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Gravitational field of relativistic gyratons
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The metric ansatz (1) is used to describe the gravitational field of a beam pulse of spinning radiation
(gyraton) in an arbitrary number of spacetime dimensions D. First we demonstrate that this metric belongs
to the class of metrics for which all scalar invariants constructed from the curvature and its covariant
derivatives vanish. Next, it is shown that the vacuum Einstein equations reduce to two linear problems in
�D� 2�-dimensional Euclidean space. The first is to find the static magnetic potential A created by a
pointlike source. The second requires finding the electric potential � created by a pointlike source
surrounded by given distribution of the electric charge. To obtain a generic gyraton-type solution of the
vacuum Einstein equations it is sufficient to allow the coefficients in the corresponding harmonic
decompositions of solutions of the linear problems to depend arbitrarily on retarded time u and substitute
the obtained expressions in the metric ansatz. These solutions are generalizations of the gyraton metrics
found in [V. P. Frolov and D. V. Fursaev, Phys. Rev. D 71, 104034 (2005).]. We discuss properties of the
solutions for relativistic gyratons and consider special examples.
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I. INTRODUCTION

Studies of the gravitational fields of beams and pulses of
light have a long history. Tolman [1] found a solution in the
linearized approximation. Peres [2,3] and Bonnor [4] ob-
tained exact solutions of the Einstein equations for a pencil
of light. These solutions belong to the class of pp waves.
The generalization of these solutions to the case where the
beam of radiation carries angular momentum has been
found recently in [5]. Such a solution corresponds to a
pulsed beam of radiation with negligible radius of cross
section, finite duration in time, and which has both finite
energy E, and angular momentum J. An ultrarelativistic
source with these properties is called a gyraton.

The gyraton-type solutions are of general interest, since,
for example, they allow one to address the question: What
is the gravitational field of a photon or ultrarelativistic
electron or proton? This question becomes important in
the discussion of possible mini-black-hole production in
future collider or cosmic ray experiments. In the absence of
spin, one can use the Aichelburg-Sexl metric [6,7] to
describe the gravitational field of each of the colliding
particles. Such an approach allows one to estimate the
cross section for mini-black-hole formation [8–11] (for a
general review see [12]). The metric obtained in [5] makes
it possible to consider the gravitational scattering and mini-
black-hole formation in the interaction of particles with
spin. The estimates show [5] that the spin-spin and spin-
orbit interactions may be important at the threshold ener-
gies for mini-black-hole formation.
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In the present paper we study the gravitational field of
gyratons. We start by discussing the general properties of
the metric (1) describing the gravitational field of relativ-
istic gyratons (Sec. II). First we show that this metric
belongs to the class of metrics for which all the scalar
invariants constructed from the curvature and its covariant
derivatives vanish identically. For A � 0 this result
was obtained by Amati and Klimcik [13] and Horowitz
and Steif [14], who argued that such metrics are
classical solutions to string theory. (For a general discus-
sion of spacetimes with vanishing curvature invariants see
[15–17].)

After this we show that the vacuum Einstein equations
for metric (1) in a spacetime with arbitrary number D of
dimensions reduce to the linear problems for the gravito-
electric (�) and gravitomagnetic (A) potentials in the
�D� 2�-dimensional Euclidean space. These linearized
problems can be easily solved. The solutions obtained in
[5] are characterized by the property that only lowest
harmonics are present in the harmonic decomposition of
� and A. For this reason one can consider the gyraton
solutions presented in [5] as some ground state, while the
more general solutions obtained in this paper are their
excitations (or distortions). It should be emphasized that
the vacuum solutions are valid only outside the region
occupied by gyratons. In order to obtain a solution describ-
ing the total spacetime one needs to obtain a solution inside
the gyraton. This solution depends on the gyraton structure.
In the present paper we do not discuss concrete gyraton
models. But since we obtain a general solution for the
vacuum metric outside a gyraton, one can guarantee that
for any model of the gyraton there exists a corresponding
solution, so that the characteristics of the gyraton are
‘‘encoded’’ in the parameters of the exterior vacuum
metric.
-1 © 2005 The American Physical Society
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After discussing the asymptotic properties of the gyraton
metrics (Sec. III), we consider general solutions for 4-
(Sec. IV) and 5-dimensional (Sec. V) gyraton metrics.
Section VI discusses the higher-dimensional gyraton met-
rics. In Sec. VII we summarize the obtained results and
discuss open problems.
II. METRIC FOR RELATIVISTIC GYRATONS

A. Gyraton metric ansatz

Let us consider the Brinkmann [18] metric in
D-dimensional spacetime of the form

ds2 � g��dx
�dx�

� �2dudv� dx2 ��du2 � 2�A; dx�du; (1)

� � ��u;x�; Aa � Aa�u;x�: (2)

Evidently, l�@� � @v is the null Killing vector.
When � � A � 0, the coordinates x1 � v �

�t� ��=
���
2
p

and x2 � u � �t� ��=
���
2
p

are null. The coor-
dinate u remains null for the metric (1). The metric is
generated by an object moving with the velocity of light
in the � direction. The coordinates �x3; . . . ; xD� are coor-
dinates of an n-dimensional space (n � D� 2) transverse
to the direction of motion. We use boldface symbols to
denote vectors in this space. For example, x is a vector with
components xa (a � 3; . . . ; D). We denote by r the length
of this vector, r � jxj. We also denote

dx2 �
XD
a�3

�dxa�
2; �A; dx� �

XD
a�3

Aadx
a; (3)

4 �
XD
a�3

@2
a; divA �

XD
a�3

Aa;a: (4)

Later we assume that the sum is taken over the repeated
indices and omit the summation symbol. Working in the
Cartesian coordinates we shall not distinguish between
upper and lower indices.

The form of the metric (1) is invariant under the follow-
ing (gauge) transformation:

v! v� ��u;x�; Aa ! Aa � �;a;

�! �� 2�;u:
(5)

It is also invariant under rescaling

u! au; v! a�1v; �! a2�; A! aA:
(6)

It is easy to show that for the metric (1)�������
�g
p

� 1; (7)
084031
and the inverse metric is

g��@�@� � ����A2�@2
v � 2@u@v � 2Aa@a@v � @2

a:

(8)

The nonvanishing components of the Christoffel symbol
��;�� are

�v;�� � ��;�v � �a;bc � 0; �u;uu �
1

2
@u�;

�a;uu � @uAa �
1

2
@a�; �u;ua �

1

2
@a�; (9)

�u;ab �
1

2
�@aAb � @bAa�; �a;bu � �

1

2
Fab;

where

Fab � @aAb � @bAa: (10)

We shall also need the Christoffel symbols ���� �
g����;��. Their nonvanishing components are

�vuu � �
1

2
��;u � Aa�;a� � AaAa;u;

�vua � �
1

2
��;a � FabAb�; �vab � �

1

2
�Aa;b � Ab;a�;

(11)

�auu � Aa;u �
1

2
�;a; �bua �

1

2
Fa

b:

It is easy to check that

l�;� � 0: (12)

It means that the null Killing vector l is covariantly con-
stant. In the 4-dimensional case, spacetimes admitting a
(covariantly) constant null vector field are called plane-
fronted gravitational waves with parallel rays, or briefly pp
waves (see e.g. [19–21]). Similar terminology is often
used for higher-dimensional metrics (see e.g. [22,23]).

B. Curvature invariants

In the next section we derive conditions under which
metric (1) is Ricci flat and hence obeys the vacuum
Einstein equations. But before this let us prove that the
metric (1) belongs to the class of metrics with vanishing
curvature invariants. Namely, all the local scalar invariants
constructed from the Riemann tensor and its covariant
derivatives for the metric (1) vanish. This statement is valid
off shell, that is the metric need not be a solution of the
vacuum Einstein equations. This property is well known
for the 4-dimensional case, since pp-wave solutions are of
Petrov type N. Generalization of this result to higher-
dimensional metrics (1) with A � 0 was given in
[13,14]. (For a general discussion of spacetimes with van-
ishing curvature invariants see [15–17].)
-2
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To demonstrate that curvature invariants vanish for the
metric (1), let us consider a covariant tensor A�����. We
shall call such a tensor degenerate if it has the following
properties: It does not depend on v, and its components,
which either contain at least one index v or do not contain
index u, vanish. Since @v is the Killing vector, the Riemann
curvature tensor does not depend on v. Using the expres-
sions for the Christoffel symbols (11) one can show that the
only nonvanishing components of the Riemann tensor are
R�au��bu�, R�ab��cu�, and R�cu��ab�. Hence it is degenerate. Let
us demonstrate now that the action of a covariant derivative
r� on a degenerate tensor A����� gives a tensor which is
also degenerate. Really, since ��v� � 0 one has

rvA����� � @vA����� � ��v�A����� � � � ��
�
v�A����� � 0:

(13)

Thus the covariant differentiation of the degenerate tensor
cannot have a nonvanishing v component. Since �u�� � 0,
the covariant differentiation cannot also produce a non-
vanishing component which does not contain index u.

Consider now a scalar invariant constructed from any set
of degenerate tensors and g��. The only nonvanishing
component of g�� which contains an index u is guv �
�1. Hence a scalar invariant constructed from degenerate
tensors and metrics always vanishes.

C. Calculation of the Ricci tensor

In order to calculate the Ricci tensor for the metric (1) let
us introduce the following vectors:

V� �
@x�

@v
; U� �

@x�

@u
; e��a� �

@x�

@xa
: (14)

One has

V�;� � ��v� � 0; U�
;� � ��u�; e�

�a�;� � ��a�;

(15)

U�
;�e��c�;� � ��u���c� � �bua�acb � �uua�acu � 0: (16)

The last equality holds because �acb � �uua � 0.
The Ricci identity implies

R��Y�X� � �X�;�Y��;� � X�;�Y�� � X
�

;��Y
�: (17)

From the relation V�;� � 0 it follows that R��Y�V� �
0 and hence

Rv� � 0: (18)

Let us set Y� � e�
�a� and X� � U�, then using (16) one has

Rau � �U�
;�e��a��;� �U

�
;��e

�
�a�: (19)

Using (7) one obtains

U�
;� �

1�������
�g
p @��

�������
�g
p

��u � � 0: (20)
084031
One also has

U�
;�e

�
�a� � ��ua �

1

2
��bFa

b �
1

2
��v ��;a � FabA

b�: (21)

Since � and Aa do not depend on v, and ��v� � 0, one has

Rau �
1

2
@bFab: (22)

Similarly

Ruu � �U
�

;�U
��;� �U

�
;�U

�
;� �U

�
;��U

�: (23)

Relation (20) implies that the last term on the right-hand
side vanishes. Since U�

;�U
� � ��uu using (11) one obtains

�U�
;�U��;� � @b�Ab;u ��;b�: (24)

One also has

U�
;�U

�
;� � ��u���u� � �bua�aub � �

1

4
FabF

ab: (25)

Combining these results one obtains

Ruu � @u divA�
1

2
4��

1

4
F2; (26)

where

div A � @aA
a; F2 � FabF

ab; 4� � @a@
a�:

(27)

Finally, let us substitute X� � e�
�a� and Y� � e�

�b� into
(17), then one has

Rab � �e
�
�b�;�e

�
�a��;� � e

�
�b�;�e

�
�a�;� � e

�
�b�;��e

�
�a�: (28)

Using (11) it is easy to show that

e�
�b�;�e

�
�a� � ��ab � �

1

2
��v �Aa;b � Ab;a�; (29)

e�
�b�;�e

�
�a�;� � ��b���a� � 0; e�

�b�;� � @��
�
b � 0: (30)

Hence Rab � 0.

D. Vacuum equations for gravitational field of a gyraton

To summarize, the metric (1) is a solution of vacuum
Einstein equations if and only if the following equations
are satisfied:

@bFab � 0; (31)

4�� 2@u divA �
1

2
F2: (32)

In the next section it will be shown that for solutions
describing a gyraton with finite energy and angular mo-
mentum the quantities �;a and Fab are vanishing at trans-
verse space infinity. We assume that the homogeneous
equations are valid everywhere outside the point x � 0
-3
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where a pointlike source is located. It is easy to see that the
left-hand side of (32) is gauge invariant, that is invariant
under the transformations (5). In the ‘‘Lorentz’’ gauge
Aa;a � 0 Eq. (32) takes the form

4� �
1

2
F2: (33)

Here F2 � FabFab. Using the analogy of gravity with
electromagnetism, one can say that the problem of solving
the D-dimensional vacuum Einstein equations for the gy-
raton metric is reduced to finding an electric potential ’
and magnetic field Fab created by a local source in the
�D� 2�-dimensional Euclidean space. For these solutions
the retarded time u plays a role of an external parameter
which enters through the dependence of pointlike sources
on u.

As we already mentioned in the Introduction, in physical
applications there always exists a source of the gravita-
tional field which generates the metric (1). We called this
source a gyraton [5]. In order to obtain a solution describ-
ing the total system, one must obtain a solution inside the
region occupied by the gyraton and to glue it together with
a vacuum solution (1) outside it. In the present paper we
study only solutions outside the gyraton. We shall obtain a
general solution of the magnetostatic equation (31) for
pointlike currents localized at the point x � 0. Since this
equation is linear this current can be written as a linear
combination of ��x� and its derivatives. Similarly, one can
write a general solution of the equation

4’ � 0; (34)

with a charge density, localized at x � 0, or, what is
equivalent, with the charge density proportional to ��x�
and its derivatives. It is convenient to write � � ’�  ,
where

4 �
1

2
F2: (35)

After findingAa�u;x� and’�u;x�, one needs only to find
the ‘‘induced’’ potential  �u;x� determined by Eq. (35). A
formal solution of this problem can be obtained as follows.
The Green function of the n-dimensional Laplace operator

4Gn�x;x0� � ���x� x0� (36)

is

G 2�x;x0� � �
1

2�
lnjx� x0j; if n � 2; (37)

G n�x;x0� �
gn

jx� x0jn�2 ; if n > 2; (38)

gn �
��n�2

2 �

4�n=2
: (39)

Using these Green functions one can present the solution
084031
for  in the form

 �u;x� � �
1

2

Z
dx0Gn�x;x0�F2�u;x0�: (40)

Let us emphasize that in the general case the solution
(40) is only formal and may not have a well-defined sense.
The reason is that for a pointlike current, F has a singu-
larity at x � 0. If one considers this singular function as a
distribution, one needs to define what is the meaning of F2

in (40). This problem does not exist for a distributed source
(gyraton). If we do not want to input an explicit form of the
matter distribution within the gyraton, we can proceed as
follows [24].

Suppose F and ’ are solutions with localized sources.
Let us surround a point x � 0 by a �D� 3�-dimensional
surface 	. For example, one may choose 	 to be a round
�D� 3�-dimensional sphere of small radius 
. Denote by
F�	�ab � Fab#�	�, where #�	� is equal to 1 outside 	 and
vanishes inside 	. The ‘‘magnetic’’ field F�	�ab obeys the
equation

@bF
�	�
a � �nbFab��	�; (41)

where n is the unit normal to the 	 vector directed to the
exterior of 	. In other words, the field F�	�ab corresponds to
the special case of an extended gyraton for which its
angular momentum density is localized on 	. The value
 �	� obtained for F�	�ab by using (40) is well defined.
Certainly this function  �	� depends on the choice of 	.
Suppose 	0 is another surface, surrounding x � 0, and
lying inside 	. It is easy to see that outside 	 one has

4� �	� �  �	�� � 0: (42)

That is outside 	 these two solutions  �	� and  �	� differ
by a term which can be absorbed into the solution ’.

For a distributed source (a gyraton) one can use a similar
procedure. If one is interested in the gravitational field of
the gyraton outside a surface 	 surrounding the matter
distribution one can calculate  �	� and choose ’ corre-
spondingly. For a given distribution of the gyraton matter,
the parameters of the vacuum solution outside the gyraton
are uniquely specified. In Secs. IV and V we shall give
explicit examples of the vacuum gyraton solutions.
III. ENERGY AND ANGULAR MOMENTUM OF A
GYRATON

A. Weak field approximation

The asymptotics of functions � and Aa at the transverse-
spatial infinity are related to the energy and angular mo-
mentum of a gyraton. In order to find these relations let us
consider a linearized problem. Let us write the Minkowski
metric in the form

ds2
0 � ���dx�dx� � �2dudv� dx2: (43)
-4
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Then its perturbation h�� generated by the stress-energy
tensor T�� obeys the equation

�h�� � �� �T��; �T�� �
�
T�� �

1

n
���T

�
; (44)

where � � 16�G.
In the general case, if the metric (1) is a solution of the

Einstein equations, then the stress-energy tensor which
generates this solution possesses the following properties:
(1) Its nonvanishing components are Tuu and Tua; (2) these
components do not depend on v; and (3) it obeys the
conservation law T��;� � 0. The latter condition in the
linear approximations reduces to the relation

Tua;a � 0: (45)

The metric perturbation h�� generated by such a stress-
energy tensor also does not depend on v. Thus instead of
D-dimensional � operator in (44) one can substitute the
n-dimensional flat Laplace operator 4

4h�� � ��T��: (46)

We omit the bar over T�� since its trace vanishes.
Using the Green function (36) one can write the follow-

ing expression for h���x�:

h���u;x� � �
Z
dx0Gn�jx? � x0j� �T���u;x0�: (47)
B. Metric asymptotics

Consider T���u;x� as a function of x and suppose that it
vanishes outside of some compact region. We denote by l
the size (in the transverse direction) of this region. To
determine the field at far distance r	 lwe use the follow-
ing relation:

jx� x0j 
 r�
�x;x0�
r

: (48)

Thus if one point, x, is at a far distance from the source,
while the other is close to it one has the following asymp-
totics for the Green functions:

G 2�x;x0� � �
1

2�
lnr�

�x;x0�
2�r2 � � � � ; if n � 2; (49)

G n�x;x0� �
gn
rn�2 �

gn�n� 2��x;x0�
rn

� � � � ; if n > 2;

(50)

where � � � denote the terms of higher order in 1=r.
Similarly, one has

h�� � �
�

2�
lnrT �� �

�

2�r2 x
aJ a�� � � � � ; if n � 2;

(51)
084031
h�� �
�gn
rn�2 T �� �

�gn�n� 2�

rn
xaJ a�� � � � � ;

if n > 2;
(52)

where

T �� �
Z
dxT��; J a�� �

Z
dxxaT��: (53)

The structure of the stress-energy tensor implies that only
components huu and hua do not vanish. In order to relate
the coefficients, which enter the asymptotic expressions for
these components, to physical quantities such as energy
and angular momentum we use the following relations:Z

dxTua � �
Z
dxTuc;cxa � 0; (54)

Z
dx�Tauxb � Tbuxa� � �

Z
dxTcuxaxb � 0: (55)

We used here the conservation law (45).
The energy E and the angular momentum Jab in the flat

spacetime are defined by the relation

E �
Z
d�dxTtt; Jab �

Z
d�dx�Ttaxb � Ttbxa�:

(56)

The integration is performed over a surface t � const. At
this surface d� � �

���
2
p
du, thusZ 1

�1
d��� � �� �

���
2
p Z 1

�1
du�� � ��: (57)

One also has

Ttt �
1

2
Tuu; Tta �

1���
2
p Tua: (58)

By combining these relations one obtains

E �
Z
du"�u�; Jab �

Z
dujab�u�; (59)

"�u� �
1���
2
p

Z
dxTuu; jab�u� � 2

Z
dxTuaxb: (60)

Relation (55) shows that jab � �jba. The function "�u�
describes the energy-density profile of the gyraton as a
function of the retarded time u, while jab�u� are similar
profile functions for the components of the density of the
angular momentum.

Using these results one obtains

�
 huu � �
���
2
p
"
�
� 1

2� lnr if n � 2;
gn
rn�2 if n > 2;

(61)

Aa 
 hua �
�gn�n� 2�jabxb

rn
: (62)
-5
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The latter relation is valid in the 4-dimensional spacetime
(for n � 2) if one substitutes 1=�2�� for gn�n� 2�.

C. Canonical form

If jab were a time independent antisymmetric matrix
then by making rotations

xa � Oa
b~xb; xa � ~xcO

c
a (63)

one would be able to bring hua into a form where instead of
jab stands its block canonical form [25]

~j ab �

0 j1 0 0 � � �

�j1 0 0 0 � � �

0 0 0 j2 � � �

0 0 �j2 0 � � �

� � � � � � � � � � � � � � �

0BBBBB@

1CCCCCA: (64)

In the presence of time dependence the situation is
slightly more complicated. Let us consider transformations
(63) with time dependent orthogonal matrix Oa

b�u�. Then

dxa � Oa
bd~xb � _Oa

b~xbdu;

dxa � Oc
ad~xc � _Oc

a~xcdu;
(65)

where _B � @uB. Under these transformations the metric
(1) preserves its form with

~A a � AbOb
a � Bab~xb; (66)

~� � Aa _Oa
b~xb � Cab~xa~xb; (67)

where

Bab � Oac
_Oc
b � �

_OacOc
b; (68)

Cab � _Oac
_Oc
b � �BacB

c
b: (69)

It is easy to see that Bab~xb is itself a solution of the
magnetostatic equations and corresponds to a constant
magnetic field with Fab � �Bab. It means that the (line-
arly growing at infinity) terms generated by time dependent
rigid rotations can be compensated by adding to Aa a new
solution corresponding to a constant magnetic field. This is
a direct analog of the Larmor theorem in gravitomagnetism
[26].

To summarize, we demonstrated that by making a time
dependent rotation and adding to Aa a vector potential for a
homogeneous time dependent magnetic field it is always
possible to transform a solution (1) into the form where �
and Aa have the asymptotics (61) and (62), where jab is an
antisymmetric matrix in its canonical block form (64).
084031
IV. 4-DIMENSIONAL GYRATONS

A. General solution

Before analyzing general gyratonlike solutions in an
arbitrary number of spacetime dimensions, we consider
special lower-dimensional cases.

Let us derive a gyraton metric in a 4-dimensional space-
time. In this case the number of transverse dimensions
n � 2 and our problem reduces to 2D electro- and
magnetostatics.

Let us consider Eq. (31) for the magnetic field. Any
antisymmetric tensor of the second order in a 2-
dimensional space can be written as Fab � Feab, where
eab is the totally antisymmetric tensor. Substituting this
representation into (31) one obtains that F � const. It is
easy to see that the corresponding vector potential Aa can
be written as

A3 � �x4; A4 � �x3; F � �� �: (70)

The gauge transformation (5) with � � 
x3x4 changes the
coefficients �! �� 
 and �! �� 
 but preserves the
value F.

Equation (35) takes the form

4 �
1

2
F2: (71)

If F � 0, the solution  does not vanish at infinity. We
exclude this case. Thus we put F � 0.

Let us choose a 2-dimensional contour surrounding the
source at x � 0. When Fab � 0, the value of the integral

j�u� �
2

�

I
C
Aadx

a; j�u� �
1

2

abjab; (72)

does not depend on the choice of the contour C. This
quantity which enters the solution (1) has the meaning of
the angular momentum of the gyraton. In polar coordinates
�r; ��

x3 � ix4 � rei�; (73)

the corresponding potential Aa can be written as

Ar � 0; A� �
�

4�
j�u�: (74)

Let us consider now Eq. (34) for the 2-dimensional
‘‘electric‘‘ potential ’. A solution corresponding to a
pointlike charge is

’0 � �
�

���
2
p

2�
"�u� lnr: (75)

Any other solution of this equation decreasing at infinity
can be written as

’ � ’0 �
X1

n��1

0 bn
rjnj
ein�; �bn � b�n: (76)

P
0 indicates that the term n � 0 is excluded. In the elec-
-6
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tromagnetic analogy, the harmonics with n � 1 describe
the field created by an electric n pole. Since F � 0, � � ’
and the solution for a distorted gyraton in 4-dimensional
spacetime is

ds2 � �2dudv� dr2 � r2d�2 �
�

2�
j�u�dud�

�

�
�
�

���
2
p

2�
"�u� lnr� ’

�
du2; (77)

where ’ � ’�u; r; �� is given by (76) with bn � bn�u�.
It should be emphasized that the solution (77), which is a

special case of (1), is the pp-wave metric. The properties
of pp-wave metrics in 4-dimensional spacetime are well
known (see e.g. [19–21]). In particular, a vacuum
pp-wave metric in a simply connected region can be
written in the form where A � 0. In the case of a gyraton,
because of the presence of a singularity at x � 0, the gauge
transformations (5) cannot be used to banish the potential
A globally. The situation here is similar to the well-known
Aharonov-Bohm effect [27,28]. The topological invariant
j�u�, which has the meaning of the density of the angular
momentum of the gyraton, is similar to the magnetic flux in
the Aharonov-Bohm case.

In the study of the Aharonov-Bohm effect it is usually
helpful to consider at first a tube of finite radius where the
magnetic field is localized. Similarly, in order to obtain a
well-defined and finite expression for the gyraton metric,
one must consider a spreaded source of finite size. In the 4-
dimensional case the procedure proposed in Sec. II does
not work. We describe now a simple model of an extended
gyraton in the 4-dimensional case. Let us modify the
expression for (74) as follows:

Ar � 0; A� �
�

4�
j�u�

�
r2

r2
0

#�r0 � r� � #�r� r0�

�
:

(78)

For this modified vector potential the field strength Fab �
eabF is

F �
�

2�
j�u�

r2
0

#�r0 � r�: (79)

In other words, the field strength F is constant inside a disk
of radius r0. Outside this disk the field vanishes, while the
contour integral (72) is j�u� as earlier.

The function  for such an extended gyraton can be
found by using (37) and (40). In polar coordinates one has

 �
F2

4�

Z r0

0
dr0r0Q; (80)

Q �
Z 2�

0
d� ln�r2 � r02 � 2rr0 cos��: (81)

For r > r0 one has Q � 4� lnr. Thus
084031
 �
1

2
F2r2

0 lnr: (82)

It means that outside the gyraton  has the same form as’0

and can be absorbed into the latter by renormalizing the
function "�u�.

B. Boosted 4D NUT metric

As an aside, it is worth mentioning that the Aichelburg-
Sexl boost [6] of the Newman-Unti-Tamburino (NUT)
stationary vacuum geometry [29] is a particular member
of the class (77).

A convenient symmetric form of the NUT metric is

ds2 �
dr2

f�r�
� �r2 � a2��d2�� sin2�d�2�

� f�r��dt� 2a cos�d��2; (83)

where

f�r� �
r2 � 2mr� a2

r2 � a2 : (84)

It is known [30,31] that the (singular) source of this ge-
ometry consists of a pair of semi-infinite line sources along
the axis (� � 0 and � � � respectively), endowed with
equal and opposite average angular momenta �a=2 per
unit length, and joined to a massive particle at the origin.
The two line sources are massless to linear order in a, i.e.,
to within terms of the order of the gravitational potential
energy, which cannot be localized unambiguously.

To boost the metric (83), it is sufficient to consider its
linearized form

ds2 �

�
1�

2m
r

�
�d�2 � �2d�2 � d �z2� � 4a

�z
r
d�d�t

�

�
1�

2m
r

�
d�t2; (85)

where r2 � �2 � �z2. We apply a Lorentz transformation

�z �
1

2
�ve�� � ue��; �t �

1

2
�ve�� � ue��; (86)

where u � t� z and v � t� z. In the limit �! 1 this
sends the originally static source moving along the path
z � t in the new frame. Noting that lim�!1 �z =r � 
�u� �
�1, rescaling mass and angular momentum according to

m � �e�; a � �e�; (87)

and using the distributional identity

lim
�!1

e�������������������������
�2 � u2e2�

p �
1

juj
� ��u� lnj�=lj; (88)

where l is an arbitrary length scale, we readily obtain the
limiting form
-7
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ds2 � d�2 � �2d�2 � dudv� 2���u� lnj�=ljdu2

� 2�
�u�dud�: (89)

[In (89), we have absorbed the term 1=juj from (88) by a
transformation of v.] This is a special case of (77). It
represents a pair of semi-infinite gyratons with equal and
opposite angular momentum densities �
�u�, joined to the
Aichelburg-Sexl boosted particle of energy �. Clas-
sification of the 4-dimensional ppwaves with an impulsive
profile based on their symmetries can be found in [32].

V. 5-DIMENSIONAL GYRATONS

A. General solution

In order to obtain a solution for the gravitational field of
a 5-dimensional gyraton one needs to analyze electro- and
magnetostatics in a flat 3-dimensional space.

Let us consider first the magnetic equation (31). Using
the standard 3-dimensional notations one can write these
equations in the form

B � curl A; curl B � 0: (90)

The second equation implies that there exists a function �,
the magnetic scalar potential, such that the magnetic field
B is

B � �r�: (91)

The first of the equations (90) implies that the magnetic
potential obeys the following equation:

4� � 0: (92)

Let �r; �;�� be the spherical coordinates

x3 � ix4 � r sin�ei�; x5 � r cos�: (93)

Then the general solution of (92) decreasing at infinity can
be written as follows:

� �
X1
l�0

Xl
m��l

alm
Ylm��;��

rl�1
; (94)

where the complex coefficients alm obey the conditions
�alm � al�m. Here Ylm��;�� are spherical harmonics

Ylm��;�� �

����������������������������������
�2l� 1��l�m�!

4��l�m�!

s
Pml �cos��eim�: (95)

The magnetic induction vector B is

B � �
X1
l�0

Xl
m��l

almr
�
Ylm
rl�1

�
: (96)

In order to find the corresponding vector potential A one
needs to solve the following equation:

curl A � �r�: (97)

It can be done by using the properties of vector spherical
084031
harmonics. Let us denote

�lm��;�� � rrYlm��;��; (98)

�lm��;�� � r
rYlm��;��: (99)

The vector spherical harmonics obey the following rela-
tions [33]:

r


�
�lm

rl�1

�
� r


�
r
�lm

rl�2

�
: (100)

r �

�
�lm

rl�1

�
� 0: (101)

Using the first of these relations one finds

A � A0 �
X1
l�1

Xl
m��l

alm
l

�lm

rl�1
: (102)

The relation (101) shows that the solution (102) obeys the
following gauge condition:

div A � 0: (103)

We denote by A0 a vector potential for the l � 0 case
which requires a special treatment, since in this case �0 �
0 and ratio �lm=l are not determined.

A general solution of the equation (34) for ’ can be
written as

’ �
X1
l�0

Xl
m��l

blm
Ylm��;��

rl�1
; (104)

where the coefficients blm obey the conditions �blm � bl�m.
For a gyraton solution coefficients alm and blm are arbitrary
functions of the retarded time u. To obtain  one can use
(40) with the

G �x;x0� �
1

4�jx� x0j
: (105)
B. Monopole solution

As we mentioned, the case of a magnetic monopole (l �
0) is special. Let us consider it in more detail. The mag-
netic potential � for the magnetic monopole is

� � �
�
r
; (106)

where � is an arbitrary function of u. The magnetic
induction vector has components

Br �
�

r2 ; B� � B� � 0: (107)

The corresponding vector potential is of the form

Ar � A� � 0; A� � �� cos�: (108)

The potential obeys the condition divA � 0 and the po-
tential  is
-8
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 �
�2

4r2 : (109)

The corresponding monopole solution for the gyraton is

ds2 � �2dudv� dr2 � r2d�2 � r2 sin2�d�2

�

�
’�

�2�u�

4r2

�
du2 � 2��u� cos�dud�: (110)

Here ’ � ’�u; r; �;�� is a solution of the equation (34).
Similarly to the 4D case this metric is related to the

boosted NUT-like metric. Consider a metric (R2 � r2 �
w2)

ds2 � �

�
1�

2m

R2

�
dt2 � 4a cos�d�dt

�

�
1�

2m

R2

�
�dr2 � r2d�2 � r2 sin2�d�2 � dw2�:

(111)

It is Ricci flat to linear order and it is a linearized version of
5D NUT spacetime. (An exact counterpart of this linear-
ized metric does not seem to be known.) Applying the
boost

w �
1

2
�ue� � ve���; t �

1

2
�ue� � ve��� (112)

rescaling me2� � 1
2�

2, ae� � ��, and noting

lim
�!1

R�2 � r�2; (113)

we recover (110) with ’ � 1 in the limit �! 1.

C. Dipole solution

The spherical harmonics for the l � 1 case are

Y10 � �
x5

r
; � �

�������
3

4�

s
; (114)

Y11 � �Y1�1 � �
����
2
p

x3 � ix4

r
: (115)

Notice that r
rF�r� � 0. Using this property we obtain

�10 �
�
r
�x4;�x3; 0�; (116)

�11 � �i
����
2
p
r
�x5;�ix5; x3 � ix4�: (117)

Let us denote

!ab � xadxb � xbdxa: (118)

Then the expressions for �A1m; dx� take the form

�A10; dx� � a10
�

r3 !
34; (119)
084031
�A11; dx� � a11
�

r3 �!
45 � i!35�: (120)

The vector potential for a general dipole solution can be
written as follows:

�A; dx� �
�

8�
jabxbdxa

r3 ; (121)

where

jabx
bdxa �

8��
�
�a10!

34 �
���
2
p

Re�a11�!
45

�
���
2
p

Im�a11�!35�; (122)

and a10, a11 are arbitrary functions of u.
VI. HIGHER-DIMENSIONAL CASE

Let us discuss first the scalar (electrostatic) equation (34)
in the n-dimensional Euclidean space Rn

4’ � 0: (123)

To solve this equation it is convenient to decompose the
potential ’ into the scalar spherical harmonics [34]

Yl � r�lYl; Yl � Cc1���clx
c1 � � � xcl ; (124)

where Cc1���cl is a symmetric traceless rank-l tensor. It is
easy to see that the number of linearly independent com-
ponents of coefficients Cc1���cl is

d0�n; l� �
�l� n� 3�!�2l� n� 2�

l!�n� 2�!
: (125)

These harmonics are eigenfunctions of the invariant
Laplace operator on a unit sphere Sn�1 with eigenvalues
�l�n� l� 2�. For each l there exists d0�n; l� linearly
independent harmonics. We shall use an index q to enu-
merate the independent harmonics. The functions Ylq form
a complete set, so that any smooth function F on Sn�1 can
be decomposed as

F �
X1
l�0

X
q

FlqYlq: (126)

Consider now a special mode Flq�r�Ylq. It is a
decreasing-at-infinity solution of (123) if Flq 
 r��n�l�2�.
This can be proved by using the properties of the scalar
spherical harmonics. We demonstrate this directly by using
the relations (124).

First, it is easy to check that

4Yl � 0; xd@dY
l � lYl: (127)

Using these relations one obtains

4�f�r�Yl� �

�
f00 �

�n� 2l� 1�

r
f0
�
Yl: (128)

Thus for f � 1=rn�2l�2 the mode functions f�r�Yl obey
-9
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the Eq. (123). To summarize, a general solution of the
electrostatic equation (123) can be written in the form

� �
X1
l�0

X
q

Ylq

rn�2l�2
: (129)

In the gyraton solution (1) d0�n; l� independent compo-
nents of Cc1���cl�1

are arbitrary functions of u.
In a similar way, one can obtain solutions of the equa-

tions of magnetostatics in n-dimensional Euclidean space
by using the vector spherical harmonics [34]. Let us denote

Ala � f�r�Yl
a; (130)

Y l
a � Cabc1���cl�1

xbxc1 � � � xcl�1 : (131)

Here Cabc1���cl�1
is a �l� 1�th-rank constant tensor which

possesses the following properties: it is antisymmetric
under the interchange of a and b, and it is traceless under
the contraction of any pair of indices [34].

First, let us demonstrate that Ala obeys the gauge condi-
tion

@aAla � 0: (132)

Notice that

@af�r� � f0�r�
xa

r
: (133)

Thus

@aAla � f@aYl
a � 0: (134)

The latter equality follows from the fact that when @a is
acting on one of x it effectively produces a contraction of
two indices in C which vanishes.

In the gauge (132) the magnetostatic field equation (31)
reduces to the following equation:

4Ala � 0: (135)

It is easy to get

4Yl
a � 0; xb@bY

l
a � lYl

a: (136)

Using these relations one obtains

4�fYl
a� �

�
f00 �

n� 2l� 1

r
f0
�
Yl
a: (137)

Hence Yl
a is a solution of (135) if

f00 �
n� 2l� 1

r
f0 � 0: (138)

Solving this equation we get f � 1=rn�2l�2. Hence a
general decreasing-at-infinity solution of the magnetostatic
equations in the n-dimensional space (31) can be written as

Aa �
X1
l�1

X
q

Ylq
a

rn�2l�2
: (139)
084031
Again, we use an index q to enumerate different linearly
independent vector spherical harmonics. The total number
of these harmonics for given l is [34]

d1�n; l� �
l�n� l� 2��n� 2l� 2��n� l� 3�!

�n� 3�!�l� 1�!
: (140)

In the gyraton solution (1) the coefficients Cabc1���cl�1
in the

decomposition (139) are arbitrary functions of the retarded
time u. For a given solution A relation (40) allows one to
find  .

VII. SUMMARY AND DISCUSSIONS

The main result of this paper is that the vacuum Einstein
equations for the gyraton-type metric (1) in an arbitrary
number of spacetime dimensions D can be reduced to
linear problems in the Euclidean �D� 2�-dimensional
space. These problems are (1) to find a static electric field
’ created by a pointlike source; (2) to find a magnetic field
A created by a pointlike source. The retarded time u plays
the role of an external parameter. One can include
u dependence by making the coefficients in the harmonic
decomposition for ’ and A to be arbitrary functions of u.
After choosing the solutions of these two problems one can
define  by means of Eq. (40). By substituting � � ’�  
and A into the metric ansatz one obtains a vacuum solution
of the Einstein equations.

Such a gyratonlike solution has a singularity located at
the spatial point x � 0 during some interval of the retarded
time u. It means that the corresponding pointlike source is
moving with the velocity of light. Energy E and angular
momentum Jab are finite. It was demonstrated that for
given energy and angular momentum the gyraton can
also have other characteristics, describing the deviation
of � from spherical symmetry (in the transverse space
Rn) and the presence of higher than dipole terms in the
multipole expansion of A. One can interpret such solutions
as excitations or distortions of the gyraton solutions ob-
tained earlier in [5].

It should be emphasized that the pointlike sources are
certainly an idealization. In [5] it was shown that gyraton
solutions can describe the gravitational field of beam-pulse
spinning radiation. In such a description one uses the
geometric optics approximation. For its validity the size
of the cross section of the beam must be much larger than
the wavelength of the radiation. In the presence of spin J
one can expect additional restrictions on the minimal size
of both, the cross-section size and the duration of the pulse.
As usual in physics, one must have in mind that in the
possible physical applications the obtained solution is valid
only outside some region surrounding the immediate
neighborhood of the singularity.

The gyraton solutions might be used for studying the
gravitational interaction of ultrarelativistic particles with
spin. The gyraton metrics might be also interesting as
possible exact solutions in the string theory.
-10
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