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We give a quantum field theoretical derivation of the scalar Abraham-Lorentz-Dirac (ALD) equation
and the self-force for a scalar charged particle interacting with a quantum scalar field in curved spacetime.
We regularize the causal Green’s function using a quasilocal expansion in the spirit of effective field
theory and obtain a regular expression for the self-force. The scalar ALD equation obtained in this way for
the classical motion of the particle checks with the equation obtained by Quinn earlier [T. C. Quinn, Phys.
Rev. D 62, 064029 (2000).]. We further derive a scalar ALD-Langevin equation with a classical stochastic
force accounting for the effect of quantum fluctuations in the field, which causes small fluctuations on the
particle trajectory. This equation will be useful for the study of stochastic motion of charges under the
influence of both quantum and classical noise sources, derived either self-consistently (as done here) or
put in by hand (with warnings). We show the possibility of secular effects from such stochastic influences
on the trajectory that may impact on the present calculations of gravitational waveform templates.
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I. INTRODUCTION

Interest in the problem of radiation reaction from parti-
cle motion in a curved spacetime has seen a rapid increase
in recent years. The back reaction of emitted radiation on
the particle, known as the self-force, changes the particle
trajectories (e.g., near a black hole) from a simple geodesic
motion. The determination of the self-force is essential to
precision calculations of particle trajectories and the deter-
mination of waveforms from prospective astrophysical
sources. Electromagnetic radiation reaction in a curved
spacetime was first studied by DeWitt and Brehm [1].
The gravitational radiation reaction equation was first ob-
tained by Mino, Sasaki and Tanaka [2] and Quinn and Wald
[3] and others, notably Detweiler and Whiting [4]. The
equation of motion governing a scalar charge with radia-
tion reaction was first obtained by Quinn [5]. For an
excellent review, see [6].

Parallel to this there has been detailed work devoted to
particles and detectors (e.g., atoms) moving in a quantum
field and in design studies of possible detection of Unruh
radiation (see, e.g.,[7–9] and references therein). The in-
troduction of world line path integral methods (see [10]
and references therein) enable one to obtain equations of
motion for the charges and the field self-consistently. The
introduction of open system concepts and the influence
functional method enables one to derive stochastic equa-
tions with a noise source derived ab initio and in a self-
consistent manner (See [7,11,12] for accelerating detec-
tors, [10,13,14] for moving charges.)

In this paper, we use the world line influence functional
method to study a particle with a scalar charge moving in
its own quantum scalar field in a curved spacetime. This is
a generalization of results obtained in [10] to curved space-
time. We are interested in the radiation it emits and its back
05=72(8)=084023(19)$23.00 084023
reaction (radiation reaction) on the trajectory of the particle
and derive the equations of motion for the quantum average
(expectation value) of the particle’s position. For those
particle trajectory histories which become sufficiently de-
cohered, the expectation value behaves classically. The
scalar Abraham-Lorentz-Dirac (ALD) equation we derive
in this limit checks with the result of Quinn [5]. We then
include in our consideration the effect of fluctuations in the
quantum field. We show how it behaves like a classical
stochastic force and derive a scalar ALD-Langevin equa-
tion for the particle dynamics with a stochastic component,
thus capturing the induced small fluctuations on the parti-
cle trajectory. This equation will be useful for the study of
stochastic motion of charges under the influence of both
quantum or classical noise sources, derived either self-
consistently (as done here) or put in by hand (with warn-
ings). For astrophysical sources with some stochastic com-
ponent this effect may need to be included in more accurate
calculations of waveform templates.

In Sec. II we describe the world line influence func-
tional method and how to obtain the semiclassical and
stochastic particle dynamics. In Sec. III we discuss how
to regularize the causal Green function in the spirit of
effective field theory using a quasilocal expansion. In
Sec. IV we derive the scalar ALD equation. In Sec. V
we derive the stochastic scalar ALD or the scalar ALD-
Langevin equation. We discuss the non-Markovian nature
of the noise-induced effects, and the possibility of secular
effects from such stochastic influences on the trajectory.
In Sec. VI we discuss an array of issues pertinent to the
present problem and approach. In Sec. VII we summarize
our findings and Appendices A, B, C, and D provide
further details in the derivation of certain results given in
the text.
-1 © 2005 The American Physical Society
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II. RELATIVISTIC PARTICLE-FIELD DYNAMICS

The open quantum system paradigm starts by consider-
ing a system, or universe, which is partitioned (according
to natural physical arguments or some large scale separa-
tion) into two smaller systems. One subsystem, called the
system, is assumed to be the one of interest and the other,
called the environment, contains many more degrees of
freedom. An accurate description of the behavior of the
system variables requires knowing the influence from the
environment due to their mutual interactions. A less than
accurate description of the overall influence of the environ-
ment can be obtained by introducing some coarse-graining
over the environmental variables.

A. World line influence functional

In a coordinate system, assume at some initial time ti the
quantum statistical state of the combined system S (particle
in position zi) and environment E (quantum field ’i) is
described by a density matrix ��zi; ’i; z0i; ’

0
i; ti�. In prac-

tice, specifying such a state is nontrivial since one requires
a timelike Killing vector to define positive frequency
modes and hence a Hilbert space of states. If the spacetime
admits an asymptotically flat region or is conformally flat
then the initial state can be constructed. But a general
spacetime may not admit a timelike Killing vector.
Regardless, we will sidestep these issues by working at a
formal level. At some tf > ti the density matrix is evolved
to

��zf; �f; z0f; �
0
f; tf� �

Z
dzid�i

Z
dz0id�

0
i

� K�zf; �f; tf; zi; �i; ti�

� ��zi; �i; z0i; �
0
i; ti�

� K��z0f; �
0
f; tf; z0i; �

0
i; ti�; (2.1)

where K is the amplitude of the time-evolution operator
Û�tf; ti� � expf�i=@

Rtf
ti dtĤS�E�z; �	g for the system

plus environment and has a path integral representation
given by

K�zf; �f; tf; zi; �i; ti� �
Z zf;�f

zi;�i

DzD�e�i=@�SS�E�z;�	:

(2.2)

The action describing the system plus environment can be
written as the actions for the system SS�z	 and environment
SE��	 along with an interaction action Sint�z;�	 between
them

SS�E�z; �	 � SS�z	 � SE��	 � Sint�z;�	 (2.3)

with
084023
SS�z	 � �m0

Z
d�

�����������������������
�g��u

�u�
q

SE��	 �
1

2

Z
d4x

�������
�g
p

�g��@��@��� �RR�2�

Sint�z; �	 �
Z
d4xj�x; z	��x�

� �
e

4�

Z
d�

����������������
�u�u�

q
��z����; (2.4)

where the current density j�x; z	 is given by

j�x; z	 � �
e

4�

Z
d�

�����������������������
�g��u�u�

q �4�x� z�����������
�g
p : (2.5)

At this stage, � is just a parameter of the world line and not
necessarily the proper time. We use an overdot to denote
differentiation with respect to the world line parameter �.
For example, the 4-velocity of a particle in Minkowski
space (g�� � 	��) is u
 � dz
=d� � _z
. Because the
particle is moving in a gravitational field, one should re-
place ordinary derivatives d=d� by covariant derivatives
D=d� and so, for instance, the 4-acceleration isDu
=d� �
u�r�u


 and not _u
 � du
=d� � u�@�u

.

To facilitate easier computation it is customary to
choose the initial density matrix to correspond to a factor-
ized state of the system and environment. Physically, this
means that all of the field modes have been uncorrelated
with the particle by an instantaneous measurement at time
ti. Aside from issues about performing this measurement
simultaneously in the spacetime, this choice is somewhat
unphysical because, as explained in [15], an infinite
amount of energy is required to uncorrelate all the modes
of the environment (field) from the system (particle) at a
particular instant of time. For instance, in models of quan-
tum Brownian motion with an infinite number of environ-
ment oscillators the factorized initial state results in large
transients of the diffusion coefficients appearing in the
master equation for the reduced density matrix [15]. The
transients appear as a result of the high frequency modes of
the environment beginning to interact and correlate with
the system just after the initial time. This recorrelation time
lasts on the order of the inverse of the cutoff frequency used
to regulate the divergences coming from oscillators of very
high frequencies. For times much longer than this transient
time the behavior due to the initial factorization is usually
discounted. Other methods, including the preparation func-
tion method [16], allow for a somewhat more physical
initial state by including certain system-environment cor-
relations (e.g. system in thermal equilibrium with the
environment at the initial time), but still seem to suffer
from some of the problems associated with the factorized
state [17].

Having said this we assume that there is a Cauchy
hypersurface at the initial time ti such that the initial
density matrix takes the factorized form
-2
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��zi; �i; z0i; �
0
i; ti� � �S�zi; z0i; ti� 
 �E��i;�0i; ti�: (2.6)

This simple form eases the manipulations for obtaining a
description of the reduced particle dynamics.
084023
After tracing out (a form of coarse-graining) the field
variables from the density matrix the reduced density
matrix for the system is given by
�r�zf; z0f; tf� �
Z
d�f��zf; �f; z0f; �f; tf�

�
Z
dzidz0i

Z zf

zi
Dz

Z z0f

z0i

Dz0�S�zi; z0i; ti�e
i=@�SS�z	�SS�z0	�

�
Z
d�fd�id�0i

Z �f

�i

D�
Z �f

�0i

D�0�E��i;�0i; ti�e
i=@�SE��	�Sint�z;�	�SE��0	�Sint�z0;�0	�

�
Z
dzidz0i

Z zf

zi
Dz

Z z0f

z0i

Dz0�S�zi; z0i; ti�e
i=@�SS�z	�SS�z0	�F�z; z0	: (2.7)
The last line introduces the influence functional F�z; z0	,
which is given by

F�z; z0	 �
Z
d�fd�id�0i

Z �f

�i

D�
Z �f

�0i

D�0�E��i;�0i; ti�

� ei=@�SE��	�Sint�z;�	�SE��
0	�Sint�z0;�0	�

� ei=@Sinf�z;z
0	; (2.8)

and Sinf is the influence action. In operator language F is

F�z; z0	 � TrEÛE�int�tf; ti; z	�̂E�ti�Û
y
E�int�tf; ti; z

0	;

(2.9)

where ÛE�int�tf; ti; z	 is the evolution operator that evolves
the environment variables through its interaction with the
system. The influence functional can be interpreted as the
overlap of the environment states evolved forward and
backward in time while interacting with different particle
trajectories, or simply as the ensemble average of the
evolution operator UE�int�z	 evolved backward in time
under a different external source z0, as can be seen by
writing (2.9) as

F�z; z0	 � hÛyE�int�z
0	ÛE�int�z	iens

�
X



X

0
�E;

0 �ti�h
0jÛ

y
E�int�z

0	ÛE�int�z	j
i:

(2.10)

In the interaction picture, the time-evolution operator is
ÛE�int�tf; ti; z	 � Te�i=@��̂I�j�z	 where the � denotes space-
time integration so that for two functions, possibly tensors,
A�x
� and B�x��

A � B �
Z x0

f

x0
i

dx0
Z
d3x

�������
�g
p

A�x�B�x�: (2.11)

Assuming that the initial state of the field is Gaussian, the
influence functional can be calculated exactly giving

F�z; z0	 � e��1=4@�j���16�2GH��j���i=@�j���16�2Gret��j� ; (2.12)

for the influence functional and
SIF�z; z
0	 �

def
�i@ lnF�z; z0	

�
i
4
j� � �16�2GH� � j� � j� � �16�2Gret� � j�;

(2.13)

for the influence action. The difference and semisum cur-
rent densities are defined as

j� � j�z	 � j�z0	; (2.14)

j� �
j�z	 � j�z0	

2
; (2.15)

and the Hadamard GH and retarded Green’s functions Gret
are
GH�x; x

0� � hf�̂I�x�; �̂I�x
0�gi � 2h�̂I�x�ih�̂I�x

0�i

Gret�x; x0� � i���x;��h��̂I�x�; �̂I�x0�	i:
(2.16)

The h� � �i � TrE�̂E�� � �� denotes quantum expectation val-
ues in the Gaussian initial state �̂E of the environment. The
step function ���x;�� appearing in Gret equals one in the
future of the point x0 and zero otherwise. Here, � is a
spacelike hypersurface containing x0. Had the initial state
contained non-Gaussian contributions, one would have
many additional terms involving cubic and higher powers
of the coupling. Likewise for nonlinear interactions (e.g.
ej�z	 ��n). Assuming that the coupling is small and that
non-Gaussianities are also small one can still use (2.12)
and (2.13) as a lowest order approximation.

B. Semiclassical particle dynamics

The reduced density matrix for the particle is now
written as

�r�zf; z
0
f; tf� �

Z
dzidz

0
i

Z zf

zi
Dz

Z z0f

z0i

Dz0�S�zi; z
0
i; ti�

� e�i=@�SCGEA�z;z0	 (2.17)
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where the coarse-grained effective action (CGEA) is de-
fined as

SCGEA�z; z0	 � SS�z	 � SS�z0	 � SIF�z; z0	

� SS�z	 � SS�z0	 � j� � �16�2Gret� � j�

�
i
4
j� � �16�2GH� � j

�: (2.18)

At this point it is worth mentioning that the magnitude of
the influence functional decays rapidly for two largely
separated histories since it is Gaussian (to lowest order)
in z� � z� z0

jF�z; z0	j � e��1=4@�j���16�2GH��j�

� exp�
1

4@

Z
d�

Z
d�0z
�

�j�

�z
�

�GH�z
�
�; z

�0

� �
�j�

�z

0

�

z

0

� �O�z4
��: (2.19)

Here, and in the following, z
 � z
��� and z

0
� z
��0� so

that an unprimed (primed) index refers to that component
of a tensor field or coordinate evaluated at proper time �
(�0) and

z�� � z� � z0�; (2.20)

z�� �
z� � z0�

2
: (2.21)

The norm of F is equal to the norm of the decoherence
functional (see below), which is a measure of how much
the particle’s world line is decohered. So, if the quantum
fluctuations of the field (environment) provide a strong
enough mechanism for decoherence (this should be
checked on a case by case basis and will be assumed true
in the cases under study here) then we are justified in
expanding the CGEA about the classical trajectory �z�.
Doing so gives

SCGEA�z; z
0	 �

Z
d�0z


0

�

�SCGEA

�z

0

�

��������z�z0��z
�O�z2

��: (2.22)

Using this expression in the reduced density matrix and
doing a stationary phase approximation gives the equations
of motion for the classical world line �z

�SCGEA

�z�����
jz�z0��z � 0: (2.23)

Evaluating the functional derivative using, for some test
function f�x�,

�
�z�����

Z
d4x

�������
�g
p

j��x; z	f�x�

�
e

4�

�Du�
d�
� w���z	rz�

�
f�z� �

def e
4�

~w��z	f�z�;

(2.24)
084023
where w�� � g�� � u�u
� and u
u
 � �1 (proper-time

gauge), gives

m0

D �u�
d�
� e ~w���z	�ret��z�; (2.25)

where �ret is the retarded field

�ret�x� � e
Z
d�0Gret�x; z


0
�: (2.26)

The right side of (2.25) is the self-force on the particle
arising from the radiation reaction. Furthermore, the vector
operator ~w� contains the particle’s acceleration implying
that the particle moves with an effective time-dependent
mass equal to m0 � e�ret� �z�. (See [18] for a discussion of
evaporating scalar charges based on this time-dependent
effective mass.) Provided there is strong enough decoher-
ence to suppress the quantum fluctuations of the world line,
the equations of motion for the quantum expectation value
hẑ�i are the same as in (2.25) at tree-level in both the
particle and the field [10]. Unfortunately, (2.25) is prob-
lematic since the self-force diverges on the world line of
the point particle. This divergence can be traced to the
singular coincidence limit of the retarded Green’s function
lim�0!�Gret ! 1 and results from the point particle as-
sumption. We will discuss how to treat this problem in
Sec. III by adopting an effective field theory point of view.

C. Stochastic semiclassical particle dynamics

We have made the assumption that the quantum fluctua-
tions of the world line are strongly suppressed by the
decoherence due to the quantum field. Even under strong
decoherence when the classical trajectory is well-defined,
the quantum fluctuations of the field can still influence the
classical motion of the particle through the particle-field
coupling Sint. They may show up as classical stochastic
forces on the particle. In this section we shall show how
this comes about using the influence functional for the
reduced density matrix.

We start by invoking the relation

e��1=4@�j���16�2GH��j� � N
Z

D��x�e��1=@���G
�1
H ����4�i=@���j

�
;

(2.27)

whereN is a normalization factor that is independent of the
world line coordinates and ��x� is some auxiliary field.
Using this relation, the influence functional (2.12) can be
written as

F�z; z0	 � N
Z

D��x�e��1=@���G
�1
H ����i=@�j

����4���16�2Gret�j��;

(2.28)

where ��x� appears as an auxiliary function, which can be
interpreted as a classical stochastic or noise field [10,19]
with an associated Gaussian probability distribution func-
tional
-4
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P����x�	 � e��1=@���G
�1
H ��: (2.29)

The fact that this is Gaussian is a direct consequence of
taking an initial Gaussian state for the quantum field. With
respect to P���	 this implies that � has zero-mean and its
correlator is proportional to the Hadamard function encod-
ing the information about the fluctuations in the quantum
field [20].

h��x�i� � 0 (2.30)

hf��x�; ��x0�gi� � @GH�x; x0�; (2.31)

where h. . .i� � N
R
D�P��. . .�.

Now the reduced density matrix (2.7) becomes

�r�zf; z
0
f; tf� � N

Z
dzidz

0
i

Z zf

zi
Dz

Z z0f

z0i

Dz0�S�zi; z
0
i; ti�

�
Z

D�P���	e
�i=@�SSEA�z;z0;�	; (2.32)

where the stochastic effective action (SEA) is defined as

SSEA�z; z
0; �	 � SS�z	 � SS�z

0	

� j� � ��4��� 16�2Gret � j
��

� SRCGEA�z; z
0	 � �4��� � j� (2.33)

and SRCGEA is the real part of the CGEA. As before, if the
world line is strongly decohered by the quantum fluctua-
tions of the environment then we are justified in expanding
the SEA around the classical solution

SSEA�z; z
0; �	 � �

Z
d�0z


0

�	
0 �z
�	

�
1

2

Z
d�0

Z
d�00z


0

� z

00

�

�2SRCGEA

�z

0

��z

00
�

��������z�z0��z

�O�z3
��; (2.34)

where we have used (2.23), expanded j� in powers of z�
and defined the stochastic force

	��z	 � e ~w��z	��z�: (2.35)

Putting (2.34) into the reduced density matrix and using the
stationary phase approximation gives the stochastic equa-
tions of motion for the world line fluctuations z�� � ~z� �
z� � �z�

Z
d�0~z


0 �2SRCGEA

��z�� �z

0

��������z�z0��z
� 	���z	: (2.36)

It should be emphasized that this equation describes the
evolution of small perturbations ~z around the semiclassical
trajectory that arise from the stochastic manifestation 	 of
the quantum field fluctuations. We can obtain a stochastic
version of the ALD Eq. (2.25) if we add the equations of
motion for the classical dynamics
084023
0 �
�SRCGEA

�z��

��������z�z0��z
(2.37)

to the left side. Then we may write

�SRCGEA

�z��

��������z��0
� 	��z	: (2.38)

Evaluating this functional derivative gives the stochastic
semiclassical particle dynamics for the full world line
z� � �z� � ~z�

m0

Du�
d�
� e ~w��z	�ret�z� � 	��z	: (2.39)

Notice that both the deterministic and the stochastic com-
ponents of the self-force can push the particle away from
its geodesic motion with respect to a fixed background
spacetime. However, we should keep in mind that this
equation is really only valid to linear order in the fluctua-
tions ~z since higher-order terms will correspond to quan-
tum corrections that we have been neglecting. Of course,
we could have obtained (2.39) by using a stationary phase
approximation in the reduced density matrix (2.32) without
having expanded around the classical trajectory. However,
we believe that the validity of (2.39) to linear order in the
fluctuations would not have been as transparent.

The stochastic correlation functions of the force 	� can
be evaluated using the knowledge of the � correlators
above. As was commented in the previous paragraph we
must evaluate these correlation functions along the classi-
cal trajectory �z to be consistent with the linearization. The
mean of the stochastic force is zero

h	���z	i� � e ~w�� �z	h���z�i� � 0; (2.40)

and the symmetric two-point function of the stochastic
force is

hf	���z	; 	�0 ��z	gi� � @e2 ~w����z	 ~w�0�� �z	GH� �z
; �z

0
�:

(2.41)

This shows that the noise 	� is multiplicative, colored and
depends on the particle’s initial conditions through the
classical trajectory. The noise correlator also generically
depends on the field’s initial conditions as is seen by the
appearance of GH in the equation. The Hadamard function
GH does not vanish on a spacelike hypersurface implying
that the quantum correlations in the environment are non-
local. However, the noise correlator above is evaluated on
timelike separated points only. For equal proper times �0 �
� the Hadamard function diverges so a suitable regulariza-
tion procedure must be used in order to make sense of
(2.41) near coincidence.

In the next two sections we describe a new method
introduced in [10] for regulating the ultraviolet divergences
in the retarded Green’s function. We introduce a high
energy scale in the quantum field below which the low-
energy point-particle dynamics is expected to be valid. For
-5
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long times as compared to the inverse of the high energy
scale, we invoke a quasilocal expansion in order to obtain
the relevant contributions to the particle’s motion. Our
work is a generalization of [10] to curved spacetime. We
follow Poisson’s description of scalar radiation reaction in
curved spacetime and use units where c � G � 1. (We
change the particle physics notation in [10] ��;�;�;��
to the Misner, Thorne and Wheeler notation ��;�;�;��
of [6].)
III. REGULARIZATION OF THE RETARDED
GREEN’S FUNCTION

Before we discuss regularizing the retarded Green’s
function it will be beneficial to introduce some notation.
Following [6] we define the step function ���x;�� to be 1
for any point x to the future of a spacelike hypersurface �
and 0 otherwise. This is a generalization of the ordinary
step function to curved spacetime. Using this, one can
define the following distributions

����x; x0�� � ���x;�����x; x0��; (3.1)

�����x; x0�� � ���x;������x; x0��; (3.2)

where�x; x0� is Synge’s world function along the (unique)
geodesic linking x � z��� and x0 � z��0�. Taking the light
cone centered on x0, with x0 on the spacelike hypersurface
�, it follows that ���� has support along the forward light
cone only while ����� is one in the causal future of x0

and vanishes everywhere else.
In (2.16) the retarded Green’s function is calculated from

the commutator of the interaction picture field �̂I. Recall
that �̂I evolves under the free dynamics so that

��� �RR��I � 0; (3.3)

and so is the homogeneous solution to the full field equa-
tion in the Heisenberg picture (satisfying the same initial
conditions)

��� �RR��H � j�z	; (3.4)

where �̂H � �̂I � 1̂Gret � j�z	 for a classical source.
Because the source is classical only the first term in the
solution gives a contribution to the commutator and hence
to the retarded Green’s function

Gret  h��̂H�x�; �̂H�x0�	i � h��̂I�x�; �̂I�x0�	i (3.5)

Finally, since the commutator is state-independent it fol-
lows that Gret for the quantum field �̂H and for the corre-
sponding classical field � are the same.

A. Hadamard expansion

This allows us to invoke Hadamard’s ansatz for which
the retarded Green’s function for a scalar field in a curved
3� 1 dimensional spacetime has the form [6]
084023
Gret�x; x0� � �1=2�x; x0�����x; x0��

� V�x; x0������x; x
0��; (3.6)

which is the sum of a ‘‘direct’’ part (proportional to ��)
and a ‘‘tail’’ part (proportional to �����). Notice that the
appearance of �� and �� ensures that Gret has the correct
causal structure. In order for this ansatz to be valid, the
points x and x0 must be connected by a unique geodesic.
Otherwise, ambiguities arise from the appearance of caus-
tics when parallel propagating a tensor field from x0 to x or
vice versa. This will be assumed in the following. The
function ��x; x0� is the van Vleck determinant and the
function V�x; x0� satisfies the homogeneous Klein-Gordon
equation in curved spacetime

��g � �RR�V�x; x
0� � 0; (3.7)

with boundary data determined by the restriction of V to
the forward light cone, denoted by ~V. The restriction of V
is found by solving

~V ;


 �

1

2
�

 � 2� ~V �

1

2
f��g � �RR��

1=2g�0:

(3.8)

Knowing all of the lightlike geodesics emanating into the
future from x0, one can integrate this equation to construct
~V on the light-cone and hence V inside the light-cone. Of
course, this just solves for V�x; x0� for any x to the causal
future of x0 and must be solved again for different values of
x0. This makes determining V very difficult and tedious for
generic spacetimes. However, if the spacetime possesses
enough symmetry (e.g. de Sitter, some Friedmann-
Robertson-Walker cosmologies) then V can be constructed
relatively easily [18].

From the mean and stochastic equations of motion (2.25)
and (2.39) it is necessary to compute the restriction of Gret
to the particle’s world line

Gret�z

; z


0
� � �1=2�z
; z


0
�����z


; z

0
��

� V�z
; z

0
������z
; z


0
��: (3.9)

Using the Hadamard ansatz and (2.26) it is easy to see that
for two (timelike separated) points on the particle world
line, ���� has support only at coincidence, when �0 � �.
The contribution from the direct term is then

Z �f

�i
d�0�1=2�z
; z


0
����z


;�����z
; z

0
��

�
Z �

�i
d�0�1=2�z
; z


0
����0 � ��

�
d
d�

�
�1

�0��
: (3.10)

This expression is ultraviolet divergent since d=d� eval-
uates to zero for �0 � � and so the retarded field is not well-
defined (in fact, it is infinite) when evaluated at the location
of the point particle. This feature is not limited to just a
-6
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quantum field as it appears even for a classical field since
they share the same retarded Green’s function.

The presence of this divergence suggests that a regulari-
zation procedure is needed to render the equations of
motion (2.25) and (2.39) finite. Several procedures have
been proposed in the literature for doing this. In [4,6], the
retarded field is evaluated near the world line so that the
divergence can be tracked in the limit that one approaches
the world line. This divergence renormalizes the particle’s
mass. Writing the retarded field in terms of functions
singular �S and regular �R on the world line allows, after
calculating their gradient and expanding them near the
world line, for the self-force to be evaluated unambigu-
ously along the world line. This method can also be used
for electromagnetic and gravitational self-force calcula-
tions. In another method developed in [21–25], a mode-
sum regularization procedure is used in which the self-
force is decomposed in terms of the multipole moments of
the field. From this one subtracts the moments of the
singular part of the self-force and resums over the multi-
poles to obtain a self-force that is finite on the world line. In
[26] the ‘‘massive field approach’’ is used in which an
auxiliary massive field is introduced to subtract away the
ultraviolet divergence from the massless field. This proce-
dure is similar to Pauli-Villars type regularization and has
also been used in [13] to regularize the direct term in Gret.

Other regularization methods have been used for the
radiation reaction of nonrelativistic particles without grav-
ity present [27]. Notable of these include the extended-
charge models of [28] in which the particle is described as
a rigid volume with a nonzero size. Unfortunately, this type
of prescription cannot be extended to relativistic models
since rigid bodies are incompatible with relativity [29].
Furthermore, the successes of quantum field theory (e.g.
as applied to the scattering of point particles), has proved to
be an adequate description of the low-energy effective
dynamics of point particles to TeV scales. It seems
unnecessary, then, to introduce nontrivial structure to the
particle to study the self-force.

B. Regularization motivated by effective field theory

With this consideration in mind we introduce yet another
regularization for the self-force motivated by [10]. All
theories for the fundamental interactions (e.g. QED, elec-
troweak theory, QCD) can be interpreted as effective theo-
ries, in that they are low-energy limits of a more complete
theory valid at higher energies, yet they provide an excel-
lent description of low-energy phenomena, at least for
renormalizable theories, without requiring the details of
the complete theory. For energies much higher than the
energy scale of the effective theory, new physics is likely to
become important.

In this spirit we introduce a regulator � for the field.
Above the energy scale of this regulator, E�, new physics
is assumed to occur. For energies much lower than E�, the
084023
dynamics (2.25) and (2.39) will be sufficiently accurately
described by using a regulated quantum field. This ap-
proach has been taken in [10] in deriving the ALD equa-
tions in flat spacetime. It is easily extended to motions in a
curved spacetime since the direct part of the retarded
Green’s function is a local quantity on the world line.

Regularization is achieved here by choosing any suitably
smooth function to approximate �� for large values of the
regulator �. Following [10] we replace �� with

����z
; z

0
�� ! �����z
; z


0
��

����
8

�

s
�2e�2�42�z;z0�

� �����z
; z

0
��g�

ret�z
; z

0
�: (3.11)

In the limit of infinitely large � we have that ��g�
ret

approaches ��. The integral of the direct part of Gret
(3.10) receives a contribution from �� at coincidence
implying that  � 0. The function g�

ret is smooth but
approximates �� well only if �2� 1. This approxima-
tion will not hold if  is identically zero. Nevertheless, we
will assume that  is small and approaching zero but � is
such that �2� 1 still holds. This separation of scales
allows us to do a quasilocal expansion below in which the
self-force will be expanded near coincidence.

Making the replacement (3.11) in Gret gives the regu-
lated Green’s function

G�
ret�z
; z


0
� � �����z
; z


0
��f�1=2�z
; z


0
�g�
ret�z
; z


0
�

� V�z
; z

0
�g

� �����f�1=2g�
ret � Vg; (3.12)

where an abbreviated notation has been used to ease the
appearance of later expressions. Also, it should be clear
that in the limit �! 1 that G�

ret ! Gret.
Putting G�

ret into (2.25) gives

m0

D �u�
d�
� e2

�D �u�
d�
� w�

���z	r�z�

�

�
Z �f

�i
d�0���� �0�f�1=2g�

ret � Vg; (3.13)

where the quantities in the integral are evaluated along the
classical trajectory �z. Passing the derivative through the
integral gives

m0

D �u�
d�
� e

D �u�
d�

�ret��z� � e
2w�

���z	
�
��1=2g�

ret � V	

� �r�z���� �0�	 �
Z �

�i
d�0r�z���

1=2g�
ret � V�

�
;

where the �. . .	 denotes the coincidence limit �0 ! � of the
quantity it contains. This notation looks the same when
denoting a functional of a function (e.g. w���z	) but the
context should be clear. From Appendix A one can show
that
-7
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�r�z���� �0�	 � ��r�� �
 �u
�	 � � �u�; (3.14)

and since w����z	 projects vectors onto a direction orthogo-
nal to the mean 4-velocity then w��� �z	�r�z���� �0�	 gives
no contribution leaving

m0

D �u�
d�
� e2

D �u�
d�

�ret��z� � e
2w�

���z	

�
Z �

�i
d�0r�z���

1=2g�
ret � V� (3.15)

� e2
D �u�
d�

�ret��z� � e2w����z	

�
Z �

�i
d�0f�r�z��

1=2�g�
ret

��1=2r�z�g
�
ret �r�z�Vg: (3.16)

It will be convenient for later manipulations to define the
tail term as the integral over the past history of the gradient
of V,

�tail
� ��z���� � e

Z �

�i
d�0r�z�V: (3.17)

The tail term will turn out to be responsible for the non-
Markovian and history-dependent dynamics of the parti-
cle’s evolution. Consequently, this presents a significant
source of difficulty when trying to determine the particle’s
motion since one has to know the entire past history of the
particle’s world line in order to make predictions about its
current position and speed.
IV. EFFECT OF RADIATION REACTION ON
PARTICLE TRAJECTORY

In order to simplify some of the difficulties of solving
the nonlinear integro-differential Eq. (3.16) we utilize the
effective theory viewpoint discussed in the previous sec-
tion. Since g�

ret is strongly peaked around  � 0 then the
contributions to the self-force will be largest when �0 � �.
We therefore introduce a quasilocal expansion by expand-
ing ���1=2g�

ret around coincidence �0 � �. This yields a
well-defined description of the self-force in terms of rele-
vant and irrelevant quantities. The relevant terms are those
that either renormalize certain parameters of the particle or
otherwise affect the particle dynamics when � goes to
infinity while the irrelevant terms are those that give no
contribution in the same limit.

A. Quasilocal expansion

We begin by expanding the van Vleck determinant and
g�
ret for small values of �z
; z


0
�. Following [6] the ex-

pansion of the square root of the van Vleck determinant
around ;
 � 0 is
084023
�1=2��z
; �z

0
� � 1�

1

12
R
���z�
� �

1

24
R
�;�
��

� . . . (4.1)

where the . . . denotes terms of higher order in the expan-
sion. The covariant derivative with respect to the world line
coordinate of the above quantity is

r�z��
1=2� �z
; �z


0
��

1

6
R
���z�
;��

�
1

24
�2R�
;��R
�;��
�� . . . (4.2)

Lastly, 
;� can be expanded around small  to give


;� � g
� �
1

3
R
�����z�

�� � . . . (4.3)

so that the gradient of �1=2 becomes

r�z��
1=2� �z
; �z


0
��

1

6
R�
� �z�




�
1

24
�2R�
;��R
�;��
�� . . . (4.4)

Next, we expand these quantities and g�
ret around �0 �

�� s with s such that �s� 1. The expansions of some
relevant quantities involving the world function  are (see
Appendix A for details)

s � �0 � � (4.5)

��; �0� � �
1

2
s2 �O�s4� (4.6)

���;s���su�����
s2

2

Du����

d�
�
s3

6

D2u����

d�2 �O�s4�:

(4.7)

Using these results, the function g�
ret is

g�
ret �

����
8

�

s
�2e�2�42

�

����
8

�

s
�2e��4s4=2 �O�s6�: (4.8)

Lastly, we expand r�z�g
�
ret in powers of s

r�z�g�
ret � @�z�g�

ret � �

�
@
@s

�
�1 @g�

ret

@s

�

�
u���� �

s
2

Du����

d�
�
s2

6

D2u����

d�2

�O�s3�

�
@g�

ret

@s
: (4.9)

Applying these results to (3.16) gives
-8



FIG. 1. Time-dependence of the coefficients appearing in
(4.11) and (4.12). The functions c�0� and g�1� have been divided
through by � so that they can be displayed along with c�1� and
g�2�.
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�
m0 �

e2

2
g�1��r� � e

2c�0��r� � e
2
Z �

�i
d�0V��z
; �z


0
�

�D �u�
d�

� ew�
���z	�tail

� ��z� � e
2
X1
n�1

�g�n�1��r�u
�n�1�

 ��z	

� c�n��r�v
�n�

 ��z	�; (4.10)

with r � �� �i being the elapsed proper time since �i.
The expressions for the r-dependent coefficients (g�n�

and c�n�) and the trajectory-dependent vectors (u�n�� and

v�n�� ) can be found in Appendix B. However, only the
relevant factors in the limit of very large � will be given
here

c�0��r� � �
�

21=4 ����
�
p �

�
1

4
;
r4�4

2

�

g�1��r� � ��
27=4����
�
p �

�
5

4
;
r4�4

2

� (4.11)

c�1��r� �
1����
�
p �

�
1

2
;
r4�4

2

�
g�2��r� �

2����
�
p �

�
3

2
;
r4�4

2

�
(4.12)

v�1�� ��z	 �
1

6
w����z	R�
 �u
 (4.13)

u�1�� ��z	 �
1

2
�a� u�2�� ��z	 �

1

3
w�

���z	
D �a�
d�

; (4.14)

where ��a; b� � ��a� � ��a; b� is the incomplete gamma
function. The coefficients (4.11) and (4.12) vary over a
time scale of ��1 after which they are effectively con-
stant. Figure (1) shows the r-dependence of these func-
tions. Note also that, at the initial time, all of these
functions vanish. More will be said below concerning these
properties and their implication for the validity of the
quasilocal expansion.

B. Scalar ALD equation

Most of the terms on the right side of (4.10) are irrele-
vant in the sense that they are inversely proportional to
powers of � so that for time scales much longer than ��1

these terms can be ignored. In this limit the effect of the
high energy physics is ignorable and the effective particle
dynamics is described by

m��; �z	
D �u�
d�
� Fext� ��� �

e2

3
g�2��r�w�

�� �z	
D �a�
d�

�
e2

6
c�1��r�w����z	R�
� �z� �u


� ew�
�� �z	�tail

� � �z� �O���1�; (4.15)

where the time-dependent and trajectory-dependent effec-
tive mass is
084023
m��; �z	 � m0 � e2

�
1

2
g�1��r� � c�0��r�

�
Z �

�i
d�0V� �z
; �z


0
�

�
; (4.16)

and an external force Fext� responsible for accelerating the
charge has been included.

In the limit that �! 1, the terms involving c�0��r� and
g�1��r� both diverge linearly with � and the bare mass m0

gets shifted by an infinite amount �m � e2�g�1�=2� c�0��.
The mass is then renormalized to mren � m0 � �m, which
is a constant with respect to � in the infinite � limit. If the
regulator is finite but very large then the shift �m is finite
and large and the dressed mass has a very weak depen-
dence on time (see Fig. 1).

If we now make � infinite and use the limiting values for
g�2� and c�1�

lim
�!1

g�2��r� � 1 � lim
�!1

c�1��r� (4.17)

for a constant elapsed proper time r then the low-energy
effective particle dynamics is

mren��; �z	
D �u�
d�
� Fext� ��� � f���z	; (4.18)

where the renormalized effective mass is

mren��; �z	 � mren � e
2
Z �

�i
d�0V��z
; �z


0
�; (4.19)

and the self-force is

f���z	 � w����z	
�
e2

3

D �a�
d�
�
e2

6
R�
��z� �u
 � e�tail

� ��z�
�
:

(4.20)

Eqs. (4.18) through (4.20) are the main results of this
section. The appearance of the tail term (3.17) implies
-9
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that the radiation reaction is nonlocal because of its de-
pendence on the past behavior of the classical world line.
This equation for the radiation reaction from scalar charges
was first obtained by Quinn [5] based on earlier work of
Quinn and Wald [3] and Mino, Sasaki and Tanaka [2] on
gravitational radiation reaction.

Detweiler and Whiting [4] have obtained this result by
decomposing the derivative of the retarded field �ret into a
singular piece �S

�, containing the diverging contribution
that renormalizes the mass, and a regular piece �R

�, which
contributes to the self-force and is regular on the world
line. From the previous section we can construct these
quantities within our regularization scheme to find that
for �! 1

�S
� � �e

����
8

�

s
�2 �u� � e

�
1

2
g�1��r� � c�0��r�

�D �u�
d�

�R
� � �e

1� 6�R
12

R��z� �u� �
e
3

D �a�
d�
�
e
6
R�
� �z� �u


��tail
� ��z�: (4.21)

Notice that the first term of the singular part does not
contribute to renormalizing any physical parameters (at
the level of the equations of motion) since �S

� is projected
onto a direction orthogonal to �u�. Likewise, the first term
of the regular part does not contribute to the self-force on
the particle.

In a flat spacetime, the tail term vanishes since there is
no curvature available to focus the radiation emitted in the
past onto the particle at the present. Furthermore, (4.18)
reduces to the ALD equation for a scalar field

mren _�u� � Fext� ��� �
e2

3
w����z	 ��u�: (4.22)

This equation was derived in the open quantum system
formalism in [10].
V. LINEARIZED FLUCTUATIONS AROUND THE
CLASSICAL PARTICLE TRAJECTORY

We now study the effects of the quantum field fluctua-
tions (as classical stochastic forces) on the low-energy
dynamics of the particle. Instead of working directly with
the equations for the linearized fluctuations (2.36), which
contain the singular functional derivatives, we begin with
(2.39) and assume that the retarded field has been regular-
ized by the short-distance regulator � in a quasilocal
expansion.

A. Stochastic ALD equation

For large finite values of � (2.39) becomes the ALD-
Langevin equation

m��; z	
Du�
d�
� Fext� ��� � f��z� � 	���; z	; (5.1)
084023
where the (regulated) self-force is

f��z	 � w�
��z	

�
e2

3
g�2��r�

Da�
d�
�
e2

6
c�1��r�R�
�z�u




� e�tail
� �z�

�
�O����1��: (5.2)

Of course, one must remember that these expressions are
only valid up to linear order in the fluctuations ~z about the
mean world line �z since higher orders correspond to quan-
tum corrections that we have assumed to be negligible.
Expanding (5.1) in orders of the fluctuations, the time-
dependent mass and self-force are given by

m��; z	 � m��; �z	 � e2
Z �

�i
d�0~z�

0 �

��z�
0

Z �

�i
d�00V��z
; �z


00
�

�O�~z2� (5.3)

f��z	 � f���z	 �
Z
d�0~z�

0 �

��z�
0 f���z


	 �O�~z2�: (5.4)

Calculating the functional derivative in the mass equa-
tion gives

m��; z	 � m��; �z	 �
e
2

~z��tail
� ��z�

� e2
Z �

�i
d�0~z�

0
r

�z�
0V� �z
; �z


0
� �O�~z2�; (5.5)

where the factor of 1=2 in the second term comes from
evaluating a delta function on the upper boundary of the �0

integral. Notice that the linear terms in ~z vanish in flat
spacetime since V is identically zero for a massless scalar
field in 3� 1 dimensions.

Simplifying the self-force fluctuations is slightly more
involved. The calculation amounts to performing the varia-
tional derivative on f� but keeping in mind to expand out
the covariant derivatives, which depend on the classical
world line coordinates. The result is

f��z	 � f���z	 � ��
��z	~z
 � ��
��z	 _~z
 �m�
��z	�~z


� r�
��z	~z
:::
 �O���1�: (5.6)

The time- and trajectory-dependent coefficients are com-
plicated expressions that are not particularly illuminating.
These are recorded in Appendix C.

Combining the linearized mass and self-force into (5.1)
and using the fact that �z satisfies the mean equations of
motion (2.23) results in

M�
��z	�~z
 � ��
��z	 _~z
 � K�
� �z	~z


� e2 �a�
Z �

�i
d�0~z�

0
r

�z�
0V��z
; �z


0
�

� r�
��z	~z
:::
 � 	���z	 �O���1�; (5.7)

where
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K�
��z	 � ��
� �z	 �m��; �z	@�z
���� �u� �u� �
e
2

�a��
tail

 ��z�

M�
��z	 � g�
m��; �z	 �m�
��z	; (5.8)

and

��
��z	 � ��
��z	 � 2m��; �z	����
 �u��: (5.9)

The dynamical Eq. (5.7) for the fluctuations about the
classical particle trajectory is the main result of this sec-
tion. This is a linear integro-differential equation for ~z with
a third derivative term and contains time-dependent coef-
ficients that depend on the non-Markovian behavior of the
mean trajectory. Furthermore, because of the integration
over past times the last term on the left side depends on the
history of the fluctuations. Notice that this term vanishes in
a flat background so that the fluctuations then obey a third-
order differential equation, which is Markovian in the
sense that given a mean trajectory �z� the fluctuations do
not depend on their own past history. So, given a solution to
the mean equation of motion for the classical world line
one could, in principle, solve for the fluctuations induced
by the quantum field fluctuations.

The notation in (5.7) has been chosen suggestively since
the left side resembles a damped simple harmonic oscil-
lator with time-dependent mass, damping factor, and time-
and history-dependent spring constant. Notice also that the
‘‘effective mass’’ M�
��z	 is not diagonal implying that the
inertia of the fluctuations behaves differently in different
directions. This feature is exhibited in all of the other
coefficients (��
, K�
 and r�
) and suggests that the
fluctuations of the trajectory in one direction are linked
with the fluctuations in the other spacetime directions.
Also, from the expression for the radiation reaction on
the fluctuations r�
��z	 it should be noted that this is
explicitly independent of the background curvature and
effectively projects ~z

:::
� onto a direction orthogonal to the

mean 4-velocity �u�.
If the stochastic term 	� is ignored then (5.7) describes

the evolution of small perturbations away from the semi-
classical trajectory and so is useful for studying the linear
response of the trajectory to small perturbations away from
the mean world line. In other words, setting 	� to zero
(5.7) gives the linearization of the ALD-Langevin equation
around the semiclassical world line �z. Generalizing this to
the self-force due to linearized metric perturbations could
be useful for investigating the stability of numerical cal-
culations of the inspiral of a small mass black hole into a
large mass black hole, for example [31].

B. Memory and secular effects

A particularly interesting feature related to this is the
effect of the non-Markovian term appearing in (5.7)

�e2 �a�
Z �

�i
d�0~z�

0
r�z�

0V��z
; �z

0
�: (5.10)
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If the fluctuations ~z grow then the linearization may not be
valid for all times and so one should then include quantum
corrections to our stochastic semiclassical equations if the
environment is a quantum field as is assumed here. The
growth of the fluctuations could be significantly influenced
by the past behavior of r�V and the history of the fluctua-
tions. The behavior of this term on the fluctuations is not
known yet because of the difficulty in solving integro-
differential equations and in computing V for many space-
times. However, a study in de Sitter space (where V is
known [6,18]) may provide a simple arena for understand-
ing the role of the non-Markovian term and the nature of
the solutions to (5.7).

Aside from these technical considerations, these equa-
tions are applicable for any type of noise on the particle
trajectories. In many cases, the source of the noise acting
on the system of interest may not be known and is put in by
hand in a phenomenological description of the particle
dynamics via the stochastic equation

m��; z	
Du�
d�
� Fext� ��� � f��z� � 	��; (5.11)

where the superscript ��� is to remind us that this term was
added in by hand, as opposed to being derived, like our
treatment of 	���z	. This stochastic force could have a
classical origin (e.g. high temperature thermal fluctuations
of surrounding gas) or it could have no known single
identifiable origin. Furthermore, since the noise 	�� is not
derived from an initially closed system it is likely to be
inconsistent with the dynamics of the trajectory. (See, e.g.,
[15]) In any case, one would also have to specify the noise
correlator h	�����	��0 ��

0�i	� as it suits the model.
With this proviso (no guarantee for consistency) the

analysis of this section carries over. Given any kind of
noise the fluctuations around the mean trajectory of the
particle moving through its own (classical) field subjected
to the self-force from radiation reaction is given by (5.7),
but with 	�� �z	 replaced by 	��

M�
��z	�~z
 � ��
��z	 _~z
 � K�
��z	~z


� e2 �a�
Z �

�i
d�0~z�

0
r

�z�
0V��z
; �z


0
�

� r�
� �z	~z
:::
 � 	�� �O���1�: (5.12)

Since in this discussion we do not need to worry about
quantum corrections from higher-order loops in the effec-
tive action we could go beyond the linear order in the
fluctuations of the particle trajectory and expand the solu-
tions to (5.11) in powers of the coupling constant e (
denoted in the subscript) z � z0 � z1 � z2 � . . . .
Assuming that 	�� is O�e� and depends on z and recalling
that f� is quadratic in the coupling we find a nonlocal and
causal contribution to the total force on the particle coming
from the fluctuations of the stochastic force (see
Appendix D for details)
-11
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Fdrift
� �

Z
d�0d�00F�� ��; �0; �00�h	�� �z


0
0 �	

�
 �z


00
0 �i	� ;

(5.13)

which is of the same order as the self-force. It seems that
the stochastic noise would cause the particle to drift off
from the background trajectory z�0� determined by the
external force. The deviation could build up over time as
indicated by the integral above. This may have interesting
consequences for astrophysical sources with some stochas-
tic behavior described by a classical noise. If such physical
situations exist, this noise-induced drift may give rise to a
secular effect which could alter the waveform templates (of
events expected to be seen by gravitational interferometers
like LIGO and LISA) calculated without including such
stochastic secular effects.

A similar expression to (5.13) can be derived in our open
quantum system framework by writing the effective action
to cubic order in the fluctuations. Doing this reveals a term
like (5.13) but this requires a much more careful analysis
that goes beyond the stochastic semiclassical approxima-
tion adopted here.

VI. DISCUSSIONS

A. The quantum regime and the validity of the
quasilocal expansion and order-reduction

The previous sections focused on the Feynman-Vernon
formalism and various approximations to obtain the low-
energy effective dynamics of the particle, both for its
semiclassical (mean) and stochastic semiclassical (mean
and stochastic fluctuations) motion. Here, the domain of
validity of the quasilocal expansion and this semiclassical
treatment will be explored and compared with the relevant
scales for weak and strong radiation damping.

In the effective field theory paradigm a regulator � is
introduced for controlling the ultraviolet divergences ap-
pearing in the direct part of the retarded Green’s function
such that �2� 1 with  small and approaching zero.
After expanding near the coincidence limit the time scale
of the quasilocal expansion �� � s is governed by

��� ��1: (6.1)

Recall that for times larger than��1 the time-dependent
coefficients in (4.15) and (5.1) rapidly approach constant
values (see Fig. 1). But there are other scales to consider.
We have been working at tree-level in both the particle and
the field so that �� must be much larger than the scale for
1-loop field and 1-loop particle corrections. This implies
that the time interval �� should be much longer than the
time scale for creating pairs

���
@

m
� �C; (6.2)

where �C is the Compton wavelength associated with the
scalar particle. The dynamics (4.15) and (5.1) are therefore
084023
valid using this framework provided that

��� �C � ��1: (6.3)

Nevertheless, the presence of the third �-derivative in
(4.15), (5.1), and (5.7) requires the specification of the
initial position, velocity, and acceleration to obtain unique
solutions. This is problematic, since for a vanishing exter-
nal force Fext� one still requires an initial acceleration to
solve the equations. But, if there is no force accelerating
the charge then what causes the particle to accelerate?
Furthermore, the particle may experience unbounded ac-
celeration so that its kinetic energy increases with time to
infinity. Since scalar dynamics is an energy-conserving
theory where then could this energy arise? These problems
are related to the infinite self-energy of a (classical)
charged point particle.

In the classical theory of scalar fields and particles these
issues can be resolved if one instead gives the particle a
finite size r0 for which the self-energy is roughly e2=r0

[32]. If this energy composes its rest mass then

r0 
e2

m
; (6.4)

and represents the ‘‘size’’ of the particle. In [32], an
approximation, amounting to an asymptotic expansion in
powers of r0, called the Landau approximation (also
known as order-reduction), is employed to obtain solutions
that require only an initial position and velocity and are
also free from runaway solutions. The Landau approxima-
tion converts the ALD equation (of third order) to the so-
called Landau-Lifshitz equation (of second order). We will
use these names to distinguish between these equations.

In order-reduction, the lowest order solution is found by
simply ignoring the self-force so that the radiation damp-
ing is assumed weak. The time scale of the dynamics is
then determined mostly by the external force so that if Fext�

varies on a scale �ext then �� �ext. In curved spacetimes
the self-force will be weak if r0 � �� and the length scale
associated with the spacetime curvature �R is large (i.e.
small curvature) so that �R � r0. It then follows that for
weak damping in the semiclassical domain that the quasi-
local expansion and the Landau approximation are valid
provided that

�� �ext� r0; �C � ��1 and �R � r0: (6.5)

Recently, in the context of plasma physics, [33] has
investigated the validity of the Landau approximation for
the classical ALD equation by numerically integrating the
Landau-Lifshitz equation forward in time and, using the
final position, velocity, and acceleration from that, inte-
grating the ALD equation backward in time. If the initial
position and velocity of the particle differ significantly
from the backward-evolved solution of the ALD equation
at the initial time then one can assume the Landau approxi-
mation has broken down. Koga does this for a counter-
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propagating electron and ultraintense laser beam (intensity
1022 W=cm2). He finds that the Landau approximation is
valid so long as the laser wavelength �0 is greater than the
Compton wavelength. For �0 much smaller than �C, he
finds disagreement between the solutions of the Landau-
Lifshitz and ALD equations. However, these equations
cannot be fully trusted since quantum effects should be-
come important. In this domain, while we cannot directly
apply our results to this problem we can use the closely
related closed-time-path (CTP) formalism to incorporate
the effects of the quantum loop corrections to the (quan-
tum) particle dynamics.

B. Decoherence

This brings us to an important issue, namely, how
strongly must the particle world line decohere in order
for a stochastic semiclassical treatment to be applicable?
A measure of the decoherence of a system is the decoher-
ence functional [34] D�
�z�; 
�z0�	 where 
�z� specifies a
particular coarse-grained history of the world line. If we
take the history to be 
�z� � z then the decoherence func-
tional is

D�
�z�; 
�z0�	 � D�z; z0	 (6.6)

� �S�zi; z0i�e
�i=@�SCGEA�z;z0	; (6.7)

and is closely related to the CTP effective action [35]. In
fact, the norm of D is proportional to the norm of the
influence functional. The system is said to decohere if
jDj approaches zero. We showed earlier that the CGEA
is proportional to z� and so there is minimal decoherence
for two nearby histories. This implies that coarse-graining
the quantum field must be complemented by an additional
coarse-graining of the world line in order for the particle to
be sufficiently decohered. If the mechanism for decoher-
ence is efficient then this additional coarse-graining should
be minimal and the stochastic semiclassical description
that we have used in this paper is applicable. For our
problem, recall that the CGEA contains an imaginiary
part that is proportional to j� �GH � j� so that the norm
of D is

jD�z; z0	j � e��1=4@�j���16�2GH��j� ; (6.8)

showing that the quantum field fluctuations in the environ-
ment is the mechanism for decoherence. It is therefore
necessary to understand the behavior of the Hadamard
function to show that there exists a well-defined stochastic
semiclassical regime for the particle. This requires know-
ing the field modes on the background spacetime, which is
a significant problem in its own right. For simple scenarios
the decoherence functional can be calculated and the de-
coherence time approximated. But, in general, one needs to
determine if decoherence is fast enough on a case by case
basis.
084023
C. Problems with putting noise in by hand

Towards the end of Sec. V we replaced the classical
stochastic manifestation of the quantum fluctuations by a
noise source 	�� that has some specified noise correlator.
Aside from the issue about keeping only to tree-level in the
particle and field variables, how is using 	�� different from
all of the sophisticated machinery used in the previous
sections?

Unlike in our approach, inserting a source of noise by
hand implies that it can have any correlator one wants. The
stochastic two-point function of 	��

hf	�����; 	�� ��0�gi	� � N����; �0�; (6.9)

otherwise known as the noise kernel, can be chosen at will.
Some physical reasoning, for instance, a high temperature
environment, might suggest that N����; �0�  ���� �0�,
i.e. white noise. While white noise certainly simplifies
the calculations, there is little justification for simply stat-
ing the form of the noise kernel and expecting the dynam-
ics of the system to be consistent with that source. Using
the Feynman-Vernon formalism, coarse-graining over the
quantum environment naturally gives rise to the noise
kernel appropriate for the stochastic force fluctuations

hf	�� �z
	; 	���z

0
	gi� � @e2 ~w����z
	 ~w����z


0
	GH��z
; �z


0
�:

(6.10)

This coarse-graining ensures that the dynamics of the
system evolves consistently with that of the environment.
This is an important statement that cannot be overstated
because it is this feature which gives rise to consistent
fluctuation-dissipation relations (FDR). Inserting noise by
hand most likely violates such a relation.

While FDR’s will not be discussed here in great detail,
[7] have studied the FDR’s for n particles interacting with a
quantum field for certain trajectories (e.g. uniformly accel-
erated). They have shown the existence and self-
consistency of these relations and further introduce
correlation-propagation relations relating the correlations
of particles to each other through the (causal) propagation
of the quantum field. These correlation-propagation rela-
tions can only be formed if the particles interact directly
through causal influences. The open quantum system view-
point, therefore, shows the interrelated influences of the
system and environment through these types of self-
consistent relations. This is an important feature lacking
in a model that has noise put in by hand.

Another problem with adding noise in by hand is that the
noise can be a significant contribution to the quantum two-
point function of the system if one is interested in the
quantum particle behavior. So, having the correct form
for the noise kernel is important for getting the correct
expression for the quantum two-point functions.

It has been shown in [19], using the CTP generating
functional for quantum correlation functions of the system
-13
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variables, for quantum Brownian motion as well as for
stochastic semiclassical gravity (see next section), that
certain quantum two-point functions are related to stochas-
tic two-point functions. As an example, the symmetrized
quantum two-point function of a Brownian particle’s posi-
tion can be written as

1

2
hfx̂�t�; x̂�t0�gi � hhX�t�X�t0�i�iXi;pi ; (6.11)

where X is a solution of the QBM Langevin equation L �
X � � for the appropriate linear operator L�t; t0�, and
h. . .iXi;pi denotes the average over all possible initial posi-
tions and momenta with respect to the reduced Wigner
function for the initial state of the particle. The solutions of
the QBM Langevin equation consist of a homogeneous
part, containing all the information about the initial con-
ditions of the system, and a term describing effects due to
the interactions between the particle and oscillators.

X�t� � X0�t� �
Z
dt0Gret�t; t0���t0�: (6.12)

The symmetrized quantum two-point function becomes

1

2
hfx̂�t�; x̂�t0�gi� hX0�t�X0�t0�iXi;pi

�
Z
dt1

Z
dt2Gret�t;t1�N�t1;t2�Gret�t2;t

0�;

(6.13)

where N � h��t1���t2�i� is the noise kernel, given by the
stochastic correlator of �. The first term involving the
homogeneous solution of the Langevin equation represents
the dispersion in the initial conditions and is called the
intrinsic fluctuations. The second term involving the noise
kernel, and hence the quantum fluctuations of the environ-
ment, represents the correlations with the environment
through the stochastic fluctuations and is called the in-
duced fluctuations. It turns out that if the homogeneous
solution X0 decays exponentially fast then for late times, at
least times larger than the decay time, the quantum two-
point function is determined entirely by the noise kernel,
that is, the induced fluctuations. And so, in this sense, all of
the information about the quantum correlations of the
system degrees of freedom is encoded in the stochastic
correlations. This shows another drawback to putting noise
in by hand. The induced fluctuations contain information
about the quantum fluctuations of the system variables. But
this will not be true with some arbitrary noise kernel
chosen at will.

D. Similarities with stochastic semiclassical gravity

The features of the particle dynamics seen in the above
discussions are typical of nonequilibrium open quantum
systems. History-dependent behavior is present in the
equations of motion for the system and if a renormalization
procedure is required it is usually a time-dependent pre-
084023
scription, as seen earlier with the renormalized mass
mren���. Furthermore, the noise correlator (6.10) is generi-
cally nonlocal in time and is determined by the quantum
fluctuations of the environment variables. This formalism
does not allow for arbitrary noise kernels since this would
destroy the self-consistency between the system and envi-
ronment evolution. A particular example that contains
these features is stochastic semiclassical gravity, which
we will briefly describe and compare with below.

Stochastic semiclassical gravity (SSG) is a self-
consistent theory of the stochastic dynamics of a classical
spacetime containing quantum matter fields. SSG goes
beyond semiclassical gravity, for which the geometry is
driven by the expectation of the (renormalized) stress
tensor, in that the quantum field fluctuations also contribute
to the spacetime dynamics through a classical stochastic
source. The spacetime is therefore driven by both the
quantum expectation value of the renormalized stress ten-
sor and a classical stochastic stress-tensor-like object, �ab.
For an introduction and review of this subject see [36,37]
for a discussion of the domain of validity of SSG.

As an open quantum system, the quantum field fluctua-
tions are coarse-grained using the CTP formalism of
Schwinger and Keldysh (SK) to study the self-consistent
evolution of the (classical) geometry. The quantum fluctu-
ations manifest themselves as stochastic noise thereby
imparting a stochastic nature to the spacetime. The result-
ing Einstein-Langevin equation for the linearized metric
perturubations hab is

G�1�ab�g� h	 � �hT̂�1�ab�g� h	iren � ��ab�g	: (6.14)

The superscript �1� denotes that those quantities contain all
terms to first order in the metric fluctuations hab. It should
be noted that the finite parts of the counterterms needed to
cancel the divergences coming from the stress tensor ex-
pectation value have been absorbed into the definition of
hT̂�1�abiren. The renormalized stress tensor expectation value
(evaluated in a Gaussian state) contains an integration over
the past history of the metric fluctuations and so the
dynamics is generally non-Markovian. This is like what
is seen in the ALD-Langevin Eq. (5.1) where the tail term
�tail
� �z� is analogous to the expectation value of the renor-

malized stress tensor in (6.14). The (covariantly conserved)
stochastic source tensor �ab has zero mean and its corre-
lator is given in terms of the Hadamard function of the
stress tensor fluctuations t̂ab � T̂ab � hT̂abi

hf�ab�x;g	;�cd�x0;g	gi��@hft̂ab�x;g	; t̂cd�x0;g	gi: (6.15)

The correlator of the stress tensor fluctuations on the right
side does not vanish on a spatial hypersurface. This reflects
the fact that the quantum field correlations are themselves
nonlocal. Compare this with the correlator in (2.31) which
is also nonlocal.

SSG also suffers from runaway solutions since the finite
contributions to the counterterms needed to cancel the
-14
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divergences appearing from the expectation value of the
stress tensor are quadratic in the curvature. This makes
SSG a theory with derivatives higher than two, similar to
the ALD type equations derived above, which were of third
order in the � derivatives. A version of the Landau approxi-
mation can be used to reduce the order of the Einstein-
Langevin equation to two thereby yielding well-behaved
solutions free of the pathologies typical of higher-order
derivative theories. Of course, one needs to be careful to
use the Landau approximation at scales that are consistent
with the derivation of the Einstein-Langevin equation.

Finally, the symmetrized quantum two-point functions
of the metric fluctuations hab can be written in terms of
intrinsic fluctuations, representing the dispersion in the
initial conditions, and induced fluctuations, encoding the
information about the fluctuations of the quantum matter
[37]. Just like with the particle motion, one cannot simply
use any noise kernel for modeling stochastic metric fluc-
tuations. One needs to do a careful analysis that ensures the
self-consistency of the metric and quantum matter dynam-
ics and the existence of fluctuation-dissipation relations.
VII. SUMMARY

In this paper we have derived the scalar ALD equation
for the quantum expectation value of the world line for a
scalar charged point particle interacting with its own quan-
tum field as it moves in a curved spacetime. Our Eq. (4.18)
for the low-energy effective particle dynamics agrees with
the results obtained earlier by [4–6,18]. If the quantum
fluctuations in the field strongly decohere the world line
then we can ignore the particle’s quantum fluctuations and
obtain the semiclassical motion (4.18). Invoking an effec-
tive field theory point of view, the singular behavior of the
field’s retarded Green’s function can be regulated. For
sufficiently short times �� � s but still long enough ���
��1 compared with the inverse cutoff frequency � a
quasilocal expansion can be used to obtain the contribu-
tions relevant to the self-force and those that are irrelevant
in the infinite � limit. This renormalizes the mass of the
particle and shows explicitly the appearance of the ex-
pected Da�=d� term that is characteristic of radiation
reaction.

While the time-dependent coefficients (4.11) and (4.12)
appearing in (4.15) seem to suggest that only the initial
position and velocity of the particle are needed, and hence
that a resolution of the problems of preacceleration and
run-away solutions has been reached, one should keep in
mind that the quasilocal approximation breaks down for
short time intervals, which includes the instant at the initial
time. A more careful analysis would need to include a more
physical initial state than the factorized one used here.

Fluctuations in the quantum field is expected to affect
the particle’s motion causing it to fluctuate by an amount ~z
around the mean trajectory �z given by solutions to the
semiclassical Eq. (4.15). We derived such a stochastic force
084023
	���z	with correlators from the fluctuations of the quantum
field and a scalar ALD-Langevin Eq. (5.1). The dynamics
of ~z (5.7) contains a non-Markovian contribution through
the past history of the particle fluctuations. Depending on
the behavior of this term the fluctuations might grow to be
large indicating a breakdown of the linear approximation.
In that case it requires the inclusion of quantum corrections
in order to follow the nonlinear evolution of ~z. On the other
hand, ignoring the noise altogether in (5.7), one can test the
stability of numerical simulations in inspiral studies, for
example [31].

Instead of the noise 	� derived here from fluctuations of
quantum fields one can replace it with some other classical
noise 	�� suitably chosen to model some stochastic source
in a phenomenological description. We can still use (5.7) to
study the effect of such noises on the particle trajectory
fluctuations. However, since the origin for the noise is no
longer due to a quantum field we need not worry about
keeping up to linear order in ~z in the ALD-Langevin
equation. Instead, expanding the solution for small cou-
pling constant e and taking the stochastic expectation value
shows that there is, in general, a nonvanishing force (5.13)
coming completely from the correlations of the stochastic
force. Along with the self-force, this noise-induced term
would cause the particle to drift off of its background
trajectory determined by the external force (or off of its
geodesic motion if Fext� vanishes). We hope to explore the
consequences of this noise-induced drift in an astrophys-
ical setting and find observable effects on the waveforms of
the radiation emitted by the particle and detected by gravi-
tational interferometers like LIGO and LISA.

In Paper II we will apply the same techniques here to
study the self-forces and the stochastic semiclassical mo-
tions of electric charges coupled to an electromagnetic
field and of small black holes coupled to the background
spacetime of a massive black hole, respectively. We hope
to apply these results to more physical situations such as
the motion of charges in strong external fields and gravi-
tational radiation reaction.
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APPENDIX A: GEODESIC COORDINATES AND
THE QUASILOCAL EXPANSION

In this Appendix we derive the quasilocal expansion of

 in (4.7) and some of the relations appearing in Section
-15
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IV for computing the quasilocal expansion of the regulated
direct part of the retarded Green’s function.

We begin by invoking the so-called geodesic coordinates
along and near the world line [32,38]. These coordinates
will be denoted with a hat. In geodesic coordinates the
metric tensor and the connection coefficients are con-
structed to vanish along the entirety of the world line

ĝ ��j� � 0 �̂���j� � 0 (A1)

so that a vector field on the world line behaves like a vector
field in flat spacetime. The displacement from A to B in
Fig. 2 can be written as

�ẑ
 �
def
ẑ
 � ẑ


0
; (A2)

Using a Taylor series to express ẑ

0

in terms of ẑ
 and its
derivatives results in

�ẑ
 � �sû
 �
s2

2!

dû


d�
�
s3

6!

d2û


d�2 � . . .

� �sû
 �
s2

2!

Dû


d�
�
s3

6!

D2û


d�2 � . . . ; (A3)

where, in the last line, we have used the fact that the
components of the connection vanish in this coordinate
system.

Flatness along the world line implies that the tangent
spaces at each point on � can be identified with each other
so that tensor manipulations along � can be done in a
single tangent space. This implies that �ẑ
 is a vector in
the tangent space that we can interpret as a displacement
vector at B. Transforming back to the original coordinates
gives

�z
 �
@x


@x̂�
�ẑ� � �su
 �

s2

2!
a
 �

s3

6!

Da


d�
� . . . :

(A4)
FIG. 2. For two points on a world line � one can construct a
unique timelike geodesic � connecting them.
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Using geodesic coordinates appropriate for the geodesic
connecting A and B (denoted with a bar instead of a hat)
one finds that

�
 � ��� �0��t
 � �y
 � �y

0
; (A5)

which represents the coordinate difference between A and
B in the tangent space at B. Here we take �t
 to be the
tangent vector to the geodesic � connecting A and B with
affine parameter �00 and with coordinates y such that yjA �
y��0� and yjB � y���. In the original coordinates


 �
@x


@ �x�
��: (A6)

Since �ẑ
 and �
 both represent the (coordinate) differ-
ence between A and B in the same tangent space then they
are related by the coordinate transformation from the hat to
the bar coordinates

�� �
@ �x�

@x̂�
�ẑ�: (A7)

This immediately implies that


�z
; z

0
� � �su
 �

s2

2!
a
 �

s3

6!

Da


d�
� . . .

� �
X1
n�1

sn

n!

Dn

d�n
u
���: (A8)

There is an interesting interpretation one may attach to this
result. Pick a point x0 in the normal convex neighborhood
of x in some spacetime. These points are connected by a
unique geodesic described by 
. If these two points
intersect any world line describing the motion of some
particle then in terms of the particle’s velocity and its
derivatives 
 � �z
. This equality therefore describes
a (many-to-one) mapping between particle motions and
geodesics.

From the identity 2 � 

 it is possible to show that

 � �
s2

2
�
s4

24
�O�s5�: (A9)

This also provides a relation between the parametrization
of the geodesic and the proper time of the world line
through

��� �0�2 � s2 �
s4

12
�O�s5�; (A10)

since 2 � ���� �0�2 is the amount of elapsed proper
time along the geodesic.

Using these results, the covariant derivative of a scalar
function, say g�

ret��, is

r
g
�
ret�� � 


�
@
@s

�
�1 @g�

ret��
@s

� �


s
@g�

ret

@s
�O�s4�:

(A11)
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APPENDIX B: COEFFICIENTS AND VECTORS IN
REGULATED DYNAMICS

The r-dependent coefficients (r � �� �i) appearing in
the equation for the regulated semiclassical dynamics
(4.10) are

c�n��r� � �
Z r

0
ds
��s�n

n!
g�
ret�s�

� ��1�n�1 2�n�1�=4
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�
1� n

4
;
r4�4

2

�
(B1)
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4
;
r4�4

2

�
: (B2)

The corresponding world line-dependent vectors are

u�0�� � 0 (B3)
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2
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1
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For finite and large � the first-order correction to the self-
force f
��z	 is

e2�g�3��r�u
�3�

 ��z	 � c�2��r�v

�2�

 ��z	�; (B10)

which in flat spacetime reduces to e2

4 g�3��r�w
�

� �z	�

�D2 �a�=d�2�.
APPENDIX C: COEFFICIENTS IN LINEARIZED
STOCHASTIC DYNAMICS

The time- and mean world line-dependent coefficients
appearing in (5.7) as a result of linearizing the self-force f�
(5.2) are
084023
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m�
��; �z	 �
e2

3
g�2��r�w����z	�2���� �u��g��
 � �u�����g�
�

(C3)

r�
��; �z	 �
e2

3
g�2��r�w�
� �z	: (C4)
APPENDIX D: NOISE-INDUCED DRIFT

In this section we outline the details for obtaining the
noise-induced force on the particle (5.13). We begin with
the ALD-Langevin equation with noise added in by hand

mren�z	
Du�
d�
� Fext� ��� � f��z	 � 	

�
��z	: (D1)

If we expand the world line coordinates in powers of the
coupling constant e

z� � z�0 � z
�
1 � z

�
2 � . . . ; (D2)

where the subscript denotes the order of the expansion,
then to lowest order one finds

mren
D0u0�

d�
� Fext� ���; (D3)

where D0=d� is the covariant �-derivative defined with
respect to z�0 . If the external force vanishes then this is
nothing more than the geodesic equation.

The first-order correction to the trajectory can be found
by solving

du1�
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� 2��
��z0�u

�

0 u1�� � z

�
1@z�0 ��
��z0�u



0 u0�

�
	���z0�

mren
; (D4)
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which has the formal solution

z�1 ��� �
Z
d�0g��ret ��; �0�	�� �z


0

0 �; (D5)

and g��ret is the retarded Green’s function for z1.
To second order in e we find that z2 satisfies
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Taking the stochastic average we find that the terms after
the self-force give a nonvanishing contribution to the force
on the particle

Fdrift
� ����

	
z�1rz�0	

�
��z0��mren

�
��
�u
1 u1��2z�1@z�0

���
�u
�

1 u0�� �

1

2
z�1 z

�
1@z�0 @z�0 ��
�u
0 u0�

�

	�
:

Substituting in for z1 we find that Fdrift
� can be written in
084023
terms of the noise kernel associated with 	��
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(D7)

Notice that the first term in (D7) comes from linearizing
the stochastic force whereas the other terms have their
origins in the kinetic term m�z	a�. Finally, we arrive at
(5.13) by defining the kernel F�� as the integrand appear-
ing above

Fdrift
� ��� �

Z
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