
PHYSICAL REVIEW D 72, 085003 (2005)
Lorentz violation and synchrotron radiation
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We consider the radiation emitted by an ultrarelativistic charged particle moving in a magnetic field, in
the presence of an additional Lorentz-violating interaction. In contrast with prior work, we treat a form of
Lorentz violation that is represented by a renormalizable operator. Neglecting the radiative reaction force,
the particle’s trajectory can be determined exactly. The resulting orbit is generally noncircular and does
not lie in the plane perpendicular to the magnetic field. We do not consider any Lorentz violation in the
electromagnetic sector, so the radiation from the accelerated charge can be determined by standard means,
and the radiation spectrum will exhibit a Lorentz-violating directional dependence. Using data on
emission from the Crab nebula, we can set a bound on a particular combination of Lorentz-violating
coefficients at the 6� 10�20 level.
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I. INTRODUCTION

There is presently a great deal of interest in the possi-
bility that Lorentz and CPT invariance may be violated in
nature. If the fundamental laws of physics do not obey
these symmetries, then we would expect to see evidence of
this violation even in the low-energy effective theory.
Therefore, if small Lorentz or CPT violations were dis-
covered, they would represent crucial clues about the
structure of the most basic theory of nature. A general
standard model extension (SME), containing possible
Lorentz- and CPT-violating corrections to quantum field
theory [1,2] and general relativity [3] has been developed.
The SME offers a parametrization of Lorentz violations in
low-energy effective field theory, and both its renormaliz-
ability [4] and stability [5] have been carefully examined.

The SME provides a theoretical framework for
analyzing experimental results. Sensitive tests of Lorentz
symmetry have included studies of matter-antimatter
asymmetries for trapped charged particles [6–9] and
bound state systems [10,11], determinations of muon prop-
erties [12,13], analyses of the behavior of spin-polarized
matter [14,15], frequency standard comparisons [16–18],
measurements of neutral meson oscillations [19–22], po-
larization measurements on the light from distant galaxies
[23–25], and others. The results of these experiments can
be used to set bounds on various SME coefficients. Many
coefficients are very strongly constrained, but many others
are not.

There are many systems and reaction processes that
could potentially be used to set further bounds of the
SME coefficients for Lorentz violation. We shall consider
a particular process—synchrotron motion and radiation—
and examine how it would be impacted by Lorentz viola-
tion. Although there have been many analyses of this
process in the presence of Lorentz-violating dispersion
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05=72(8)=085003(8)$23.00 085003
relations, there is as yet no analysis in terms of the renor-
malizable operators of the SME.

Analyses of possible Lorentz violation in synchrotron
emission have often focused only on changes to particle
dispersion relations. One popular approach is that of Myers
and Pospelov [26]. Taking a preferred direction v� in
spacetime, one may add an operator proportional to
i���v�@��

3� to the Lagrange density for a scalar particle.
If v� has a time component only, this will add a term
proportional to E3 to the usual relativistic energy-
momentum relation E2 � ~p2 �m2. Of course, the state-
ment that v� is purely timelike is not Lorentz invariant, so
that assumption must be taken to hold is some particular
preferred frame, which is typically the rest frame of the
cosmic microwave background. The electromagnetic field
is incorporated through the usual minimal coupling proce-
dure. In the presence of this kind of Lorentz violation, the
motion of a charged particle in a constant magnetic field is
modified, but the projection of the trajectory onto the plane
perpendicular to ~B remains circular, and the particle’s
speed remains constant. The radiation in the far field can
be determined, including information about polarization,
and circumstances that could enhance observable effects
have been identified [27,28].

Stringent bounds on Lorentz violations with modified
dispersion relations have been obtained from data from the
Crab nebula [29–31]. These modifications can lead to
maximum particle velocities that are less than the speed
of light, but the Crab nebula shows evidence of synchrotron
emission from electrons with Lorentz factors of � � �1�
~v2��1=2 � 3� 109, or energies of 1500 TeV. So the exis-
tence of electrons with velocities this large can be used
to constrain models with deformed dispersion relations.
For a Lorentz-violating coefficient with a particular
sign, the data show that the coefficient must be at least 7
orders of magnitude smaller than O�E=MP� Planck-level
suppression.

Lorentz violation can also be incorporated into particle
physics through the introduction of noncommutative field
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theory [32]. Synchrotron radiation has also been analyzed
within this framework. The minimal coupling between
charged matter and the electromagnetic field is modified
by the noncommutativity, as is the structure of the free
radiation field itself. A discussion in [33] focuses on the
particular case in which the magnetic field and the Lorentz-
violating noncommutativity parameter are aligned, so that
the orbits of charged particles in the plane perpendicular to
~B are again given by circles. It is possible to work out the

far fields within this model, at leading order in the
noncommutativity, but there are a number a difficulties,
including acausality and potential problems with
quantization.

However, these analyses ignore some of the most natural
Lorentz-violating operators. There is a unique spin-
independent, superficially renormalizable SME coupling
that is consistent with the gauge invariance of the standard
model and which grows in relative importance at high
energies. This is a CPT-even two-index tensor c��. We
shall look at how the presence of such a constant back-
ground tensor (which could arise, for example, as the
vacuum expectation value of a dynamical tensor field)
will modify synchrotron emission. Using existing data
about the nonthermal spectrum of the Crab nebula, we
may place a bound of 6� 10�20 on a particular linear
combination of the c�� coefficients. The method by which
we find this bound is very similar to that used to bound
other types of Lorentz violation; however, the c�� interac-
tion is actually much more natural to consider than these,
because it is superficially renormalizable. All the analyses
so far have been essentially classical in nature, and we shall
continue working within the classical framework, although
we shall look at when quantum corrections would become
important.
II. SYNCHROTRON MOTION WITH LORENTZ
VIOLATION

To study synchrotron motion, we shall consider a theory
of fermions interacting with the electromagnetic field. The
Lagrange density for this theory is

L � �
1

4
F��F�� � � 	���i@� � eA�� �m
 

� �
1

4
F��F�� � � 	��� � c������i@� � eA�� �m
 :

(1)

The c�� interaction is the source of the Lorentz violation.
There are other superficially renormalizable couplings
contained in the standard model extension, but the c cou-
plings are most natural in this context. When considering
synchrotron radiation, one is primarily interested in parti-
cles with very high energies. Lorentz-violating coefficients
that modify the kinetic part of the Lagrangian will grow in
relative importance at high energies, so it is natural to
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consider only these kinetic modifications. There are only
two such sets of Lorentz-violating terms that are consistent
with the more general standard model gauge couplings—
the c terms and also a set of d�� terms, which have the
same form as the c interactions, except for the addition
of a �5.

However, we shall not consider the d interactions here.
They are spin dependent, while the c term exists for
bosonic (Klein-Gordon) particles as well as fermions. So
all our results will apply equally to the motion of spin-zero
charged particles. Moreover, spin precession effects will
naturally decrease the importance of any d terms. For an
electron undergoing circular cyclotron motion, with the
spin oriented in the plane of the orbit, the spin rotates by
2�� g�2

2 radians with each orbital revolution. For ��
��1, the spin will rotate many times during one orbital
period, and any effects proportional to the helicity will be
diminished by the resultant averaging.

Modifications of the kinetic Lagrangian that are not
invariant under the standard model’s SU�2�L gauge sym-
metry can also exist; however, they can only appear as part
of electroweak symmetry breaking, as vacuum expectation
values of nonrenormalizable operators. These operators
should therefore be further suppressed, and we shall ne-
glect them.

We shall also neglect any Lorentz violation in the photon
sector. Modifications of the free electromagnetic
Lagrangian will generally change the speed of photon
propagation. This leads to the possibility of vacuum
Cerenkov radiation [34,35], which is not yet fully under-
stood, although threshold analyses can be used to set
further limits on Lorentz-violating parameters. Most pos-
sible Lorentz-violating terms in the free electromagnetic
sector also give rise to photon birefringence, which has
been searched for and not seen. The limits on the relevant
forms of Lorentz violation are very strong, and we may
safely neglect them. The purely electromagnetic terms that
do not cause birefringence can be accounted for by adding

L F � �
1

4
�kF�

�
����F

��F�
� � F��F���: (2)

to L. However, a coordinate transformation x� ! x� �
1
2 �kF�

��
��x

� will eliminate all the Lorentz violation from
the photon sector at leading order [36,37]. This transfor-
mation shifts the Lorentz-violating physics into the
charged matter sector, where it manifests itself exactly as
a c�� term. We see that consideration of c therefore
captures all the possible sources of Lorentz violation in a
synchrotron process that are not significantly further sup-
pressed. However, the transformation that eliminates kF is
frame dependent, and the new coordinates need not even be
rectangular relative to the original ones; so by choosing to
consider only this form of Lorentz violation, we are re-
stricting ourselves to working in a very particular and
special coordinate system.
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We know that the Lorentz-violating coefficients for any
physical charged particles are small. Physically, we might
expect that the characteristic size for c�� is O�m=MP�.
However, we shall not make any special use of the fact that
MP is the Planck scale. Rather, we may take this size
estimate as effectively defining MP; MP is whatever large
energy scale is needed in order to give the c terms the
correct magnitude.

The canonical quantization of the fermion field requires
some care when the c coefficients are nonvanishing. If c�0

is nonzero, then L will contain nonstandard time derivative
terms. In this case, a matrix transformation  ! R will
be required, to ensure that �0 � �0. An explicit power-
series expression for the required R is given in [38]. For
simplicity, we shall assume that any such necessary trans-
formation has already been performed and c�0 � 0.
However, this will require us to consider the canonical
quantization in a single frame only. We may not boost
the theory into another frame, because doing so would
reintroduce the problematic time derivatives.

In fact, in much of what follows, we shall neglect the c0�

terms as well. While there is no special reason to believe
this, we shall assume that the Lorentz violation is purely
spacelike in a frame in which F�� contains only a magnetic
component. We do this because the problem can then be
solved exactly, to all orders in the remaining Lorentz-
violating coefficients. However, when we revert to the
linearized approximation and derive a limit on the c co-
efficients from the observed properties of the synchrotron
spectrum, we shall include the c0� parts in the calculation.

We shall consider the interaction with the electromag-
netic field in two stages. This is standard practice in
consideration of cyclotron motion. First, we determine
the path traced out by a nonradiating charged particle
moving in a spatially homogeneous background magnetic
field. Then we evaluate the radiation induced by this peri-
odic motion.

Because we are interested in the synchrotron emission
from a single particle, we shall make the natural approxi-
mation of treating the Dirac equation as a single-particle
wave equation. Standard techniques of relativistic quantum
mechanics then apply; however, Lorentz violation will
introduce new complexities. The momentum and velocity
are not simply related by ~v � ~�=E � ~�=�m. The single-
particle fermion Hamiltonian derived from L is

H � �j�j � clj�l�j � c0j�j � �m; (3)

where �j � �0�j and � � �0 are the usual Dirac matri-
ces, and ~� is the mechanical (rather than canonical) three-
momentum ~� � ~p� e ~A. Time derivatives of operators
relating to fermion properties may be found by taking
commutators with this Hamiltonian. In particular, the de-
rivative of the particle’s position is

_x k � �k � clk�l � c0k: (4)
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Similarly, the equation of motion for �k may be written

_� k � i	�2�k�H � c0j�j� � 2�k � 2ckj�j
; (5)

which has the exact solution

�k�t� � ��k � ckj�j��H � c0j�j�
�1 � 	�k�0�

� ��k � ckj�j��H � c0j�j��1
e�2i�H�c0j�j�t:

(6)

The second term on the right-hand-side of (6) is matrix
valued and oscillatory. This term describes the particle’s
Zitterbewegung, which, for a well-localized wave packet,
is generated by interference between positive and negative
frequency (i.e. particle and antiparticle) modes. The first
term, when combined with (4) gives the bulk velocity [39]

vk �
1

E� c0j�j
��k � ckj�j � cjk�j � cjkcjl�l� � c0k:

(7)

This same expression can also be found by calculating the
group velocity ~vg � ~r ~�E. However, as previously stated,
we will drop the c0j contributions in much of the following
and use

vk �
1

E
��k � ckj�j � cjk�j � cjkcjl�l�: (8)

If rotation invariance is unbroken in the inertial frame
we are considering, so that cjk / 	jk, there is merely a
rescaling of the velocity. This will lead to fewer interesting
effects. Fortunately, even if there is a privileged frame in
which cjk / 	jk, a body emitting synchrotron radiation
will not generally be at rest in this frame. We shall there-
fore assume that there is some breaking of rotation invari-
ance in the rest frame of the source. In general, we shall
assume that there is no suppression of rotation invariance
violation relative to boost invariance violation only.

The equation of motion for the particle is the unmodified
Lorentz force law _~� � e _~x� ~B. We shall neglect the
Zitterbewegung in _~x and consider only

_~� � e ~v� ~B: (9)

Then, since according to (8) ~v remains a linear function of
the momentum, we may solve for the particle’s motion
exactly. Again, we emphasize that all these same results for
the bulk velocity and equation of motion also apply to
Klein-Gordon particles, although the Klein-Gordon equa-
tion is even less satisfactory as a single-particle wave
equation than is the Dirac equation.

It is advantageous to solve for the time development
of the velocity, rather than the momentum (canonical or
mechanical). While the velocity is a less fundamental
object, the greatest formal problem with it—the
Zitterbewegung—has already been neglected. The mo-
mentum could be determined with equal ease, but it pos-
-3
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sesses the unattractive property that a particle could pos-
sess zero momentum, yet not be stationary, if a c0j term
were present. Moreover, even with the Lorentz violation,
the electromagnetic field is coupled directly to the velocity.
Because c�0 � 0, the electrostatic potential � � A0 is
coupled, as usual, to the charge density e y . Similarly,
the vector potential ~A couples to e y _~x , where _~x is given
by (4). Neglecting the Zitterbewegung, the coupling is
simply to the bulk velocity ~v. The fact that the electromag-
netic coupling is standard in this way was already evident
in the Lorentz force law (9), and it holds equally in the
equations of motion for A�.

To determine the particle’s motion, we must solve a set
of two coupled differential equations. These two equations
describe the time evolution of the two components of the
velocity in the plane perpendicular to ~B; the component of
~v parallel to ~B does not contribute to the ~v� ~B force. Let
us take ~B to point along the z-direction, ~B � Bẑ. Then the
equations of motion for ~� are

_� 1 � eBv2 (10)

_� 2 � �eBv1 (11)

_� 3 � 0: (12)

So �3 is a constant of the motion, as is E �������������������������������������������������������������������
m2 � ��k � ckj�j���k � ckl�l�

q
. Differentiating (8)

then gives the following equations of motion for v1 and v2:

_v1 �
1

E
	�1� 2c11 � cj1cj1� _�1

� ��c12 � c21 � cj1cj2� _�2
 (13)

_v2 �
1

E
	��c12 � c21 � cj1cj2� _�1

� �1� 2c22 � cj2cj2� _�2
: (14)

Combining Eqs. (10), (11), (13), and (14) in matrix form
gives

_v1

_v2

� �
�
eB
E
�� �
�� �

� �
v1

v2

� �
� !0M

v1

v2

� �
: (15)

The elements of the matrix M are � � �1� 2c11 �

cj1cj1�, � � ��c12 � c21 � cj1cj2�, and � � �1� 2c22 �

cj2cj2�, and !0 �
eB
E .

The equation (15) is easily solved. SinceM2 � �����
�2�I (where I is the identity matrix), e!0Mt � I cos!t�
!0

! M sin!t, where ! � !0

�������������������
��� �2

p
. For vanishing c��,

! � !0 is the usual synchrotron frequency. If we choose
coordinates so that the initial conditions are v1�t � 0� �
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v10 and v2�0� � 0, then

v1�t�
v2�t�

� �
� eMt

v10

0

� �

� v10
cos!t� !0

! �c12 � c21 � cj1cj2� sin!t
� !0

! �1� 2c22 � cj2cj2� sin!t

" #
:

(16)

The velocity in the z-direction can be found by direct
integration of its derivative,

_v3 �
eB
E
	��c13 � c31 � cj1cj3�v2

� �c23 � c32 � cj2cj3�v1
: (17)

So, if v3�0� � v30,

v3�t� � v10
!0

!

�
�c23� c32� cj2cj3�

�

�
sin!t�

�
!0

!

�
�c12� c21� cj1cj2��cos!t� 1�

�

�

�
!0

!

�
�c13� c31� cj1cj3�

� �1� 2c22� cj2cj2��cos!t� 1�
�
�v30: (18)

The particle moves in an elliptical helix; there is a constant
drift parallel to ~B, superimposed upon an additional peri-
odic motion. If the drift vanishes, then the orbit lies close
to, but is not generally in, the plane normal to the magnetic
field, because v3 does not generally vanish, even if its mean
value does.
III. RADIATION EMISSION

We shall now move on to the second stage our calcu-
lation. We have the particle’s motion prescribed, so we may
study the radiation emitted during this motion. For sim-
plicity, we shall consider only the case in which the drift
velocity is zero. [This does not correspond to v30 � 0,
because there are additional time-independent terms in
(18). Instead, the sum of these constant terms must vanish.]
However, since we have now formulated the problem in
terms of a particle of prescribed velocity conventionally
coupled to the radiation field, normal boosting techniques
can be used to generalize these results to a situation in
which the time-averaged velocity in the z-direction is non-
vanishing. A crucial quantity to calculate is the speed of the
particle, j ~vj, which is given by

~v 2 �
v2

10

2
	�
� �� � �
� �� cos2!t� � sin2!t
 (19)

�
v2

10

2
	�
� �� �

������������������������������
�
� ��2 � �2

q
cos�2!t� 2��
;

(20)
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where tan2� � �=��� 
� and the constants 
, �, and �
are


 � 1�
�
!0

!

�
4
	�c23 � c32 � cj2cj3��c12 � c21 � cj1cj2�

� �c13 � c31 � cj1cj3��1� 2c22 � cj2cj2�
2 (21)

� �
�
!0

!

�
2
	�c12 � c21 � cj1cj2�2 � �1� 2c22 � cj2cj2�2

� �c23 � c32 � cj2cj3�2
 (22)

� � 2
!0

!
�c12 � c21 � cj1cj2�

� 2
�
!0

!

�
3
�c23 � c32 � cj2cj3�

� 	�c23 � c32 � cj2cj3��c12 � c21 � cj1cj2�

� �c13 � c31 � cj1cj3��1� 2c22 � cj2cj2�
: (23)

Thus far, our results have been exact, except that we
have neglected the radiative reaction force. Henceforth, we
shall be making use of the standard, Lorentz-invariant
results on the power radiated by a particle undergoing
synchrotron motion [40]. However, the standard method-
ology for evaluating synchrotron emission involves a num-
ber of approximations. One often neglects any effect
suppressed by a positive power of the Lorentz factor �,
and we shall follow this prescription. Among the things we
may therefore neglect is the radiation due to the component
of the acceleration parallel to the velocity; this contribution
to the emission is small in comparison with that arising
from the perpendicular component of the acceleration. We
may also ignore the angular width of the radiation beam.
All the emitted energy is beamed into a narrow pencil of
angles centered around the instantaneous direction of the
velocity. The range of angles covered is O���1�, but we
shall neglect this spread, instead assuming that all radiation
is emitted along a ray tangent to the particle’s path.

We shall also neglect the Lorentz violation as a source of
angular deviation. Although the exact orbit is neither cir-
cular nor in the plane normal to ~B, the deviations from the
conventional trajectory are small, of O�c�. It would not be
feasible to measure changes in the angular distribution of
the emitted radiation induced by the presence of the
Lorentz violation. We shall therefore neglect the changes
in the orbital shape. All effects we shall consider will
therefore be related to the modification of j ~vj (20). (This
is similar to the approach adopted in [29], where the
magnitude of the velocity was also taken as the central
quantity.) As the velocity changes around the particle’s
nearly circular path, the rate at which radiation is emitted
will vary. The most sensitive tests of c-type Lorentz vio-
lation in synchrotron radiation could come from comparing
the power output in different directions. (Unfortunately,
085003
such measurements are obviously not possible for single
astrophysical sources.)

The phase � represents the angular position of the
particle in its orbit at the time when the velocity is a
maximum. At the antipodal point of the orbit, the velocity
is also maximal. The greatest amount of radiation is then
emitted along the tangent rays at these two points and
propagates in the directions given by the azimuthal angles
�� �

2 . Similarly, the smallest radiated power is in the
directions � and �� �. The presence of this effect is of
course dependent on the existence of rotation invariance
violation.

Neglecting radiation due to the component of the accel-
eration parallel to the velocity [which is smaller by a factor
of O���2�], the intensity spectrum per unit spectral fre-
quency !s is

dI
d!s

�
���
3
p

e2�
!s

!c

Z 1
!s=!c

dxK5=3�x�: (24)

The critical frequency is !c �
3
2�

3��1, and � is the in-
stantaneous radius of curvature of the orbit � � ~v2=j ~a?j,
where ~a? is the component of the acceleration perpendicu-
lar to ~v, ~a? � _~v�

_~v ~v
~v2 ~v. Neglecting the Lorentz-violating

corrections, � is approximately E=jejB. K5=3�x� is a modi-
fied Bessel function of the second kind. One could go
further and calculate the radiation fields in the far field
explicitly. However, we shall not do this, because the
polarization structure of the emitted radiation is not sub-
stantially effected by the Lorentz violation.

For ultrarelativistic particles, for which 1� j ~vj � 1, the
Lorentz factor is roughly � � 1=

���������������������
2�1� j ~vj�

p
, and this is a

rapidly increasing function of the speed—d�=dj ~vj �
j ~vj�3 � �3. The description of the Lorentz violation
through an effective field theory containing only c�� terms
will break down if the modifications of the velocity due to
the presence of c can render the speed superluminal.
According to (8), this can occur when j ~�j=E � 1� jcj,
where jcj is a characteristic size for the Lorentz-violating
coefficients. This gives us an estimate of the maximum
value of � that can be achieved before new physics must
come into play if some form of causality is to be preserved:
�max � 1=

������
jcj

p
. This corresponds to an energy scale

Emax �
�����������
mMP
p

.

IV. PROSPECTS FOR OBSERVABILITY

It is still unclear whether the changes we have described
in the emission will be observable, and we shall now turn
our attention to this issue. The total radiated synchrotron
power in the ultrarelativistic regime is proportional to �4.
Therefore, the change in the radiated power as the velocity
varies around the orbit is given by

�P
P
� 2
	d��4�=dj ~vj
jcj

�4 � 8�2jcj: (25)
-5
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The factor of 2 comes from the fact that the deviations in
j ~vj range over both positive and negative values. The
characteristic size jcj used in this calculation should be
essentially the same as that used in the determination of
�max, because in both cases, jcj measures the magnitude of
the contribution that c�� can make to the velocity. Inserting
� � �max into (25) gives a result that is greater than unity.
This means that the fractional change in the emitted power
can be of order one in the regime in which the theory is
valid; we do not have to go to an energy scale so high that
new physics must emerge in order to see changes in the
emission. However, we do need to get comparatively close
to the scale at which the theory breaks down in order to
observe deviations in the spectrum.

In fact, for jcj � 10�19, we will find a �P
P of 1% at � �

108. For the lightest charged particle, the electron, this
corresponds to an energy of roughly 50 TeV, orders of
magnitude beyond anything one could create in the labo-
ratory. We conclude that these effects are unobservable for
Earth-based sources.

The only sources of synchrotron radiation that are high
enough in energy to give observable results of the type we
are considering are astrophysical. However, as each astro-
physical source can only be observed from a single direc-
tion, more than one source would be required in order to
make the kind of directional observations that could con-
strain c most strongly. Ideally, we would want to have two
or more very clean sources of synchrotron radiation, for
which the spectra due to the motion of multiple species of
particles (e.g., both electrons and protons) could be re-
solved. Then we could look for systematic differences
between the emission profiles for the species. This would
mean effectively using the proton spectra, for example, as
local magnetometers and looking to see whether the elec-
tron spectra are consistent with the measured fields. One
could then set bounds on a combination of the c coeffi-
cients for the electron and the proton.

Although observations of distant synchrotron sources
(such as far-off radio galaxies) are ideal for constraining
Lorentz violation in the photon sector, they are not so
helpful here. A long line of sight will magnify small effects
that modify the propagation structure of radiation.
However, large distances do nothing to assist measure-
ments of Lorentz violation in the charged emitters them-
selves. A nearby, accurately understood source is better
than a distant one.

The best-understood synchrotron source is the Crab
nebula, but its spectrum still appears too complicated for
the kind of procedure we have suggested to be at all
feasible. (For a good review of the Crab nebula’s non-
thermal emission spectrum, see [41].) For example, the
spectrum contains two different electron synchrotron com-
ponents, with significantly different characteristics. Any
observed proton synchrotron radiation would probably fail
as a sensitive magnetometer, because it would be impos-
085003
sible to associate it uniquely and in a model-independent
fashion with either one or the other electron population.
Based on measurements of the entire spectrum, the average
strength of the magnetic field in the x-ray production
region is known to be in the tenths of mG, but it is not
known to high accuracy. There are also large relative
uncertainties in the radiation rates in some regimes, par-
ticularly the highest energy.

However, we still can get a strong constraint on c from
the Crab nebula data. This constraint, like the one derived
in [29], is based upon the fact that Lorentz violation may
give rise to a maximum particle velocity. The existence of
electrons with large velocities then constrains the Lorentz-
violating parameters. For a particle moving in the direction
of a unit vector ~e, the maximum allowed velocity is (to
leading order in c) 1� cjkejek � c0jej. We observe via the
Crab nebula synchrotron spectrum electrons with Lorentz
factors as large as 3� 109. This means that the maximum
velocity in the Crab-to-Earth direction is greater than 1�
6� 10�20, hence cjkejek � c0jej < 6� 10�20. As in [29],
this is a one-sided limit; one sign of this combination of
coefficients leads to a maximum velocity in the relevant
direction, but the other does not.

The direction ~e can be transformed into the standard
sun-centered celestial equatorial coordinates used in the
study of Lorentz violation [42]. The location of the Crab
nebula is right ascension 5h 34m 32s, declination 22� 00

5200, lying close to the ecliptic plane. So the unit vector
pointing from the nebula to the Earth has components eX �
�0:10, eY � �0:92, and eZ � �0:37. This gives us the
particular elements of the c tensor that are constrained by
this measurement. The specific constraint is

	0:01cXX � 0:85cYY � 0:14cZZ � 0:09c�XY� � 0:04c�XZ�

� 0:34c�YZ� � 0:10c0X � 0:92c0Y � 0:37c0Z


< 6� 10�20; (26)

where c�jk� is the symmetric sum cjk � ckj. Similar con-
straints could be obtained for other well-resolved synchro-
tron sources; this would provide further constraints on the
symmetric part of cjk and on the c0j. [At leading order, the
antisymmetric part of cjk just represents a change in the
representation of the Dirac matrices, and it is already
evident from (7) that it will not contribute to the velocity.]

In order for these constraints to be valid, we must know
that there are no other effects that will interfere with our
result. In particular, we would like to address the question
of whether quantum corrections would affect the emission
before Lorentz-violating corrections become important.
The leading order quantum corrections to the standard
synchrotron formulas may be found by making the replace-
ment !s ! !s�1�

!c
E � in 1

!s

dI
d!s

[43]. The corrections are

negligible if !c � E, or equivalently if �� m2

jejB . This is
�� �3� 1013�B�1 if the particle is an electron and B is
-6
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measured in Gauss. If a typical field strength is that within
the Crab nebula, B� 0:2–0:3 mG, the maximum values of
� are extremely high. So our classical treatment could
apply up to scales well above those at which we would
expect to start seeing marked deviations from the conven-
tional results.

Synchrotron radiation has already been used to set
strong limits on nonrenormalizable Lorentz-violating mod-
ifications of quantum electrodynamics. Lorentz violation
in synchrotron radiation is also theoretically interesting,
and there have been a number of prior analyses of the
emission spectrum in specific Lorentz-violating models.
In this paper, we have looked at the impact of the renor-
malizable SME coefficient c�� on synchrotron processes.
Although we have used a number of standard approxima-
tions to simply our analysis of the radiation, no approx-
imations relating to the Lorentz violation were required;
085003
the expressions (16) and (18) are exact, valid to all orders
in c. The c�� coefficients for electrons, particularly the
diagonal coefficients, can be difficult to bound experimen-
tally [17,42]. Since only a single fermion is involved in
synchrotron radiation, this is a process in which it is
relatively easy to isolate electron-specific effects, and the
kind of constraints we have obtained here should prove
useful.
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