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Information loss in black holes
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The question of whether information is lost in black holes is investigated using Euclidean path integrals.
The formation and evaporation of black holes is regarded as a scattering problem with all measurements
being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path
integral over metrics with trivial topology is unitary and information preserving. On the other hand, the
path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus
at late times only the unitary information preserving path integrals over trivial topologies will contribute.
Elementary quantum gravity interactions do not lose information or quantum coherence.
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I. INTRODUCTION

The black hole information paradox started in 1967
when Werner Israel showed that the Schwarzschild metric
was the only static vacuum black hole solution [1]. This
was then generalized to the no hair theorem; the only
stationary rotating black hole solutions of the Einstein-
Maxwell equations are the Kerr-Newman metrics [2].
The no hair theorem implied that all information about
the collapsing body was lost from the outside region apart
from three conserved quantities: the mass, the angular
momentum, and the electric charge.

This loss of information was not a problem in the
classical theory. A classical black hole would last forever
and the information could be thought of as preserved inside
it but just not very accessible. However, the situation
changed when I discovered that quantum effects would
cause a black hole to radiate at a steady rate [3]. At least
in the approximation I was using the radiation from the
black hole would be completely thermal and would carry
no information [4]. So what would happen to all that
information locked inside a black hole that evaporated
away and disappeared completely? It seemed the only
way the information could come out would be if the
radiation was not exactly thermal but had subtle correla-
tions. No one has found a mechanism to produce correla-
tions but most physicists believe one must exist. If
information were lost in black holes, pure quantum states
would decay into mixed states and quantum gravity would
not be unitary.

I first raised the question of information loss in 1975 and
the argument continued for years without any resolution
either way. Finally, it was claimed that the issue was settled
in favor of conservation of information by ADS-CFT.
ADS-CFT is a conjectured duality between string theory
in anti—de Sitter space and a conformal field theory on the
boundary of anti—de Sitter space at infinity [5]. Since the
conformal field theory is manifestly unitary the argument
is that string theory must be information preserving. Any
information that falls in a black hole in anti—de Sitter space
must come out again. But it still was not clear how infor-
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mation could get out of a black hole. It is this question I
will address here.

II. EUCLIDEAN QUANTUM GRAVITY

Black hole formation and evaporation can be thought of
as a scattering process. One sends in particles and radiation
from infinity and measures what comes back out to infinity.
All measurements are made at infinity, where fields are
weak and one never probes the strong field region in the
middle. So one cannot be sure a black hole forms, no
matter how certain it might be in classical theory. I shall
show that this possibility allows information to be pre-
served and to be returned to infinity.

I adopt the Euclidean approach [6]—the only sane way
to do quantum gravity nonperturbatively. One might think
one should calculate the time evolution of the initial state
by doing a path integral over all positive definite metrics
that go between two surfaces that are a distance 7" apart at
infinity. One would then Wick rotate the time interval T to
the Lorentzian.

The trouble with this is that the quantum state for the
gravitational field on an initial or final spacelike surface is
described by a wave function which is a functional of the
geometries of spacelike surfaces and the matter fields

Whj, ¢, 1], (D

where h;; is the three metric of the surface, ¢ stands for the
matter fields, and ¢ is the time at infinity. However there is
no gauge invariant way in which one can specify the time
position of the surface in the interior. This means one
cannot give the initial wave function without already
knowing the entire time evolution.

One can measure the weak gravitational fields on a
timelike tube around the system but not on the caps at
top and bottom which go through the interior of the system
where the fields may be strong. One way of getting rid of
the difficulties of caps would be to join the final surface
back to the initial surface and integrate over all spatial
geometries of the join. If this was an identification under a
Lorentzian time interval T at infinity, it would introduce
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closed time like curves. But if the interval at infinity is the
Euclidean distance (3 the path integral gives the partition
function for gravity at temperature @ = 8~ !;

Z(B) = f DgD¢e 184l = Tr(e=FH), 2)

There is an infrared problem with this idea for asymp-
totically flat space. The partition function is infinite be-
cause the volume of space is infinite. This problem can be
solved by adding a small negative cosmological constant A
which makes the effective volume of the space the order of
A73/2_ Tt will not affect the evaporation of a small black
hole but it will change infinity to anti—de Sitter space and
make the thermal partition function finite.

It seems that asymptotically anti—de Sitter space is the
only arena in which particle scattering in quantum gravity
is well formulated. Particle scattering in asymptotically flat
space would involve null infinity and Lorentzian metrics,
but there are problems with nonzero mass fields, horizons,
and singularities. Because measurements can be made only
at spatial infinity, one can never be sure if a black hole is
present or not.

III. THE PATH INTEGRAL

The boundary at infinity has topology S' X S2. The path
integral that gives the partition function is taken over
metrics of all topologies that fit inside this boundary. The
simplest topology is the trivial topology S' X D3 where D3
is the three disk. The next simplest topology and the first
nontrivial topology is S? X D?. This is the topology of the
Schwarzschild anti—de Sitter metric. There are other pos-
sible topologies that fit inside the boundary but these two
are the important cases, topologically trivial metrics and
the black hole. The black hole is eternal: it cannot become
topologically trivial at late times.

The trivial topology can be foliated by a family of
surfaces of constant time. The path integral over all metrics
with trivial topology can be treated canonically by time
slicing. The argument is the same as for the path integral
for ordinary quantum fields in flat space. One divides the
time interval T into time steps Af. In each time step one
makes a linear interpolation of the fields ¢; and their
conjugate momenta between their values on successive
time steps. This method applies equally well to topologi-
cally trivial quantum gravity and shows that the time
evolution (including gravity) will be generated by a
Hamiltonian. This will give a unitary mapping between
quantum states on surfaces separated by a time interval T at
infinity.

This argument cannot be applied to the nontrivial black
hole topologies. They cannot be foliated by a family of
surfaces of constant time because they do not have any
spatial cross sections that are a three cycle, modulo the
boundary at infinity. Any global symmetry would lead to
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conserved global charges on such a three cycle. These
would prevent correlation functions from decaying in to-
pologically trivial metrics. Indeed, one can regard the
unitary Hamiltonian evolution of a topologically trivial
metric as a global conservation of information flowing
through a three cycle under a global time translation. On
the other hand, nontrivial black hole topologies will not
have any conserved quantity that will prevent correlation
functions from decaying. It is therefore very plausible that
the path integral over a topologically nontrivial metric
gives correlation functions that decay to zero at late
Lorentzian times. This is born out by explicit calculations.
The correlation functions decay as more and more of the
wave falls through the horizon into the black hole.

IV. GIANT BLACK HOLES

In a thought provoking paper [7], Maldacena considered
how the loss of information into black holes in AdS could
be reconciled with the unitarity of the CFT on the boundary
of AdS. He studied the canonical ensemble for AdS at
temperature 8~ !. This is given by the path integral over
all metrics that fit inside the boundary S' ® S? where the
radius of the S is B times the radius of the $?. For 8 < A
there are three classical solutions that fit inside the bound-
ary: periodically identified AdS, a small black hole and a
giant black hole. If one normalizes AdS to have zero
action, small black holes have positive action and giant
black holes have very large negative action. They therefore
dominate the canonical ensemble but the other solutions
are important.

Maldacena considered two point correlation functions in
the CFT on the boundary of AdS. The vacuum expectation
value (O(x)O(y)) can be thought of as the response at y to
disturbances at x corresponding to the insertion of the
operator O. It would be difficult to compute in a strongly
coupled CFT but by AdS-CFT it is given by boundary to
boundary Green functions on the AdS side which can be
computed easily.

The Green functions in the dominant giant black hole
solution have the standard form for small separation be-
tween x and y but decay exponentially as y goes to late
times and most of the effect of the disturbance at x falls
through the horizon of the black hole. This looks very like
information loss into the black hole. On the CFT side it
corresponds to screening of the correlation function
whereby the memory of the disturbance at x is washed
out by repeated scattering.

However the CFT is unitary, so theoretically it must be
possible to compute its evolution exactly and detect the
disturbance at late times from the many point correlation
function. All Green functions in the black hole metrics will
decay exponentially to zero but Maldacena realized that
the Green functions in periodically identified AdS do not
decay and have the right order of magnitude to be compat-
ible with unitarity. In this paper I have gone further and
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shown that the path integral over topologically trivial
metrics like periodically identified AdS is unitary.

So in the end everyone was right in a way. Information is
lost in topologically nontrivial metrics like black holes.
This corresponds to dissipation in which one loses sight of
the exact state. On the other hand, information about the
exact state is preserved in topologically trivial metrics. The
confusion and paradox arose because people thought clas-
sically in terms of a single topology for spacetime. It was
either R* or a black hole. But the Feynman sum over
histories allows it to be both at once. One cannot tell which
topology contributed to the observation, any more than one
can tell which slit the electron went through in the two slits
experiment. All that observation at infinity can determine
is that there is a unitary mapping from initial states to final
and that information is not lost.

V. SMALL BLACK HOLES

Giant black holes are stable and will not evaporate away.
However, small black holes are unstable and behave like
black holes in asymptotically flat space if M < A~(1/2
[8]. However, in the approach I am using, one can not just
set up a small black hole and watch it evaporate. All one
can do is to consider correlation functions of operators at
infinity. One can apply a large number of operators at
infinity, weighted with time functions, that in the classical
limit would create a spherical ingoing wave from infinity,
that in the classical theory would form a small black hole.
This would presumably then evaporate away.

For years, I tried to think of a Euclidean geometry that
could represent the formation and evaporation of a single
black hole, but without success. I now realize there is no
such geometry, only the eternal black hole, and pair crea-
tion of black holes, followed by their annihilation. The pair
creation case is instructive. The Euclidean geometry can be
regarded as a black hole moving on a closed loop, as one
would expect. However, the corresponding Lorentzian ge-
ometry, represents two black holes that come in from
infinity in the infinite past, and accelerate away from
each other for ever. The moral of this is that one should
not take the Lorentzian analytic continuation of a
Euclidean geometry literally as a guide to what an observer
would see. Similarly, the formation and evaporation of a
small black hole, and the subsequent formation of small
black holes from the thermal radiation, should be repre-
sented by a superposition of trivial metrics and eternal
black holes. The probability of observing a small black
hole, at a given time, is given by the difference between the
actions. A similar discussion of correlation functions on
the boundary shows that the topologically trivial metrics
make black hole formation and evaporation unitary and
information preserving. One can restrict to small black
holes by integrating the path integral over 8 along a
contour parallel to the imaginary axis with the factor
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ePEo_ This projects out the states with energy E;
+ioc0
2(5) = [ dpz(prest )
—joo

For E, < A~/ most of these states will correspond to
thermal radiation in AdS which acts like a confining box of
volume A~G/2 However, there will be thermal fluctua-
tions which occasionally will be large enough to cause
gravitational collapse to form a small black hole. This
black hole will evaporate back to thermal AdS. If one
now considers correlation functions on the boundary of
AdS, one again finds that there is apparent information loss
in the small black hole solution but in fact information is
preserved by topologically trivial geometries. Another way
of seeing that information is preserved in the formation and
evaporation of small black holes is that the entropy in the
box does not increase steadily with time as it would if
information were lost each time a small black hole formed
and evaporated.

VI. CONCLUSIONS

In this paper, I have argued that quantum gravity is
unitary and information is preserved in black hole forma-
tion and evaporation. I assume the evolution is given by a
Euclidean path integral over metrics of all topologies. The
integral over topologically trivial metrics can be done by
dividing the time interval into thin slices and using a linear
interpolation to the metric in each slice. The integral over
each slice will be unitary and so the whole path integral
will be unitary.

On the other hand, the path integral over topologically
nontrivial metrics will lose information and will be asymp-
totically independent of its initial conditions. Thus the total
path integral will be unitary and quantum mechanics is
safe.

How does information get out of a black hole? My work
with Hartle [9] showed the radiation could be thought of as
tunnelling out from inside the black hole. It was therefore
not unreasonable to suppose that it could carry information
out of the black hole. This explains how a black hole can
form and then give out the information about what is inside
it while remaining topologically trivial. There is no baby
universe branching off, as I once thought. The information
remains firmly in our universe. I am sorry to disappoint
science fiction fans, but if information is preserved, there is
no possibility of using black holes to travel to other uni-
verses. If you jump into a black hole, your mass energy will
be returned to our universe but in a mangled form which
contains the information about what you were like but in a
state where it can not be easily recognized. It is like
burning an encyclopedia. Information is not lost, if one
keeps the smoke and the ashes. But it is difficult to read. In
practice, it would be too difficult to rebuild a macroscopic
object like an encyclopedia that fell inside a black hole
from information in the radiation, but the information
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preserving result is important for microscopic processes
involving virtual black holes. If these had not been unitary,
there would have been observable effects, like the decay of
baryons.

There is a problem describing what happens because
strictly speaking, the only observables in quantum gravity
are the values of the field at infinity. One can not define the
field at some point in the middle because there is quantum
uncertainty in where the measurement is done. What is
often done is to adopt the semiclassical approximation in
which one assumes that there are a large number N of light
matter fields coupled to gravity and that one can neglect the
gravitational fluctuations because they are only one among
N quantum loops. However, in ignoring quantum loops,
one throws away unitarity. A semiclassical metric is in a
mixed state already. The information loss corresponds to
the classical relaxation of black holes according to the no
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hair theorem. One cannot ask when the information
gets out of a black hole because that would require the
use of a semiclassical metric which has already lost the
information.

In 1997, Kip Thorne and I bet John Preskill that infor-
mation was lost in black holes. The loser or losers of the bet
were to provide the winner or winners with an encyclope-
dia of their own choice, from which information can be
recovered with ease. I gave John an encyclopedia of base-
ball, but maybe I should just have given him the ashes.
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