; x2; x3�A

�3�x3� 
 . . . � �i tr��e��1
�G�x1; x2��e��2

�G�x2; x1�

� 2i
Z
dx3 tr��e��1

�G�x1; x2��e��2
�G�x2; x3��e��3

�G�x3; x1�A�3�x3� 
 . . .

� �i tr��e��1
�G�x1; x2;A��e��2

�G�x2; x1;A�: (A7)

These two previous equations lead exactly to the expression (2.5) of the effective Lagrangian of the radiation field if the
classical field is given by the constant and uniform electric field EL. In fact, G�x1; x2;A� is, in general, the exact electron
propagator in the presence of the external field A��x�. The previous equation can be expressed by means of Feynman
-20



FIG. 6. Feynman diagram representation of Eq. (A7). The
thick fermion line in the last Feynman diagram indicates that
the corresponding propagators are calculated in the presence of
the external field A��x� [see Eq. (A7)].
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diagrams as in Fig. 6 and the thick fermion line in the last
Feynman diagram means that G�x1; x2;A� is the exact
electron propagator in the presence of the external field
A��x�.
APPENDIX B

We devote the present appendix to obtaining explicitly
the asymptotic expression of the coefficient cq�#;
L; �L�
in the limit �q
L�2 	 �L and �L 	 1. We start from the
expression (3.24) of the coefficient c�#; q
L;�L� which is
valid for a constant field �L, and we rewrite it for the sake
of clarity:

c�#;q
L;�L���
�

2�

Z 1
0
dsEi

�
�
is
�L

�

�
Z 1

�1

d�
2
e��q
L�

2=�Lh�s;�;#�
�
�q
L�

2

�L
F�s;��

�
@h�s;�;#�

@s


@F�s;��
@s

�
; (B1)

with the functions F�s; �� and h�s; �; #� given by [see
Eqs. (2.21) and (3.21)]

F�s; �� �
s

sinhs
�cosh�s� � sinh�s coths�; (B2)
h�s; �; #� � �is
�
sin2#

1� �2

4



cos2#

2

coshs� cosh�s
s sinhs

�
: (B3)

Since �q
L�2 	 �L, we can evaluate the double integral
by using the saddle point method. At the moment we
assume that # � 0 and # � �=2 [see the main text below
Eqs. (5.20) and (5.21) for a discussion of these two cases].
Also, despite �q
L�2 	 �L, we also keep the second term
proportional to @F�s; ��=@s in the integral. In fact, since
the first term is proportional to @h�s; �; #�=@s, they will
give in the asymptotic limit a contribution of the same
order of magnitude. Now the stationary points �s�; ��� of
the phase h�s; �; #� are determined by the equations
085005
@h�s�;��;#�
@s

��isin2#
1���2

4
� i

cos2#
2

coshs�cosh��s���� sinh��s� sinhs��1

sinh2s�

�0; (B4)

@h�s�; ��; #�
@�

� is�
sin2#

2
�� 
 is�

cos2#
2

sinh��s�

sinhs�
� 0:

(B5)

A solution of the second equation would be s� � 0, but, by
inserting it in the first equation, then j��j> 1, while in the
integral in Eq. (B1) j�j � 1. Then from the second equa-
tion we obtain �� � 0. As a consequence, s� must solve the
equation

cosh
s�

2
� �i cot#: (B6)

This equation can be solved by putting s�n � x�n 
 in�with
x�n real and n integer and different from zero, then

sinh
x�n
2
� sinh

x�

2
� � cot# (B7)

independently of n. Since our integral in s goes from 0 to
1, we choose x� > 0. Also, as we will see, the only
physically acceptable solutions are those with n < 0. In
particular, the largest contribution to the integral comes
from the stationary point

s� � s��1 � x� � i� � 2arcsinh�cot#� � i� (B8)

corresponding to n � �1 (for notational simplicity, we
will not indicate the dependence of s� and of x� on #).
Also, by expanding the function h�s; �; #� around the sta-
tionary point �s�; ���, we obtain

h�s; �; #� ’ h�s�; ��; #� 

@2h�s�; ��; #�

@s2

�s� s��2

2



@2h�s�; ��; #�

@�2

�2

2
; (B9)

with

h�s�; ��; #� � �
�
2

sin2# � i
�
cos# 


x�

2
sin2#

�
; (B10)

@2h�s�; ��; #�

@s2
� �i sin# tan#; (B11)

@2h�s�; ��; #�

@�2
� i

s�

2

�
sin2# 
 cos2#

s�

sinhs�

�
: (B12)

We point out that, by choosing a negative imaginary part of
s�, we have obtained a negative real part of h�s�; ��; #�,
and this will ensure that for large frequencies the harmonic
yield goes to zero (otherwise, it would diverge). From the
previous equations, it is also easy to see that, near the
stationary point �s�; ���, the steepest descent passes
-21
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through �s�; ���, forming an angle 3�=4 with the s real axis
and an angle ��� ��#��=2 with

��#� � arctan
�

2x� 
 ��2 � x�2 cos#�
2��1� x� cos#�

�
(B13)
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with the � real axis. In this way, by performing a rotation in
the s complex plane of an angle �=4 and a rotation in the �
complex plane of an angle ��
 ��#��=2, we obtain the
following asymptotic estimate of the integral in Eq. (B1):
c�#; q
L;�L� � �
�

2�
e��q
L�

2=�Lh�s�;��;#�e�i�=4e�i��
��#�=2
Z 1
�1

dz1

Z 1
�1

dz2

�
@F�s�; ���

@s
�
�q
L�2

�L

�

�
i
@2G�s�; ��; #;�L�

@s2

z2
1

2

 e�i��#�

@2G�s�; ��; #;�L�

@�2

z2
2

2

��
e���q
L�

2=�L�sin# tan#z2
1=2
K�#�z2

2=2

� ��
�L
�q
L�

2

e��q
L�
2=�Lh�s�;��;#�e�i�=4e�i��
��#�=2��������������������������������

sin# tan#K�#�
p �

@F�s�; ���
@s

�
i
2

cos#

sin2#

@2G�s�; ��; #;�L�

@s2

�
e�i��#�

K�#�
@2G�s�; ��; #;�L�

@�2

�
; (B14)

with

G�s; �; #;�L� � Ei
�
�
is
�L

�
F�s; ��

@h�s; �; #�
@s

; (B15)

K�#� �

�������������������
x�2 
 �2

16

s ��������sin2# 
 cos2#
s�

sinhs�

��������: (B16)

As we have mentioned, even if the terms proportional to �q
L�2=�L seem to be much larger than the term proportional to
@F�s�; ���=@s, they give a contribution to the integral of the same order of magnitude.
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