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We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter
(AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of
thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent
claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities
measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first
law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary
CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-
Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more
fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that
at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black
hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper
bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole
spacetimes with a positive cosmological constant.
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I. INTRODUCTION

There has been much progress recently in constructing
solutions of the supergravity equations describing rotating
and charged black holes in n-dimensional anti-de Sitter
(AdS) backgrounds [1–9]. A primary motivation for this
work was the elucidation of the thermodynamics of these
black holes, with a view to comparing it with that of the
dual conformal field theory (CFT) [10–12] on the bound-
ary of the spacetime, which approaches AdS with radius of
curvature l.1 In particular the correct energies and angular
momenta for Kerr-AdS black holes, measured with respect
to a frame that is nonrotating at infinity, were calculated in
all dimensions in [13], where it was also demonstrated that
these quantities satisfy the first law of thermodynamics,

dE � TdS��idJi: (1.1)

This resolved some of the apparent ambiguities in earlier
work, that had focused on energies and angular velocities
measured with respect to a particular frame rotating at
infinity, which we shall denote with primes throughout
this paper.2 As shown in [13], these do not satisfy the first
law of thermodynamics:

dE0 � T0dS0 ��i0dJ0i; (1.2)
dimensions, the dual boundary conformal field
� 4 supersymmetric SU�N� Yang-Mills theory,
c3l3=�2@G5�.

ntities measured in the rotating coordinate system
rom their values in the asymptotically static frame,

we denote all quantities measured in the rotating
imes in the present discussion.

05=72(8)=084028(20)$23.00 084028
since the asymptotic rotation rate in this frame depends on
the black-hole rotation parameters.

In a recent paper, Cai et al. [14] noticed that by passing
from the bulk quantities (E0, J0i) to the dual CFT quantities
(e0, j0i, . . . ) on the boundary, and by including an additional
pressure term p0 and suitably defined volume term v0, the
equation

de0 � t0ds0 �!i0dj0i � p
0dv0 (1.3)

holds. They interpreted this equation as the first law for the
dual CFT, and furthermore they made the surprising claim
that no such analogous CFT thermodynamic variables can
be introduced that are dual to the unprimed bulk quantities,
and which satisfy the first law,

de � tds�!idji � pdv: (1.4)

One purpose of this paper is to refute this surprising claim,
and on the contrary to demonstrate that following the
perfectly standard transcription rules relating bulk and
boundary quantities, the first law (1.4) does indeed hold.
We also raise questions as to whether the interpretation of
the primed quantities given in [14] is physically correct.

A remarkable feature of [14], following earlier work in
[15,16], is the observation that the primed bulk quantities
satisfy a Cardy-Verlinde [17] type formula,

S0 �
2�l
n� 2

����������������������������
E0c�2E0 � E0c�

q
;

E0c � �n� 1�E0 � �n� 2��T0S0 ��i0J0i�;
(1.5)

whereas the unprimed quantities measured with respect to
a nonrotating frame at infinity do not. This has motivated
us to reexamine the old question of whether or not AdS
-1 © 2005 The American Physical Society
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black holes satisfy some sort of possibly modified Cardy-
Verlinde formula, and a Bekenstein-type bound of the
form3

E �
�n� 2�S

2�l
: (1.6)

The existence of the Bekenstein bound is a necessary but
not sufficient condition for the validity of a Cardy-Verlinde
formula. In fact, we find that while there appears to be no
universal formulation of a modified Cardy-Verlinde for-
mula that will cover all of the charged and rotating AdS
black holes that we know of, we do find that a Bekenstein
bound holds in all cases.

In fact, the Bekenstein bound follows from a stronger
and more fundamental inequality, the cosmic-censorship
bound, which takes the form

E �
�n� 2�A

16�l

�
l
�

A
An�2

�
�1=�n�2�

�
1

l

�
A

An�2

�
1=�n�2�

�
;

(1.7)

where A is the area of the event horizon, or more generally,
in time-dependent cases, the area of the outermost apparent
horizon, and An�2 is the volume of the unit (n� 2)-
sphere. We show that the recently constructed exact solu-
tions for rotating and charged AdS black holes give strong
support for the conjectured cosmic-censorship bound.

As well as lower bounds for the energy in terms of the
entropy, it is well known that there are interesting upper
bounds for the temperature as a function of entropy, for
black holes in asymptotically flat spacetimes. It turns out
that these may be generalized to the static anti-de Sitter
case, taking the form

4�T � �n� 3�
�

A
An�2

�
�1=�n�2�

� �n� 1�l�2

�
A

An�2

�
1=�n�2�

; (1.8)

in n dimensions. That is, the temperature is never greater
than the value it would have in the Schwarzschild-AdS
solution with the same entropy. We investigate whether the
bound extends to stationary black holes, finding that it is
obeyed by all Kerr-AdS black holes in four and five di-
mensions, but not in dimensions six or higher.

The uncharged rotating black-hole solutions are of
course valid also if the cosmological constant is taken to
be positive, corresponding to sending l2 ! �l2. In this
case, an additional, cosmological, horizon is present. We
verify that these solutions support the general conjecture
that the area AC of the cosmological horizon satisfies
3Note that the Bekenstein bound does not contain Newton’s
constant, and so it makes sense for any thermodynamic quantity
in an AdS background. However, in this paper our concern is
solely with black holes.
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AC �An�2l2; (1.9)

and the black-hole horizon satisfies the inequality

AH �An�2l
n�2

�
n� 3

n� 1

�
�n�2�=2

: (1.10)

The plan of the paper is as follows. In Section II we
establish a general equivalence between bulk and boundary
thermodynamics, and explain our disagreement with some
of the work in [14]. In Section III, we review the Cardy-
Verlinde formula and its consequence, the AdS-Bekenstein
bound, explaining why it is saturated at the Hawking-Page
phase transition. We show that a simple modification holds
for Reissner-Nordström-AdS black holes, and gives rise to
a strengthened form of the Bekenstein bound. We also
show that in all dimensions rotating black holes without
charge satisfy the AdS-Bekenstein bound. In Section IV,
we examine a large number of examples of rotating and/or
charged black holes, finding that despite the failure in
general of the Cardy-Verlinde formula, the AdS-
Bekenstein bound, or its strengthened electrostatic form,
holds. In Section V we discuss how the AdS-Bekenstein
bound may be regarded as a consequence of the AdS
cosmic-censorship bound, and demonstrate in all the ex-
amples we have checked that the AdS cosmic-censorship
bound does indeed hold, in some cases strengthened by an
electrostatic contribution. Section VI discusses upper
bounds for the temperature of AdS black holes, in terms
of their entropy. We find that rotating black holes in four
and five dimensions always have a temperature that is less
than that of the Schwarzschild-AdS solution with the same
area. However, rotating black holes of dimension six or
higher do not satisfy such a bound. Section VII contains a
brief discussion of the areas of the cosmological and black-
hole horizons for rotating black holes with positive cos-
mological constant. We collect for the reader’s conve-
nience, in an appendix, the pertinent formulae for Kerr-
AdS black holes in arbitrary dimensions. Our conclusions
are contained in Section VIII.

II. BULK AND BOUNDARY THERMODYNAMICS

The purpose of this section is to show that there is a
universal rule allowing one to pass between bulk and
boundary quantities in such a way that if one set of quan-
tities satisfies the first law of thermodynamics, then so will
the other.

A. Tolman or UV/IR scaling transformations

It is quite generally true that if an arbitrary thermody-
namic system satisfies the first law of thermodynamics
without a pressure term,

dE � TdS��idJi ��idQi; (2.1)

then associated with it is a second system, with pressure
equal to the energy density divided by the spatial dimen-
-2
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sion, which satisfies the first law with pressure term:

de � tds�!idji ��idqi � pdv: (2.2)

Actually, since the first system need have no natural di-
mension associated to it, the spatial dimension (n� 2) of
the second system can be arbitrary. The thermodynamic
quantities of the second system, denoted by lowercase
letters, are related to those of the first system by

e �
l
y
E; !i �

l
y

�i; �i �
l
y

�i; t �
l
y
T;

s � S; ji � Ji; qi � Qi; (2.3)

with

v �An�2y
n�2; p �

e
�n� 2�v

; (2.4)

where An�2 is the volume of the unit (n� 2)-sphere.
Here, y is to be thought of as the radius of the second
system, and l is an arbitrary constant, which in our appli-
cation is related to the cosmological constant, so that
R�� � ��n� 1�l�2g��. Note that in (2.3) the intensive
quantities (T, �i, �i) are scaled, as is the energy E, while
the extensive quantities (S, Ji, Qi) are not scaled.

As it stands, the above result is a mathematical triviality.
However, in the case we are considering, where the first
system is a rotating charged black hole in an AdSn back-
ground, it allows us to relate the bulk thermodynamic
quantities associated with the black hole to the boundary
quantities associated with the dual conformal field theory.
The quantities (E, T, S, �i, Ji, �i, Qi) are all evaluated
with respect to a coordinate frame (t, y, �̂i, ’i) that is
nonrotating and asymptotically spherical at infinity.4 In
these coordinates, the metric of the rotating black hole
approaches the AdS metric

d �s2 � ��1� y2l�2�dt2 �
dt2

1� y2l�2

� y2
XN��
k�1

�d�̂2
k � �̂

2
kd’

2
k�; (2.5)

in n � 2N � �� 1 dimensions, where � � �n� 1� mod 2
(see [13], and the appendix, for a more detailed discus-
sion). Note that the radial coordinate y is related to the
Fefferman-Graham coordinate z� l2=y for which the met-
ric asymptotes to �l2dt2=z2 � l2dz2=z2 � l4=z2d�2

n�2.
The Killing vector @=@t is normalized so that near

infinity

g
�
@
@t
;
@
@t

�
! �

y2

l2
; (2.6)
4The time coordinate t should not be confused with the CFT
temperature t—it should be clear from the context which is
which.

084028
and this fixes the normalization of the quantities (E, T, �i,
�i). A boundary conformal field theory living on a surface
y � constant will thus occupy the volume v given in (2.4).
The intensive quantities (t, !i, �i) of the CFT are then
given by the standard Tolman redshifting factor, or, in the
language of the AdS/CFT correspondence, the UV/IR
connection, which coincides with our formulae in (2.3).
The pressure p is that expected of a conformally invariant
system, the trace of whose energy-momentum tensor
should vanish. One reason why the extensive quantities
S, Ji, and Qi cannot scale under the UV/IR connection is
that they are subject to quantization conditions, and are
given by integers.

The upshot of the above discussion is that the introduc-
tion of the pressure term is a triviality, which ensures that if
the first law of thermodynamics holds in the bulk, then it
holds also in the boundary CFT.

B. Relation to earlier work

Although for us the introduction of the pressure term is,
as we have explained above, a triviality, because our bulk
quantities satisfy the first law of thermodynamics, it is less
transparent if bulk thermodynamic variables are chosen
that do not satisfy the first law. As we showed in [13],
the way to obtain bulk thermodynamic quantities for black
holes that satisfy the first law is by calculating them with
respect to a frame that is nonrotating at infinity. The energy
measured in this frame can be derived [13] using the
Ashtekar-Magnon-Das conformal definition of mass in
AdS backgrounds [18,19]. It has also been shown [20]
that the same expression can be derived from the super-
potential of Katz, Bičák, and Lynden-Bell [21]. A further
calculation leading to the same expression for the energy
was given recently in [22].

There are, of course, infinitely many frames one could
choose that do rotate, with different rotation rates, at
infinity. One popular choice is the asymptotically rotating
coordinate system in which Carter first wrote the Kerr-AdS
black hole in four dimensions [23]. Analogous rotating
frames were introduced in five dimensions by Hawking,
Hunter, and Taylor-Robinson [1], and in all higher dimen-
sions in [2]. In these papers, the metrics are given in a
coordinate system which is rotating with angular velocity

�i
1 �

ai
l2

(2.7)

with respect to an asymptotically static frame, where ai are
the rotation parameters. (See the appendix for a summary
of the salient details of the Kerr-AdS metrics. In the
appendix, the metrics are given in an asymptotically static
coordinate system.)

The geometrical significance of this particular rotating
frame is that with respect to it the Kerr-Schild congruence,
which was used to construct the solution, is nonrotating at
infinity. However, this in itself does not appear to endow it
-3
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with any privileged dynamical significance. Nevertheless
one can certainly, as has been done in some of the litera-
ture, associate with it energies and angular velocities,
which we shall denote by primes, that are given in terms
of the unprimed nonrotating thermodynamic quantities
by [13]

E0 � E�
ai
l2
Ji; �i0 � �i �

ai
l2
; (2.8)

with all the other quantities being the same in the primed
and the unprimed frame.5 Note that

E0 ��i0J0i � E��iJi � E0 ��i0Ji: (2.9)

Throughout the rest of this paper, we shall use the symbols
E0 and �i0 to denote energies and angular velocities mea-
sured with respect to the asymptotically rotating frames for
which (2.7) holds.

Although E0 appears to have no special physical signifi-
cance, it turns out that it provides a useful bound for the
true energy E, in other words

E � E0; (2.10)

with equality if and only if the black hole is nonrotating.
As we noted in [13],

dE0 � TdS��i0dJi: (2.11)

However, Klemm et al. [15,16] discussed the thermody-
namics of rotating AdS black holes with a single non-
vanishing rotation parameter, and obtained an extended
system involving a chemical potential � and number N,
satisfying the first law. More recently, Cai et al. [14] have
introduced thermodynamic quantities which in our nota-
tion we shall write as e0, t0, s0, !i0, j0i, p

0, v0, given by

v0 �
An�2rn�2Q

j �j
; p0 �

e0

�n� 2�v0
; (2.12)

e0 �
l
r
E0; !i0 �

l
r

�i0; t0 �
l
r
T;

s0 � S; j0i � Ji;
(2.13)

and they have shown that these satisfy the first law

de0 � t0ds0 �!i0dj0i � p
0dv0: (2.14)
5The reason why Ji � J0i is that ‘‘passing to the rotating
frame’’ means in effect choosing a new timelike Killing field
from which E0 is constructed, but retaining the same angular
Killing fields from which the Ji are constructed. In other words,
one introduces the new rotating coordinates (t0, ’0i), related to the
asymptotically static coordinates (t, ’i) by t0 � t, ’0i � ’i �
ail
�2t, and associates the energy E0 with the Killing vector

@=@t0 � @=@t� ail2@=@’i, as opposed to the energy E associ-
ated with @=@t. Thus passing to a rotating frame is not the same
as performing an asymptotic SO�n� 1; 2� transformation; it is
merely picking a new basis for the Lie algebra so�n� 1; 2�.
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Note that the formula (2.12) for v0 is not as we defined in
(2.4), but rather has the additional factor

Q
i�i in the

denominator. This is needed in order to get the first law
(2.14) in the primed variables to work out, to compensate
for the failure of the bulk primed quantities to satisfy the
first law. It is also not difficult to see that if one chooses a
different rotation rate at infinity, replacing the right-hand
side of (2.7) with some general functions of the rotations
ai, then one cannot in general find a formula for v0 of the
form (2.12) with the factor

Q
i�i replaced by a suitable

function of the ai. To that extent, the fact that the primed
CFT quantities satisfy the first law (2.14) is not entirely
fortuitous. Nevertheless, it seems to us that it is the un-
primed CFT quantities given by (2.3) and (2.4) that most
closely correspond to the physical situation that motivated
the work in [1]. In other words, the relevant CFT should
rotate, relative to a frame nonrotating at infinity, with the
same angular velocity as that of the black hole in the bulk
theory.

One could pass to a frame that is corotating with the
black hole, i.e. one whose angular velocity with respect to
the frame that is nonrotating at infinity is equal to �i, given
by (A7). The associated Killing vector

K �
@
@t
��i @

@’i
(2.15)

(expressed using the asymptotically nonrotating coordi-
nates in (A2)) coincides on the horizon with its null gen-
erator, and is, provided jaij< l, everywhere timelike
outside the horizon. This has the desirable feature that
local energy densities measured with respect to this
Killing vector are everywhere positive [24]. However, it
has the distinct disadvantage that when considering any
energy exchange between the rotating black hole and its
environment, one must change to a new rotating frame
because in general �i changes. It is for this reason that
the first law of thermodynamics does not hold with respect
to the primed quantities. More generally, one could con-
sider a Killing vector of the form

eK � @
@t
� e�i @

@’i
: (2.16)

A simple calculation shows that on the horizon,

g� eK; eK� � gij� e�i
��i�� e�j

��j�; (2.17)

where gij � g�@=@’i; @=@’j�, and thus we see that for any

angular velocity e�i
that differs from �i, the associated

Killing vector eK is spacelike on (and therefore in the
neighborhood of) the horizon. In particular, this applies

to the choice e�i
� �i

1 � ai=l
2. Thus to use the primed

frame would neither achieve positivity of the local energy
density nor a simple form for the first law. It seems, there-
fore, that neither it, nor any other frame that is rotating at
infinity (other than, possibly, the frame that is rotating with
the angular velocity of the black hole) has any particular
-4
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merit or advantage over the frame that is nonrotating at
infinity. Of course physical results cannot depend upon an
arbitrary choice of frame.6 It is clear that we can describe a
rigidly rotating gas either as being at rest in a rotating
frame, or moving in a nonrotating frame. The choice which
seems to us the most straightforward and simple is the
latter. Similarly, the calculations in [25] need not have been
done using the primed quantities, and we disagree with the
assertion in [25] that it is necessary to use the primed
quantities in order ‘‘to extract data useful to a dual CFT.’’
As we have seen above, this is a trivial matter using the
nonrotating frame.

Using the primed energy E0 is precisely analogous to
using the kinetic energy of a particle with respect to a
rotating frame, such as that of the earth. It can be done,
but it is then necessary to consider the contributions to the
energy and the equations of motion due to the centrifugal
and Coriolis forces. If the particle is freely moving on the
rotating platform, and the rotation rate is changed, the
kinetic energy with respect to the rotating frame will
obviously change, while it will clearly be constant with
respect to an inertial frame. There would seem to be no
merit in introducing an artificially time-dependent rotating
frame merely to describe straightline motion in inertial
coordinates. If instead of free particles we considered a
gas in a state of rigid rotation, we would have a situation
rather more analogous to that of the CFT. The gas would
exert a pressure on its container, which in principle could
be measured in any rotating frame, but the two that are
most relevant are surely the rigid rotating frame corotating
the gas, or the one that is nonrotating with respect to an
inertial coordinate system. As we have explained earlier, if
the rotation rate changes with time, it is the latter which is
more convenient. Choosing to use the energy E0 in the
rotating black-hole problem is the equivalent of using a
frame that is neither nonrotating at infinity nor is it rotating
at the angular velocity of the black-hole horizon.
Furthermore, in previous work where the energy E0 has
nevertheless been used, the necessary corrections to com-
pensate for the changes in the rotation rate of the primed
frame have been omitted.

In [14], the CFT is assumed to be on a surface of large r
in Boyer-Lindquist coordinates, and the spatial volume is
supposed to be the volume of that surface. It should be
noted that although this spatial surface has the topology of
an (n� 2)-sphere it does not have an SO�n� 1� isometry
group even asymptotically at large r. If one nevertheless
chooses this r � constant boundary one must face up to the
fact that the temperature will be space dependent and there
6It should be emphasized that the different expressions for the
energy and angular velocity in different frames is not the result
of the coordinate transformation per se, but of using the trans-
formed time coordinate when defining the energy and angular
velocity.
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will be no conventional thermodynamic interpretation
where a global temperature is well defined.

For example, in four dimensions the Kerr-AdS metric at
large r approaches the form

ds2
4 �

r2��

l2�

�
�dt2 � l2

�
�d�2

�2
�

�
sin2�
��
�d�� al�2dt�2

��
;

(2.18)

where

�� � 1�
a2

l2
cos2�; � � 1�

a2

l2
: (2.19)

Defining a new coordinate �̂ by tan�̂ � �tan��=
�����
�
p

, it can
be seen that the 2-metric enclosed in braces is nothing but
the standard unit 2-sphere, whose volume is of course 4�.
The metric in the square brackets is that of a three-
dimensional rotating Einstein universe. The CFT metric
is in fact conformal to this, and with respect to this metric
the spatial volume is

2�r2

�

Z �

0
d�̂ sin�̂�� �

4�r2l

a
�����
�
p arcsin�a=l�: (2.20)

This is not equal to 4�r2=�, which is the value given in
[14]. We are thus unsure as to precisely which spatial
volume the quantity 4�r2=� in [14] is supposed to be.
Similar remarks apply to all the higher-dimensional ex-
pressions for v0 given in [14] and reproduced in (2.12).

A striking feature of the work in [14] is the finding that
the quantities e0, t0, s0,!i0, j0i, p

0, and v0 satisfy a suggested
formula of E. Verlinde [17], which itself was based on an
attempt to incorporate Bekenstein’s conjecture [26] of
some sort of bound relating entropy, energy, and radius.
This has motivated us to look in more detail at the general
question of such formulae and bounds, which we shall do
in the next section.

III. THE CARDY-VERLINDE FORMULA AND THE
BEKENSTEIN BOUND

A. The ideal Cardy-Verlinde gas

According to a proposal of E. Verlinde, a CFT living on
an (n� 1)-dimensional Einstein Static Universe (ESU) of
radius y and hence metric

ds2 � �dt2 � y2d�2
n�2; (3.1)

where d�2
n�2 is the canonical round metric on Sn�2 should

have

(a) A
-5
pressure, energy, and volume related by

p �
1

n� 2

e
v
; v �An�2y

n�2; (3.2)
(b) A
n entropy s given by

s �
2�y
n� 2

������������������������
ec�2e� ec�

q
; (3.3)
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e is a measure of the extent to which the energy e is
where c
nonextensive and given by

ec :� �n� 2��e� ts�!j��q� pv�: (3.4)

Subsequent work [27] showed that for free field theory,
the Cardy-Verlinde formula does not hold exactly, but it
agrees, up to a constant factor, in the high-temperature
limit. That is, at large T one has Ec / Tn�3, and E /
Tn�1, and hence S / Tn�2. However the factor of propor-
tionality is wrong. Nevertheless, it is still possible that it, or
some modified form, may hold in the strongly interacting
case that is relevant for the AdS/CFT correspondence.

In this limit, it is more convenient to discuss bulk, rather
than boundary, quantities. As we have emphasized in
Section II A, one can freely translate back and forth be-
tween the two descriptions. Using the Tolman redshifting
formula, or the UV/IR relation between lowercase and
capital letter quantities, one sees that (3.3) may be rewritten
in terms of bulk quantities as

S �
2�l
n� 2

���������������������������
Ec�2E� Ec�

q
; (3.5)

where Ec is given by

Ec :� �n� 2�
��

1�
1

n� 2

�
E� TS��J��Q

�
(3.6)

and we identify E as the conformal generator of J0n 2
so�n� 1; 2� associated to the asymptotically static Killing
field @

@t ,

E � ln�3J0n: (3.7)

For later purposes, we rewrite (3.6) as7

Ec � �n� 1�E� �n� 2�	TS��J��Q
: (3.8)

From now on we shall primarily be concerned with the
Cardy-Verlinde formula in terms of ‘‘bulk,’’ that is black-
hole, quantities. However, it is worth remarking that in
some papers the anti-de Sitter radius l is replaced by r�,
where typically r� is the radius of the horizon in
Schwarzschild or, in the rotating case, Boyer-Lindquist
coordinates. In effect this amounts to setting y � r� in
the redshifted CFT form. However, unless r� � l, this
cannot be regarded as a legitimate application of the UV/
symbol :� means that the quantity on the left-hand side
ed by the expression on the right-hand side. In particular
ll, for the sake of clarity, always stick with this primary
on of ec, and the analogous blue shifted quantities Ec. If
d to modify the definition we will indicate any modified
y by a circumflex, thus êc. The importance of this cannot
remphasized. If one does not stick to the primary defini-
.8), then the question of the existence or nonexistence of

formula becomes completely meaningless, since one
lways define ec in such a way that the Cardy-Verlinde

a became a trivial identity.
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IR relation, since if r� � l then �gtt is not well approxi-
mated by y=l.

B. Anti-de Sitter Bekenstein bound and Hawking-Page
transition

The (strict) Cardy-Verlinde formula (3.5) may be re-
garded as a formula for the energyE in terms of the entropy
S and nonextensive energy Ec:

E �
1

2
Ec �

1

2Ec

�
�n� 2�S

2�l

�
2
: (3.9)

Minimization with respect to Ec leads to the lower bound

2�lE � �n� 2�S; (3.10)

which we shall refer to as the Anti-de Sitter Bekenstein
Bound, regardless of whether it arises from a Cardy-
Verlinde formula. Clearly the anti-de Sitter Bekenstein
bound is a necessary, but not sufficient condition for the
existence of a Cardy-Verlinde formula.

This lower bound for the energy in terms of the entropy,
or alternatively upper bound for the entropy in terms of the
energy, is attained when

E � Ec �
�n� 2�S

2�l
: (3.11)

Note that for E> �n�2�S
2�l there are two values of Ec satisfy-

ing the Cardy-Verlinde formula (3.9), while if E< �n�2�S
2�l ,

there are none.
The calculation above may be reorganized as follows.

The thermodynamic potential � of the bulk black hole is
given by

� � E� TS��J��Q: (3.12)

Thus

Ec � E� �n� 2��; 2E� Ec � E� �n� 2��:

(3.13)

The Cardy-Verlinde formula can be cast in the Pythagorean
form

E2

�n� 2�2
�

S2

4�2l2
��2: (3.14)

We see from (3.14) that the Bekenstein bound is attained
if and only if the thermodynamic potential vanishes,

� � 0: (3.15)

If one accepts the quantum statistical relation between
thermodynamic potential and Euclidean action I,

� � TI; (3.16)

then the Bekenstein bound is attained when the Euclidean
action vanishes. In the black-hole case, this indicates that
the Euclidean black-hole solution with large energy E no
longer has smaller action than that of flat space, and a type
-6
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of phase transition is indicated, as was first discussed by
Hawking and Page [28] in the case of AdS4 black holes,
and by Witten [29] in the case of AdS5 black holes.

The bound (3.10) resembles the controversial universal
bound suggested by Bekenstein for systems in flat
Minkowski spacetime, except that Bekenstein’s putative
universal Minkowski bound contains an undefined radius.
In the AdS-Bekenstein Bound (3.10), this radius is taken to
be that of AdSn. However, for large radius we can use the
Tolman redshifting formulae (which are of course valid
only for large radius since we are using an approximate
form for the metric near the boundary), and we may just as
well write

2�ye � �n� 2�s; (3.17)

where now the radius is that of Sn�2. For clarity, we shall
call this latter bound the Spherical Bekenstein Bound or the
Sn�2-Bekenstein bound.

Note that neither the AdSn Bekenstein bound nor the
Sn�2 Bekenstein bound, like that in Bekenstein’s original
and rather imprecise Minkowski-spacetime bound, contain
Newton’s constant or make any specific reference to grav-
ity. Moreover, the AdSn Bekenstein bound (3.10) reduces,
in the Minkowski limit l! 1, to the undemanding re-
quirement that the energy be non-negative.

C. Nonrotating Reissner-Nordström black holes

Remarkably, the Cardy-Verlinde formula is satisfied by
Schwarzschild-AdS black holes in arbitrary dimensions.
However, it is violated by Reissner-Nordström-AdS black
holes. Nevertheless, a simple minimal modification does
hold, namely

�n� 2�S
2�l

�
�����������������������������������������
Ec�2E� Ec ��Q�

q
; (3.18)

or in Pythagorean form,�
E�

1

2
�Q

�
2
�

�
�n� 2�S

2�l

�
2
�

�
�

�n� 2
�

1

2
�Q

�
2
:

(3.19)

The minimally modified Bekenstein bound becomes

E �
1

2
�Q�

�n� 2�S
2�l

; (3.20)

with equality if and only if

�n� 2���
1

2
�Q � 0; (3.21)

or

�n� 2�TI �
1

2
�Q � 0: (3.22)

Because �Q � 0, we see that the AdSn Bekenstein
bound holds for Reissner-Nordström-AdS black holes.
084028
D. Rotating black holes without charge

As observed in [14], the Cardy-Verlinde formula does
not hold for rotating black holes in any dimension n � 4, if
one uses the thermodynamic quantities defined with re-
spect to a nonrotating frame at infinity. Remarkably, how-
ever, it was found in [14] (see [15,16] for earlier
discussions) that in all dimensions it does hold if one
uses the quantities defined with respect to a frame that
rotates with angular velocities �ai=l2 at infinity. Because
E � E0, one obtains an inequality,

E � E0 �
1

2
Ec �

1

2Ec

�
�n� 2�S

2�l

�
2
; (3.23)

whence

E �
�n� 2�S

2�l
: (3.24)

In other words, although the conserved quantities mea-
sured with respect to a frame nonrotating at infinity do
not satisfy the Cardy-Verlinde formula, they do satisfy the
Bekenstein bound.

In fact, one does not need to pass to the quantities E0 and
�i0 to establish that rotating AdS black holes satisfy the
AdSn Bekenstein bound. From (A12), we have

S �
An�2ml
4�
Q
j �j�

r�=l

1� r2
�=l

2 (3.25)

and hence, since x=�1� x2� � 1
2 , we have

S �
An�2ml
4�
Q
j �j�

; (3.26)

with equality if and only if r� � l. From results in [13], the
Euclidean action for the n-dimensional Kerr-AdS black
hole is given by

I �
�An�2m
8��

Q
i �i�

l2 � r2
�

l2 � r2
�

; (3.27)

where � is the inverse Hawking temperature. Thus we see
that r� � l corresponds to the Hawking-Page transition,
where the Euclidean action vanishes.

From (A10) and (A11) we have

E �
An�2m�n� 2�

8��
Q
j �j�

; (3.28)

since �i � 1, with equality if and only if the black hole is
nonrotating, i.e. if and only if all ai � 0. Combining (3.26)
and (3.28) gives the AdSn Bekenstein bound (3.24), with
equality if and only if the black hole is nonrotating, and at
the Hawking-Page transition.
IV. FURTHER EXAMPLES

From the previous work, it is natural to wonder whether
a simple modification of the Cardy-Verlinde formula, in-
-7
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volving the use of E0, and the electrostatic term �Q,
continues to hold for more complicated black holes with,
for example, more than one charge, or the recently con-
structed solutions representing rotating black holes with
one or more charge, and one or more rotation parameters.
In this section we shall study the various cases, and find
that while no universal simple modified Cardy-Verlinde
formula appears to exist that covers all these cases, we do
find in many cases we have studied that

E0c�2E0 � E0c ��iQi� �

�
�n� 2�S

2�l

�
2
; (4.1)

which implies the electrostatic form of the AdSn
Bekenstein bound,

E �
1

2
�iQi �

�n� 2�S
2�l

: (4.2)

A. Nonrotating black holes with multiple charges

Modifications of the Cardy-Verlinde formula for multi-
charge nonrotating black holes in gauged supergravities
have been discussed in [16,30]. Here, we give a related
discussion, focussing, in particular, on the electrostatic
AdS-Bekenstein bound, which we show to be satisfied in
all the four, five, and seven-dimensional examples that we
consider.

1. Four-dimensional multicharge black holes

The general four-charge solutions in four-dimensional
gauged supergravity are given by

ds2
4��

�Y
i

Hi

�
�1=2

fdt2�
�Y

i

Hi

�
1=2
	f�1d�2��2d�2

2
;

Ai� �1�H
�1
i �

��������������
qi��
qi

s
dt;

Xi�
�Y

j

Hj

�
1=4
H�1
i ;

Hi� 1�
qi
�
;

f� 1�
�
�
�g2�2

Y
i

Hi;

(4.3)

where Xi � e�1=2� ~ai� ~’, where ~’ denotes the three canoni-
cally normalized scalar fields, the ~ai are constant vectors
satisfying ~ai � ~aj � 4	ij � 1, and the Lagrangian is given
by

e�1L �
1

16�
R�

1

8�
�@’�2 �

1

16�

X
i

X�2
i F2

i

�
g2

16�

X
i<j

XiXj: (4.4)

(We use units where G � 1. See [31] for a more extensive
084028
discussion of the notation and conventions that we are
using.) Note that in order for the solution to be real, and
free of naked singularities, we must have qi � 0.

Straightforward calculations give

E �
1

2
��

1

4

X
i

qi;

Qi �
�����������������������
qi��� qi�

q
;

Ec �
1

4

X
i

��� � qi�;

2E� Ec �
X
i

�iQi �
1

4
����� ���

X
i

1

��� � qi�
;

S �
�
g

���������������������������
����� ���

q
;

(4.5)
where �� is the radius of the horizon, i.e. the largest root of
f��� � 0.

One observes that unless the charges are equal, qi � q,
the minimally modified Cardy-Verlinde formula (3.18)
fails. However, using the fact that the arithmetic mean is
never less than the harmonic mean, one finds that

E�
1

2

X
i

Qi�i �
1

2
Ec �

g2S2

2�2Ec
: (4.6)
Thus although the Cardy-Verlinde formula is violated,

S �
�
g

��������������������������������������������������
Ec�2E� Ec �

X
i

�iQi�

s
; (4.7)
nevertheless, the electrostatic AdS-Bekenstein bound still
holds,

E �
1

2

X
i

Qi�i �
gS
�
; (4.8)
despite the fact that the scalar fields, and hence also the
potential �g2P

i<jXiXj, are space dependent. In these
cases 1=g is only the asymptotic value of the anti-de
Sitter radius.

2. Five-dimensional multicharge black holes

The general three-charge solutions in five-dimensional
gauged supergravity are given by
-8
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ds2
5��

�Y
i

Hi

�
�2=3

fdt2�
�Y

i

Hi

�
1=3
	f�1d�2��2d�2

3
;

Ai� �1�H
�1
i �

��������������
qi��
qi

s
dt;

Xi�
�Y

j

Hj

�
1=3
H�1
i ;

Hi� 1�
qi
�2 ;

f� 1�
�

�2�g
2�2

Y
i

Hi;

(4.9)

where Xi � e�1=2� ~ai� ~’, where ~’ denotes the two canonically
normalized scalar fields, and the relevant Lagrangian is
given by

e�1L �
1

16�
R�

1

8�
�@’�2 �

1

16�

X
i

X�2
i F2

i

�
g2

4�

X
i

X�1
i : (4.10)

(We again use units where G � 1.) Again we must have
qi � 0 in order to have a real solution with no naked
singularities.

After straightforward calculation, we find that

E �
3

8
���

1

4
�
X
i

qi;

Qi �
1

4
�

�����������������������
qi��� qi�

q
;

Ec �
1

4
�
X
i

��2
� � qi�;

2E� Ec �
X
i

�iQi �
1

4
��2

���� �
2
��
X
i

1

�2
� � qi

;

S �
�2

2g
����� �2

��
1=2;

(4.11)

where �� is the largest root of f��� � 0. Again we see that
the minimally modified Cardy-Verlinde formula (3.18)
fails unless the qi are all equal. Again, using the fact that
the arithmetic mean is never less than the harmonic mean,
we obtain the inequality

Ec�2E� Ec �
X
i

�iQi� �

�
3gS
2�

�
2
; (4.12)

and hence we derive the minimally modified AdS-
Bekenstein bound

E�
1

2

X
i

�iQi �
3gS
2�

: (4.13)

Note that again, 1=g is only the asymptotic AdS radius.
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3. Seven-dimensional multicharge black holes

The nonrotating multicharge black-hole solutions of
maximal gauged supergravity in seven dimensions take
the form

ds2
7 ���H1H2�

�4=5f dt2� �H1H2�
1=5	f�1d�2��2d�2

5
;

Ai � �1�H
�1
i �

���������������
qi��
qi

s
dt;

Xi � �H1H2�
2=5H�1

i ;

Hi � 1�
qi
�4 ;

f � 1�
�

�2� g
2�2H1H2;

(4.14)

with the charges carried by theU�1� U�1� gauge fields in
the Abelian subgroup of SO�5�. Straightforward calcula-
tions show that

E �
5

16
�2��

1

4
�2
X
i

qi;

Qi �
1

4
�2

�����������������������
qi��� qi�

q
;

Ec �
1

8
�2

 
5�4
� �

X
i

qi

!
;

2E� Ec �
X
i

�iQi �
1

8
�2

"
5��� �4

�� � 3
X
i

qi

� 2
X
i

qi��� qi�

�4
� � qi

#
;

S �
�3

4g
�2
���� �

4
��

1=2:

(4.15)

The verification that these solutions satisfy the electro-
static AdS-Bekenstein bound is slightly more complicated
than for the four-dimensional and five-dimensional cases.
This is presumably related to the fact that unlike in n � 4
and n � 5, in these seven-dimensional solutions the scalar
fields are nonconstant even when the charges are set equal.
In fact the easiest way to verify the Bekenstein bound is by
performing a direct calculation of

X � E�
1

2

X
i

�iQi �
5Sg
2�

; (4.16)

and verifying that X is non-negative. We find that

X �
1

�2
�

	5�6
��g�� � 1�2 � q1q2g2

� 3�q1 � q2��2
��1� g

2�2
��

� 10
�������������������������������������������
��4
� � q1���

4
� � q2�

q

: (4.17)

Using the Maclaurin-Cauchy inequality
-9
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Y
i

bsii �
X
i

bisi; where
X
i

si � 1; (4.18)

we may deduce that�������������������������������������������
��4
� � q1���

4
� � q2�

q
�

1

2
�2�4

� � q1 � q2�; (4.19)

and hence we see that

X �
1

�2
�

�
5�6
��g�� � 1�2 � q1q2g2

� �q1 � q2��
2
�

�
3
�
g�� �

5

6

�
2
�

11

12

��
; (4.20)

which proves that X � 0 and hence the Bekenstein bound
is satisfied.

4. Relation to previous work

A more complicated modification of the Cardy-Verlinde
formula has been proposed, in terms of the parameters qi
and � which appear in the multicharge metrics [30]. This
modification incorporates the idea that the pressure of the
associated conformal field theory should be reduced by its
electrostatic self-repulsion. However, when reexpressed in
terms of the fundamental thermodynamic variables E, �i,
Qi, T, and S, the modification takes on a rather compli-
cated form, which appears to be a somewhat ad hoc
construction designed to ensure the continued validity of
the Cardy-Verlinde formula in these particular examples.

The modified Cardy-Verlinde formula in [30] is given by

S �
2�

�n� 2�g

�����������������������������������������
Êc�2E� 2Eq � Êc�

q
; (4.21)

where

Ê c � Ec � Eq; Eq �
An�2�n� 3�

16�

X
i

qi: (4.22)

This implies

E �
1

2
Êc �

1

2Êc

�
�n� 2�gS

2�

�
2
� Eq; (4.23)

and hence, minimizing with respect to Êc, one again ob-
tains the AdS-Bekenstein bound

E � Eq �
�n� 2�gS

2�
�
�n� 2�gS

2�
: (4.24)

It is interesting to compare Eq, given in (4.22), withP
i�iQi, which is given by

An�2�n� 3�

16�

X
i

qi��� qi�

�n�3
� � qi

; (4.25)

from which it follows that
P

�iQi � Eq, since �n�3
� � �.
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B. Rotating charged black holes

Various solutions for charged rotating black holes in
gauged supergravities have been obtained. In this section,
we study the generalized Bekenstein bounds for these
cases.

1. Four-dimensional Kerr-Newman-AdS black holes

One might have hoped that, at least for the four-
dimensional Kerr-Newman-AdS solution, a simple modi-
fication of the Cardy-Verlinde formula would work.
However, one finds that the minimally modified Cardy-
Verlinde formula, even in terms of quantities measured
with respect to the canonically rotating frame, fails.
Explicitly

E0c�2E
0 � E0c ��Q� �

�
S
�l

�
2
�

16a2Q2

l2
; (4.26)

where a is given in terms of the extensive quantities by

a �

���������������������
E02l4

4J2 � l
2

s
�
E0l2

2jJj
: (4.27)

Note that

E0c�2E
0 � E0c ��Q� �

�
S
�l

�
2

(4.28)

whence

E0 �
1

2
�Q�

1

2
E0c �

S2

2�2l2E0c
�

1

2
�Q�

S
�l
: (4.29)

But since E � E0, we have

E �
1

2
�Q�

S
�l
: (4.30)

In other words, once again, despite the fact that the
Cardy-Verlinde formula fails to hold, the electrostatic
AdS4-Bekenstein bound still holds.

2. Four-dimensional rotating black holes with pairwise
equal charges

The solution for rotating black holes in four-dimensional
gauged supergravity with four charges that are set pairwise
equal was given in [6]. The thermodynamic quantities were
evaluated in [32], where it was shown that the conserved
energy, angular momentum, and charges are given by
-10
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E �
2m� q1 � q2

2�2 ;

J �
a�2m� q1 � q2�

2�2 ;

Q1 � Q2 �

��������������������������
q1�2m� q1�

p
4�

;

Q3 � Q4 �

��������������������������
q2�2m� q2�

p
4�

;

(4.31)

BULK-BOUNDARY THERMODYNAMIC EQUIVALENCE, . .
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where the parameters qi are related to the boost parameters
	i in [6,32] by qi � 2msinh2	i.

We find that

E0c�2E
0 � E0c �

X
i

�iQi� �

�
S
�l

�
2
�

Xg2

4�r�
; (4.32)

where
X � 2a2�q1 � q2��a2 � a2g2q1q2 � g2q2
1q

2
2� � 	q1q2�q1 � q2�

2 � a4g2�q2
1 � 6q1q2 � q2

2� � a
2��q1 � q2�

2

� 2q2
1 � 2q2

2 � 3g2q3
1q2 � 3g2q3

2q1 � 10g2q2
1q

2
2�
r� � �q1 � q2��2a2 � 2a4g2 � �q1 � q2�

2

� a2g2�q2
1 � q

2
2� � 10a2g2q1q2
r2

� � 	�q1 � q2�
2 � 3a2g2�q2

1 � q
2
2� � 10a2g2q1q2
r

3
� � 2a2g2�q1 � q2�r4

�:

(4.33)
Since the parameters q1 and q2 must be positive, the
positivity of X is manifest. Hence we obtain the
Bekenstein bound

E �
1

2

X
i

�iQi �
Sg
�
: (4.34)

3. Five-dimensional rotating black holes with charges

The solution for a rotating black hole in five-
dimensional minimal gauged supergravity, with indepen-
dent rotation parameters in the two orthogonal planes in the
transverse space, was obtained recently [9]. The solution
can equivalently be viewed as a solution of SO�6�-gauged
supergravity, with three equal charges carried by the U�1�3

Abelian subgroup. The thermodynamic quantities were
also evaluated in [9], and it was shown that the energy,
angular momenta, and charge are given in terms of the
parameters m, a, and b in the metric by

E �
�m�2�a � 2�b ��a�b� � 2�qabg2��a ��b�

4�2
a�2

b

;

Ja �
2�ma� �qb�1� a2g2�

4�2
a�b

;

Jb �
2�mb� �qa�1� b2g2�

4�2
b�a

; Q �
�

���
3
p
q

4�a�b
;

(4.35)

where g � 1=l. We find that
E0c�2E0 � E0c ��Q� �
�
3Sg
2�

�
2
�

�2g2qX

16�2
a�2

b	�r
2
� � a

2��r2
� � b

2� � abq
r�
; (4.36)
where X is given by

X � q3a2b2 � q2ab�18a2b2 � 15�a2 � b2�r2
�

� 4a2b2r2 � 9r4� � q�r2
� � a

2��r2
� � b

2��18a2b2

� 9�a2 � b2�r2
� � 10a2b2g2r2

��

� 6ab�r2
� � a

2��r2
� � b

2�2�1� g2r2
��: (4.37)
Since X is manifestly positive, at least when q, a, and b are
positive, we therefore obtain the Bekenstein bound
E �
1

2
�Q�

3Sg
2�

: (4.38)

The bound is saturated if a � b � q � 0.
A further solution for charged rotating five-dimensional

black holes was obtained in [8], which corresponds to a
case where the three charges carried by the U�1�3 2 SO�6�
gauge fields are still all nonzero, but with two of them
being equal, and the third related to the first two in a
specific way. Thus the solutions in [8] have four indepen-
dent parameters, namely, the mass, the two rotations, and a
parameter characterizing the charges. For these solutions
we find
-11
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Ec�2E
0 � Ec �

X
i

�iQi� �

�
3Sg
2�

�
2
�

�2g2qX

16�2
a�2

br
2
�	�r

2
� � a

2��r2
� � b

2� � qr2
�

; (4.39)

where X is given by

X � 3�a2 � b2��r2
� � a

2��r2
� � b

2��1� g2r2
�� � q

3r2
��3a

2b2g2 � 2r2
� � �a

2 � b2�g2r2
�� � q�r

2
� � a

2��r2
� � b

2�

 	3a2b2 � �a2 � b2�r2
��8� 7g2r2

�� � g
2r2
��a

4 � b4 � 11a2b2� � 2r4
�
 � q

2r2
�	5a

2b2 � �a2 � b2�

 �7r2
� � 4a2b2g2 � 5g2r4

�� � 2g2r2
��a

4 � b4 � 8a2b2�
: (4.40)
This is manifestly positive when q is positive, and so again
the AdS-Bekenstein bound (4.38) is satisfied.

V. THE COSMIC-CENSORSHIP BOUND

So far, we have established that for many of the sta-
tionary black-hole solutions we have examined, the elec-
trostatic AdSn Bekenstein bound (4.2) is satisfied. In this
section, we shall propose that this is a consequence of a
more basic and more general lower bound for the energy E
of any initial data set for the Einstein equations with
negative cosmological constant, coupled to a matter system
that satisfies the dominant energy condition. This Cosmic-
Censorship Bound is expressed in terms of the area A of the
outermost apparent horizon of that initial data set. In the
case that there is no charge, the postulated lower bound
reads

E �
�n� 2�A

16�l

�
l
�

A
An�2

�
�1=�n�2�

�
1

l

�
A

An�2

�
1=�n�2�

�
:

(5.1)

Some consequences of this bound, which is a more
global extension of Hawking’s variational principle for
black holes [33], are:
(1) I
f l! 1, then (5.1) reduces to a bound first pro-
posed in n � 4 dimensions by Penrose, who ob-
served that it is a necessary condition for the
cosmic-censorship hypothesis [34]. (See [35,36].)
(2) T
he proposed bound (5.1) implies a generalization
of the AdSn Bekenstein bound, to the nonstationary
case. Noting that the quantity in square brackets in
(5.1) must be greater than or equal to 2, we have a
generalization of Bekenstein’s bound to the time-
dependent case when one may no longer equate
entropy with 1=4 of the area of an apparent horizon:

E �
�n� 2�A

8�l
: (5.2)
(3) T
he cosmic-censorship bound (5.1) is attained for
the case of a Schwarzschild-anti-de Sitter black
hole, and we propose that this is the only case for
which it is saturated.
The strongest physical argument in favor of (5.1) is as
follows. Consider an initial data set with total energy
084028
Einitial, a single outermost apparent horizon of area Ainitial,
and vanishing total angular momentum and charge.
According to standard lore, this should settle down to a
stationary state described by a Schwarzschild-de Sitter
black hole with total energy Efinal and event-horizon area
Afinal, where

Efinal �
�n� 2�Afinal

16�l

�
l
�
Afinal

An�2

�
�1=�n�2�

�
1

l

�
Afinal

An�2

�
1=�n�2�

�
: (5.3)

Assuming cosmic censorship, the apparent horizon lies
inside the event horizon, and since, in the time-symmetric
case, the apparent horizon is a minimal surface, its area
gives a lower bound for the area of the event horizon. Now
applying Hawking’s theorem stating that the area of the
horizon is nondecreasing, we obtain

Afinal � Ainitial: (5.4)

In anti-de Sitter spacetime, unlike in asymptotically flat
spacetimes, the total energy is constant, and therefore

Efinal � Einitial: (5.5)

It follows that

Einitial �
�n� 2�Ainitial

16�l

�
l
�
Ainitial

An�2

�
�1=�n�2�

�
1

l

�
Ainitial

An�2

�
1=�n�2�

�
: (5.6)

If the initial-value set had nonvanishing charge or angu-
lar momentum, it would be expected to settle down to the
relevant stationary solution carrying those charges or an-
gular momenta. However, the energy due to the charge or
angular momentum could be extracted by dropping parti-
cles carrying charge or angular momentum into the black
hole. In this process, the area of the event horizon cannot
decrease, but the energy may. Thus we expect the energy of
the black hole with charge or angular momentum to be less
than that of a Schwarzschild-AdS black hole with the same
event-horizon area.

We shall now review some of the additional evidence for
this form of the cosmic-censorship bound, and provide
some further support for it.
-12
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In the case of n � 4 dimensions and time-symmetric
initial data, Jang and Wald’s extension [37] of Geroch’s
[38] suggested method of proof of the positive mass theo-
rem for asymptotically flat metrics using the inverse mean-
curvature flow may be extended [39,40] to cover the case
of asymptotically anti-de Sitter metrics. Furthermore, if
one does so one obtains precisely the proposed lower
bound (5.1). The Geroch-Jang-Wald proposed method of
proof has been made into a rigorous theorem by Huisken
and Ilmanen [41,42]. It seems plausible, but there is as yet
no rigorous proof, that their methods will extend to the
anti-de Sitter case.

There is no general proof of the original asymptotically
flat cosmic-censorship inequality in higher dimensions. In
[43], it is shown to hold in the case of a collapsing shell,
using the obvious generalization of the four-dimensional
calculations in [44].

There exists a natural generalization of the inverse
mean-curvature flow to higher-dimensional time-
symmetric initial-value sets [40]. This might yield a proof
of the higher-dimensional inequality if on each level sur-
face Z

	 �R� �n� 2��n� 3�
dA � 0; (5.7)

where �R is the Ricci scalar of the (n� 2)-dimensional
metric on the level surface, and the integration is over
this surface.

In the static spherically symmetric case, the inequality
(5.1) may be proved as follows. We write the metric as

ds2 � �e2��r�
�
1�

2m�r�

rn�3

�
dt2 �

�
1�

2m�r�

rn�3

�
�1
dr2

� r2d�2
n�2: (5.8)

There is a horizon of area A �An�2r
n�2
� at r � r�,

where

rn�3
� � 2m�r��: (5.9)

The Einstein equations

R�� �
1

2
Rg�� � 8�T�� (5.10)

(where we include the contribution of the cosmological
constant in T��) imply

dm

dr
�

8�
n� 2

rn�2Tt̂ t̂; (5.11)

where the hats indicate components in an orthonormal
frame. We have

T�� � Tcosmic
�� � Tmatter

�� ; (5.12)

where Tcosmic
�� is the contribution from the cosmological

term. As r tends to infinity,
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m �r� ���! m�
rn�1

2l2
; (5.13)

where l is the asymptotic de Sitter radius. We may integrate
(5.11) from the horizon to infinity, to obtain

m �
1

2
rn�3
� �

rn�1
�

2l2
�

8�
n� 2

Z 1
r�
drrn�2Tmatter

0̂ 0̂

�
Z 1
r�
drrn�2

�
n� 1

2l2
�

8�
n� 2

Tcosmic
t̂ t̂

�
: (5.14)

If Tcosmic
t̂ t̂ is constant and Tmatter

t̂ t̂ satisfies the positive-energy
condition, we obtain the cosmic-censorship bound, which
will be saturated if and only if Tmatter

t̂ t̂ � 0, i.e. for the
Schwarzschild-de Sitter metric.

If Tcosmic
t̂ t̂ is not constant, because of the presence of

varying scalar fields, we still obtain a lower bound for m
if the integrand is positive. Unfortunately, in the gauged
supergravities we have considered the integrand is in fact
negative, because the potential is in general more negative
than its negative value at its vanishing-scalar stationary
point. However, even in this case the cosmic-censorship
bound may continue to hold, because kinetic energy term
for the scalars is positive. Indeed, this is what happens in
the examples we have examined.

A. Cosmic censorship for Kerr-AdS black holes
in arbitrary dimension

It is straightforward to show that the general Kerr-AdS
black holes in arbitrary spacetime dimension n satisfy the
cosmic-censorship bound (5.1). First, we note that one can
characterize the Kerr-AdS metrics by their rotation pa-
rameters ai, together with the radius r� of the outer hori-
zon. The mass parameter m appearing in the metric (A2) is
then solved for using V�r�� � m. It is then helpful to
introduce a new parametrization in terms of yi and z
instead of ai and r�, where

yi �
r2
� � a

2
i

r2
��i

; z �
r�
l
: (5.15)

Clearly we must have yi � 1, z � 0, and

r� � zl; a2
i �
�yi � 1�z2l

�1� z2yi�
; �i �

1� z2

1� z2yi
:

(5.16)

We begin by considering the case when n � 2N � 1 is
odd. From (A4), (A10), and (A12), the energyE is given by

E �
rn�3
� An�2�

Q
j yj�

16�

 
n� 2� 2z2

X
i

yi

!
; (5.17)

while the right-hand side of (5.1) is given by
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�n�2�rn�2
� �

Q
j yj�

16�l

"
z

 Y
i

yi

!
1=�n�2�

�
1

z

 Y
i

yi

!
�1=�n�2�

#
;

(5.18)

and so to show that the cosmic-censorship bound is satis-
fied, we must show that

�n� 2�

"
1�

 Y
i

yi

!
�1=�n�2�

#

� z2

"
2
X
i

yi � 1� �n� 2�

 Y
i

yi

!
1=�n�2�

#
� 0: (5.19)

The first bracketed term in (5.19), i.e. the term indepen-
dent of z, is manifestly positive since yi � 1. For the terms
at order z2 we may use the Maclaurin-Cauchy inequality
(4.18) to show that Y

i

yi

!
1=�n�2�

�
1

n� 2

X
i

yi �
n� 3

2�n� 2�
: (5.20)

Substituting this into the second bracketed term in (5.19)
shows that

2
X
i

yi � 1� �n� 2�

 Y
i

yi

!
1=�n�2�

�
XN
i�1

�yi � 1� � 0;

(5.21)

and hence the cosmic-censorship bound is proved.
In the case of even dimensions n � 2N � 2, an analo-

gous calculation shows that cosmic censorship is satisfied
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if

�n� 2�

"
1�

 Y
i

yi

!
�1=�n�2�

#

� z2

"
2
X
i

yi � �n� 2�

 Y
i

yi

!
1=�n�2�

#
� 0: (5.22)

Again using (4.18), we can show that Y
i

yi

!
1=�n�2�

�
1

n� 2

X
i

yi �
1

2
(5.23)

and so since yi � 1, the inequality (5.22) can indeed be
seen to hold.

B. Cosmic censorship for four-dimensional charged
rotating black holes

The cosmic-censorship bound (5.1) can be generalized
in the case of charged black-hole solutions [40,45]. In four
dimensions, it becomes

E �
A

8�l

�
l
�
A

4�

�
�1=2
�

1

l

�
A

4�

�
1=2
� lQ2

�
A

4�

�
�3=2

�
;

(5.24)

with equality being attained for the Reissner-Nordström-
AdS solution. Calculating E2 minus the square of the right-
hand side of (5.24) for the Kerr-Newman-AdS solution, we
find
E2 � �RHS�2 �
4�1� g2r2

��	a
2 � q2 � r2

� � g2r2
��r

2
� � a2�
2

�4r2
��r

2
� � a2�

; (5.25)

which is manifestly positive, thus demonstrating that the inequality (5.24) is obeyed in this case.

C. Cosmic censorship for five-dimensional charged rotating black holes

For solutions of five-dimensional minimal gauged supergravity, the generalized cosmic-censorship bound can be written
as

8E
3�
�

�
A

2�2

�
2=3
� g2

�
A

2�2

�
4=3
�

16Q2

3�2

�
A

2�2

�
�2=3

; (5.26)

with equality being attained in the case of the nonrotating Reissner-Nordström-AdS black hole. From the results obtained
in [9], we find that the inequality (5.26) translates into the requirement that

2

3
h	3� z2�y1 � y2�
 �

1

3
y1y2	3� z2 � 2z2�y1 � y2�
 �

h2�1� z2�

3�y1 � 1��y2 � 1�
	3� z2 � 2z2�y1 � y2�
 � �y1y2 � h�2=3

� z2�y1y2 � h�
4=3 �

h2�y1y2 � h��2=3

�y1 � 1��y2 � 1�
�1� z2y1��1� z

2y2� � 0; (5.27)

where
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y1 �
r2
� � a

2

r2
��a

; y2 �
r2
� � b

2

r2
��b

; z � gr�;

h �
abq

r4
��a�b

;

(5.28)

with yi � 1, z > 0, h � 0. We have studied (5.27) numeri-
cally and find that it appears to be satisfied for all allowed
values of the parameters (y1, y2, z, h), and thus it appears
that the generalized cosmic-censorship bound is obeyed by
the five-dimensional charged rotating AdS black holes
obtained in [9].

VI. AN UPPER BOUND FOR THE TEMPERATURE?

It is well known that the presence of matter with a
positive-energy density tends to reduce the temperature
of a black hole, because of the redshift produced by the
gravitational field of the matter. It is also well known that
charged or rotating black holes tend to have a smaller
temperature for the same entropy than their neutral or
nonrotating versions. A general explanation for this obser-
vation was provided by Visser in the static spherically
symmetric case in four dimensions with no cosmological
term [46]. In this section we shall generalize Visser’s
observation, and apply it to the Hawking-Page transition.

For the spherically symmetric static metric (5.8), the
Einstein equations imply

dm

dr
�

8�rn�2Tt̂ t̂
�n� 2�

; (6.1)

d�
dr
�

8�rn�2�Tt̂ t̂ � Tr̂ r̂�

�n� 2�	rn�3 � 2m�r�

; (6.2)

where the hats indicate components in an orthonormal
frame.

The surface gravity is


 � 2�T �
1

2r�
e��r��

�
n� 3� 2r4�n dm

dr

�
: (6.3)

This becomes


 � 2�T

�
1

2r�
e��r��

�
�n� 3� �

16�r2
�

�n� 2�
�Tcosmic
t̂ t̂ � Tmatter

t̂ t̂ �

�
:

(6.4)

If Tcosmic
t̂ t̂ is constant, then (6.4) becomes


 � 2�T

�
1

2r�
e��r��

�
�n� 3� � �n� 1�g2r2

�

�
16�r2

�

�n� 2�
Tmatter
t̂ t̂

�
: (6.5)

If the matter satisfies the dominant energy condition then
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Tmatter
t̂ t̂ � jTmatter

r̂ r̂ j � 0: (6.6)

Moreover

��r� � �
Z 1
r

8�r0n�2�Tmatter
t̂ t̂ � Tmatter

r̂ r̂ �

�n� 2�	r0n�3 � 2m�r0�

dr0: (6.7)

Thus ��r� will be nonpositive and

4�T �
�n� 3�

r�
� �n� 1�g2r�: (6.8)

If Tcosmic
t̂ t̂ is not constant, one might expect the kinetic term

for the scalars to compensate for any extra positive con-
tribution from �Tcosmic

t̂ t̂ , and the inequality to continue to
hold.

In the Schwarzschild-AdS case the inequality (6.8) be-
comes an equality. The minimum value of the right-hand
side occurs at

r� �
1

g

������������
n� 3

n� 1

s
; (6.9)

at which

T �
g
�������������������������������
�n� 1��n� 3�

p
2�

: (6.10)

This lower bound for the temperature is associated with the
Hawking-Page phase transition. Below this temperature,
there is no black-hole solution, while above it, there are
two. The Hawking-Page transition itself occurs at r� �
1=g, for which T � �n� 2�g=�2��. For temperatures
greater than (6.10) but smaller than �n� 2�g=�2��, both
Schwarzschild-AdS solutions have larger Euclidean action
than that of anti-de Sitter spacetime.

The general inequality (6.8) for spherically symmetric
black holes may be recast in the form

4�T � �n� 3�
�

A
An�2

�
�1=�n�2�

� �n� 1�g2

�
A

An�2

�
1=�n�2�

; (6.11)

where A is the area of the outer horizon. Equality is
achieved in the case of Schwarzschild-AdS black holes.

One might think that when the inequality is expressed in
the form (6.11), it would continue to hold for rotating as
well as nonrotating black holes. In other words, one might
conjecture that the minimum temperature, as a function of
entropy, is always less than or equal to the minimum
temperature of the Schwarzschild-AdS case. In fact, we
find that the bound (6.11) is obeyed by all Kerr-AdS black
holes in n � 4 and n � 5 dimensions. However, counter-
examples can be found for Kerr-AdS black holes in all
dimensions greater than or equal to 6.

To discuss the situation in arbitrary dimensions, it is
again helpful to use the parametrization introduced in
(5.15). In odd dimensions n � 2N � 1, showing that the
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inequality (6.11) is obeyed is equivalent to showing that

�n� 3�

 Y
i

yi

!
�1=�n�2�

� 2
X
i

y�1
i � 2

� �n� 1�

" Y
i

yi

!
1=�n�2�

� 1

#
z2 � 0: (6.12)

This must hold for the z0 and z2 terms independently. It is
clearly true for the z2 terms, since yi � 1, and so checking
the temperature bound for odd-dimensional Kerr-AdS
black holes amounts to checking whether

�N � 1�

 YN
i�1

yi

!
�1=�2N�1�

�
XN
i�1

y�1
i � 1 (6.13)

for all yi � 1. It is straightforward to see that in five
dimensions, for which N � 2, the function

�y1y2�
�1=3 �

1

y1
�

1

y2
� 1 (6.14)

is non-negative for all yi � 1, since it can be written in the
manifestly non-negative form

�y1y2�
�1f�y1 � 1��y2 � 1� � 	�y1y2�

2=3 � 1
g: (6.15)

This shows that all Kerr-AdS black holes in five dimen-
sions obey the temperature bound (6.11). However, if N �
3 it is clear that the inequality in (6.13) can be violated for
valid choices of the parameters yi. For example, we can
take y1 � y2 � 1, thus ensuring that the right-hand side of
(6.13) is at least 1, and then choose the remaining yi large
enough so that the left-hand side of (6.13) is less than 1.
Clearly if z, which is independently specifiable and subject
only to the restriction z � 0, is chosen to be sufficiently
small, then the order z2 terms in (6.12) will not be suffi-
ciently positive to overwhelm the negative contribution
from the terms at order z0, and so (6.12) will be violated.

In even dimensions n � 2N � 2, the analogous calcu-
lation shows that for these Kerr-AdS black holes the tem-
perature inequality (6.11) is equivalent to

�n� 3�

 Y
i

yi

!
�1=�n�2�

� 2
X
i

y�1
i � 1

� �n� 1�

" Y
i

yi

!
1=�n�2�

� 1

#
z2 � 0: (6.16)

Again, the terms at order z2 are clearly positive, and so
showing that (6.16) is satisfied is equivalent to showing that�

N �
1

2

� YN
i�1

yi

!
�1=2N

�
XN
i�1

y�1
i �

1

2
: (6.17)

Clearly this inequality is always obeyed in four dimen-
sions, corresponding to N � 1, since the function

1

2
y�1=2

1 �
1

y1
�

1

2
�

1

2
y�1

1 	�y1 � 1� � �y1=2
1 � 1�
 (6.18)
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is manifestly non-negative for all y1 � 1. Thus all Kerr-
AdS black holes in four dimensions obey the temperature
bound (6.11). It is clear, however, that the inequality (6.17)
can be violated for valid choices of the parameters, yi � 1,
if N is greater than or equal to 2 (i.e. in even dimensions n
greater than or equal to 6). For example, we could take
y1 � 1, and then by taking the remaining yi large enough,
the left-hand side of (6.17) can be made arbitrarily small,
while the right-hand side exceeds 1

2 . By also taking z
sufficiently small, this means that (6.16) can be violated
when N � 2.

More generally, one can see that in all dimensions
n � 6, there exist regions in the (yi, z) parameter space
for which the inequalities (6.12) or (6.16) are violated, and
using (5.16) these can be translated back into regions in the
parameter space for (ai, r�) for which the temperature
inequality (6.11) is not obeyed.

It is also worth remarking that similar conclusions are
obtained if we consider asymptotically flat, rather than
asymptotically AdS, rotating black holes. From (5.15) we
see that the asymptotically flat case, which arises when
g � 0, corresponds to taking z to zero. We saw above that
in the asymptotically AdS case there were terms in the
inequality that were of order z2, and terms of order z0. The
former were always consistent with the inequality, and it
was the z0 terms, which are the ones that survive in the
g! 0 limit, that had to be investigated in more detail.
Thus the conclusions for asymptotically flat rotating black
holes are the same as those for asymptoticallty AdS rotat-
ing black holes, namely, that violations of the temperature
inequality (6.11) can occur in all dimensions 6 and higher,
in cases where some of the rotations are small and some are
large.

Finally, we should emphasize that our finding of viola-
tions of the inequality (6.11) does not contradict or threaten
any cherished beliefs. The inequality was derived for static
solutions, and, although commonly such considerations
can lead to conjectured inequalities that have a wider range
of applicability, as in the case of the cosmic-censorship
bound (5.1), there is no a priori reason why it should do so
in this case. The result could, perhaps, be viewed as a
salutary reminder that a conjecture that holds up well in
low dimensions may run into trouble in higher dimensions.
VII. COSMOLOGICAL EVENT HORIZONS

In this section we take the cosmological constant to be
positive, thus

R�� �
n� 1

l2
g��: (7.1)

In order to obtain the necessary formulae one makes the
substitution l2 ! �l2.

In the case of pure de Sitter spacetime, dSn, one hasm �
ai � 0 and there is a cosmological horizon [47] at r � l. If
m> 0, this is at
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r � rC � l: (7.2)

Inside the cosmological horizon there will, in general, be a
black-hole horizon, at r � rH say.

If the spacetime dimension n is even, then the area of the
cosmological horizon AC is easily seen to be bounded
above by the value in pure dSn,

AC �An�2l
n�2: (7.3)

(For the four-dimensional case, see [39,48].) In some
sense, Smax �

1
4An�2l

n�2 represents the largest amount
of information that can ever be lost through the cosmologi-
cal horizon.

By manipulations similar to those in the case of a
negative cosmological constant, one may convince oneself
that�

AC
An�2

�
�n�3�=�n�2�

�
1�

1

l2

�
AC

An�2

�
2=�n�2�
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�
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1
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�
AH

An�2

�
2=�n�2�

�
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with equality only for the Kottler, i.e. Schwarzschild-de
Sitter, solution. In the Reissner-Nordström-de Sitter case,
one can do more, and obtain�

AC
An�2

�
�n�3�=�n�2�

�
1�

1

l2

�
AC
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�
2=�n�2�
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�
�n�3�=�n�2�

�
1�

1

l2

�
AH

An�2

�
2=�n�2�

�
��HQ;

(7.5)

where �C and �H are the electrostatic potentials of the
cosmological horizon and black-hole horizon. Actually,
only the potential difference between the two horizons
enters the inequality, as must be the case by gauge
invariance.

An interesting question is whether there is an upper
bound to the area of a black hole in a background de
Sitter spacetime [49]. For the Schwarzschild-de Sitter so-
lution, there is such an upper bound, which occurs when
the two horizons coincide. This happens when

rC � rH � l

������������
n� 3

n� 1

s
: (7.6)

It is natural therefore to conjecture that more generally,

AH �An�2ln�2

�
n� 3

n� 1

�
�1=2��n�2�

: (7.7)

It is easy to check that this is true for the Reissner-
Nordström-de Sitter solution in any dimension. The radius
r at which the two horizons coincide is easily seen to be

less than l
�������
n�3
n�1

q
and so the area of a charged black hole in a

background de Sitter spacetime is indeed never greater
than An�1ln�2�n�3

n�1�
n�2.
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In the rotating case the black hole and cosmological
horizons coincide when m, considered as a function of r,
has a vanishing derivative. One may check that this hap-
pens at

rC � rH < l

������������
n� 3

n� 1

s
: (7.8)

We have verified that the inequality (7.7) is satisfied for
rotating black holes in a variety of cases. These include the
general Kerr-de Sitter metrics in four and six dimensions;
the Kerr-de Sitter metrics with equal angular momenta in
five and seven dimensions, and the Kerr-de Sitter metrics
with equal angular momenta in all even dimensions.

Here, we shall just present the proof for the case of Kerr-
de Sitter metrics with equal angular momenta in all even
dimensions n � 2N � 2. From the formulae collected in
the appendix, and setting ai � a, we can show that the
condition for double root rC � rH can be expressed as

l2 �
r2
H	�n� 1�r2

H � a
2


�n� 3�r2
H � a

2 ; (7.9)

while the area of the horizon is given by

AH �An�2ln�2

�
r2
H � a

2

l2 � a2

�
�n�2�=2

: (7.10)

It is straightforward to see that

r2
H � a

2

l2 � a2
�
n� 3

n� 1
�

2a2

�n� 1�	�n� 1�r2
H � a

2

�
n� 3

n� 1
;

(7.11)

thus proving that these Kerr-AdS black holes indeed satisfy
the bound (7.7).
VIII. CONCLUSIONS

In this paper, we have studied the relation between the
thermodynamics of the bulk variables describing rotating
black holes in gauged supergravities, and the correspond-
ing variables in the boundary CFT. We have shown that by
using the standard UV/IR connection between the bulk and
the boundary, bulk quantities that satisfy the first law of
thermodynamics are mapped into boundary quantities that
likewise satisfy the first law of thermodynamics. An im-
portant point when considering rotating AdS black holes is
that the natural conformal boundary at large distance
is defined with respect to a coordinate frame in which
the metric is asymptotically static and asymptotically
spherical.

Our results have clarified some previous puzzling claims
in the literature, including, in particular, the assertion that
to get boundary quantities that satisfy the first law one must
start from bulk quantities that do not. This assertion was
based on calculations performed in a specific frame that is
rotating and nonspherical at infinity, with an angular ve-
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locity that depends on the rotation parameters of the black
hole. In our opinion this is not a convenient or natural
frame to use, and we believe that this is why it led to
apparently puzzling conclusions.

In this context, it is perhaps worth remarking that in
much of the literature on the subject of rotating AdS black
holes, there is a tendency to refer to just two choices of
frame, namely, the frame that is asymptotically static, and
the frame with rotation rates given by (2.7) at infinity. In
our opinion, the discussion of whether the thermodynamic
quantities such as energy should be defined with respect to
the former or the latter frame is misplaced. In reality
there are infinitely many different frames that could be
chosen, with arbitrary choices of asymptotic rotation rates.
Asymptotically static frames enjoy a preferred status, and,
as we showed in [13], the quantities defined in an asymp-
totically static frame satisfy the first law of thermodynam-
ics. Frames whose asymptotic rotation rates depend upon
the black-hole rotation parameters (such as the frame
specified by (2.7)) seem to be particularly unnatural from
the point of view of thermodynamic discussions, since one
would need to include extra terms to compensate for the
changing centrifugal and Coriolis contributions to the en-
ergy. Furthermore, if physical results (such as the energy)
depend upon the choice of frame (in the sense that they
depend upon the choice of timelike Killing vector used to
define the energy, etc.), then a justification is called for as
to why some specific frame, rather than one with some
other rate of rotation, has been chosen. We have argued that
for thermodynamic discussions, at least, the asymptotically
static frame is the physically natural one.

Some of the results in [14,16] show that in a different
context, namely, the discussion of the Cardy-Verlinde for-
mula, there is a significant merit to considering the energy
function E0 defined with respect to the frame with asymp-
totic angular velocity given by (2.7). It was shown in five
dimensions in [16], and in higher dimensions in [14], that
the Cardy-Verlinde formula (3.5) holds for rotating AdS
black holes, provided that one uses energies and angular
velocities measured with respect to the frame with angular
velocities given by (2.7) at infinity. As far as we are aware,
there is no a priori reason why a frame with this particular
angular velocity should be singled out in this context, but
the observation is certainly an interesting one.

Results had also been obtained for modifications to the
Cardy-Verlinde formula when applied to nonrotating
charged black holes [15,16,30]. The recent construction
of black holes that have both rotation and charge has
provided a wider spectrum of examples where the Cardy-
Verlinde formula can be tested, and we have reported some
results in the present paper. It seems that there is no natural
and universal modification which encompasses all the
cases. Nevertheless, as we have shown, there is a closely
related and physically more significant result that does
always hold for all the rotating charged black holes,
084028
namely, the existence of an AdS-Bekenstein bound
(3.10), and its electrostatic generalization (4.2). The AdS-
Bekenstein bound is itself a consequence of a more funda-
mental cosmic-censorship bound, and we have explicitly
demonstrated for many of the rotating and charged black
holes that this bound is indeed satisfied.

We have also examined the question of whether there is
an upper bound for the temperature as a function of entropy
for black holes in AdS backgrounds. In four and five
dimensions, we found that the temperature of a rotating
AdS black hole is always less than that of the
Schwarzschild-AdS black hole of the same entropy. In
six or more dimensions, by contrast, we find that for certain
choices of the rotation parameters, the rotating AdS
black hole can have a higher temperature than the
Schwarzschild-AdS black-hole of the same entropy. We
also discussed area inequalities for rotating black holes
with a positive cosmological constant, for which there is
a cosmological horizon as well as a black-hole horizon.

Finally, it is worth remarking that the whole question of
how one defines, and in practice calculates, the energies of
asymptotically AdS spacetimes is a subtle one, and many
interesting open avenues for research remain. Many of the
results for the energies of rotating AdS black holes were
obtained first by the method of integrating the first law of
thermodynamics, since this provides an unambiguous pro-
cedure that avoids the uncertainties associated with the
regularization and subtraction procedures that are needed
in some other definitions of the energy. However, it would
be interesting to establish a more direct connection be-
tween the calculations based on the first law, and calcu-
lations based on the computation of conserved charges.
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APPENDIX: GENERAL KERR-ADS BLACK HOLE
IN ARBITRARY DIMENSIONS

In this appendix, we collect some general results on
rotating asymptotically AdS black holes in arbitrary di-
mension n. The solution was obtained in n � 4 in [23], in
n � 5 in [1], and in n � 6 in [2,3]. Results on the thermo-
dynamics of the arbitrary-dimension rotating AdS black
holes were obtained in [13].

The metrics have N � 	�n� 1�=2
 independent rotation
parameters ai in N orthogonal 2-planes. We have n �
2N � 1 when n is odd, and n � 2N � 2 when n is even.
Defining � � �n� 1� mod 2, so that n � 2N � 1� �, the
metrics can be described by introducing N azimuthal an-
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gles �i, and �N � �� ‘‘direction cosines’’ �i obeying the
constraint

XN��
i�1

�2
i � 1: (A1)

In Boyer-Lindquist type coordinates that are asymptoti-
cally nonrotating, the metrics are given by [2,3]
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where

W �
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i�1

�2
i

�i
; U � r�
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i�1

�2
i

r2 � a2
i

YN
j�1
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(A3)

V � r��2�1� r2l�2�
YN
i�1

�r2 � a2
i �; �i � 1� a2

i l
�2:

(A4)

They satisfy R�� � ��n� 1�l�2g��.
The constant-r spatial surfaces at large distance are

inhomogeneously distorted (n� 2)-spheres. Making the
coordinate transformations

�iy
2�̂2

i � �r
2 � a2

i ��
2
i ; (A5)

where
P
i�̂

2
i � 1, the metrics at large y approach the

standard AdS form

d �s2 � ��1� y2l�2�dt2 �
dt2

1� y2l�2

� y2
XN��
k�1

�d�̂2
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2
kd’

2
k�; (A6)

with round (n� 2)-spheres of volume An�2y
n�2 at radius

y, where An�2 is the volume of the unit (n� 2)-sphere.
The angular velocities of the horizon, measured relative

to the frame that is nonrotating at infinity, are given by

�i �
�1� r2

�l
�2�ai

r2
� � a

2
i

; (A7)

and the angular momenta are
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Ji �
maiAn�2

4��i�
Q
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; (A8)

where

A n�2 �
2��n�1�=2

�	�n� 1�=2

(A9)

is the volume of the unit (n� 2)-sphere. As shown in [13],
the energy of the black hole, again measured in the asymp-
totically static frame, is given by

n � odd : E �
mAn�2
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n � even : E �
mAn�2
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The area of the event horizon is given by

A �An�2r��1
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Y
i
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� � a

2
i

�i
: (A12)

The Euclidean action was also calculated in [13], and
found to be given by
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where � is the inverse of the Hawking temperature, which
is given by

n � odd : 2�T � r��1� r2
�l
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(A14)

n � even :

2�T � r��1� r
2
�l
�2�

X
i

1
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2
i

�
1� r2

�l
�2

2r�
: (A15)

The traditional asymptotically rotating Boyer-Lindquist
coordinate system, where the angular velocities at infinity
are given by (2.7), is related to the coordinates in (A2) by
defining

’0i � ’i � ail�2t; t0 � t: (A16)

The energy E0 calculated in the asymptotically rotating
frame, i.e. using the timelike Killing vector @=@t0, is given
by [13]

E0 � E�
1

l2
X
i

aiJi �
�n� 2�mAn�2

8��
Q
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: (A17)
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0506029 [to appear in Phys. Rev. Lett.].

[10] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[11] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.

Lett. B 428, 105 (1998).
[12] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[13] G. W. Gibbons, M. J. Perry, and C. N. Pope, Classical

Quantum Gravity 22, 1503 (2005).
[14] R. G. Cai, L. M. Cao, and D. W. Pang, Phys. Rev. D 72,

044009 (2005).
[15] D. Klemm, A. C. Petkou, and G. Siopsis, Nucl. Phys.

B601, 380 (2001).
[16] D. Klemm, A. C. Petkou, G. Siopsis, and D. Zanon, Nucl.

Phys. B620, 519 (2002).
[17] E. Verlinde, hep-th/0008140.
[18] A. Ashtekar and A. Magnon, Classical Quantum Gravity

1, L39 (1984).
[19] A. Ashtekar and S. Das, Classical Quantum Gravity 17,

L17 (2000).
[20] N. Deruelle and J. Katz, Classical Quantum Gravity 22,

421 (2005).
[21] J. Katz, Classical Quantum Gravity 2, 423 (1985); J. Katz,
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