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The dynamics of a self-gravitating shell of matter is derived from the Hilbert variational principle and
then described as an (infinite-dimensional, constrained) Hamiltonian system. The method used here
enables us to define a singular Riemann tensor of a noncontinuous connection via standard formulas of
differential geometry, with derivatives understood in the sense of distributions. Bianchi identities for the
singular curvature are proved. They match the conservation laws for the singular energy-momentum
tensor of matter. The Rosenfed-Belinfante and Noether theorems are proved to be valid still in the case of
these singular objects. The assumption about the continuity of the four-dimensional space-time metric is
widely discussed.
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I. INTRODUCTION

In his seminal paper [1], Werner Israel considered the
dynamics of a self-gravitating thin matter shell. The main
purpose of his theory was to find a simple model describing
gravitational collapse. In case of a realistic collapse, equa-
tions describing evolution of matter and gravity are ex-
tremely difficult to handle. Israel’s idea was that many
aspects of the collapse may be investigated within a toy
model, which consists of a matter shell and the surrounding
gravitational field. The dynamics of such a system reduces
to a proper tailoring of the two different vacuum solutions
describing the two sides of the shell.

We are going to present a systematic derivation of the
Israel model from the variational principle and the con-
struction of its canonical (Hamiltonian) structure. In our
approach the space-time M consists of two parts, tailored
together along a hypersurface S, which contains a moving
matter shell. ‘‘Tailoring’’ means that the induced metric
gab of S is continuous. On the other hand, the four-
dimensional connection coefficients ���� may be discon-
tinuous on S. It is proved that the singular part of the
Einstein curvature tensor density of such a space-time
contains derivatives of those discontinuities and may be
defined in the sense of distributions as Ga

b � Ga
b�S,

where �S is a Dirac-delta distribution concentrated on S.
As we show in the sequel, the following relation holds:

G a
b � �Q

a
b�; (1.1)

where square brackets denote the jump of the extrinsic
curvature across S, written in the ADM form. The singular
Einstein tensor density matches the singular (concentrated
on S) energy-momentum tensor density of the matter shell.
Distributional Gauss-Codazzi equations are then derived
(and not postulated, as in the Israel approach). They imply
that both the Einstein tensor density and the matter energy-
momentum tensor density are conserved. We prove that the
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conservation lawraGa
b � 0 can be written in terms of the

three-dimensional geometry of S.
The possibility of defining the singular Einstein tensor

and calculating its divergence (in the sense of distributions)
via the standard formulas of Riemannian geometry sim-
plifies dramatically the calculational part of the theory. For
this purpose we must assume that the four-dimensional
metric is continuous across S. At this point our approach
differs from the technics used by many authors, including
W. Israel himself, who always stressed that no assumptions
about the continuity of the four-metric, except for the
continuity of the three-metric on the surface S, are neces-
sary. This is, of course, true. We observe, however, that our
‘‘additional condition’’ on the continuity of the entire four-
dimensional metric does not contain any geometrical or
physical conditions imposed on configurations of the
physical fields considered by us, but it is merely a gauge
condition imposed on the coordinate systems used.
Whenever an intrinsic three-dimensional metric of S is
continuous, then also the remaining four components of
the four-dimensional metric may become continuous after
a suitable coordinate transformation. In this new coordi-
nate system we can use our technics based on the distribu-
tion theory, but the dynamics derived this way is written in
terms of intrinsic, geometric relations, having sense in an
arbitrary system of reference. Hence, our derivation does
not depend upon particular gauge conditions which we use.
Note that even in a perfectly smooth, flat space-time, we
can introduce a coordinate system in which only intrinsic
three-dimensional metric on a fixed hypersurface S �
fx3 � constg is continuous, whereas the other four compo-
nents of the four-dimensional metric g3� may be discon-
tinuous. Using these ‘‘singular coordinates’’ one can
properly formulate e.g., the initial value problem for the
Maxwell field, but nobody uses such a formulation for
obvious reasons. Our additional assumption on the con-
tinuity of space-time metric is motivated by similar rea-
-1 © 2005 The American Physical Society
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1In the so-called affine formulation of general relativity, pro-
posed by one of us in 1978 (see Ref. [6]), this quantity plays role
of the momentum canonically conjugate to connection �.
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sons: not to complicate things which already are compli-
cated enough. The technical flexibility we obtain this way,
i.e., the possibility of defining the singular geometric ob-
jects living on S via standard geometric formulas, where
the derivatives are understood in the sense of distribution,
is the main profit of our approach.

The structure of the paper is as follows: At the beginning
we derive Israel’s model from the variational principle, first
in the Lagrangian formulation, and then—after perform-
ing an appropriate Legendre transformation—in the
Hamiltonian picture. Many technical elements of the con-
struction presented here come from Refs. [2,3]. A signifi-
cant simplification of the calculations is obtained using
consequently tensor densities instead of tensors for such
quantities like the matter energy-momentum and the
Einstein curvature object (see also [4]). Part of the pre-
sented calculations was included in the Ph.D. thesis of one
of us [5].

II. PROPOSED DESCRIPTION OF ISRAEL’S
MODEL

Consider a space-time consisting of two parts which are
tailored together along a hypersurface S, whose nondegen-
erate metric has the signature ��;�;��. Unlike in the
original Israel approach (which also was used in [2]),
here we restrict ourselves to coordinate systems for which
all the components of the space-time metric are continu-
ous. As was already mentioned, this condition does not
limit the applicability of our formalism and may be treated
as merely a ‘‘gauge condition’’ imposed on the coordinate
system. It simplifies dramatically theoretical description of
the model. Further simplification is obtained by using a
coordinate system such that the hypersurface S is given by
the equation fx3 � constg. Metric derivatives along S (i.e.,
@ag��, where a � 1; 2; 3) are continuous, whereas the
transversal derivative (i.e., @3g��) may have jumps over
S. We assume that the topology of S is of the type S2 � R1,
i.e., it describes a history of a matter concentrated on a two-
dimensional surface with the topology of the sphere S2.

The shell divides the space-time into the internal and
external part with respect to the world tube S. In both parts
vacuum Einstein equations may be derived in a standard
way from the variational principle. Hence, the regular part
of the Einstein tensor must vanish everywhere outside and
inside of S. Only its singular part concentrated on S is left.

The singular part of the Riemann tensor is proportional
to the (invariant) Dirac-delta distribution �S concentrated
on S, because first derivatives of the metric (and, whence,
also the connection coefficients ����) may be discontinuous
across S. In our particular coordinate system we have �S 	
��x3�. As will be seen in Sec. IV, the resulting singular part
of the Einstein tensor will match the singular energy-
momentum tensor describing matter concentrated on S.
This singular part may be obtained from the standard
formula for the Ricci tensor:
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R�� � @����� � @������� � �������� � ��������: (2.1)

A considerable simplification is obtained if we use the
following combination of Christoffel symbols:

A��� :� ���� � ���������: (2.2)

Then we have

R�� � @�A
�
�� � A

�
��A

�
�� �

1

3
A���A

�
��: (2.3)

Because A may have only discontinuities of the ‘‘jump-
type’’ across S, the derivatives of A along directions tan-
gent to S are thus finite and belong to the regular part of the
Ricci tensor. Hence, its singular part consists only of the
transversal derivatives:

sing �R��� � @3A3
�� � ��x3��A3

���; (2.4)

where the square brackets denote the jump of a specific
quantity across S. Hence, we have the following formula
for the singular part of the Einstein tensor density:

sing �G�
� � :�

������
jgj

q
sing

�
R�� �

1

2
R
�
� ��x3�G�

�; (2.5)

where

G �
� :�

������
jgj

q �
���g

�� �
1

2
���g

��
�
�A3

��� (2.6)

is a quantity living on S. Now, we are going to show that it
is actually a three-dimensional tensor density on S. For this
purpose we first show that its components transversal to S
vanish and, whence, its only nontrivial components are
those tangential to S. To prove that it transforms like a
tensor density on S let us observe that G�

� behaves like a
four-dimensional density, which splits into the three-
dimensional density on S and the one-dimensional density
along x3. But the Dirac-delta ��x3� is already the density
(and not a scalar) on the real axis x3 which proves that the
remaining object G behaves indeed like a 3-density. Hence,
we have to prove the following:

Lemma 1.—

G?
� 	 0: (2.7)

Proof.—On both sides of S consider the following com-
bination of the connection coefficients:

~Q�
� :�

������
jgj

q �
g��A3

�� �
1

2
���g��A3

��

�
: (2.8)

It is useful to encode the entire information about the
metric in the following tensor density1
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	�� :�
1

16	

������
jgj

q
g��: (2.9)

Hence, we have

1

16	
~Q�

� � 	��A3
�� �

1

2
���	

��A3
��: (2.10)

Then the Eq. (2.6) gives

G �
� :� � ~Q�

� �: (2.11)

Now, we use the metricity condition for the connection �,
which is fulfilled on both sides of S (indices a; b � 0; 1; 2
label the coordinates on S):

0 	 ra	
33 � @a	

33 � 2	3��3
�a � 	

33��a�

� @a	33 � 2	3�A3
�a; (2.12)

0 	 ra	
3a � @a	

3a � 	�a�3
�a � 	

3��a�a � 	
3a��a�

� @a	3a � 	abA3
ab � 	

33A3
33; (2.13)

but the metric components 	�� and their derivatives along
S are continuous across S. Hence, we obtain

1

16	
G3

a � 	3��A3
�a� � �

1

2
�@a	33� � 0; (2.14)

1

16	
G3

3 � �
1

2
�	ab�A3

ab� � 	
33�A3

33�� �
1

2
�@a	

3a� � 0;

(2.15)

which ends the proof because in our coordinate system we
have G?� � G3

�. �

III. GEOMETRIC INTERPRETATION OF THE
SINGULAR CURVATURE AND GENERALIZED

BIANCHI IDENTITIES

Equation (2.11) expressing the singular part of Einstein
tensor in terms of jumps of quantities ~Q�

� across S is
extremely useful in our derivation of the shell dynamics.
However, is not satisfactory from the geometric viewpoint
because quantities ~Q�

� do not have any geometrical mean-
ing on both sides of S, and only their jump (2.11) across S
does. Now, we are going to prove that we obtain the same
result replacing nongeometric object ~Q�

� by a tensor
density Q�

� which is, by definition, orthogonal to S and
whose restrictionQa

b to S is equal to the external curvature
of the hipersurface S in the ADM [7] representation. In our
coordinate system S � fx3 � constg, external curvature of
S is given by

Lab :�� �
1�������
g33

p �3
ab � �

1�������
g33

p A3
ab; (3.1)

and its ADM version equals (cf. [3,8]):

Qab :�
�����������������
j detgcdj

q
�Lĝab � Lab�: (3.2)
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Here, ĝab is a three-dimensional inverse of the induced
metric gab on S and Lab � ĝacLcdĝ

db. It is easy to check
that ĝab may be calculated in terms of the four-dimensional
inverse metric g�� via the following formula (see [8]):

ĝ ab � gab �
g3ag3b

g33 : (3.3)

In order to express coefficients ~Q�
� in terms of the tensor

density Q�
�, observe that identities (2.12) and (2.13) can

be solved algebraically with respect to A3
33 and A3

3a. As a
result, we have on both sides of the hypersurface S the
following identities:

A3
33 �

1

	33 �@a	
3a � A3

ab	
ab�; (3.4)

A3
3a � �

1

2	33 �@a	
33 � 2A3

ab	
3b�: (3.5)

Hence, all the coefficients A3
�� can be expressed in terms of

A3
ab, i.e., using (3.1) and (3.2), in terms of Qab and the

metric. Using again formula (3.3) we obtain:

~Qa
b � Qa

b � 16	
�
�

1

2

	3a

	33 	
33
;b

�
1

2
�ab

�
	3c

	33 	
33
;c � 	

3c
;c

��
: (3.6)

The last term is identical on both sides of S, because the
metric components 	�� are continuous. Hence, their jump
across S vanishes and, due to (2.11), we obtain:

G a
b :� �Qa

b�; (3.7)

whereas the transversal components G?b vanish. Because
the object Qa

b is a well-defined tensor density on both
sides of S, (its definition does not depend upon the coor-
dinate system used), the tensorial character of the three-
dimensional object Ga

b has been proved.
Now, we are going to show that the total Einstein tensor

G�
� of our space-time M fulfills Bianchi identities.

Because regular part of G�
� is discontinuous across S

and, moreover, it contains also a Dirac-delta-like singular
part, these identities must be understood in a distributional
sense. To prove them we shall use Gauss-Codazzi equa-
tions, relating transversal components G?b of the Einstein
tensor density G�

� to a divergence of external curvature Q
on S:

G ?b �raQ
a
b 	 0; (3.8)

where r denotes the intrinsic, three-dimensional covariant
derivative on S. But the transversal component G?b is a
well-defined three-dimensional object on S. In our coor-
dinate system, adapted to S in such a way that the coor-
dinate x3 is constant on S, this quantity is simply equal to a
‘‘third’’ component: G?b � G3

b. Taking a jump of this
equation across S we obtain the following identity:
-3
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�reg�G�?b� � raGa
b 	 0: (3.9)

Now, we are going to show that the left-hand side is exactly
the singular part of the Bianchi divergence: r�G�

b 	 0.
Indeed, the regular part of this quantity vanishes on both
sides of S (a consequence of the standard Bianchi identi-
ties), whereas its singular part is proportional to �S. To
prove this statement observe that G3

b � 0 and, whence, no
derivative of the Dirac delta is produced when we apply the
covariant derivative r3 to the singular tensor density (2.5).
Thus what remains are the ‘‘along S’’ derivatives ra. As a
result of this operation we obtain, therefore, the quantity
raGa

b multiplied by �S. Another �-like term is obtained
from the regular part reg�G� which is discontinuous across
S. Taking the derivative r3reg�G�3b of the regular part we
obtain, therefore, its jump of it across S multiplied by the
Dirac delta: �reg�G�3b��S. Finally, the singular part of the
Bianchi identities is the sum of the above two expressions:

r�G
�
b � ��reg�G�?b� � raGa

b���x
3� 	 0; (3.10)

where the last identity is just the Gauss-Codazzi Eq. (3.9).
Hence, we have shown that identities r�G�

b 	 0 are also
fulfilled for space-times with a singular curvature.

IV. DYNAMICS OF THE SHELL�GRAVITY
SYSTEM

Dynamical equations of the physical system composed
of a matter shell and the surrounding gravitational field will
be derived from the action principle �A � 0, where

A �Areg
grav �Asing

grav �Amatter (4.1)

is the sum of the gravitational action and the matter action.
Gravitational action, defined as the integral of the Hilbert
Lagrangian L � 1

16	
���
g
p
R, splits into the regular Areg

grav and

the singular part Asing
grav, according to the decomposition of

the curvature R � reg�R� � sing�R� (a similar ‘‘mixture’’
of a ‘‘bulk action’’ and a singular ‘‘body action’’ concen-
trated on a submanifold was recently used by C. Barrabès
and W. Israel—see [9]—to derive brane dynamics in
general relativity).

Using formulas (2.5)–(2.7), we express the singular part
of R in terms of the singular part of the Einstein tensor:

16	Lsing
grav �

������
jgj

q
sing�R� � �sing�G� � �G��g����x

3�

� �Gabgab��x
3�: (4.2)

Hence the total action is the sum of three integrals:

A �
Z
D
Lreg

grav �
Z
D
Lsing

grav �
Z
D\S

Lmatter; (4.3)

where D is a spatially compact four-dimensional region
with boundary in M, which is possibly cut by a three-
dimensional surface S (actually, because of the Dirac-delta
factor, the second term reduces to integration over D \ S).
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Variation is taken with respect to the space-time metric
tensor g�� and to the matter fields zK living on S. At the
moment we do not specify the nature of the matter fields. It
is enough to assume that they are geometric objects living
on this surface and that matter Lagrangian Lmat is a scalar
density on S, which depends locally on the values of those
fields, their derivatives along S and the metric of the
surface S.

From the point of view of the two regular half-space-
times (which are tailored across S) the singular part of the
action arises as the sum of the boundary contributions from
both the sides of the shell. On the other hand, the action
(4.3) does not contain any surface term at infinity. This is
due to the techniques used here (cf. [3]), where we first
derive the field dynamics within a spatially compact region
D and then shift its boundary @D to the space-infinity. Of
course, the boundary manipulations at infinity are still
necessary but in our approach they arise as a Legendre
transformation between different control modes at the
boundary @D (see Sec. ).

There are many ways to calculate variation of the Hilbert
Lagrangian. Here, we use a method proposed by one of us
(see [10]). It is based on the following, simple observation:

�
�

1

16	

������
jgj

q
g��R��

�
� �

1

16	
G���g�� �

1

16	

�
������
jgj

q
g���R��

� �
1

16	
G���g�� � 	���R��:

(4.4)

Expressing R�� in (4.4) by the connection coefficients ����
and their derivatives, it is easy to show that the last term on
the right-hand side is a complete divergence due to the
following identity:

	���R�� 	 @��	
���
� ������

� �@�	
���
� ������ � 	

���
� �����;�; (4.5)

where, besides of the quantity (2.9), we have introduced the
following notation:

	���� :� 	����� � 	
�������; (4.6)

and

����;� :� @�����: (4.7)

Proof of the identity (4.5) is straightforward if one uses the
fact that ���� are not independent quantities but the con-
nection coefficients, i.e., combinations of the metric com-
ponents g�� and their derivatives. This means that the
covariant derivative r	 with respect to connection �
vanishes identically. Taking into account the fact that 	
is a tensor density we have that
-4
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@�	
���
� 	 	�������� � 	�

������� � 	�
�������; (4.8)

which implies identity (4.5) in a simple way see [10]).
Finally, variation of the regular part of the Hilbert

Lagrangian is following:

�
�

1

16	

������
jgj

q
reg�R�

�
� �

1

16	
reg�G����g��

� reg�@��	
���
� �������: (4.9)

We are going to show now that the same equation holds for
the singular part of R, i.e.,

�Lsing
grav � �

�
1

16	

������
jgj

q
sing�R�

�

� �
1

16	
sing�G����g�� � sing�@��	

���
� �������:

(4.10)

Proof of (4.10).—Calculate the singular part of
@��	�

���������. Because all these quantities are invariant,
geometric objects (�� is a tensor), we may calculate them
in an arbitrary coordinate system. Hence, we may use our
adapted coordinate system, where coordinate x3 is constant
on S. Taking into account the continuity of 	�

��� across S
we obtain

sing �@��	�
���������� � ��x3�	�

��?�������

� ��x3�	�
��3�������

� ��x3�	����A3
���: (4.11)

From the definition (2.10) of the object ~Q�� it follows
immediately that

	���A3
�� � �

1

16	
g��� eQ��

: (4.12)

Using (2.11) we have that

� eQ��
���x3� � sing�G���: (4.13)

Putting these formulas together we obtain

��x3�	�
��?������� � �

1

16	
g���sing�G���

� �Lsing
graw �

1

16	
sing�G����g��;

(4.14)

which ends the proof of (4.10). �
Summing up the regular part (4.9) and the singular part

(4.10) we obtain variation of the whole gravitational
Lagrangian:

�Lgraw � �
1

16	
G���g�� � @��	�

���������; (4.15)

which generalizes the corresponding formula from Ref. [3]
to the case of space-times with a singular curvature.
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A. Matter Lagrangian and the singular energy
momentum

Now, consider the matter part of the action. As was
mentioned already, we assume that all the dynamical prop-
erties of matter fields are described by a Lagrangian den-
sity Lmat, which is an invariant, three-dimensional scalar
density on S. It depends upon some matter fields zK living
on S, their first derivatives along S: zKa: � @azk, and the
metric tensor gab on S:

Lmat � Lmat�z
K; zKa; gab�: (4.16)

We calculate the variation of the matter Lagrangian by

�Lmat �
@Lmat

@gab
�gab �

@Lmat

@zK
�zK �

@Lmat

@zKa
@a�z

K

�
1

2

ab�gab �

�
@Lmat

@zK
� @a

@Lmat

@zKa

�
�zK

� @a�paK�z
K�; (4.17)

where we have introduced the following three-dimensional
symmetric energy-momentum tensor density 
ab on S:


ab :� 2
@L
@gab

; (4.18)

and the momenta pK
a canonically conjugate to material

variables zK:

pK
a :�

@Lmat

@zKa
: (4.19)

Finally, we obtain the following formula for the variation
of the total (‘‘matter� gravity’’) Lagrangian:

�L � �
1

16	
reg�G����g�� � ��x

3�

�
@Lmat

@zK
� @a

@Lmat

@zKa

�

� �zK � ��x3�
1

16	
�Gab � 8	
ab��gab

� @��	�
��������� � ��x

3�@a�p
a
K�z

K�: (4.20)

In this section we assume that both �g�� and �zK vanish
in a neighborhood of the boundary @D of the space-time
region D (this assumption will be later relaxed, when
deriving Hamiltonian structure of the theory). Hence, the
last two boundary terms of the above formula vanish when
integrated overD. Vanishing of the variation �A � 0 with
fixed boundary data implies, therefore, the Euler-Lagrange
equations for the matter field zK, together with Einstein
equations for gravitational field. The regular part of
Einstein equations

reg �G��� � 0 (4.21)

is satisfied in the whole space-time, whereas the singular
part

G ab � 8	
ab; (4.22)
-5
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must be fulfilled on S. This way the Israel equations for the
shell dynamics have been derived from the variational
principle.

Information encoded in the three-dimensional object 
ab

may be expressed also in terms of a four-dimensional
energy-momentum tensor T ��: � ��x3�
��, where, in
agreement with (2.7), the transversal components of 

vanish by definition: 
?� 	 0 (in our adopted coordinate
system it simply means that 
3� 	 0, but this condition in
its previous form does not depend on the coordinate sys-
tem). Summing up the singular and the regular parts of the
gravitational field, we write the variation of the total
Lagrangian as

�L �
1

16	
�G�� � 8	T ����g��

� ��x3�

�
@Lmat

@zK
� @a

@Lmat

@zKa

�
�zK � @��	�

���������

� ��x3�@a�pK
a�zK�; (4.23)

which is the starting point of our derivation of the dynam-
ics of the system. We stress that this equation is an identity,
implied by the structure of the action (4.1).

Field equations of the theory, i.e., Einstein equations for
gravitational field and the Euler-Lagrange equations for
matter fields, are equivalent to vanishing of the volume part
of the above variation (i.e., of the first two terms):

G �� � 8	T ��; (4.24)

@Lmat

@zK
� @a

@Lmat

@zKa
: (4.25)

This, in turn, is equivalent to the fact that for arbitrary
variations (nonnecessarily vanishing on the boundary) of
the independent fields �g�� and �zK, variation of the
Lagrangian reduces to the boundary part:

�L � @��	�
��������� � ��x3�@a�pK

a�zK�: (4.26)

The whole dynamics of the system matter� gravity is,
therefore, equivalent to the above equation. Similarly as
in Eq. (4.11), we can use the definition of 	�

��� and
express it in terms of contravariant tensor density 	��

obtaining

	���� ����� � 	���A���: (4.27)

Hence field equations can be written in the following way:

�L � @��	���A���� � ��x3�@a�pK
a�zK�: (4.28)

We complete this section with the Noether theorem for
the energy-momentum tensor (4.18) which, due to Bianchi
identities (3.9), provides the necessary consistency condi-
tion for the Einstein Eqs. (4.22) or, equivalently, (4.24). In
fact, due to the regular part (4.21) of Einstein equations,
Bianchi identity (3.9) reduces to: raGa

b 	 0. Hence, the
084015
following identity is necessary and sufficient for the con-
sistency of the singular part (4.22) of Einstein equations:

Theorem 1. (Noether)— For any field configuration
�zK�x�� satisfying the matter dynamics (4.25), the energy-
momentum tensor (4.18) carried by this configuration sat-
isfies the following identity:

r a
ab 	 0: (4.29)

The proof of the Noether identity is given in the next
section, just after the Belinfante-Rosenfeld theorem.
V. HAMILTONIAN STRUCTURE OF THE THEORY

The above form of field equations is analogous to the
Lagrangian form of the dynamics in theoretical mechanics,
which may be written as follows:

�L�q; _q� �
d
dt
�p�q� 	 _p�q� p� _q; (5.1)

and contains relation between momenta and velocities:

p �
@L
@ _q
;

as well as Newton equations:

_p �
@L
@q
:

This formula is a starting point of derivation of the
Hamiltonian form of the dynamics. It is sufficient to per-
form Lagrange transformation between p and _q, putting:

p� _q � ��p _q� � _q�p;

and move the total derivative ��p _q� to the left-hand side of
the Eq. (5.1). This way we obtain the Hamiltonian formula:

��H�p; q� � _p�q� _q�p; (5.2)

where we have put H�p; q�: � p _q� L. This formula is
equivalent to the Hamiltonian form of the equations of
motion:

_q �
@H
@p

; _p � �
@H
@q

:

In order to derive the Hamiltonian formulation of the
field theory, we perform a similar Legendre transformation
between time derivatives of the fields and corresponding
momenta. For this purpose we have to fix a (3� 1)-
decomposition of the space-time M. This way the theory
becomes a Hamiltonian system, with the space of Cauchy
data on each of the three-dimensional surfaces �t: � ft �
constg playing the role of an infinite-dimensional phase
space. Unlike in the case of the classical mechanics, the
dynamics of such a system is not uniquely defined, unless
we control also boundary data for the field in an appropri-
ate way.
-6
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In the present paper we consider the case of an asymp-
totically flat space-time and assume that also the leaves �t
of our (3� 1)-decomposition are asymptotically flat at
infinity. To keep control over two-dimensional surface
integrals at spatial infinity, we first consider dynamics of
our matter� gravity system in a finite world tube T ,
whose boundary carries a nondegenerate metric of signa-
ture ��;�;��. At the end of the day we shall shift the
boundary @T of the tube to space-infinity. We assume that
the tube contains the surface S together with our matter
travelling over it.

To simplify calculations we choose the coordinate sys-
tem adapted to this (3� 1)-decomposition. This means
that the time variable t � x0 is constant on three-
dimensional surfaces of this foliation. We assume that
these surfaces are spacelike. To obtain Hamiltonian for-
mulation of our theory we shall simply integrate Eq. (4.26)
[or, equivalently, (4.28)] over a finite piece V of the Cauchy
surface C 
 M and then perform Legendre transformation
between time derivatives and the corresponding momenta.

Denoting by V :� T \ C the portion of the Cauchy
hypersurface C which is contained in the tube T , we
thus integrate (4.28) over the finite volume V 
 C and
keep surface integrals on the boundary @V of V. They
will produce the ADM mass as the Hamiltonian of the
total matter� gravity system when we pass to infinity with
@V � C \ @T . Because our approach is geometric and
does not depend upon the choice of coordinate system,
we may further simplify our calculations using coordinate
x3 adapted to both S and to the boundary @T of the tube.
We thus assume that x3 is constant on both these surfaces.

Integrating (4.28) over the volume V we thus obtain:

�
Z
V
L �

Z
V
@��	���A���� �

Z
V
��x3�@a�pK

a�zK�

(5.3)

�
Z
V
�	���A0

���
� �

Z
@V
	���A?�� �

Z
V\S
�pK

0�zK��;

(5.4)

where by ‘‘dot’’ we denote the time derivative. In this
formula we have skipped the two-dimensional divergen-
cies which vanish when integrated over surfaces @V and
V \ S (see Fig. 1 below).

To further simplify our formalism, we denote by pK :�
p0
K the timelike component of the momentum canonically

conjugate to the field variable zK. Now we perform the
Legendre transformation in material variables:

�pK�z
K�� � _pK�z

K � _zK�pK � ��pK _zK�: (5.5)

The last term, put on the left-hand side of (5.3), meets the
matter Lagrangian and produces the matter Hamiltonian
(with minus sign), according to the formula

Lmat � pK _zK � Lmat � pK
0z0

K � �T0
0; (5.6)
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where the canonical energy-momentum tensor is defined as
follows:

T�� :� pK
�zK� � �

�
� Lmat:

Even if singular, the above quantity satisfies the standard
Rosenfeld-Belinfante identity (cf. [11]), which states that
the canonical energy-momentum tensor is equal (modulo a
minus sign, due to the convention used here) to the sym-
metric energy-momentum tensor (4.18).

Theorem 2. (Rosenfeld-Belinfante) —: Symmetric and
canonical energy-momentum tensors are, essentially, the
same. More precisely, the following identity holds:

T�� � �

��g��; (5.7)

or, equivalently,

Tab � �

acgcb; (5.8)

because both the transversal parts T?� and 
?� vanish
identically from the definition.

Proof.—We remember that Lmat is a scalar density on S
and, therefore, may be written as Lmat �

��������������
detgab
p

�, where
� is a scalar function, depending exclusively upon quan-
tities �zK; zKa; gab�. But the only way to produce a scalar
from the partial derivatives zKa is to take the following
combination: FKN :� zKaz

N
bĝ

ab. We conclude that

Lmat �
��������������
detgab

p
��zK; FKN�:

This implies identity [11] in a straightforward way (cf. also
[2]).

Now, we are ready for the proof of the Noether theorem
(4.29):

Proof.—The invariant character of the matter
Lagrangian Lmat � Lmat�z

K; zKa; gab� means that, for any
vector field X on S, dragging the arguments �zK; zKa; gab�
along X produces the same effect on the Lagrangian that
dragging it directly as a scalar density does. Choosing any
coordinates �xa� on S and choosing X � @a we obtain,
therefore, the following identity:
-7



2We use the symbol Q for denoting external curvature of the
world tube @T to distinguish it from external curvature of the
shell S, which is denoted by Q.

3The quantity �G0
0 � 8	T 0

0� in (5.15) is often denoted by
NH � NkH k, where H and H k are the scalar and the vector
constraints, respectively.
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@aLmat �
@Lmat

@zK
zKa �

@Lmat

@zKb
@azKb �

@Lmat

@gcd
@agcd

�

�
@Lmat

@zK
� @b

@Lmat

@zKb

�
zKa � @b

�
@Lmat

@zKb
zKa

�

�
1

2

cd@agcd; (5.9)

where we have used the symmetry of second derivatives:
@az

K
b � @bz

K
a and the definition (4.18) of the symmetric

energy-momentum tensor 
. Putting now the last two terms
on the left-hand side and using the Rosenfeld-Belinfante
theorem we obtain:

@b

b
a �

1

2

cd@agcd �

�
@Lmat

@zK
� @b

@Lmat

@zKb

�
zKa: (5.10)

It may be easily checked that the left-hand side is precisely
the covariant divergence rb
ba on S (remember that 
 is
not a tensor but the tensor density). Hence, we obtain a
kinematic identity, fulfilled by arbitrary field configura-
tions, not only those fulfilling field equations:

r b

b
a �

�
@Lmat

@zK
� @b

@Lmat

@zKb

�
zKa: (5.11)

This completes the proof. �
Now, integrating Eq. (5.6) over the two-dimensional

region V \ S, we obtain the ‘‘material’’ part of the total
(matter� gravity) Hamiltonian:Z
V\S

Lmat � pK _zK � �
Z
V\S

T0
0 �

Z
V\S


0
0 �

Z
V
T 0

0;

(5.12)

where T �� :� ��x3�
�� cosh. Hence, the Legendre trans-
formation in material degrees of freedom gives us the
following formula:

�
Z
V
�T 0

0 � Lgraw� �
Z
V
�	���A0

���
� �

Z
@V
	���A?��

�
Z
V
� _	K�z

K � _zK�	K�; (5.13)

where we denote

	K :� pK��x3�: (5.14)

Here, the matter degrees of freedom are already described
in the Hamiltonian picture (with the matter Hamiltonian
‘‘�T 0

0’’ on the left-hand side) and the gravitational de-
grees of freedom still remain on the Lagrangian level.

A. Legendre transformation in the gravitational
degrees of freedom

To perform also Legendre transformation in gravita-
tional degrees of freedom—analogous to transformation
(5.5) in material degrees of freedom—we follow here a
method proposed by one of us (see [10]). We show in the
Appendix that, after the transformation, formula (5.13)
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assumes the following form:

�
Z
V

�
T 0

0 �
1

8	
G0

0

�
�

1

16	
�
Z
@V
�Q00g00 �QABgAB�

(5.15)

�
1

16	

Z
V
� _Pkl�gkl� _gkl�P

kl��
1

16	

Z
@V
� _���� _����

�
Z
V
� _	K�z

K� _zK�	K��
1

16	

Z
@V
gab�Q

ab: (5.16)

Here, we have introduced the following notation: Pkl de-
notes the external curvature of � written in the ADM form,
i.e., given by the equations:

Pkl :�
��������������
detgmn

p
�K~gkl � Kkl�;

Kkl :� �
1����������
jg00j

p �0
kl � �

1����������
jg00j

p A0
kl;

(5.17)

and ~gkl stands for three-dimensional contravariant metric,
invariant to the metric gkl induced on the Cauchy surface
V. Similarly, Qab denotes the external curvature2 of the
tube @T written in the ADM form, i.e., three-dimensional
tensor density given by equations similar to (3.1) and (3.2):

Q ab :�
�����������������
j detgcdj

q
�Lĝab � Lab�; (5.18)

Lab :� �
1�������
g33

p �3
ab � �

1�������
g33

p A3
ab; (5.19)

and ĝab is a three-dimensional contraindicant metric on the
tube @T , invariant to the induced metric gab. Moreover,
� �

��������������
detgAB
p

denotes the two-dimensional volume form
on @V, whereas

� :� arcsinh
�

g30�����������������
jg00g33j

p �
; (5.20)

is the hyperbolic angle between the Cauchy surface V and
the tube @T .

The formula (5.16) has been derived in Ref. [3] for a
wide class of matter Lagrangian (including also gauge
fields), but only for models with the continuous matter
distribution. Now we have proved its validity also in case
of a singular matter, concentrated on a two-dimensional
shell S, whose internal metric is nondegenerate and carries
signature ��;�;��.

Observe that the first term on the left-hand side of (5.15)
vanishes identically due to Einstein equations3 which
means that the volume part of the total gravity�matter
-8
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energy vanishes identically. This does not mean that the
energy vanishes, because there is also another, surface
contribution to the Hamiltonian. Indeed, a detailed analysis
(see [10]) shows that we are not allowed to control freely
the tube external curvature Qab in the last integral of (5.16)
because of constraints which occur here. The simplest way
to overcome this difficulty is to perform another Legendre
transformation in the expression gab�Qab � g00�Q

00 �
2g0A�Q

0A � gAB�Q
AB. Namely, we write

gAB�QAB � ��gABQAB� �QAB�gAB; (5.21)

and put the complete derivative ��gABQAB� on the left-
hand side of (5.15). This way we obtain the ‘‘quasilocal’’
(i.e., assigned to the two-surface @V) Hamiltonian of the
system. Finally, we have

��M@V �
1

16	

Z
V
� _Pkl�gkl � _gkl�Pkl�

�
1

16	

Z
@V
� _���� _���� (5.22)

�
Z
V
� _	K�z

K � _zK�	K� �
1

16	

Z
@V
g00�Q

00

� 2g0A�Q
0A �QAB�gAB; (5.23)

where the quasilocal Hamiltonian (mass) assigned to the
two-dimensional surface @V is defined as follows:

M @V � E0�@V� �
1

16	

Z
@V
�Q00g00�; (5.24)

and the additive constant E0�@V� is arbitrary. It turns out
(cf. [10]) that it may be chosen in such a way that the
quasilocal mass vanishes for the flat Minkowski space
initial data.4 The final step of our derivation consists in
shifting the tube T to infinity. For this purpose we limit
ourselves to the asymptotically flat case and assume that
the limiting case of V is equal to an asymptotically flat
Cauchy three-surface C, i.e., V ! C. It may be easily
checked that the limit of our quasilocal mass is equal to
the ADM global mass, i.e., that M@V !MADM.
Moreover, all the surface terms on the right-hand side of
our Hamiltonian formula (5.22)–(5.23) vanish. This way
we obtain the following global Hamiltonian formula, fully
analogous to the mechanical formula (5.2), with the ADM
mass MADM playing the role of the total Hamiltonian of
the matter� gravity system:

��MADM �
1

16	

Z
C
� _Pkl�gkl � _gkl�Pkl�

�
Z
C
� _	K�z

K � _zK�	K�: (5.25)
4Actually, the quasilocal Hamiltonian formula (5.22) needs
some minor improvements, see [10], but it is sufficient for global
purposes of the present paper and this is why we do not discuss
them here.
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The phase space of our system is thus described by the
gravitational variables �Pkl; gkl� on the Cauchy three-
surface C and by the material variables �	K; zK� concen-
trated on the two-surface S \ C; cf. (5.14).

VI. CONSTRAINTS

As usual, Gauss-Codazzi equations imply constraints,
which must be fulfilled by the Cauchy data
�Pkl; gkl; 	K; z

K� on a three-surface C. Outside of the shell
these are standard, vacuum constraints. In this section we
are going to derive the complete description of constraints,
valid not only for the regular but also for the singular part
of the data. We denote by ~gkl the three-dimensional metric
inverse to the metric gkl and put � :�

�������������
detgkl
p

. By �3�R we
denote the three-dimensional scalar curvature of gkl, P :�
Pklgkl and ‘‘j’’ is the three-dimensional covariant deriva-
tive with respect to gkl.

Outside of S Gauss-Codazzi equations relate the com-
ponents G0

� of the Einstein tensor density with the Cauchy
data in the standard way. The spatial part of these con-
straints, tangent to Ct, reads as

G 0
l � �P

k
ljk; (6.1)

and the timelike part—normal to Ct, as

2G0
�n

� � ���3�R�
�
PklPkl �

1

2
P2

�
1

�
; (6.2)

where n denotes the future oriented, orthonormal vector to
the Cauchy surface Ct:

n� � �
g0������������
�g00

p : (6.3)

Vacuum Einstein equations outside and inside of S imply
vanishing of the regular part of G0

�. Hence, the regular
part of the vector constraint on C reads:

reg �Pkljk� � 0; (6.4)

whereas the regular part of the scalar constraint reduces to

reg
�
��3�R�

�
PklPkl �

1

2
P2

�
1

�

�
� 0: (6.5)

In the case of discontinuous matter, the above standard
constraint shall be completed by their singular part, with
support on the intersection St � Ct \ S in the following
way. The singular part of three-dimensional derivatives of
the ADM momentum Pkl consists of derivatives in the
direction of x3:

sing �Pljk
k� � sing�@3Pl

3� � ��x3��Pl
3�; (6.6)

so the full Gauss-Codazzi Eqs. (6.1) take the form

G 0
l � �sing�Pljk

k� � ��Pl
3���x3�: (6.7)

Components of the ADM momentum Pkl are regular,
-9
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hence the singular part of the term �PklPkl �
1
2P

2� van-
ishes. The singular part of the three-dimensional scalar
curvature consists of derivatives in the direction of x3 of
the (three-dimensional) connection coefficients:

sing ��3�R� � sing�@3��
3
kl~g

kl � �mml~g
3l��

� ��x3���3
kl~g

kl � �mml~g
3l�;

and expression in the square brackets may be reduced to
the following term

���3
kl~g

kl � �mml~g
3l� � �2

�������
~g33

q �
@3��

�������
~g33

q
�

�

� �2
�������
~g33

q �
@k

�
�~g3k�������

~g33
p ��

; (6.8)

because derivatives tangent to S are continuous. But the
expression in square brackets is equal to the external
curvature scalar k for the two-dimensional surface St 

Ct:

�k � �@k

�
�~g3k�������

~g33
p �

: (6.9)

This implies that

sing ���3�R� � 2�
�������
~g33

q
�k���x3� � 2��k���x3�:

Finally the total spacelike Gauss-Codazzi Eq. (6.2) takes
the following form:

2G0
�n� � �sing

�
��3�R�

�
PklPkl �

1

2
P2

�
1

�

�
� �2��k���x3�: (6.10)

Equations (6.7) and (6.10) give a generalization (in the
sense of distributions) of the usual vacuum constraints
(vector and scalar, respectively).

Now, we will show how the distributional matter located
on St determines the four surface quantities �P3

k� and ��k�,
entering into the singular part of the constraints. The
tangent (to S) part of G0

� splits into the two-dimensional
part tangent to St and the transversal part.

The tangent to St part of Einstein equations gives the
following:

G 0
k � 8	��x3�
0

k; (6.11)

which, due to (6.1) and (6.7), implies the following con-
straints:

�P3
k� � �8	
0

k: (6.12)

The remaining null tangent part of Einstein equations
reads:

G 0
�n

� � 8	T 0
�n

�;

where E :� T 0
�n� � 
0

�n���x3� � ��x3�" describes
084015
matter density on C, and " � 
0
�n

� is a surface energy
density on S. Hence sing�G0

�n�� � 8	", and scalar con-
straint takes the form

8	"� ��k� � 0: (6.13)

Finally, summing up the regular part of the constraints [i.e.,
Eqs. (6.4) or (6.5), respectively] together with their singular
parts [i.e., Eqs. (6.6) or (6.10), respectively) we may finally
write down both constraints in their distributional forms:

Pkljk � �8	
0
k��x

3�; (6.14)

��3�R�
�
PklPkl �

1

2
P2

�
� �16	"��x3�; (6.15)

where the matter momentum 
0
k and energy " must be

expressed in terms of material variables �pK; zK� via the
matter constitutive equations (4.18).

VII. CONCLUSIONS

We have proved that the general scheme, used in [3,10]
to describe any continuous, self-gravitating matter may be
extended also to the singular matter, concentrated on a two-
dimensional shell. The main result of this paper: The
Hamiltonian of the complete matter� gravity system is
always equal numerically to the ADM mass at infinity,
similarly as in continuous models. The above structure
was used in [12] to derive the canonical formulation of a
spherically symmetric dust shell. Recently, it was proved
that this result may be easily extended far beyond the dust
case (see [13]). We stress that the ADM mass generates the
Hamiltonian evolution of the system with respect to the
asymptotic time variable at space-infinity, whereas the
local redefinition of the Cauchy surface Ct :� ft �
constg, which does not change it at infinity, is merely a
gauge transformation. If we want to use another time (i. e.
the Minkowski time inside the shell or the shell’s proper
time) there will be another Hamiltonian generating the
evolution in the new parametrization. These issues were
thoroughly discussed in [14].

APPENDIX

To prove formula (5.15) via Legendre transformation in
gravitational degrees of freedom take metricity conditions
(3.4)–(3.5) [equivalent to Eqs. (2.12) and (2.13)] for the
connection � on the surface @T � fx3 � constg and plug
them into expression 	���A3

�� � 	33�A3
33 �

2	3a�A3
3a � 	

ab�A3
ab. A straightforward calculation leads

to the following result:

	���A?�� � 	���A3
��

� �
1

16	
gab�Qab � @a

�
	33�

�
	3a

	33

��
; (A1)

where Qab denotes the external curvature of the tube @T
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written in the ADM form, i.e., a three-dimensional tensor
density given by equations similar to (3.1) and (3.2):

Q ab :�
�����������������
j detgcdj

q
�Lĝab � Lab�; (A2)

Lab :� �
1�������
g33

p �3
ab � �

1�������
g33

p A3
ab; (A3)

and ĝab is a three-dimensional contraindicant metric on the
tube @T , inverse to the induced metric gab.

Replacing now x3 by x0, we obtain analogous metricity
conditions on the surface V � fx0 � constg:

A0
00 �

1

	00 �@k	
0k � A3

kl	
kl�; (A5)

A0
0k � �

1

2	00 �@k	
00 � 2A0

kl	
0l�: (A5)

Plugging them into the expression 	���A0
�� �

	00�A0
00 � 2	0k�A3

0k � 	
kl�A0

kl we obtain immediately
the following identity:

	���A0
�� � �

1

16	
gkl�Pkl � @k

�
	00�

�
	0k

	00

��
; (A6)

where Pkl denotes the external curvature of � written in the
ADM form, i.e., given by the equations:

Pkl :�
��������������
detgmn

p
�K~gkl � Kkl�;

Kkl :� �
1����������
jg00j

p �0
kl � �

1����������
jg00j

p A0
kl;

(A7)

and ~gkl stands for three-dimensional contravariant metric,
inverse to the metric gkl induced on the Cauchy surface V.

Using these results and skipping the two-dimensional
divergencies which vanish after integration over @V, we
may rewrite the gravitational part of (5.4) in the following
way:Z

V
�	���A0

���
� �

Z
@V
	���A?��

� �
1

16	

Z
V
�gkl�Pkl�� �

1

16	

Z
@V
gab�Qab

�
Z
@V

�
	00�

�
	03

	00

�
� 	33�

�
	30

	33

��
�

: (A8)

Next, we use the following, obvious identity

	00�
�
	03

	00

�
� 	33�

�
	30

	33

�
� 2

������������������
j	00	33j

q
�

	30������������������
j	00	33j

p :

(A9)

Then we denote
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q :�
	30������������������
j	00	33j

p �
g30�����������������
jg00g33j

p : (A10)

We have

2
������������������
j	00	33j

q
�

2

16	

������
jgj

q �����������������
jg00g33j

q
�

1

8	
���������������

1� q2
p ;

(A11)

where � :�
��������������
detgAB
p

. Hence, we obtain

	00�
�
	03

	00

�
� 	33�

�
	30

	33

�
�

1

8	
���; (A12)

where � :� arc sinh�q� and, consequently,Z
V
�	���A0

���
� �

Z
@V
	���A?��

� �
1

16	

Z
V
�gkl�Pkl�� �

1

16	

Z
@V
gab�Qab �

1

8	

�
Z
@V
������:

Now we perform Legendre transformation between time
derivatives and the corresponding canonical momenta.
This transformation is preformed both in volume

�gkl�Pkl�� � � _gkl�Pkl � _Pkl�gkl� � ��gkl _Pkl�;

and on the boundary ������ � � _���� _���� � ��� _��.
The sum of the two total derivatives which arise here
may be calculated easily using the same arguments as in
Ref. [10]:

�
1

16	
�
Z
V
�gkl _Pkl� �

1

8	
�
Z
@V
� _�

�
1

8	
�
Z
V

������
jgj

q
R0

0 �
1

16	
�
Z
@V
�QABgAB �Q00g00�:

(A13)

Moving the first (volume) quantity to the left-hand side of
formula (5.13) and collecting it with the gravitational part
of the Lagrangian, we obtain

1

16	

Z
V
Lgraw �

1

8	

Z
V

������
jgj

q
R0

0

�
1

16	

Z
V

������
jgj

q
�R� 2R0

0� � �
1

8	

Z
V
G0

0; (A14)

which may be treated as the ‘‘volume part of the gravita-
tional Hamiltonian.’’ It meets the ‘‘matter Hamiltonian’’
(5.13). Their sum (the ‘‘volume part of the total
Hamiltonian’’) vanishes identically as a consequence of
Einstein equations. This completes the proof of formula
(5.15).
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