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Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory
at three loops and beyond
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We compute the leading-color (planar) three-loop four-point amplitude of N � 4 supersymmetric
Yang-Mills theory in 4� 2� dimensions, as a Laurent expansion about � � 0 including the finite terms.
The amplitude was constructed previously via the unitarity method, in terms of two Feynman loop
integrals, one of which has been evaluated already. Here we use the Mellin-Barnes integration technique to
evaluate the Laurent expansion of the second integral. Strikingly, the amplitude is expressible, through the
finite terms, in terms of the corresponding one- and two-loop amplitudes, which provides strong evidence
for a previous conjecture that higher-loop planar N � 4 amplitudes have an iterative structure. The
infrared singularities of the amplitude agree with the predictions of Sterman and Tejeda-Yeomans based
on resummation. Based on the four-point result and the exponentiation of infrared singularities, we give an
exponentiated Ansatz for the maximally helicity-violating n-point amplitudes to all loop orders. The 1=�2

pole in the four-point amplitude determines the soft, or cusp, anomalous dimension at three loops in
N � 4 supersymmetric Yang-Mills theory. The result confirms a prediction by Kotikov, Lipatov,
Onishchenko and Velizhanin, which utilizes the leading-twist anomalous dimensions in QCD computed
by Moch, Vermaseren and Vogt. Following similar logic, we are able to predict a term in the three-loop
quark and gluon form factors in QCD.

DOI: 10.1103/PhysRevD.72.085001 PACS numbers: 11.15.Bt, 11.25.Db, 11.25.Tq, 11.55.Bq
I. INTRODUCTION

Maximally supersymmetric N � 4 Yang-Mills theory
(MSYM) in four dimensions has a number of remarkable
properties. There are good reasons to believe that, in the
’t Hooft (planar) limit of a large number of colors Nc,
higher-loop orders are surprisingly simple [1]. In particu-
lar, the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence suggests a simplicity in the perturbative
expansion of planar MSYM as the number of loops in-
creases [1]. The Maldacena conjecture [2] states that the
planar limit of MSYM at strong coupling is dual to weakly
coupled gravity in five-dimensional anti-de Sitter space.
Based on this conjecture, one might expect observables in
the strongly coupled limit of MSYM to have a relatively
simple form, due to the interpretation in terms of weakly
coupled gravity. On the other hand, the strong-coupling
limit of a typical observable receives contributions from
infinitely many terms in the perturbative expansion, as well
as nonperturbative effects. How might the perturbative
series be organized to produce a simple strong-coupling
result? Some quantities are protected by supersymmetry—
nonrenormalization theorems lead to zeros in the perturba-
tive series, which certainly can bring about this simplicity
[3,4]. It has been less clear how the perturbative series for
unprotected quantities might have the required simplicity
[4–6].
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One suggestion, confirmed through two loops for dimen-
sionally regulated on-shell scattering amplitudes, is that an
iterative structure exists [1], which may allow the pertur-
bative series to be resummed into a simple result. In
particular, the planar four-point two-loop amplitude of
MSYM was shown to be expressible in terms of the cor-
responding one-loop amplitude. Roughly speaking [see
Eq. (4.1) for the precise formula], the two-loop amplitude
is given by the square of the one-loop amplitude, plus a
term proportional to the one-loop amplitude evaluated in a
slightly different dimension, plus a constant. This result
was found using the two-loop integrand [7,8] obtained via
the unitarity method [9–13], and the Laurent expansion in
� � �4� d�=2 of the associated two-loop planar box in-
tegral [14].

On-shell loop amplitudes in massless gauge theory have
severe infrared (IR) singularities, arising from soft and
collinear loop momenta. Regulated dimensionally, the
singularities produce poles in the limit �! 0, beginning
at O���2L� for an L-loop amplitude. The two-loop
iterative relation holds from O���4� through O��0�, but it
does not hold at O��1�. This observation is consistent with
intuition that a simple structure need only exist near four
dimensions [1], where MSYM is a conformal theory, and
where it should be dual to a gravity theory in anti-de Sitter
space.
-1 © 2005 The American Physical Society
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Splitting amplitudes are functions governing the behav-
ior of scattering amplitudes as two momenta become col-
linear. The two-loop splitting amplitude in MSYM has an
iterative structure very similar to that of the four-point
amplitude [1,13]. Based on this structure, an iterative
Ansatz for the planar n-point two-loop amplitudes can
also be constructed. The Ansatz is very likely to be true
for the maximally helicity-violating (MHV) amplitudes
(those with two negative helicities and the rest positive)
because it ensures that these amplitudes have the correct
factorization behavior in all channels. (For non-MHV am-
plitudes one would also need to ensure that the structure of
the multiparticle poles is correct.)

Amplitudes for scattering of on-shell massless quanta
have considerable practical relevance, in the applications
of perturbative QCD to collider physics. At the perturba-
tive level, MSYM is a close cousin of QCD, although its
amplitudes have a much simpler analytic structure, allow-
ing their computation typically to precede the QCD result.
In fact, the surprisingly simple structure of MSYM loop
amplitudes has been unfolding for quite a while, beginning
with the superstring-based evaluation of the one-loop four-
point amplitude by Green, Schwarz, and Brink [15].
Compact results for the n-point MHV amplitudes [9], and
for all helicity configurations at six points [10], were
among the early applications of the unitarity method of
Dunbar, Kosower, and two of the authors [9–13]. Because
the unitarity method builds amplitudes at any loop order
from on-shell lower-loop amplitudes, any simplicity un-
covered at the tree and one-loop levels should induce a
corresponding additional simplicity at higher-loop orders.
Indeed, the simplicity observed in the multiloop four-point
MSYM loop integrands (prior to performing loop integra-
tions) was found in this way [7,8].

Witten has proposed a duality between MSYM and
twistor string theory [16], generalizing Nair’s earlier de-
scription [17] of MHV tree amplitudes. This proposal, and
the investigations it has stimulated into the structure of tree
[18] and one-loop [19,20] gauge-theory scattering ampli-
tudes, provide additional strong support for the notion that
amplitudes—particularly MSYM amplitudes—should be
remarkably simple.

These results, particularly the two-loop iterative rela-
tion, lead to the natural conjecture that an iterative struc-
ture should continue to hold for higher-loop planar MSYM
amplitudes [1]. The purpose of this paper is to verify the
conjecture at the level of the three-loop four-point ampli-
tude, and to flesh out more of the likely structure beyond
three loops.

The planar three-loop four-point MSYM amplitude was
found in Ref. [7] via the unitarity method, and expressed in
terms of just two independent loop integrals. To check for
an iterative relation, we must first compute the expansion
of these two integrals around � � 0, from the most singular
terms, O���6�, through the finite terms, O��0�. Fortunately,
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there has been much progress in multiloop integration over
the past few years [14,21,22]. One of the two integrals we
need, a three-loop ladder integral, was computed through
finite order recently by one of the authors [23], using a
multiple Mellin-Barnes (MB) representation. In this paper,
we present the expansion of the single remaining inte-
gral—and thus the expansion of the three-loop ampli-
tude—through the finite terms.

We wish to compare this expression with the expansions
of products of one- and two-loop amplitudes. For this
purpose, we must expand the one- and two-loop ampli-
tudes to O��4� and O��2� respectively, which is two higher
orders in � than was necessary at two loops. All of the
expansions are given in terms of harmonic polylogarithms
[24,25]. We use identities to reduce the harmonic polylo-
garithms to an independent basis set. Taking into account
intricate cancellations between the different amplitude
terms, we find that the planar three-loop four-point ampli-
tude does indeed have a simple iterative structure [see
Eq. (4.4)].

To guide us toward the correct iterative relation, we
employed properties of the three-loop amplitude’s IR sin-
gularities [26], which must be respected by any such
relation. In general, the IR singularities of loop amplitudes
in gauge theory can be represented in terms of universal
operators, acting on the same scattering amplitudes eval-
uated at lower-loop order, as was first discussed at one and
two loops [27,28]. These operators are related to the soft
(or cusp) anomalous dimension and other quantities enter-
ing the Sudakov form factor [29,30], as was clarified
recently [26]. The latter quantities play an important role
in the resummation and exponentiation of large logarithms
near kinematic boundaries, such as the threshold (x! 1)
logarithms in deep inelastic scattering or the Drell-Yan
process [30–32].

In other words, the IR divergence structure of loop
amplitudes are a priori predictable, up to sets of numbers
(e.g. soft anomalous dimensions) that must be obtained by
specific computations. Our four-point computation simul-
taneously provides a verification of the three-loop IR di-
vergence formula [26], and a direct determination of two of
the numbers entering it, for planar MSYM: the three-loop
coefficients of the soft anomalous dimension and of the G
function for the Sudakov form factor [26,30].

The three-loop four-point iterative relation, combined
with information about how IR singularities exponentiate
[30], and the factorization properties used at two loops [1],
leads us to an exponentiated Ansatz for the planar n-point
MHV amplitudes at L loops. This Ansatz naturally pro-
duces each loop amplitude as an iteration of lower-loop
amplitudes, up to a set of constants which are as yet
undetermined beyond three loops. (Two rational numbers
at three loops are also undetermined.) By taking collinear
limits of the Ansatz, we obtain, as a by-product, an iterative
Ansatz for the L-loop splitting amplitudes of MSYM.
-2
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We use the universal form of the divergences to define
IR-subtracted finite-remainder amplitudes. (Similar sub-
tractions are made in perturbative QCD when constructing
finite cross sections for infrared-safe observables.) For our
exponentiated Ansatz, the finite remainder at L loops is
strikingly simple: it is a polynomial of degree L in the one-
loop finite remainder. This result applies directly to the
finite remainder of the three-loop four-point amplitude, for
which it follows from actual computation, not an Ansatz.

Infrared singularities provide a link between the scatter-
ing amplitudes computed here and the anomalous dimen-
sions of gauge-invariant composite operators in MSYM,
studied in the context of the AdS/CFT correspondence
[4,5,33,34]. Specifically, at three loops, the coefficient of
the 1=�2 IR singularity is controlled by the high-spin, or
soft, limit of the leading-twist anomalous dimensions [26].
Equivalently, it appears in the x! 1 limit of the kernels for
evolving parton distributions fi�x;Q2� in the scale Q2. The
x! 1 limit of the splitting kernels corresponds to multiple
soft-gluon emission, and is related to the soft (or cusp)
anomalous dimension associated with a Wilson line [35].
The three-loop soft anomalous dimension in QCD has been
computed by Moch, Vermaseren, and Vogt as part of the
heroic computation of the full leading-twist anomalous
dimensions [36]. (The terms proportional to Nf were com-
puted earlier [37].)

The QCD result has been carried over to MSYM by
Kotikov, Lipatov, Onishchenko, and Velizhanin (KLOV)
[38], using an inspired observation that the MSYM results
may be obtained from the ‘‘leading-transcendentality’’
contributions of QCD. For the soft anomalous dimensions,
which are polynomials in the Riemann � values, �n �
��n�, the degree of transcendentality is tallied by assigning
the degree n to each �n. The KLOV observation applies to
the anomalous dimensions for any spin j; a similar ac-
counting of harmonic sums S ~m�j� is used to assign tran-
scendentality in that case. Very interestingly, the three-loop
MSYM anomalous dimensions of KLOV were confirmed
by Staudacher [39] through spin j � 8, building on earlier
work of Beisert, Kristjansen, and Staudacher [34] at j � 4,
by assuming integrability and using a Bethe Ansatz. Our
determination of the three-loop soft anomalous dimension
in MSYM now provides an independent confirmation of
the KLOV result in the limit j! 1.

The iterative structure of MSYM is presumably tied to
the issue of integrability of the theory [33,34]. There has
also been an interesting hint of a similar structure devel-
oping in the correlation functions of gauge-invariant com-
posite operators in MSYM [40]; but its precise structure, if
it exists in this case, has not yet been clarified.

This paper is organized as follows. In Sec. II we review
known results for planar loop amplitudes in MSYM, focus-
ing on the construction of the three-loop integrand for the
four-point amplitude. The methods used to evaluate the
two three-loop integrals are described in Sec. III. In Sec. IV
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we describe the iterative relation for the three-loop four-
point amplitude. Then we present an exponentiated Ansatz
which extends the relation to n-point MHV amplitudes at
an arbitrary number of loops. We discuss the consistency of
this Ansatz with exponentiation of infrared singularities.
The consistency of our Ansatz under factorization onto
kinematic poles, particularly the collinear limits, is dis-
cussed in Sec. V. In Sec. VI we relate the anomalous
dimensions and Sudakov coefficients appearing in the
L-loop amplitudes to previous work in QCD and MSYM.
Our conclusions are given in Sec. VII. Appendix A sum-
marizes properties of harmonic polylogarithms, while
Appendix B contains the results for all loop integrals
encountered in our calculation of the amplitudes.

II. GENERAL STRUCTURE OF MSYM LOOP
AMPLITUDES

It is convenient to first color decompose the amplitudes
[12,41] in order to separate the color from the kinematics.
In this paper we will discuss only the leading-color planar
contributions. These terms have the same color decompo-
sition as tree amplitudes, up to overall factors of the
number of colors, Nc. The leading-Nc contributions to
the L-loop SU�Nc� gauge theory n-point amplitudes may
be written in the color-decomposed form as,

A�L�
n � gn�2

�
2e���g2Nc
�4��2��

�
LX
�

Tr�Ta��1� . . .Ta��n� �

� A�L�n ���1�; ��2�; . . . ; ��n��; (2.1)

where � is Euler’s constant, and the sum runs over non-
cyclic permutations of the external legs. In this expression
we have suppressed the (all-outgoing) momenta ki and
helicities �i, leaving only the index i as a label. This
decomposition holds for all particles in the gauge super-
multiplet which are all in the adjoint representation. The
advantage of this form is that the color-ordered partial
amplitudes An are independent of the color factors, cleanly
separating color and kinematics. We will not discuss the
subleading-color contributions here because there does
not appear to be a simple iterative structure present for
them [1].

In general, loop amplitudes in massless gauge theory,
including MSYM, contain IR singularities. This implies
that a textbook definition of the S matrix with fixed num-
bers of elementary particles does not exist. To define
an S matrix in massless gauge theory, dimensional
regularization—which explicitly breaks the conformal in-
variance—is commonly used. Once the universal IR sin-
gularities are subtracted, the four-dimensional limit of the
remaining terms in the amplitudes may then be taken. In
QCD, after combining real emission and virtual contribu-
tions, these finite remainders are the quantities entering
into the computation of infrared-safe physical observables
[42]. It is worth noting that the finite remainders should
-3
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FIG. 1. The result for the leading-color two-loop amplitude in
terms of scalar integral functions, given in Eq. (2.4).
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also be related to perturbative scattering matrix elements
for appropriate coherent states (see e.g. Ref. [43]). The IR
singularities for MSYM that we discuss in this paper are
closely connected to those of QCD and are, in fact, a subset
of the QCD divergences. As is typical in perturbative QCD,
the S matrix under discussion here is not the one for the
true asymptotic states of the four-dimensional theory, but
for elementary partons.

The unitarity method [9–13] provides an efficient means
to obtain the integrands needed for constructing loop am-
plitudes. In this approach, the integrands for loop ampli-
tudes are obtained directly from on-shell tree amplitudes
without resorting to an off-shell formalism. A key advan-
tage is that the building blocks used to obtain the ampli-
tudes are gauge invariant and posses simple properties
under extended supersymmetry, unlike Feynman diagrams.
[Implicit in this approach is the use of a supersymmetric
regulator, such as the four-dimensional helicity (FDH)
scheme [44], a variation on dimensional reduction (DR)
[45].] The unitarity method derives its efficiency from the
ability to use simplified forms of tree amplitudes to pro-
duce simplified loop integrands.

The unitarity method expresses the amplitude in terms
of a set of loop integrals. Experience shows that such
integrals can be evaluated in terms of generalized poly-
logarithms. At one loop a complete basis of dimensionally
regularized integral functions is known [9,10,46], in gen-
eral, reducing the integration problem to that of determin-
ing coefficients of the basis integrals. For four-point
amplitudes only a single scalar box integral appears. At
two and higher loops an analogous basis of integral func-
tions is not known, and the integrals must be evaluated case
by case. The two-loop massless planar double-box integral
has, however, been evaluated in Ref. [14] and is given in
terms of harmonic polylogarithms [24,25] through O��2�
in Eq. (B6) of the second appendix. One of the integrals
appearing in the three-loop four-point amplitude has also
been previously evaluated [23], and is given in Eq. (B8).

The one-loop four-point amplitude in MSYM was first
calculated by taking the low energy limit of a superstring
[15]. After scaling out a factor of the tree amplitude via,

M�L�n ��� � A�L�n =A�0�n ; (2.2)

the result for the one-loop four-point amplitude is rather
simple,

M�1�4 ��� � �
1

2
stI�1�4 �s; t�: (2.3)

Here I�1�4 is the one-loop scalar box integral, multiplied by a
convenient normalization factor, and is defined in Eq. (B1)
of Appendix B. This box integral is identical to the one
encountered in scalar �3 theory. Its explicit value in terms
of harmonic polylogarithms is given through O��4� in
Eq. (B3). We keep the higher-order terms in � because
they will contribute when we write the three-loop ampli-
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tude in terms of the one- and two-loop amplitudes. The
factor of 1=2 in Eq. (2.3) is due to our normalization
convention for A�L�n , exposed in Eq. (2.1) where a compen-
satory ‘‘2’’ appears in the brackets. This convention fol-
lows the QCD literature on two-loop scattering amplitudes
(see e.g., Ref. [47]).

The two-loop MSYM four-point amplitudes were ob-
tained in Ref. [7] using the unitarity method, with the result
for the planar contribution,

M�2�4 ��� �
1

4
st�sI�2�4 �s; t� � tI

�2�
4 �t; s��; (2.4)

which is schematically depicted in Fig. 1. The two-loop
scalar integral I�2�4 is defined in Eq. (B4). The scalar
double-box integral I�2�4 �s; t� was first evaluated through
O��0� in terms of polylogarithms by one of the authors
using multiple MB representations [14]. In Eq. (B6), we
give this integral through O��2�. The higher-order terms in
� are again needed because they will appear in our iterative
relation for the three-loop amplitude. The result (2.4) has
been confirmed using the two-loop four-gluon QCD am-
plitude for helicities �� ���� [47], which can be con-
verted into the four-gluon amplitude in MSYM by
adjusting the number and color of states circulating in
the loop [1].

The original calculation [7] of the coefficients of the
integrals in Eq. (2.4) used iterated two-particle cuts, which
are known to be exact to all orders in � since they involve
precisely the same algebra used to obtain the one-loop
amplitude (2.3). Beyond two loops, an Ansatz for the
planar contributions to the integrands was proposed in
terms of a ‘‘rung insertion rule’’ [7,8]. This Ansatz was
based on an analysis of two- and three-particle cuts, as well
as cuts with an arbitrary number of intermediate states, but
where the intermediate helicities are restricted so that the
amplitudes on either side of the cut are MHV amplitudes.
At three loops, the planar integrals generated by the rung
rule can be constructed using iterated two-particle cuts, so
the Ansatz is reasonably secure. However, beyond three
loops (and even at three loops for nonplanar contributions)
the rung rule generates diagram structures that cannot be
obtained using iterated two-particle cuts. It is less certain
that the rung rule gives the correct results for such contri-
butions. There are also potential contributions coming
-4
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FIG. 2. The rung insertion rule for generating higher-loop
integrands from lower-loop ones, given in Ref. [7].
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from ��2��-dimensional parts of loop momenta, which
have been dropped in the analysis of the three-particle
and MHV cuts. These contributions would need to be
kept in order to prove rigorously that the rung rule correctly
gives all contributions.

It is worth noting that while the integrand obtained from
the rung insertion rule is only an Ansatz, the results of this
paper provide strong evidence that it is the complete an-
swer, at least for the planar contributions at three loops. As
we shall discuss in Sec. IV B, the IR divergences of
Eq. (2.5) are fully consistent with the known form of the
three-loop IR divergences [26]. Moreover, the nontrivial
cancellations required by the iterative relations described
in Sec. IV imply that there are no missing pieces.

In any case, we use the rung rule as our starting point for
evaluating the planar three-loop MSYM amplitudes.
According to this rule one takes each diagram in the
L-loop amplitude and generates all the possible �L�
1�-loop diagrams by inserting a new leg between each
possible pair of internal legs as shown in Fig. 2. From
this set the diagrams which have triangle or bubble subdia-
grams are removed. The new loop momentum is integrated
over, after including an additional factor of i�l1 � l2�2 in
the numerator, where l1 and l2 are the momenta flowing
1

2

4

3

− s t
8

3

2

1 4

3

s
8

−

1

2

8

2 2)1s
−

(

1

2

8
2+ 2)1s

−
t2

( +l 2l 

llt3

t

FIG. 3. Mondrian diagrams for the three-loop four-point MSYM pl
have identical values, as do the fifth and sixth. The factors of �l1 � l
and l2 are the momenta carried by the lines marked by arrows.
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through each of the legs to which the new line is joined, as
indicated in Fig. 2. Each distinct �L� 1�-loop contribution
should be counted once, even though it can be generated in
multiple ways. (The contributions which correspond to
identical graphs but have different numerator factors
should be counted as distinct.) The �L� 1�-loop planar
amplitude is then the sum of all distinct �L� 1�-loop
diagrams. The diagrams generated by the iterated two-
particle cuts have an amusing resemblance to Mondrian’s
artwork; hence it is natural to call them ‘‘Mondrian
diagrams.’’

Applying this rule to the three-loop planar amplitude
gives the explicit form of the integrand [7],

M�3�4 ��� � �
1

8
st�s2I�3�a4 �s; t� � 2sI�3�b4 �t; s� � t2I�3�a4 �t; s�

� 2tI�3�b4 �s; t��: (2.5)

This integrand is depicted in Fig. 3 [48]. The second and
third integrals in the figure are equal, as are the fifth and
sixth, accounting for the appearance of six diagrams in
Fig. 3, but only four terms in Eq. (2.5). The integrals I�3�a4

and I�3�b4 appearing in the amplitude are defined in
Eqs. (3.1) and (3.2). The first of these integrals has been
evaluated in Ref. [23]. The evaluation of the second inte-
gral is outlined in the next section. The expansions of these
integrals through O��0�, in terms of harmonic polylogar-
ithms, are presented in Eqs. (B8) and (B10).
III. EVALUATING TRIPLE BOXES

The two three-loop integrals appearing in the four-point
amplitude (2.4), and depicted in Fig. 4 are
l1 l2

(

1

2 3

4

8

2
2+ 2)1s

−

(

1

2 3

4

8
2+ 2)1s

−

l1

l2

3

l1 l2

4

t

3

4

l1

l2

t2

l

l l

l

anar amplitude given in Eq. (2.5). The second and third diagrams
2�

2 denote numerator factors appearing in the integrals, where l1
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I�3�a4 �s; t� � ��ie����d=2�3
Z ddpddrddq

p2�p� k1�
2�p� k1 � k2�

2�p� r�2r2�q� r�2�r� k3 � k4�
2q2�q� k4�

2�q� k3 � k4�
2 ;

(3.1)

and

I�3�b4 �s; t� � ��ie����d=2�3

�
Z ddpddrddq �p� r�2

p2q2r2�p� k1�
2�p� r� k1�

2�p� r� k1 � k2�
2�p� r� k4�

2�q� k4�
2�r� p� q�2�p� q�2

;

(3.2)
where dimensional regularization with d � 4� 2� is
implied.

The ladder integral, I�3�a4 , was evaluated in Ref. [23], in a
Laurent expansion in � up to the finite part, by means of the
strategy based on the MB representation which was sug-
gested in Ref. [14] and applied for the evaluation of the
massless on-shell double boxes. This strategy is presented
in detail in Chap. 4 of Ref. [49]. Here its basic features are
briefly summarized.

The strategy starts with the derivation of an appropriate
multiple MB representation. MB integrations are intro-
duced in order to replace a sum of terms raised to some
power by their products raised to certain powers, at the cost
of having extra integrations:

1

�X� Y��
�

1

����
1

2�i

Z ��i1

��i1
dz���� z����z�

Yz

X��z
;

(3.3)

where �Re� < �< 0. The simplest possible way of in-
troducing an MB integration is to write down a massive
propagator as a superposition of massless ones. In compli-
cated situations, one starts from Feynman or alpha parame-
(a)

p r q

3

1

2

4

(b)
1

3

4
p q

r

2

FIG. 4. The two integrals appearing in the three-loop ampli-
tude. The ‘‘ladder’’ integral (a) has no factors in the numerator.
The ‘‘tennis-court’’ integral (b) contains a factor of �p� r�2 in
the numerator.
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ters and applies (3.3) to functions depending on these
parameters. Of course, it is natural to try to introduce a
minimal number of MB integrations. Anyway, after intro-
ducing sufficiently many MB integrations, one can evalu-
ate all internal integrals over Feynman/alpha parameters in
terms of gamma functions and arrive at a multiple MB
representation with an integrand expressed in terms of
gamma functions in the numerator and denominator.

It turns out to be very convenient to derive a multiple
MB representation for loop-momentum integrals of a given
class with general powers of the Feynman propagators.
Such a general derivation provides a lot of crucial checks
and can then be used for any integral of the given class.
Moreover, it provides unambiguous prescriptions for
choosing contours in MB integrals, where the poles with
��. . .� z� dependence are to the right of the integration
contour and the poles with ��. . .� z� dependence are to
the left of it.

To evaluate a given Feynman integral represented in
terms of a multiple MB integral in an expansion in � one
needs first to understand how poles in � are generated. A
simple example is given by the product ���� z����z�
which generates the singularity at �! 0 because, in this
limit, there is no place for a contour to go between the first
left and right poles of these two gamma functions, at z �
�� and z � 0, respectively. To make the singular behavior
in � manifest one can integrate instead over a new contour
where the pole at z � �� is to the right of the contour [for
example, � � �1 in Eq. (3.3), where � � � is assumed to
have a small positive real part], plus a residue at this pole.
We refer to the integral over the new contour as ‘‘changing
the nature’’ of the first pole of ���� z�. In complicated
situations, singularities in � are not visible at once, after
one of the MB integrations. To reveal them one uses the
general rule according to which the product ��a� z���b�
z�, with a and b depending on other MB integration
variables, generates, due to integration over z, a singularity
of the type ��a� b�.

Thus, to reveal the singularities in � one analyzes vari-
ous products of gamma functions in the numerator of a
-6
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given integrand, implying various orders of integration
over given MB variables. After such an analysis, one
distinguishes some key gamma functions which are re-
sponsible for the generation of poles in �. Then one begins
the procedure of shifting contours and taking residues,
starting from one of these key gamma functions. After
taking a residue, one arrives at an integral with one inte-
gration less; one then performs an analysis of the genera-
tion of singularities in � in the same spirit as for the initial
integral. For the integral with the shifted contour, one takes
care of a second key gamma function in a similar way. As a
result of this procedure, one obtains a family of integrals
for which a Laurent expansion of the integrand is possible.
To evaluate these integrals expanded in �, up to some order,
one can use the second and the first Barnes lemma and their
corollaries. A collection of relevant formulas are given in
Appendix D of Ref. [49].

The technique of multiple MB representation has turned
out to be very successful, at least in the evaluation of four-
085001
point Feynman integrals with two or more loops and severe
soft and collinear singularities (see Refs. [14,23,50,51]), so
that it is natural to apply it to the evaluation of the three-
loop tennis-court integral (3.2), which is the only missing
ingredient of our calculation. Let us outline the main steps,
following the strategy characterized above.

An appropriate MB representation can be derived
straightforwardly, in a way similar to the treatment of the
ladder triple box integral (3.1) in Ref. [23]. Indeed, one can
derive an auxiliary MB representation for the double box
with two legs off shell, apply it to the double-box sub-
integral in (3.2), and then insert it into the well-known MB
representation for the on-shell box (see, e.g., Chap. 4 of
Ref. [49]). As a result, an eightfold MB representation can
be derived for the general diagram of Fig. 4(b) with the
11th index corresponding to the numerator ��p� r�2	�a11 .
For our integral with the powers a1 � . . . � a10 � 1 and
a11 � �1, this gives
I�3�b4 �s; t� � �
e3��

���2����s�1�3�t2
1

�2�i�8
Z �i1
�i1

. . .
Z �i1
�i1

dwdz1

�Y7

j�2

dzj���zj�
��
t
s

�
w

��1� 3�� w�

�
���3�� w���1� z1 � z2 � z3����1� �� z1 � z3���1� z1 � z4�

��1� z2���1� z3���1� z6���1� 2�� z1 � z2 � z3�

�
���1� �� z1 � z2 � z4���2� �� z1 � z2 � z3 � z4�

���1� 4�� z5���1� z4 � z7���2� 2�� z4 � z5 � z6 � z7�
����� z1 � z3 � z5���2� w� z5�

� ���1� w� z5 � z6���z5 � z7 � z1���1� z5 � z6����1� w� z4 � z5 � z7�

� ����� z1 � z2 � z5 � z6 � z7���1� �� w� z4 � z5 � z6 � z7�

� ��1� �� z1 � z2 � z3 � z5 � z6 � z7�: (3.4)
There is a factor of ���2�� in the denominator, so that the
integral is effectively sevenfold.

A preliminary analysis shows that the following two
gamma functions are crucial for the generation of poles
in �:

���1� w� z5 � z6����1� w� z4 � z5 � z7�: (3.5)

The first decomposition of (3.4) reduces to taking residues
and shifting contours with respect to the first poles of these
two functions. We obtain

T � I�3�b4 � T00 � T01 � T10 � T11: (3.6)

The term T01 denotes minus the residue at z7 � �1� w�
z4 � z5 and changing the nature of the first pole of ���1�
w� z5 � z6�; the term T10 denotes minus the residue at
z6 � �1� w� z5 and changing the nature of the first pole
of ���1� w� z4 � z5 � z7�; the term T11 corresponds to
taking both residues; and T00 refers to changing the nature
of both poles under consideration.

For each of these four terms, one proceeds further using
the strategy of shifting contours and taking residues. One
can arrive at contributions which are labeled by sequences
of gamma functions. Let us denote by ���. . .
 zi� taking
the residue at the first pole of this gamma function with
respect to the variable zi, and by ���. . .
 zi� changing the
nature of this pole. If ��. . .
 zi� participates then both
variants are implied. If there is only one z variable in an
argument of a gamma function then it is not underlined.
The contributions that start from order �1 in the Laurent
expansion are not listed. So, for T00, one can arrive at the
following 11 contributions:
-7
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f ����1� �� z1 � z3�; ������ z2�;
����1� 2�� z5�; ����2�� z6�; ������ z3 � z7�;

������ z3�;���2�� z4�g;

f ����1� �� z1 � z3�; ������ z2�; ����1� 2�� z5�; ����2�� z6�; ������ z3 � z7�;�
����� z3�;����� z3 � z4�g;

f ����1� �� z1 � z3�; ������ z2�;
����1� 2�� z5�; ����2�� z6�;������ z3 � z7�;

������ z3 � z4�g;

f ����1� �� z1 � z3�; ������ z2�; ����1� 2�� z5�;�
���2�� z6�; ������ z3 � z7�; ������ z3�; ����2�� z4�g;

f ����1� �� z1 � z3�; ������ z2�;�
���1� 2�� z5�; ������ z3 � z4�g;

f ����1� �� z1 � z3�;�
����� z2�; ����1� 2�� z5�; ����2�� z6�; ������ z3 � z7�; ������ z3�;���2�� z4�g;

f ����1� �� z1 � z3�;�
����� z2�; ����1� 2�� z5�;�

���2�� z6�; ������ z3 � z7�; ������ z3�; ����2�� z4�g;

f����1� �� z1 � z3�; ������ z1 � z3 � z5�;
������ z3 � z7�;

������ z3�g: (3.7)
The rest of the 203 contributions present in T01 � T10 �
T11 can be described in a similar way.

The final result for (3.2) is presented in Eq. (B10) of
Appendix B. The evaluation of this integral has turned out
to be rather intricate. The level of complexity is roughly 5
times the corresponding complexity of the ladder triple
box. Therefore, systematic checks are quite desirable. A
powerful independent check can be provided by evaluating
the leading orders of the asymptotic behavior in some
limit. Indeed, such checks were essential in previous cal-
culations—see Refs. [14,23,51]. Here we shall outline an
independent evaluation of the dominant terms in Eq. (B10)
in the limit s=t! 0.

The limit s=t! 0 is of the Regge type which is typical
of Minkowski space. Hence the well-known prescriptions
for limits typical of Euclidean space, written in terms of a
sum over subgraphs of a certain class (see Refs. [52,53]),
are not applicable here. However, one can use more general
prescriptions formulated in terms of the so-called strategy
of expansion by regions [53–55]. This approach is univer-
sal and applicable for expanding any given Feynman in-
tegral in any asymptotic regime.

An essential point of this strategy is to reveal regions in
the space of the loop momenta which generate nonzero
contributions. A given region is characterized by some
relations between components of the loop momenta. In
particular, in the case of our limit s=t! 0, in the region
where all the loop momenta are hard, all the components of
the loop momenta are of order

��
t
p

. It turns out that the most
typical regions relevant to the Regge and Sudakov limits
are 1-collinear (1c) and 2-collinear (2c) regions. (Here
‘‘a-collinear’’ means that an appropriate loop momentum
is collinear with external leg a.) The crucial part of the
strategy of expansion by regions [54] is to expand the
integrand in a Taylor series in parameters which are small
in a given region and then extend the integration to the
whole space of the loop momenta, i.e., forget about the
initial region. Another prescription of this strategy is to put
085001
to zero any integral without scale (even if it is not regular-
ized by dimensional regularization).

In the case of the ladder triple box (3.1), in the Regge
limit t=s! 0, only the (1c-1c-1c) and (2c-2c-2c) regions
participate in the leading power-law behavior [56].

For the tennis-court integral (3.2), the evaluation proce-
dure outlined above is formulated in such a way that the
leading terms of the expansion at s=t! 0 can be clearly
distinguished. All these terms arise after taking residues
with respect to the variable w at w � 0 or w � �. It turns
out that only one contribution to the result (B10) arises
after taking a residue at w � �. It involves no integration
(i.e., it is obtained from (3.4) by taking consecutively eight
residues), so that it can be expressed in terms of gamma
functions for general values of �:

I�3�b;c�c�us4 �s; t� �
e3��

��s�1�4���t�2���
�����3����2

� ��1� 2��2: (3.8)

It turns out that this term is nothing but the (1c-4c-us)
contribution within the expansion by regions. It is gener-
ated by the region where the momentum of the line be-
tween the external vertices with momenta k2 and k3 is
considered ultrasoft (us), the loop momentum of the left
box subgraph is considered 1-collinear and the loop mo-
mentum of the right box subgraph is considered 4-
collinear—see Fig. 4(b). (Details of the expansion in the
Sudakov and Regge limits within the expansion by regions
can be found in Ref. [55] and Chap. 8 of Ref. [53].)

The rest of the contributions to the leading power-law
behavior in the limit s=t! 0 correspond to taking residues
at w � 0. They can be identified as the sum of the (1c-1c-
1c) and (4c-4c-4c) contributions. The (4c-4c-4c) contribu-
tion can be represented by the following fivefold MB
integral:
-8
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I�3�b;4c�4c�4c
4 �s; t� � �

e3��

��s�1�3��x2��t�2�x1

��1� 3�� x2����3�� x2�

���2�� x1���1� x1���1� x2�

�
1

�2�i�5
Z �i1
�i1

. . .
Z �i1
�i1

Y5

j�1

dzj
��1� z1���1� �� z2 � z3����z2������ z3����z3�

��1� z2���1� z3�

�
���1� �� z1 � z2���1� x1 � z1 � z2 � z3����1� x1 � z1 � z4�

��1� 2�� x1 � x2 � z1 � z2 � z3����2� 4�� x2 � z1 � z4�

�
��1� z4����� x2 � z2 � z3 � z5����2� �� x2 � z1 � z2 � z3 � z4 � z5�

��1� �� x2 � z2 � z3 � z5���1� �� z2 � z3 � z5�

� ��1� z5����1� �� x2 � z2 � z4����2�� x2 � z2 � z3 � z5�

� ��2� �� x1 � z1 � z2 � z3 � z4 � z5����z2 � z5�: (3.9)

An auxiliary analytic regularization, by means of x1 and x2, is introduced into the powers of the propagators with the
momenta p� k1 and q� k4. The (1c-1c-1c) contribution can be obtained from (3.9) by the permutation x1 $ x2. Each of
the two (c-c-c) contributions is singular at x1; x2 ! 0. The singularities are however canceled in the sum. It is reasonable to
start by revealing this singularity. One can observe that it appears due to the product

��2� �� x1 � z1 � z2 � z3 � z4 � z5����2� �� x2 � z1 � z2 � z3 � z4 � z5�; (3.10)

where the sum of the arguments of these gamma functions is x2 � x1.
So, the starting point is to take minus the residue at z5 � �2� �� x2 � z1 � z2 � z3 � z4 and shift the integration

contour correspondingly. The value of the residue is then symmetrized by x1 $ x2. This sum leads, in the limit x1; x2 ! 0,
to the following fourfold MB integral:

I�3�b;c�c�c;res
4 �s; t� � �

e3��

��s�1�3�t2
���3����1� 3��

���2��

�
1

�2�i�4
Z �i1
�i1

. . .
Z �i1
�i1

Y4

j�1

dzj
��1� z1����1� �� z1 � z2����z2������ z3����z3�

��1� z2���1� z3���1� 2�� z1 � z2 � z3�

�
��1� z1 � z2 � z3���1� �� z2 � z3����1� �� z2 � z4����1� z1 � z4���1� z4�

���2� 4�� z1 � z4����1� 2�� z1 � z4���3� z1 � z4�

� ���1� �� z1 � z2 � z3 � z4���2� z1 � z4����2� �� z1 � z4���2� �� z1 � z3 � z4�

� �2�� L�  ��3�� �  ��2�� �  �1� 3�� �  �1� z1 � z2 � z3� �  ��1� z1 � z4�

�  ��2� 4�� z1 � z4� �  ��1� 2�� z1 � z4� �  ��1� �� z2 � z4�

�  ��1� �� z1 � z2 � z3 � z4� �  �2� �� z1 � z3 � z4�	; (3.11)

where L � ln�s=t�.
In the integral over the shifted contour in z5, one can set x1 � x2 � 0 to obtain the following fivefold integral:

I�3�b;c�c�c;int
4 �s; t� � �

2e3��

��s�1�3���t�2
��1� 3�����3��

���2��

�
1

�2�i�5
Z �i1
�i1

. . .
Z �i1
�i1

Y5

j�1

dzj
��1� z1���1� �� z2 � z3����z2������ z3����z3�

��1� z2���1� z3�

�
���1� �� z1 � z2���1� z1 � z2 � z3����1� z1 � z4�

��1� 2�� z1 � z2 � z3����2� 4�� z1 � z4�

�
��1� z4����� z2 � z3 � z5��

���2� �� z1 � z2 � z3 � z4 � z5�

��1� �� z2 � z3 � z5���1� �� z2 � z3 � z5�
��1� z5�

� ���1� �� z2 � z4����2�� z2 � z3 � z5���2� �� z1 � z2 � z3 � z4 � z5����z2 � z5�;

(3.12)
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where the asterisk on one of the gamma functions implies that the first pole is considered to be of the opposite nature.
The evaluation of (3.11) and (3.12), in an expansion in �, is then performed according to the strategy characterized

above. After the resolution of the singularities in � one obtains 60 contributions where an expansion of the integrand in �
becomes possible. Eventually, one reproduces the following leading asymptotic behavior:

I�3�b4 �s; t� � �
1

��s�1�3�t2

�
16

9

1

�6
�

13

6
L

1

�5
�

�
1

2
L2 �

19

12
�2

�
1

�4 �

�
�

1

6
L3 �

67

72
�2L�

241

18
�3

�
1

�3

�

�
1

24
L4 �

13

24
�2L2 �

67

6
�3L�

19

6480
�4

�
1

�2 �

�
�

1

120
L5 �

13

72
�2L3 �

5

2
�3L2 �

6523

8640
�4L

�
1385

216
�2�3 �

1129

10
�5

�
1

�
�

1

720
L6 �

13

288
�2L4 �

5

6
�3L

3 �
331

960
�4L2 �

�
317

72
�2�3 �

1203

10
�5

�
L

�
180 631

3 265 920
�6 �

163

6
�2

3 �O

�
s
t

��
: (3.13)
To compare Eq. (3.13) with the complete result (B10), we
use transformation formulas such as Eq. (A7) to invert the
arguments of the harmonic polylogarithms. The resulting
quantities Ha1a2...an�1=x� with an � 1 vanish as x! 1.
Logarithms are generated by the transformation; these
logarithms combine with the ones already manifest in
Eq. (B10), yielding an expression in complete agreement
with Eq. (3.13).

IV. ITERATIVE STRUCTURE OF AMPLITUDES

The iterative structure of the four-point MSYM ampli-
tude found at two loops is [1,13],

M�2�4 ��� �
1

2
�M�1�4 ����

2 � f�2����M�1�4 �2�� � C
�2� �O���;

(4.1)

where

f�2���� � ���2 � �3�� �4�2 � � � ��; (4.2)

and the constant C�2� is given by

C�2� � �
1

2
�2

2 : (4.3)

This relation can be verified by inserting the expansion
(B5) for the planar double-box integral I�2�4 into Eq. (2.4)
for M�2�4 ���, and the expansion (B2) for the one-loop box
integral I�1�4 into Eq. (2.3) for M�1�4 ���. Up through the finite
terms in �, only harmonic polylogarithms with weights up
to four are encountered (see Appendix A). These functions
can all be written in terms of ordinary polylogarithms if
desired. Nontrivial cancellations between weight-four
polylogarithms are needed to obtain Eq. (4.1), strongly
suggesting that the relation is not accidental and leading
to the conjecture that an iterative structure exists in the
amplitudes to all loop orders.

As mentioned in the introduction, the relationship (4.1)
is valid only through O��0�, i.e. near four dimensions,
where MSYM is conformal and the AdS/CFT correspon-
085001
dence should be applicable. At O��1�, the difference be-
tween the left- and right-hand sides is an unenlightening
combination of weight-five harmonic polylogarithms, not a
simple constant.

In order to search for a relation similar to Eq. (4.1) at
three loops, we have substituted the values of the integrals
I�3�a4 and I�3�b4 , given in Eqs. (B7) and (B9) respectively, into
Eq. (2.5) forM�3�4 ���. We have also used the � expansions of
the one- and two-loop amplitudes through O��4� and O��2�
respectively, two further orders than required for the two-
loop relation (4.1). [We cannot use Eq. (4.1) to replaceM�2�4

with M�1�4 , because that equation is valid only through
O��0�.] Thus we have obtained a representation of the
amplitudes in terms of harmonic polylogarithms [24,25]
with weights up to six. Because harmonic polylogarithms
with arguments equal to �t=s and �s=t both appear, we
need to employ identities which invert the argument, of the
type outlined in Appendix A.

Motivated also by the structure of the three-loop IR
divergences described in Ref. [26], we have found the
following iterative relation for the three-loop four-point
amplitude:

M�3�4 ��� � �
1

3
�M�1�4 ���	

3 �M�1�4 ���M
�2�
4 ���

� f�3����M�1�4 �3�� � C
�3� �O���; (4.4)

where

f�3���� �
11

2
�4 � ��6�5 � 5�2�3� � �2�c1�6 � c2�2

3 �;

(4.5)

and the constant C�3� is given by

C�3� �
�

341

216
�

2

9
c1

�
�6 �

�
�

17

9
�

2

9
c2

�
�2

3 : (4.6)

The constants c1 and c2 are expected to be rational num-
bers. They do not contribute to the right-hand side of
Eq. (4.4) because of a cancellation between the last two
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terms, so they cannot be determined by our four-point
computation. The reason we introduce them is to handle
the subsequent generalization to the n-point MHV
amplitudes.

A. An Ansatz for planar MHV amplitudes to all-loop
orders

The resummation and exponentiation of IR singularities
described by Magnea and Sterman [30], and the connection
to n-point amplitudes discussed by Sterman and Tejeda-
Yeomans [26] (both of which we shall review shortly),
together with the two- and three-loop iteration formulas,
motivate us to propose a compact exponentiation of the
planar MHV n-point amplitudes in MSYM at L loops. We
propose that

M n � 1�
X1
L�1

aLM�L�n ���

� exp

"X1
l�1

al�f�l����M�1�n �l�� � C�l� � E
�l�
n ����

#
:

(4.7)

In this expression, the factor,

a �
Nc	s
2�
�4�e����; (4.8)

keeps track of the loop order of perturbation theory, and
coincides with the prefactor in brackets in Eq. (2.1). The
quantity M�1�n �l�� is the all-orders-in-� one-loop amplitude,
with the tree amplitude scaled out according to Eq. (2.2),
and with the substitution �! l� performed. Each f�l���� is
a three-term series in �, beginning at O��0�,

f�l���� � f�l�0 � �f
�l�
1 � �

2f�l�2 : (4.9)

The constants f�l�k and C�l� are independent of the number
of legs n. They are polynomials in the Riemann values �m
with rational coefficients, and a uniform degree of tran-
scendentality, which is equal to 2l� 2� k for f�l�k , and 2l
for C�l�. The f�l�k and C�l� are to be determined by matching
to explicit computations. The E�l�n ��� are noniterating O���
contributions to the l-loop amplitudes, which vanish as
�! 0, E�l�n �0� � 0.

Let us first see how Eq. (4.7) is consistent with the results
up to three loops discussed earlier in this section, by
matching the left- and right-hand sides of the equations
order-by-order in a. The one-loop case is very simple,
since we only have to expand the right-hand side of
Eq. (4.7) to O�a�. It agrees with the left-hand side provided
that

f�1���� � 1; C�1� � 0; E�1�n ��� � 0: (4.10)

That is, by definition we have absorbed the all-orders-in-�
one-loop amplitude intoM�1�n ���. [It is possible that for n >
085001
4 a nonzero value of E�1�n ��� could be more natural, given
what is known about the structure of the one-loop ampli-
tudes at O��� [57].]

Next we expand Eq. (4.7) to two loops, or O�a2�. Using
the one-loop result (4.10) to rewrite the O�a� term in the
exponential on the right-hand side of Eq. (4.7) as M�1�n ���,
we find that

M�2�n ��� �
1

2
�M�1�n ���	2 � f�2����M

�1�
n �2�� � C�2� � E

�2�
n ���;

(4.11)

which is just the generalization of Eq. (4.1) to n external
legs. Evidence based on collinear limits in favor of this
n-leg version, which we shall review in Sec. V, was pre-
sented in Ref. [1]; the values of f�2���� and C�2� given in
Eqs. (4.2) and (4.3) are independent of n.

At the three-loop level, we also use the two-loop result
(4.11) to rewrite the O�a2� term in the exponential on the
right-hand side of Eq. (4.7) as M�2�n ��� � 1

2 �M
�1�
n ���	2.

Matching both sides at O�a3� gives,

M�3�n ��� �
1

6
�M�1�n ���	3 �M

�1�
n ���

�
M�2�n ��� �

1

2

�
M�1�n ���

�
2
�

� f�3����M�1�n �3�� � C�3� � E
�3�
n ���

� �
1

3
�M�1�n ���	3 �M

�1�
n ���M

�2�
n ���

� f�3����M�1�n �3�� � C�3� � E
�3�
n ���: (4.12)

For n � 4, this equation is equivalent to Eq. (4.4), with the
identifications (4.5) and (4.6) for f�3���� and C�3�.

Equations (4.11) and (4.12) are special cases, for L � 2
and 3, of a more general L-loop iteration formula implied
by Eq. (4.7),

M�L�n � X�L�n �M
�l�
n ���	 � f�L����M

�1�
n �L�� � C�L� � E

�L�
n ���:

(4.13)

The quantities X�L�n � X�L�n �M
�l�
n 	 only depend on the lower-

loop amplitudes M�l�n ��� with l < L. For L � 2; 3, the
values of X�L�n are, from Eqs. (4.11) and (4.12),

X�2�n �M
�l�
n ���	 �

1

2
�M�1�n 	2; (4.14)

X�3�n �M
�l�
n ���	 � �

1

3
�M�1�n 	3 �M

�1�
n M

�2�
n : (4.15)

Now we establish Eq. (4.13) for arbitrary values of L,
and provide a convenient way to compute the functional
X�L�n �M

�l�
n 	. Taking Eq. (4.13) as a definition of X�L�n , we see

that the full amplitude Mn in Eq. (4.7) can also be written
as
-11



FIG. 5 (color online). Infrared structure of leading-color scat-
tering amplitudes for particles in the adjoint representation. The
straight lines represent hard external states, while the curly lines
carry soft or collinear virtual momenta. At leading color, soft
exchanges are confined to wedges between the hard lines.
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M n � 1�
X1
l�1

alM�l�n � exp

"X1
L�1

aL�M�L�n � X
�L�
n �

#
:

(4.16)

We need to show that the X�L�n only depend on the lower-
loop amplitudes M�l�n with l < L. This result can be estab-
lished inductively on L by comparing the O�aL� terms in
the two Taylor expansions. The coefficient of aL on the
left-hand side of Eq. (4.16) is M�L�n . On the right-hand side,
M�L�n occurs explicitly in the aL term, and with the right
coefficient to match the left-hand side. Every other term on
the right-hand side depends only on M�l�n with l < L (using
induction for those X�L

0�
n with L0 < L). But X�L�n must

cancel all these other terms for the two Taylor expansions
to agree; hence it also depends only on M�l�n with l < L.

To solve Eq. (4.16) for X�L�n , we take the logarithm of
both sides, and look at the Lth term in the Taylor expansion
of that expression. We obtain,

X�L�n �M
�l�
n 	 � M�L�n � ln

 
1�

X1
l�1

alM�l�n

!���������aLterm

: (4.17)

Equations (4.13) and (4.17) are key equations; together
they provide an explicit recipe for writing the L-loop
amplitude in terms of lower-loop amplitudes, plus constant
remainders.

From Eq. (4.17) we can easily recover Eqs. (4.14) and
(4.15), as well as obtain, for example, the next two values
of X�L�n :

X�4�n �M
�l�
n ���	 �

1

4
�M�1�n 	4 � �M

�1�
n 	2M

�2�
n �M

�1�
n M

�3�
n

�
1

2
�M�2�n 	2; (4.18)

X�5�n �M
�l�
n ���	 � �

1

5
�M�1�n 	5 � �M

�1�
n 	3M

�2�
n � �M

�1�
n 	2M

�3�
n

�M�1�n �M
�2�
n 	2 �M

�1�
n M

�4�
n �M

�2�
n M

�3�
n :

(4.19)

Note from Eq. (4.7) that f�l���� appears multiplied by
M�1�n �l��, which has poles beginning only at order 1=�2.
Hence we can absorb any O��3� and higher terms in f�l����
into the definition of the noniterating contributions E�l�n ���.
However, the O��2� terms in f�l����, namely f�l�2 , cannot be
removed because C�l� is asserted to be independent of n.
This statement can only be true for one choice of f�l�2 ;
shifting that value induces a shift proportional to n in
C�l�, because M�1�n �l�� / n=�2. The value of f�l�2 can be
determined by computing an l-loop amplitude with n >
4, or else the l-loop splitting amplitude (which may be
simpler), as reviewed in Sec. V.
085001
B. Infrared consistency of Ansatz

In this subsection we discuss the consistency of the
exponentiated L-loop Ansatz (4.7) with the resummation
and exponentiation of IR divergences [29], following the
analysis of Magnea and Sterman [30], and of Sterman and
Tejeda-Yeomans [26].

A general n-point scattering amplitude can be factorized
into the following form,

M n � J
�
Q2


2 ; 	s�
�; �
�
� S

�
ki;
Q2


2 ; 	s�
�; �
�

� hn

�
ki;
Q2


2 ; 	s�
�; �
�
; (4.20)

where J is a jet function, S a soft function, and hn a hard
remainder function which is finite as �! 0. Also, 
 is the
renormalization scale, and Q some physical scale associ-
ated with the scattering process for external momenta ki.

Both Mn and hn are vectors in a space of possible color
structures for the process, and S is a matrix. However, we
shall work in the leading-color (planar) approximation, in
which there is no mixing between the different (color-
ordered) color structures. Hence S is proportional to the
identity matrix. As pointed out in Ref. [26], S is only
defined up to a multiple of the identity matrix, so we can
absorb it into the jet function J at leading color. Figure 5
illustrates that, at leading color, soft exchanges are con-
fined to wedges between color-adjacent external lines, for
example, the lines i and i� 1 in the figure. We also
consider adjoint external states, such as gluons. By exam-
ining the case n � 2, it can be seen that the wedge that is
being removed in the figure represents half of the IR
singularities of a Sudakov form factor [29]; that is, a
color-singlet object (such as a Higgs boson) decaying
-12
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into two gluons. We denote this matrix element as
M�gg!1	�si;i�1=
2; 	s�
�; ��.

Because MSYM is conformally invariant (the � func-
tion vanishes), 	s may be set to a constant everywhere.
Thus the leading-color IR structure of n-point amplitudes
in MSYM may be rewritten as
085001
M n �
Yn
i�1

�
M�gg!1	

�
si;i�1


2 ; 	s; �
��

1=2

� hn�ki; 
; 	s; ��; (4.21)

where hn is no longer a color-space vector.
For a general theory, the Sudakov form factor at scaleQ2

can be written as [30]
M�gg!1	

�
Q2


2 ; 	s�
�; �
�
� exp

�
1

2

Z �Q2

0

d�2

�2

�
K�g	�	s�
�; �� � G�g	

�
�1; �	s

�

2

�2 ; 	s�
�; �
�
; �
�

�
1

2

Z 
2

�2

d ~
2

~
2 �
�g	
K

�
�	s

�

2

~
2 ; 	s�
�; �
����

; (4.22)
where ��g	K denotes the soft or (Wilson line) cusp anoma-
lous dimension, which will produce a 1=�2 pole after
integration. The function K�g	 is a series of counterterms
(pure poles in �), while G�g	 includes nonsingular depen-
dence on � before integration, and produces a 1=� pole
after integration.

In MSYM,	s�
� is a constant, and the running coupling
�	s�


2= ~
2; 	s; �� in 4� 2� dimensions has only trivial
(engineering) dependence on the scale,

�	 s

�

2

~
2 ; 	s�
�; �
�
� 	s �

�

2

~
2

�
�
�4�e����: (4.23)

This simple dependence makes it very easy to perform the
integrals over � and ~
.

Following Refs. [26,30], we expand K�g	, ��g	K , and G�g	

in powers of 	s,

K �g	�	s; �� �
X1
l�1

1

2l�
al�̂�l�K ; (4.24)

��g	K

�
�	s

�

2

~
2 ; 	s; �
��
�
X1
l�1

al
�

2

~
2

�
l�
�̂�l�K ; (4.25)

G �g	
�
�1; �	s

�

2

�2 ; 	s; �
�
; �
�
�
X1
l�1

al
�

2

�2

�
l�
Ĝ�l�0 ; (4.26)

where a is defined in Eq. (4.8) and the hats are a reminder
that the leading-Nc dependence has also been removed in
Eqs. (4.24), (4.25), and (4.26). That is, the perturbative
coefficients [defined with expansion parameter 	s=�2��]
have a leading-color dependence on Nc of,

��l�K � �̂�l�K N
l
c; G�l�0 � Ĝ�l�0 N

l
c: (4.27)

We can suppress the �g	 label because the N � 4 MHV
amplitudes are all related by supersymmetry Ward identi-
ties [58], so that the corresponding functions for external
gluinos, etc., are the same as for gluons. Equation (4.24)
follows from solving Eqs. (2.12) and (2.13) of Ref. [30] in
the conformal case (� � 0). In this case, K�g	 contains
only single poles in �, which are simply related to ��g	K .

The integral over G is very simple,Z �Q2

0

d�2

�2 G�g	 � �
X1
l�1

al

l�

�

2

�Q2

�
l�
Ĝ�l�0 : (4.28)

The first integral over �K gives,Z 
2

�2

d ~
2

~
2 �
�g	
K �

X1
l�1

al

l�

��

2

�2

�
l�
� 1

�
�̂�l�K : (4.29)

Adding the K�g	 term to 1=2 of Eq. (4.29), using
Eq. (4.24), we see that the ‘‘�1’’ is canceled. Then the
integral over � is properly regulated, and evaluates to

�
1

2

X1
l�1

al

�l��2

�

2

�Q2

�
l�
�̂�l�K : (4.30)

Combining this result with Eq. (4.28) gives

M�gg!1	

�
Q2


2 ; 	s�
�; �
�
� exp

"
�

1

4

X1
l�1

al
�

2

�Q2

�
l�

�

�
�̂�l�K
�l��2

�
2Ĝ�l�0

l�

�#
: (4.31)

We need Eq. (4.31) for a neighboring pair of legs i; i� 1
in the n-point amplitude, so that Q2 should be replaced by
the invariant si;i�1. Taking the product over all i, Eq. (4.21)
becomes

M n � exp

"
�

1

8

X1
l�1

al
�
�̂�l�K � 2lĜ�l�0 �

�
1

�l��2

�
Xn
i�1

�

2

�si;i�1

�
l�
#
� hn: (4.32)

We may rearrange this a bit, to give

M n � exp

"X1
l�1

alf�l����Î�1�n �l��

#
� ~hn; (4.33)
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where f�l���� is defined in Eq. (4.9), with the identifica-
tions,

f�l�0 �
1

4
�̂�l�K ; (4.34)

f�l�1 �
l
2
Ĝ�l�0 ; (4.35)

and

Î �1�n ��� � �
1

2

1

�2

Xn
i�1

�

2

�si;i�1

�
�
: (4.36)

Here ~hn differs from hn by a finite shift, due to the O��2�

terms in f�l����, which we introduce to help make contact
with the exponentiated Ansatz (4.7). Using f�1���� � 1 and
Eqs. (4.2) and (4.5), we may read off the first few loop
orders,

�̂ �1�K � 4; �̂�2�K � �4�2; �̂�3�K � 22�4; (4.37)

and

Ĝ
�1�
0 � 0; Ĝ�2�0 � ��3; Ĝ�3�0 � 4�5 �

10

3
�2�3:

(4.38)

The quantity Î�1�n ��� is a function that captures the diver-
gences of the planar one-loop n-point amplitudes in
MSYM [27], after extracting the leading-Nc dependence
as in Ref. [13]. The Î�1�n defined in Eq. (8.9) of Ref. [13]
contained a prefactor of e�� �1�=��1� ��, following con-
ventions of Catani [28]. Here we adopt a convention closer
to that of Sterman and Tejeda-Yeomans [26], without such
a prefactor. The difference between Eq. (8.9) of Ref. [13]
and Eq. (4.36) above is a finite quantity, because
e�� �1�=��1� �� � 1�O��2�. Finite remainders will dif-
fer between the two conventions.

Starting from Eq. (4.33), and using the fact that the
difference between M�1�n �l�� and Î�1�n �l�� is finite, we can
reshuffle the finite terms once more to obtain,

M n � exp

"X1
l�1

al�f�l����M�1�n �l�� � h
�l�
n ����

#
: (4.39)

We have moved the hard function into the exponent with-
out loss of generality, because we allow for a new function
h�l�n at each order l.

Finally we compare the exponentiated Ansatz (4.7) with
the exponentiation of the IR divergences (4.39). We see
that they agree if we identify

h�l�n �ki; �� � C�l� � E�l�n ���: (4.40)

In some sense, the content of the iterative structure of
planar MSYM, beyond the level of consistency with IR
resummation, is that the (suitably defined) exponentiated
hard remainders h�l�n �ki; �� approach constants, independent
085001
of the kinematics and of n, as �! 0, since E�l�n ��� is of
O���.

C. Finite remainders

Next we shall obtain iterative formulas for two series of
functions: the Î�L�n governing IR divergences for the L-loop
n-point planar amplitudes, and the F�L�n representing the
finite remainders of the amplitudes, after subtracting these
divergences. The formulas will be very similar in form to
the full amplitude relation (4.13).

Following the structure uncovered explicitly at one, two,
and three loops [26–28], we define the finite remainder for
the L-loop amplitude by writing

M�L�n ��� �
XL�1

l�0

Î�L�l�n ���M�l�n ��� � F
�L�
n ���; (4.41)

or

F�L�n ��� � M�L�n �
XL�1

l�0

Î�L�l�n M�l�n ; (4.42)

where M�0�n � 1. We insert the iteration formula (4.13) for
the first term,M�L�n , on the right-hand side of Eq. (4.42). We
split M�1�n �L�� ! Î�1�n �L�� � F

�1�
n �L�� in this formula. For

the lower-loop amplitudes, M�l�n , we recursively substitute
in the finite-remainder formula for smaller values of l,

M�l�n �
Xl�1

k�0

Î�l�k�n M�k�n � F
�l�
n : (4.43)

At this point, the expression for F�L�n ��� is a polynomial in
Î�l�n and F�l�n , which has the special property that there are no
mixed Î-F terms. (If there had been such terms, it would
have signaled an inconsistency.) We can remove the pure-Î
terms by choosing Î�L�n to cancel them. The resulting finite
expression gives F�L�n ��� as a polynomial in the lower-loop
F�l�n ���.

We find that the solutions for Î�L�n ��� and F�L�n ��� are
expressible in terms of the same function X�L�n defined in
Eq. (4.17), but where the role of Mn is played instead by
�În and Fn, respectively:

Î �L�n ��� � �X
�L�
n ��Î�l�n ���	 � f�L����Î

�1�
n �L��; (4.44)

F�L�n ��� � X�L�n �F
�l�
n ���	 � f�L����F

�1�
n �L�� � C�L�

� E�L�n ���: (4.45)

The Taylor expansion (4.17) can be used to evaluate
Eqs. (4.44) and (4.45) to any desired loop order.

Because the form of Eq. (4.45) for F�L�n ��� is completely
analogous to the iteration formula (4.13) for the full am-
plitude M�L�n ���, we see that the finite remainders can be
-14
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exponentiated as,

F n��� � 1�
X1
L�1

aLF�L�n ���

� exp

"X1
l�1

al�f�l����F�1�n �l�� � C�l� � E
�l�
n ����

#
:

(4.46)

Letting �! 0, we have

F n�0� � 1�
X1
L�1

aLF�L�n �0�

� exp

"X1
l�1

al�f�l�0 F
�1�
n �0� � C�l��

#
; (4.47)

where

f�l�0 � f�l��0�: (4.48)

Using Eq. (4.34) we may then rewrite this as

F n�0� � exp
�

1

4
�KF

�1�
n �0� � C

�
: (4.49)

The soft anomalous dimension is

�K �
X1
l�1

�̂�l�K a
l � 4a� 4�2a

2 � 22�4a
3 � � � � ; (4.50)

where we used Eq. (4.37). Similarly, from Eqs. (4.3), (4.6),
and (4.10), we have,

C �
X1
l�1

C�l�al

� �
1

2
�2

2a
2 �

��
341

216
�

2

9
c1

�
�6 �

�
�

17

9
�

2

9
c2

�
�2

3

�
a3

� � � � : (4.51)

As mentioned below Eq. (4.6), the rational numbers c1 and
c2 are yet to be determined. The resummation (4.49) of the
finite remainders of the MHVamplitudes, as a consequence
of the exponentiated Ansatz (4.7), is one of the key results
of this paper.

For the F�l�n �0�, the argument l� in Eq. (4.45) has dis-
appeared as �! 0. Hence we can recursively substitute
back to obtain formulas solely in terms of F�1�n �0�.
Equivalently, we can series expand the exponential in
Eqs. (4.47) or (4.49). The first few values are

F�2�n �0� �
1

2
�F�1�n �0��2 � f

�2�
0 F�1�n �0� � C�2�; (4.52)

F�3�n �0� � �
1

3
�F�1�n �0��3 � F

�1�
n �0�F

�2�
n �0�

� f�3�0 F�1�n �0� � C�3� (4.53)
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�
1

6
�F�1�n �0��3 � f

�2�
0 �F

�1�
n �0��2

� �f�3�0 � C
�2��F�1�n �0� � C�3�; (4.54)

F�4�n �0� �
1

4
�F�1�n �0��4 � �F

�1�
n �0��2F

�2�
n �0� � F

�1�
n �0�F

�3�
n �0�

�
1

2
�F�2�n �0��2 � f

�4�
0 F�1�n �0� � C�4� (4.55)

�
1

24
�F�1�n �0��4 �

1

2
f�2�0 �F

�1�
n �0��3

�
1

2
��f�2�0 	

2 � 2f�3�0 � C
�2���F�1�n �0��2

� �f�4�0 � f
�2�
0 C�2� � C�3��F�1�n �0� � C�4�

�
1

2
�C�2�	2: (4.56)

Thus, starting from the Ansatz (4.7), we have succeeded in
expressing the n-point L-loop MHV finite remainders
directly in terms of the one-loop finite remainders.

We remark that the two-loop result (4.52) differs slightly
(in the constant term) from the corresponding Eq. (16) for
n � 4 in Ref. [1]. The reason is that the definition of the
two-loop divergence used there, interpreted in terms of Î�2�n ,
does not obey Eq. (4.44) for L � 2, but differs from that
Î�2�n by a finite (O��0�) amount. The definition we use here
is more convenient because of its simple generalization to
higher loops.

The one-loop finite remainders F�1�n �0� for the MHV
amplitudes in MSYM were evaluated for all n in
Ref. [9], using the unitarity method. Modifying those
results to the conventions of this paper, the finite terms
are explicitly, for all n 
 5,

F�1�n �0� �
1

2

Xn
i�1

gn;i; (4.57)

where

gn;i � �
Xbn=2c�1

r�2

ln
�
�t�r	i
�t�r�1	

i

�
ln
�
�t�r	i�1

�t�r�1	
i

�
�Dn;i

� Ln;i �
3

2
�2; (4.58)

and where bxc is the greatest integer less than or equal to x.
Here t�r	i � �ki � � � � � ki�r�1�

2 are the momentum invar-
iants, so that t�1	i � 0 and t�2	i � si;i�1. (All indices are
understood to be mod n.) The form ofDn;i and Ln;i depends
upon whether n is odd or even. For n � 2m� 1,

D2m�1;i � �
Xm�1

r�2

Li2

�
1�

t�r	i t
�r�2	
i�1

t�r�1	
i t�r�1	

i�1

�
; (4.59)
-15



ZVI BERN, LANCE J. DIXON, AND VLADIMIR A. SMIRNOV PHYSICAL REVIEW D 72, 085001 (2005)
L2m�1;i � �
1

2
ln
�
�t�m	i

�t�m	i�m�1

�
ln
�
�t�m	i�1

�t�m	i�m

�
; (4.60)

whereas for n � 2m,

D2m;i � �
Xm�2

r�2

Li2

�
1�

t�r	i t
�r�2	
i�1

t�r�1	
i t�r�1	

i�1

�

�
1

2
Li2

�
1�

t�m�1	
i t�m�1	

i�1

t�m	i t�m	i�1

�
; (4.61)

L2m;i � �
1

4
ln
�
�t�m	i

�t�m	i�m�1

�
ln
�
�t�m	i�1

�t�m	i�m

�
: (4.62)

For n � 4 the above formula does not hold, but the finite-
remainder is simply,

F�1�4 �0� �
1

2
ln2

�
�t
�s

�
� 4�2: (4.63)

Assuming that the exponentiated Ansatz (4.7) holds,
then the exponentiated finite remainders F n�0� given in
Eq. (4.49) are completely determined to all loop orders, in
terms of the one-loop remainders F�1�n �0� just presented,
plus the series of constants �K and C given in Eqs. (4.50)
and (4.51).

V. COLLINEAR BEHAVIOR AND CONSISTENCY
OF ALL-nANSATZ

In this section we discuss the consistency of the n-point
iterative Ansatz (4.13) with the behavior of amplitudes
under factorization. In a supersymmetric theory, MHV
amplitudes have no multiparticle poles; the residues vanish
by a supersymmetry Ward identity [58]. This property is
manifest in our Ansatz, because neither the tree amplitude
A�0�;MHV
n �1; 2; . . . ; n� nor the one-loop amplitude M�1�n�1�l��

contain such poles. Hence only factorizations as pairs of
momenta become collinear need to be analyzed.

In general, color-ordered amplitudes A�L�n �1; 2; . . . ; n�
satisfy simple properties as the momenta of two color-
adjacent legs ki, ki�1 become collinear, [9,12,41,59,60],

A�L�n �. . . ; i�i ; �i� 1��i�1 ; . . .�

			!XL
l�0

X
��


Split�l����z; i
�i ; �i� 1��i�1�A�L�l�n�1 �. . . ; P�; . . .�:

(5.1)

The index l sums over the different loop orders of contrib-
uting splitting amplitudes Split�l���, while � sums over the
helicities of the intermediate leg kP � ��ki � ki�1�, and z
is the longitudinal momentum fraction of ki, ki � �zkP.
The splitting amplitudes are universal and gauge invariant.

The tree-level splitting amplitudes Split�0��� are the same
in MSYM as in QCD. At loop level, the MSYM splitting
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amplitudes are all proportional to the tree-level ones. The
proportionality factors depend only on z and �, not on the
helicity configuration, nor (except for a trivial dimensional
factor) on kinematic invariants [9]. It is thus convenient to
write the L-loop planar splitting amplitudes in terms of
‘‘renormalization’’ factors r�L�S ��; z; s�, defined by

Split �L���P�1
�1 ; 2�2� � r�L�S ��; z; s�Split�0���P�1

�1 ; 2�2�; (5.2)

where s � �k1 � k2�
2.

Using Eqs. (5.1) and (5.2), we see that the amplitude
ratios M�L�n ��� � A�L�n =A�0�n behave in collinear limits as,

M�1�n ��� ! M�1�n�1��� � r
�1�
S ���; (5.3)

M�2�n ��� ! M�2�n�1��� � r
�1�
S ���M

�1�
n�1��� � r

�2�
S ���; (5.4)

or at three loops,

M�3�n ��� ! M�3�n�1��� � r
�1�
S ���M

�2�
n�1��� � r

�2�
S ���M

�1�
n�1���

� r�3�S ���; (5.5)

where r�0�S ��� � 1 and we have suppressed all functional
arguments except for �.

The one-loop splitting amplitudes in MSYM have been
calculated to all orders in �, with the result [59],

r�1�S ��; z; s� �
ĉ�

�2

�

2

�s

�
�
�
�

��
sin����

�
1� z
z

�
�

� 2
X1
k�0

�2k�1Li2k�1

�
�z

1� z

��
; (5.6)

where Lin is the nth polylogarithm [defined in Eq. (A5)],
and

ĉ � �
e��

2

��1� ���2�1� ��
��1� 2��

: (5.7)

In Refs. [1,13], the two-loop splitting amplitudes in
MSYM were computed through O��0� using the unitarity
method as described in Ref. [60]. The result of this com-
putation is a very simple formula, expressing the two-loop
splitting amplitude in terms of the one-loop one,

r�2�S ��; z; s� �
1

2
�r�1�S ��; z; s��2 � f�2����r�1�S �2�; z; s�

�O���; (5.8)

where f�2���� is given in Eq. (4.2). [This result was actually
obtained before the iterative relation (4.1), and motivated
its discovery.]

The consistency of the n-point Ansatz (4.13) for L � 2

[with X�2�n given by Eq. (4.14)] may be easily confirmed
using these splitting functions [1]. Inserting the collinear
behavior of the one-loop amplitudes (5.3) into the right-
hand side, we obtain,
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M�2�n ��� !
1

2
�M�1�n�1��� � r

�1�
S ����

2 � f�2����

� �M�1�n�1�2�� � r
�1�
S �2��� �

1

2
�2

2

� M�2�n�1��� � r
�1�
S ���M

�1�
n�1��� � r

�2�
S ���; (5.9)

where we used Eqs. (4.13) and (5.8) to rearrange the
expression into the required form (5.4) for correct two-
loop collinear behavior. Since there are no multiparticle
poles in the MHV case, Eq. (5.9) confirms that the Ansatz
(4.13) has the correct factorization properties in all chan-
nels at two loops.

Similarly, we can require that the Ansatz (4.13) is con-
sistent with collinear factorization beyond two loops, and
thereby obtain an iterative Ansatz for the planar L-loop
splitting amplitudes in MSYM. For L � 3, the Ansatz
reads,

M�3�n ��� � �
1

3
�M�1�n ���	3 �M

�1�
n ���M

�2�
n ���

� f�3����M�1�n �3�� � C�3� �O���: (5.10)

If we insert the properties of one- and two-loop amplitudes
(5.3) and (5.4) into the collinear limit of the right-hand side
of Eq. (5.10), we obtain

M�3�n ��� ! �
1

3
�M�1�n�1��� � r

�1�
S ���	

3 � �M�1�n�1���

� r�1�S �����M
�2�
n�1��� � r

�1�
S ���M

�1�
n�1��� � r

�2�
S ����

� f�3�����M�1�n�1�3�� � r
�1�
S �3��� � C

�3� �O���:

(5.11)

After rearranging terms, we can get consistency with
Eq. (5.5), provided that the three-loop splitting function
obeys,

r�3�S ��� � �
1

3

�
r�1�S ���

�
3
� r�1�S ���r

�2�
S ��� � f

�3����r�1�S �3��

�O���: (5.12)

By repeating this exercise at L loops, and collecting the
terms that are independent of M�l�n�1, we see that the rela-
tion,

r�L�S ��� � X�L��r�l�S ���	 � f
�L����r�L�S �L�� �O���; (5.13)

is the one required for consistency. [We have dropped the
subscript n fromX�L�n because it is out of place here, but it is
the same function of lower-loop quantities defined in
Eq. (4.17).] In other words, the L-loop splitting amplitude
functions r�L�S obey exactly the same type of iterative
relation as the scattering amplitudes M�L�n , but without
the ‘‘inhomogeneous’’ constant terms C�L�. Because the
one-loop splitting amplitude r�1�S �L�� begins at order
O���2�, the relation (5.13) allows the O��2� coefficient
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of f�L����, namely f�L�2 , to be extracted from the O��0� term
in the L-loop splitting amplitude.
VI. ANOMALOUS DIMENSIONS AND SUDAKOV
FORM FACTORS

The soft anomalous dimension �K controlling the 1=�2

IR singularities of the loop amplitudes arises from an edge
of phase space, the Sudakov region, where a hard line can
only emit soft gluons. In the loop amplitudes these gluons
are virtual, of course, but they are related to real soft-gluon
emission by the cancellation of infrared poles in infrared-
safe cross sections for Sudakov-type processes [29,31]. For
example, the splitting kernel Pii�x� describes the probabil-
ity for a parton i to split collinearly into a parton of the
same species i, plus anything else, where the second parton
i retains a fraction x of the longitudinal momentum of the
first parton i. In the limit x! 1, this splitting kernel is
dominated by soft-gluon emission, and has the form,

Pii�x� !
A�	s�
�1� x��

� B�	s���1� x� � . . . ; as x! 1;

(6.1)

where A�	s� is related [35] to the soft (cusp) anomalous
dimension by,

A�	s� �
1

2
�K�	s�: (6.2)

The splitting kernel is related by a Mellin transform to the
anomalous dimensions of leading-twist operators of spin j,

��j� � �
Z 1

0
dxxj�1P�x�: (6.3)

Thus the soft anomalous dimension also controls the large-
spin behavior of these anomalous dimensions [61],

��j� �
1

2
�K�	s��ln�j� � �e� � B�	s� �O�ln�j�=j�;

(6.4)

where here we take �e as Euler’s constant.
KLOV [38] have made a very interesting observation:

the anomalous dimensions of MSYM may be extracted
directly from the corresponding anomalous dimensions of
QCD [36], by keeping terms of highest ‘‘transcendental-
ity.’’ Recall that for the case of the soft anomalous dimen-
sions (large j limit), the transcendentality weight is simply
n for �n. (Although the QCD anomalous dimensions are
computed in the MS regularization scheme, whereas for
MSYM the DR [45] or FDH [44] schemes are needed to
preserve supersymmetry, the scheme-dependent terms
drop out because they are of lower transcendentality.)
Although there is no proof of KLOV’s prescription for
extracting the MSYM anomalous dimensions from QCD,
there are good reasons to believe that it is true [13,38].
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Here we provide further evidence for the prescription, by
confirming the large-spin behavior of the leading-twist
anomalous dimension. We compare the KLOV result,
given in Eqs. (18)–(20) of Ref. [38], against our evaluation
of the same quantity from the IR divergences of the three-
loop four-point amplitude. Note that their normalization
convention for anomalous dimensions has an opposite
overall sign from ours (which follows Ref. [36]). Also
taking into account factors of 2 from the different 	s
expansion parameter, and from Eq. (6.4), we obtain from
Eqs. (18)–(20) of Ref. [38],

��1�K � 4Nc; ��2�K � �4�2N2
c ; ��3�K � 22�4N3

c ;

(6.5)

which agrees perfectly with our results (4.27) and (4.37).
We remark that the strong-coupling, large-Nc limit of

the soft anomalous dimension �K has been obtained, using
the AdS/CFT correspondence and classical supergravity
methods [62]. An approximate formula interpolating be-
tween the weak and strong-coupling limits has also been
constructed [38,63].

The coefficient G�l�0 , which controls the 1=� singularity,
may be extracted [32] from a fixed-order computation of
the form factor at l loops. For example, the two-loop quark
form factor in QCD was computed in Ref. [64]. From
Eqs. (21)–(22) of Ref. [26], if we follow the KLOV pro-
cedure and keep the maximal transcendentality terms (�3 at
two loops) in order to convert the QCD results into MSYM
results, we have

G �1�0 � 0; G�2�0 � ��3N2
c : (6.6)

We have multiplied G�2�0 in Eq. (22) of Ref. [26] by a factor
of 4 to account for the different normalization conventions
used here. These results agree with our Eqs. (4.27) and
(4.38). Although the QCD form factors have not yet been
computed at three loops, we may use our results, together
with the observation of KLOV, to predict the leading-
transcendentality contributions for QCD,

G �3�0 �

�
4�5 �

10

3
�2�3

�
N3
c ; (6.7)

after the group theory Casimirs have been set to the values
CF � CA � Nc. (At three loops, no other Casimirs can
appear, so there are no subleading-color corrections to
this leading-transcendentality prediction.)

VII. CONCLUSIONS AND OUTLOOK

In this paper we have provided strong evidence support-
ing the conjecture [1] that the planar contributions to the
scattering amplitudes of MSYM possess an iterative struc-
ture. This result is in line with the growing body of evi-
dence that gauge-theory amplitudes in general, and those
of MSYM in particular, have a much simpler structure than
had been anticipated.
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Our evidence of iteration is based on a direct evaluation
of the planar three-loop four-point amplitude of MSYM.
The loop integrands for this amplitude were obtained [7,8]
using the unitarity method [9–13]. This method ensures
that simple structures uncovered at lower-loop orders (in-
cluding tree level) in turn feed into higher loops. (It also
underlies much of the recent progress at one loop [19].) In
order to evaluate the required three-loop integrals, we
made use of important recent advances in multiloop inte-
gration [14,21–23]. The integrals are expressed in terms of
well-studied harmonic polylogarithms [24,25], making it
straightforward to confirm the three-loop iteration. A
rather intricate set of cancellations is required, among the
harmonic polylogarithms, and between different loop in-
tegral types contributing to the amplitudes.

Using our explicitly computed four-point amplitudes as
a springboard, the known structure of infrared singularities
to all loop orders [26,30], and the required factorization
properties of amplitudes, we constructed the Ansatz for the
resummed n-point all-loop MHV amplitudes given in
Eq. (4.7). After subtracting the IR divergences, the all-
loop finite remainders (4.49) are given in terms of known
one-loop n-point finite remainders, as well as two coeffi-
cients, one of which is the large-spin limit of the leading-
twist anomalous dimensions.

Very interestingly, the same set of leading-twist anoma-
lous dimensions has recently been linked to integrability of
MSYM by Beisert, Kristjansen, and Staudacher [34,39].
With the assumption of integrability, Staudacher [39] has
reproduced the leading-twist anomalous dimensions at
three loops for spin j up to 8. These anomalous dimensions
were previously obtained by Kotikov, Lipatov,
Onishchenko, and Velizhanin [38] from the QCD results
of Moch, Vermaseren, and Vogt [36]. (Quite recently,
Staudacher’s Bethe Ansatz analysis has been extended to
extremely high spins, the region relevant here, confirming
the prediction of KLOV for even values of j up to 70 [65].)
If one were able to push this method to higher-loop orders,
and arbitrarily large spins, it would give very directly the
soft anomalous dimensions appearing in our all-loop ex-
ponentiation of the MHV scattering amplitudes.

Besides confirming the iterative structure of the scatter-
ing amplitudes, our paper provides nontrivial confirmation
of the form of the three-loop divergences predicted by
Sterman and Tejeda-Yeomans [26]. It also provides sup-
porting evidence for a number of Ansätze appearing in a
variety of papers. In particular, we confirm, in the high-
spin limit, the inspired Ansätze of KLOV, and (via KLOV)
of Beisert, Kristjansen, and Staudacher, for obtaining the
leading-twist anomalous dimensions in MSYM. By mak-
ing use of KLOV’s link to QCD, via the degree of tran-
scendentality, our work also checks indirectly a small piece
of the three-loop splitting kernels in QCD, or equivalently
the anomalous dimensions of leading-twist operators, com-
puted by Moch, Vermaseren, and Vogt [36]. The integrand
-18
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[7,8] used in the computation of the planar three-loop four-
point amplitude has not been completely proven, but the
match between its IR singularities and the formulas of
Sterman and Tejeda-Yeomans, plus the demonstration of
its iterative structure through the finite terms as �! 0,
leaves little doubt as to its veracity.

The properties found here and in Ref. [1] bring up the
possibility that the entire perturbative series of planar
MSYM is tractable. The apparent simple structure of the
MHVall-loop amplitudes suggests that a loop-level twistor
string interpretation will be found [16,66]. It would be
important to first identify the precise symmetry responsible
for this structure. A more complete understanding of the
iterative structure of the amplitudes should lead to impor-
tant insights into quantum field theory and the AdS/CFT
correspondence.
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Note added.—Since the first version of this paper came
out, an interesting paper has appeared [69], containing a
technique for computing large classes of terms for multi-
loop MSYM amplitudes with many external legs, which
may shed further light on the iterative relations discussed
here. Also, the prediction (6.7) for the leading-
transcendentality terms in G�3�0 for QCD has now been
confirmed [70].
APPENDIX A: HARMONIC POLYLOGARITHMS

We express the amplitudes in terms of harmonic poly-
logarithms [24], which are generalizations of ordinary
polylogarithms [67]. Here we briefly summarize some
salient properties. A more complete discussion is given
in Ref. [24]. Recipes for numerically evaluating harmonic
polylogarithms may be found in Ref. [25].

The weight n harmonic polylogarithms Ha1a2...an�x� �
H�a1; a2; . . . ; an; x�, with ai 2 f1; 0;�1g, are defined re-
cursively by

Ha1a2...an�x� �
Z x

0
dtfa1

�t�Ha2...an�t�; (A1)
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where

f
1�x� �
1

1� x
; f0�x� �

1

x
; (A2)

H
1�x� � � ln�1� x�; H0�x� � lnx; (A3)

and at least one of the indices ai is nonzero. For all ai � 0,
one has

H0;0;...;0�x� �
1

n!
lnnx: (A4)

If a given harmonic polylogarithm involves only pa-
rameters ai � 0 and 1, and the number of these parameters
(the weight) is less than or equal to four, it can be expressed
[24] in terms of the standard polylogarithms [67]

Li n�z� �
X1
j�1

zj

jn
�
Z z

0

dt
t

Lin�1�t�;

Li2�z� � �
Z z

0

dt
t

ln�1� t�;

(A5)

with n � 2; 3; 4, and where z may take the values x,
1=�1� x�, or �x=�1� x�. (For n < 4, not all of these
values are required, due to identities.) Here we need only
ai 2 f0; 1g, but weights up to six. In the Euclidean region
for the planar four-point process, namely s < 0, t < 0, u >
0, with the identification x � �t=s, the argument x of the
harmonic polylogarithms will be negative.

The harmonic polylogarithms are not all independent;
they are related by sets of identities [24]. One set of
identities, derived using integration by parts,

Ha1a2...ap0�x� � lnxHa1a2...ap�x� �H0a1a2...ap�x�

�Ha10a2...ap�x� � � � � �Ha1a2...0ap�x�;

(A6)

allows one to remove trailing zeroes from the string of
parameters ai. The remaining Ha1a2...an�x� with an � 1 are
well-behaved as x! 0; in fact they all vanish there.

Because the integrals appear in the MSYM amplitudes
with arguments �s; t� and �t; s�, we need a set of identities
relating harmonic polylogarithms with argument x � �t=s
to those with argument y � �s=t � 1=x. As explained in
Ref. [24] [see the discussion near Eqs. (55) of that refer-
ence], we may construct the required set of identities by
induction on the weight of the harmonic polylogarithms.
For the first few weights, in the region �1 
 x 
 0, and
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FIG. 6. The one-loop box integral.
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letting L � ln�s=t� � ln��1=x�, we have, for example,

H1�y� � H1�x� � L;

H0;1�y� � �H0;1�x� �
1

2
L2 �

�2

6
;

H1;1�y� � H1;1�x� �H1�x�L�
1

2
L2;

H0;0;1�y� � H0;0;1�x� �
�2

6
L�

1

6
L3;

H0;1;1�y� � H0;0;1�x� �H0;1;1�x� �H0;1�x�L�
1

6
L3 � �3;

H1;0;1�y� � �2H0;0;1�x� � 2H0;1;1�x� � 2H0;1�x�L

�
�2

6
H1�x� �H1�x�H0;1�x� �

1

2
H1�x�L2

�
1

3
L3 �

�2

6
L�H0;1�x�L�

1

2
L3 � 2�3;

H1;1;1�y� � H1;1;1�x� �H1;1�x�L�
1

2
H1�x�L

2 �
1

6
L3:

(A7)

APPENDIX B: INTEGRALS APPEARING IN
FOUR-POINT AMPLITUDES

In this appendix we collect various integrals that are
needed as well as their values in terms of harmonic poly-
logarithms. We quote the results in the Euclidean
(u-channel) region, s; t < 0. The analytic continuation to
other physical regions is discussed in Refs. [24,25].
085001
1. One-loop integrals

Consider the (conveniently normalized) one-loop scalar
box integral, depicted in Fig. 6,

I�1�4 �s; t� � �ie
����d=2

�
Z ddp

p2�p� k1�
2�p� k1 � k2�

2�p� k4�
2 :

(B1)

The value of this integral, with x � �t=s; L � ln�s=t�, is

I�1�4 �s; t� � �
1

��s�1��t

X2

j��4

cj�x; L�

�j
; (B2)

with
c2 � 4; c1 � 2L; c0 � �
4

3
�2;

c�1 � �2H1�x� � 2H0;0;1�x� �
7

6
�2L� 2H0;1�x�L�H1�x�L2 �

1

3
L3 �

34

3
�3;

c�2 � �2H1;0;0;1�x� � 2H0;0;1;1�x� � 2H0;1;0;1�x� � 2H0;0;0;1�x� � 2H0;1;1�x�L� 2H1;0;1�x�L�H0;1�x�L2 �H1;1�x�L2

�
2

3
H1�x�L

3 �
1

6
L4 � �2H1;1�x� � �

2H1�x�L�
1

2
�2L2 � 2H1�x��3 �

20

3
L�3 �

41

360
�4;

c�3 � 2H1;0;0;0;1�x� � 2H1;0;0;1;1�x� � 2H1;0;1;0;1�x� � 2H1;1;0;0;1�x� � 2H0;0;0;0;1�x� � 2H0;0;0;1;1�x� � 2H0;0;1;0;1�x�

� 2H0;0;1;1;1�x� � 2H0;1;0;0;1�x� � 2H0;1;0;1;1�x� � 2H0;1;1;0;1�x� � 2H0;1;1;1�x�L� 2H1;0;1;1�x�L� 2H1;1;0;1�x�L

�H0;1;1�x�L2 �H1;0;1�x�L2 �H1;1;1�x�L2 �
1

3
H0;1�x�L3 �

2

3
H1;1�x�L3 �

1

4
H1�x�L4 �

1

20
L5 �

1

6
�2H0;0;1�x�
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2. Two-loop integrals

The two-loop planar scalar double-box integral depicted in Fig. 7 is

I�2�4 �s; t� � ��ie
����d=2�2

Z ddpddq

p2�p� k1�
2�p� k1 � k2�

2�p� q�2q2�q� k4�
2�q� k3 � k4�

2 : (B4)
This integral was first evaluated in Ref. [14] through O��0�,
as required in NNLO calculations. Here we need the in-
tegral through O��2�. The calculation performed in
Ref. [14] was not optimal because the starting point was
a fivefold MB representation. On the other hand, it is
possible to derive an appropriate fourfold representation,
as was demonstrated in Ref. [68] (see also Chap. 4 of
Ref. [49]). The corresponding evaluation can be general-
ized straightforwardly to obtain the next two orders of the
085001
expansion in �. Let us stress that this evaluation is much
simpler than the evaluation of the triple boxes up to �0.

Our result through O��2� is

I�2�4 �s; t� � �
1

��s�2�2�t

X4

j��2

cj�x; L�

�j
; (B5)

where x � �t=s, L � ln�s=t�, and
c4 � �4; c3 � �5L; c2 � �2L2 �
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Through O��0� this corresponds to the results of Ref. [14].
It is also possible to derive differential equations obeyed

by the planar two-loop box integral [21]. The differential
1

2

p

3

4
q

FIG. 7. The two-loop double-box integral.
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equations couple I�2�4 �s; t� to a second master two-loop box
integral. In Ref. [21] these results were used to obtain the
second integral, and to check I�2�4 �s; t� through order �0. We
have used the same differential equations to check the
result (B6) through the required order, �2, up to a constant.
The order �2 constant was checked numerically.

3. Three-loop integrals

The three-loop ladder integral depicted in Fig. 4(a) and
defined in Eq. (3.1) has been evaluated in Ref. [23], with
the result,

I�3�a4 �s; t� � �
1

s3��t�1�3�

X6

j�0

cj�x; L�

�j
; (B7)
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where x � �t=s, L � ln�s=t�, and
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The result for the second triple box, defined in Eq. (3.2) and shown in Fig. 4(b), is
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c0 �
1

2
�379H0;0;0;0;0;1�x� � 343H0;0;0;0;1;1�x� � 419H0;0;0;1;0;1�x� � 347H0;0;0;1;1;1�x� � 355H0;0;1;0;0;1�x�

� 175H0;0;1;0;1;1�x� � 223H0;0;1;1;0;1�x� � 5H0;0;1;1;1;1�x� � 151H0;1;0;0;0;1�x�

� 3H0;1;0;0;1;1�x� � 51H0;1;0;1;0;1�x� � 5H0;1;0;1;1;1�x� � 99H0;1;1;0;0;1�x� � 5H0;1;1;0;1;1�x� � 5H0;1;1;1;0;1�x�

� 193H1;0;0;0;0;1�x� � 169H1;0;0;0;1;1�x� � 121H1;0;0;1;0;1�x� � 5H1;0;0;1;1;1�x� � 73H1;0;1;0;0;1�x� � 5H1;0;1;0;1;1�x�

� 5H1;0;1;1;0;1�x� � 25H1;1;0;0;0;1�x� � 5H1;1;0;0;1;1�x� � 5H1;1;0;1;0;1�x� � 5H1;1;1;0;0;1�x�	 �
1

2
L�98H0;0;0;0;1�x�

� 22H0;0;0;1;1�x� � 98H0;0;1;0;1�x� � 238H0;0;1;1;1�x� � 78H0;1;0;0;1�x� � 66H0;1;0;1;1�x� � 114H0;1;1;0;1�x�

� 5H0;1;1;1;1�x� � 82H1;0;0;0;1�x� � 106H1;0;0;1;1�x� � 58H1;0;1;0;1�x� � 5H1;0;1;1;1�x� � 10H1;1;0;0;1�x�

� 5H1;1;0;1;1�x� � 5H1;1;1;0;1�x�	 �
1

4
L2�124H0;0;0;1�x� � 208H0;0;1;1�x� � 44H0;1;0;1�x� � 129H0;1;1;1�x�

� 20H1;0;0;1�x� � 43H1;0;1;1�x� � 5H1;1;0;1�x� � 5H1;1;1;1�x�	 �
1

24
�2�183H0;0;0;1�x� � 121H0;0;1;1�x�

� 375H0;1;0;1�x� � 704H0;1;1;1�x� � 31H1;0;0;1�x� � 328H1;0;1;1�x� � 40H1;1;0;1�x� � 30H1;1;1;1�x�	

�
1

12
L3�260H0;0;1�x� � 215H0;1;1�x� � 7H1;0;1�x� � 20H1;1;1�x�	 �

1

24
L�2�326H0;0;1�x�

� 633H0;1;1�x� � 127H1;0;1�x� � 50H1;1;1�x�	 �
1

2
��3LH0;1�x� � 5LH1;1�x�

� 165H0;0;1�x� � 104H0;1;1�x� � 68H1;0;1�x� � 5H1;1;1�x�	�3 �
1

48
L4�309H0;1�x�

� 43H1;1�x�	 �
1

48
L2�2�725H0;1�x� � 71H1;1�x�	 �

1

720
�4�1848H0;1�x� � 25H1;1�x�	 �

37

120
L5H1�x�

�
11

8
L3�2H1�x� �

641

720
L�4H1�x� �

38

3
L3�3 �

479

18
L�2�3 � 2L2H1�x��3 �

269

24
�2H1�x��3 �

129

2
H1�x��5

�
151

720
L6 �

373

288
L4�2 �

3163

2880
L2�4 �

1054

5
L�5 �

1 391 417

3 265 920
�6 �

197
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