
PHYSICAL REVIEW D 72, 084006 (2005)
Scalar field evolution in Gauss-Bonnet black holes

E. Abdalla* and R. A. Konoplya†

Instituto de Fı́sica, Universidade de São Paulo C.P. 66318, 05315-970, São Paulo-SP, Brazil

C. Molina‡

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo,
Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP, Brazil

(Received 3 August 2005; published 7 October 2005)
*Electronic
†Electronic
‡Electronic

1550-7998=20
It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-
Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered
both in frequency and time domain. The dependence of the scalar field evolution on the values of the
cosmological constant � and the Gauss-Bonnet coupling � is investigated. For Gauss-Bonnet and Gauss-
Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate,
while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at
all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes
does not depend on �, even though the black hole metric contains � as a new parameter. The corrections
to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the
limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter
modes in Gauss-Bonnet gravity we have found analytical expressions.
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I. INTRODUCTION

Black holes in more than four spacetime dimensions are
of considerable interest recently due to the two main
reasons: they naturally appear in string theory, and in extra
dimensional brane-world scenarios [1]. According to some
of these scenarios it is possible that the small higher
dimensional black holes can be produced in particles col-
lisions in Large Hadron Collider. At the same time quan-
tum gravity may show itself already at TeV-energy scale.
Yet, the effects of quantum gravity then may be observed
as corrections to classical General Relativity.

String theory predicts quantum corrections to classical
General Relativity, and the Gauss-Bonnet terms is the first
and dominating correction among the others. Several
higher other theories of gravity sustain black hole solu-
tions. The solution for neutral black hole in Gauss-Bonnet
gravity was obtained by Boulware and Deser [2] and
Wheeler [3] . More generally, Lovelock gravity [4] has
been studied and shown to possess black hole solutions
with interesting thermodynamical properties [5,6].

Thus, the problem of black hole production in trans-
planckian particle collisions has attracted considerable
interest recently in the context of large extra dimensions
scenarios of TeV-scale gravity. It was observed that the
classical spacetime has large curvature along the transverse
collision plane, as signaled by the curvature invariant
�RijklR

ijkl and thereby quantum gravity effects, and higher
curvature corrections to the Einstein gravity, cannot be
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ignored [7]. At the same time we know that after formation
of such a black hole its evolution has three stages: first, it
looses its ‘‘hairs’’ coming into Kerr-like phase, then looses
angular momentum transforming to Schwarzschild-like
black hole, and finally exerts strong Hawking evaporation
what results in loosing mass (see for instance [8] and
references therein). The stage when black hole perturba-
tions decay, transforming perturbed black hole into unper-
turbed one, is governed by quasinormal modes and is the
aim of our present research.

In this paper we consider quasinormal perturbations of
Gauss-Bonnet black holes including a nonvanishing cos-
mological constant. Quasinormal modes are a very useful
tool to uncover properties of the intrinsic geometry, since
the modes characterizes well the geometry and does not
depend on further extrinsic properties, independent of the
geometry itself [9]. They have been used successfully in a
large class of astrophysical questions, from black holes to
stars. In addition, it has been argued that the Gauss-Bonnet
gravity in asymptotically anti de Sitter (AdS) spacetimes
may be analyzed through anti de Sitter/conformal field
theory (AdS/CFT) correspondence within next-to-leading
order [10]. In this case the quasinormal modes of the large
Gauss-Bonnet-AdS black hole could find a holographic
interpretation in conformal field theory, as is the cases
for the AdS black hole in Einstein gravity [11].

In [12] the quasinormal modes for a charged asymptoti-
cally flat black hole in Gauss-Bonnet gravity were found
with the help of the WKB approach [13]. The tensor-type
gravitational perturbations for Gauss-Bonnet black hole
has been considered recently in [14].

To obtain the quasinormal modes we use numerical
analysis as well as a semianalytical WKB-type treatment.
-1 © 2005 The American Physical Society
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Such an approach is based on the fact that the wave
equation is similar to a Schrödinger equation, and depend-
ing on the kind of potential, it makes sense to borrow the
methods used in quantum mechanics in order to define a
semiclassical approximation. This vein has been followed
and an approximation for the quasinormal frequencies has
been obtained to a high WKB order [13]. In addition to the
frequency domain, we analyze the evolution of scalar
perturbations in the time domain and find good agreement
between the results found by the two approaches.

We have observed that at asymptotically late time,
power-law tails do not depend on the Gauss-Bonnet cou-
pling and are the same as for the d-dimensional
Schwarzschild black hole, when d is odd. For several
simpler particular cases, namely, for pure de Sitter and
anti de Sitter space-time (without black hole), and for
extremal Gauss-Bonnet-de Sitter black hole we have found
exact analytical formulas for (quasi)normal modes. The
QNMs for Gauss-Bonnet black holes, with coupling �� 1
predicted by string theory, is seemingly different from
those of Schwarzschild black hole. Therefore the GB-
corrections to the QN spectrum should not be ignored,
when considering Tev-scale of quantum gravity scenarios.
All found modes are damping, what implies stability of
Gauss-Bonnet black holes against scalar field
perturbations.

The paper is organized as follows: Sec. II represents the
preliminaries of the Gauss-Bonnet-(A)dS metric and its
scalar perturbations. Section III is devoted to the methods
used in the paper, namely, the WKB method (in the fre-
quency domain), and the characteristic integration method
(in the time domain). Section IV discuss the quasinormal
behavior of the Gauss-Bonnet (GB), Gauss-Bonnet-de
Sitter (GBdS) and Gauss-Bonnet-anti-de Sitter (GBAdS)
black holes. In Sec. V we discuss the future perspective and
some unsolved questions in this field.
II. GAUSS-BONNET BLACK HOLE SOLUTIONS

The Einstein-Gauss-Bonnet action in the d-dimensional
spacetime model has the form

I �
1

16�Gd

Z
ddx

�������
�g
p

R� �0
Z
ddx

�������
�g
p

�RabcdRabcd

� 4RcdRcd � R2 � 2�� (1)

where R and � are the d-dimensional Ricci scalar and the
cosmological constant, respectively. The parameter � rep-
resents the (positive) Gauss-Bonnet coupling constant,
which is related to the Regge slope parameter or string
scale.

The Gauss-Bonnet Lagrangian LGB is given by

LGB � R2 � 4R��R�� � R����R����: (2)

One should note that in four dimensions the Gauss-Bonnet
term (2) is a total divergency, and yields upon integration a
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topological invariant, namely, the genus of the hypersur-
face defining the Gauss-Bonnet action (but even in four
dimensions there are interest in the GB correction, as seen
in [15] for example).

A metric obtained as a solution of the field equations is
given by

ds2 � �h�r�dt2 � h�r��1dr2 � r2d�2
d�2; (3)

where the function h�r� is given by the expression

h�r� � 1�
r2

2�
�
r2

2�

��������������������������������������������������������
1�

8��

rd�1
�

8��

�d� 1��d� 2�

s
: (4)

The constant � is proportional to the black hole mass and
d�2

d�2 is the line element of the (d� 2)-dimensional unit
sphere. The constants � and �0 are connected by the
relation:

� � 16�Gd�d� 3��d� 4��0 (5)

We set up a scalar field � on such a background obeying
the Klein-Gordon equation

�� �
1�������
�g
p @��

�������
�g
p

g��@��� � 0: (6)

In order to separate the wave function in terms of eigenpo-
tential we first separate the variables as ��t; r; f�ig� �
R‘�t; r�Y‘m�f�ig�=r. As usual we obtain a simple equation
for R‘�t; r�, which is given by the expression

4
@2R‘�u; v�
@u@v

� V�r�u; v��R‘�u; v� � 0 (7)

where u � t� r?, v � t� r? and the tortoise coordinate
r? is defined by the relation

dr?
dr
�

1

h�r�
: (8)

The variables u and v are the light-cone coordinates cor-
responding to the time and tortoise coordinate. The effec-
tive potential for the scalar field in (7) is

V�r� � h�r�
�
�d� 2��d� 4�

4r2 h�r� �
d� 2

2r
dh�r�
dr

�
‘�‘� d� 3�

r2

�
: (9)

The effective potential is positive definite potential bar-
rier for any ‘ for GB black hole, and, for ‘ > 0 for GBdS
black hole (For l � 0 GbdS case, the negative pitch ap-
pears). For GBAdS case the potential diverges at infinity.
III. NUMERICAL AND SEMI-ANALYTICAL
APPROACHES

A. Characteristic integration

In [16] a simple but very efficient way of dealing with
two-dimensional d’Alembertians has been set up. Along
-2



SCALAR FIELD EVOLUTION IN GAUSS-BONNET . . . PHYSICAL REVIEW D 72, 084006 (2005)
the general lines of the pioneering work [17], light-cone
variables have been introduced, leading to (7).

In the characteristic initial value problem, initial data are
specified on the two null surfaces u � u0 and v � v0. The
basic aspects of the field decay are independent of the
initial conditions (as confirmed by simulations), so we
use Gaussian initial conditions.

Since we do not have analytic solutions to the time-
dependent wave equation with the effective potentials in-
troduced, one approach is to discretize the Eq. (7), and then
implement a finite differencing scheme to solve it numeri-
cally. One possible discretization, used, for example, in
[18–20], is

R‘�N� � R‘�W� � R‘�E� � R‘�S� ��2V�S�

�
R‘�W� � R‘�E�

8
; (10)

where we have used the definitions for the points: N �
�u��; v���, W � �u��; v�, E � �u; v� �� and
S � �u; v�. Another possible scheme is�

1�
�2

16
V�S�

�
R‘�N� � R‘�E� � R‘�W� � R‘�S�

�
�2

16
�V�S�R‘�S� � V�E�R‘�E�

� V�W�R‘�W�	: (11)

Although the second discretization (III A) is more time
consuming than (10), it was observed in [21] that (III A)
is more stable for fields in asymptotically AdS geometries.
With the use of expression (10) or (III A), the basic algo-
rithm will cover the region of interest in the u� v plane,
using the value of the field at three points in order to
calculate it at a forth one. After the integration is com-
pleted, the values of R‘ in the regions of interest are
extracted.

B. WKB analysis

Considering the Laplace transformation of the Eq. (7)
(in terms of t and r?), one gets the ordinary differential
equation

d2 ‘�r?�

dr2
?

� �s2 � V�r�r?��	 ‘�r?� � 0 : (12)

One finds that there is a discrete set of possible values of s
such that the function  ‘�r?� satisfies both boundary con-
ditions:

lim
r?!�1

 ‘e
sr? � 1; (13)

lim
r?!�1

 ‘e�sr? � 1: (14)

By making the formal replacement s � i!, we have the
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usual quasinormal mode boundary conditions. The fre-
quencies ! (or s) are the quasinormal frequencies.

The semianalytic approach used in this work [13] is a
very efficient algorithm to calculate the quasinormal fre-
quencies, which have been applied in a variety of situations
[22].

Under the choice of the positive sign of the real part of
!, QNMs of Gauss-Bonnet and Gauss-Bonnet-de Sitter
black holes satisfy the following boundary conditions

 �r?� 
 C� exp��i!r?� as r? ! �1 ; (15)

corresponding to purely in-going waves at the event hori-
zon and purely out-going waves at null infinity (or cosmo-
logical horizon, if �> 0). For the Gauss-Bonnet-anti-de
Sitter geometries, the effective potential is divergent at
spatial infinity (which corresponds to a finite value of r?,
here taken as 0). In the present work, we assume Dirichlet
boundary conditions, setting  ‘�r? � 0� � 0.

To find the quasinormal modes of the black hole whose
effective potential has the form of a potential barrier (GB
and GBdS black holes) one can use a high order WKB
approach, finding

i
!2 � V0�������������
�2V 000

q � L2 � L3 � L4 � L5 � L6 � n�
1

2
; (16)

where V0 is the height and V000 is the second derivative with
respect to the tortoise coordinate of the potential at the
maximum. L2, L3 L4, L5 and L6 are presented in [13]. Thus
we are able to use this formula for finding the quasinormal
modes of Gauss-Bonnet and Gauss-Bonnet de Sitter black
holes. Yet, for Gauss-Bonnet anti de Sitter it cannot be
applied as the corresponding potential is divergent at spa-
tial infinity.

Accuracy of WKB approach may be bad for some cases
of higher dimensional black holes. We think that it is
mainly not because of second small peak in higher dimen-
sional case [23,24]: the WKB inaccuracy is limited by the
case ‘ � n or ‘ < n. To judge about accuracy of WKB
method one has to compare the WKB results with results
obtained by an accurate Frobenius procedure. This was
done for a d-dimensional Schwarzschild black hole in a
paper [25], where it was shown that for low overtones (‘ >
n) the difference between 6th order WKB and Frobenius
method results is less then one percent. We believe this
signifies the relialability of WKB formulas for ‘ > n
modes, even for higher dimensional black holes. After
all, for ‘ > 0 modes, and for scalar field perturbations
considered in this paper, there is no negative pitch in the
potential.
IV. EVOLUTION OF PERTURBATIONS: TIME AND
FREQUENCY DOMAIN

In this section we shall discuss the quasinormal and late-
time behavior for scalar field perturbations in the exterior
-3



TABLE III. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet geometry, obtained
from sixth order WKB method and directly from characteristic
data, for d � 7, ‘ � 0; 1 and several values of �.

TABLE II. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet geometry, obtained
from sixth order WKB method and directly from characteristic
data, for d � 6, ‘ � 0; 1 and several values of �.

d � 6 WKB Characteristic Integration
‘ � Re(!0) -Im(!0) Re(!0) -Im(!0)

0 0.1 0.735854 0.402416 0.7109 0.412
0 0.2 0.748053 0.391049 0.7144 0.402
0 0.5 0.83530 0.304837 0.7225 0.375
0 5 0.906661 0.144820 0.9526 0.226
0 10 1.513624 0.456935 1.5182 0.423
0 20 2.961675 0.927128 2.878 0.952
1 0.1 1.139007 0.415034 1.153 0.395
1 0.2 1.136193 0.415706 1.159 0.386
1 0.5 1.158635 0.391339 1.176 0.363
1 5 1.790103 0.258382 1.791 0.253
1 10 3.260415 0.498426 3.253 0.504
1 20 6.437139 0.991374 — —
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of Gauss-Bonnet black holes, generally, with a null, posi-
tive and negative �-term, and therefore one has to consider
the correlation of the scalar field evolution with ‘‘global’’
parameters: GB-coupling �, �-term, spacetime dimen-
sionality, and ‘‘local’’ parameters such as black hole
mass � and multipole number ‘.

A. Gauss-Bonnet black holes

As seen in a previous work [12], the WKB method
allows very accurate calculations of the quasinormal
modes associated with the field evolution. A complemen-
tary analysis can be performed within the time-dependent
picture. For this purpose, we use here a characteristic initial
value algorithm.

The scenario presented by the WKB calculations is
consistent with the results obtained with time-evolution
approach. From the wave-functions calculated with the
characteristic integration routine, it is observed that, after
an initial transient phase, the decay is dominated by the
quasinormal mode ringing. It is possible to estimate with
high precision the oscillatory and exponential decay pa-
rameters using a nonlinear fitting based in a �2 analysis.
We emphasize that the numerical concordance is excellent,
as seen in Tables I, II, III, and IV. The results, as compared
between WKB approximation and characteristic integra-
tion agree to an accuracy within a few percents for ‘ > n
case. This small difference must exist, because we compare
the data for the fundamental overtones in frequency do-
main with time domain data where the contribution from
all overtones is taken into consideration. Unfortunately the
WKB accuracy for ‘ � n � 0 is not satisfactory what
results in large difference between frequency and time
domain data for that case.

Strictly speaking, the WKB technique we used here
converges only asymptotically. Practically, WKB formula
shows good convergence within several few orders after
eikonal approximation. Yet, the worse convergence of the
WKB method takes place when we deal with the inter-
mediate values of � 
 1. That is why, in this regime, the
agreement between the WKB and the characteristic inte-
gration results is the worst.
TABLE I. Values for the quasinormal frequencies for the fun-
damental mode in the Gauss-Bonnet geometry, obtained from
sixth order WKB method and directly from characteristic data,
for d � 5, ‘ � 0; 1 and several values of �.

d � 5 WKB Characteristic Integration
‘ � Re(!0) -Im(!0) Re(!0) -Im(!0)

0 0.1 0.389935 0.256159 0.379 0.282
0 0.2 0.396034 0.250548 0.383 0.272
0 0.5 0.429741 0.208293 0.391 0.246
1 0.1 0.720423 0.255506 0.7234 0.250
1 0.2 0.723177 0.252684 0.7284 0.245
1 0.5 0.739205 0.236885 0.7443 0.228
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The imaginary part of the frequency does not show too
much dependence on �, yet slightly decrease when � is
increasing. On the other hand, the real part increases with
�, though not significantly either. This might be showing
that a quasinormal mode is much more an effect connected
with the local geometry containing the black hole rather
than with the global effect of the geometry, namely, the
effect of the existence of an event horizon matters much
more than a detailed dependence on the parameter �. Yet,
large enough values of � certainly affect the quasinormal
spectrum: the QNMs are proportional to � in the regime of
large � [12]. As � approaches zero, the QNMs go to those
of ordinary d-dimensional Schwarzschild black hole de-
scribed by the Tangherlini metric.
d � 7 WKB Characteristic Integration
‘ � Re(!0) -Im(!0) Re(!0) -Im(!0)

0 0.1 1.11738 0.546056 1.092 0.532
0 0.2 1.13699 0.529543 1.092 0.520
0 0.5 1.29469 0.395111 1.092 0.493
0 5 1.39823 0.574472 1.275 0.351
0 10 1.48053 0.385616 1.515 0.358
0 20 2.00368 0.56458 2.001 0.567
1 0.1 1.54573 0.577608 1.587 0.527
1 0.2 1.53194 0.58701 1.530 0.517
1 0.5 1.56277 0.554551 1.609 0.489
1 5 2.01379 0.308316 1.982 0.337
1 10 2.47824 0.243737 2.475 0.423
1 20 3.39094 0.59452 3.387 0.597
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FIG. 1. Field decay in the Gauss-Bonnet black holes, for d � 5
and d � 7. It is observed a quasinormal mode dominated region.
Asymptotically, the field decays as a power-law tail (dashed
lines). The parameters in this graph are � � 1, � � 1:0 and ‘ �
0.
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FIG. 2. Power-law tails in the Gauss-Bonnet black holes. The
estimated power-law are R‘ / t

�5:076, R‘ / t�5:082 and R‘ /
t�5:068 for � � 0, � � 5 and � � 10 respectively. The predicted
power for � � 0 is �5. The parameters in this graph are d � 7,
� � 1:0 and ‘ � 0.

TABLE IV. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet geometry, obtained
from sixth order WKB method and directly from characteristic
data, for d � 8, ‘ � 0; 1 and several values of �.

d � 8 WKB Characteristic Integration
‘ � Re(!0) -Im(!0) Re(!0) -Im(!0)

0 0.1 1.51702 0.694245 1.461 0.676
0 0.2 1.54463 0.673566 1.463 0.658
0 0.5 1.7854 0.488086 1.469 0.616
0 5 1.47941 0.868859 1.647 0.420
0 10 1.800 0.410252 1.838 0.421
0 20 2.15426 0.556954 2.154 0.544
1 0.1 1.93407 0.750046 2.021 0.652
1 0.2 1.90391 0.773947 2.024 0.637
1 0.5 1.94463 0.734591 2.035 0.602
1 5 2.44511 0.455166 2.348 0.434
1 10 2.6644 0.463966 2.670 0.458
1 20 3.2276 0.581024 3.209 0.590
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However, it does not mean that GB corrections are
negligible. On the contrary, according to string theory the
Gauss-Bonnet coupling � should be around 1. Let us
compare the results, for instance, for ‘ � 2, n � 0
QNMs for Schwarzschild and � � 1 GB black holes for
d � 6: for Schwarzschild we have ! � 1:5965� 0:3967i
(6th order WKB), for � � 1 (6th order WKB) we get ! �
1:69654� 0:31929i (Note that for this case convergence is
good and the 3th order WKB value is not much different
1:67624� 0:323698i). Thus the effect of GB coupling is
about 6:3% in real and more then 20% in the imaginary
part here. For larger values of � it is certainly larger. We
have the same order of difference for other values of n and
‘.

In the time domain the signal has three stages: the initial
pulse dependent on the source of perturbations, the quasi-
normal ringing dominating period, and the power-law tail
(see Fig. 1). The bigger GB-coupling is, the larger the
quasinormal dominated region, i.e. at later times the tails
start dominating. As can be seen from Fig. 2, the power-
law tails do not show dependence on the Gauss-Bonnet
coupling � and are the same as for the d-dimensional
Schwarzschild black hole in Einstein general relativity,
when d is odd. That is, the fields always shows a power-
law falloff: for odd d > 3 the field behaves as

R‘ / t
��2‘�d�2� (17)

at late times, where ‘ is the multipole number. This be-
havior is entirely due to d being odd and does not depend
on the presence of a black hole [26]. It is known, that in
Einstein gravity, for even d > 4, the field decays as [26]

R‘ / t
��2‘�3d�8� ; (18)

and for the latter case there is no contribution from the flat
background. This power-law tail is entirely due to the
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presence of the black hole [26]. At the same time, the
Gauss-Bonnet black hole metric (3) and (4) goes to pure
Minkowskian metric when the black hole mass equals
zero, i.e. in a space-time without a black hole. In other
words, empty space-time in Gauss-Bonnet gravity ‘‘does
not see’’ the �. That is why we do not observe the
�-dependence of tails in odd space-time dimensions.

Thus, if the Gauss-Bonnet term changes late-time be-
havior, it must show itself only for even-dimensional
space-time. In the numerical procedure developed with
the characteristic integration scheme, no tails (power-law
or otherwise) were observed in even dimensions Gauss-
Bonnet spherical black holes. Yet, it should be pointed out
that the integration of the scalar field equation in the GB
background is a much more demanding numerical problem
than the same integration with the usual Einstein coupling.
In the latter case there are auxiliary analytical results, such
as explicit expression for the tortoise coordinate function.
Therefore, the GB codes are less precise and more time
consuming, and eventual tails could be hidden. The pos-
-5
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sible absence of tails with even d deserves further
consideration.

B. Gauss-Bonnet-de Sitter black holes

For the GBdS black holes the quasinormal ringing stage
becomes correlated with a new parameter: a positive
�-term. When the �-term is growing, both real oscillation
frequency and the damping rate are decreasing. Yet, real
part of ! is more sensitive to the changes of �-term.

Qualitatively this resembles the quasinormal oscillations
of d-dimensional Schwarzschild-de Sitter black hole [23].
In the limit of extremal value of the �-term, i.e. when the
cosmological horizon (rc) is very close to the event horizon
(r�), it is possible to generalize the formulas found in [27]
for four dimensional black hole and in [28] for
d-dimensional case. Namely, the quasinormal frequencies
for the near-extreme Gauss-Bonnet asymptotically de
Sitter black holes are given by

!n

	�
�

������������������������������������������������������
‘�‘� d� 3�

r2
�

rc � r�
2	�

�
1

4

s
� i

�
n�

1

2

�
;

n � 0; 1; 2; . . . ;

(19)

where 	� (a function of � in this generalized context) is
the surface gravity at the event horizon. The above formula
is well confirmed numerically: Fig. 3 shows a comparison
of the values obtained by direct numerical calculation and
from Eq. (IV B). Thus the quasinormal modes are propor-
tional to the surface gravity 	�, at least for lower over-
tones. It should be pointed that for the usual
Schwarzschild-de Sitter black holes, numerical and ana-
lytical investigations [29] suggest that the high overtone
behavior does not obey the formula (IV B).
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FIG. 3. Graph of Re�!�2 as a function of ‘�‘� d� 3�, in the
near-extreme limit positive � limit. The bullets are the values
calculated from the time-evolution profiles, and the dashed lines
are values obtained from the expression (IV B). The parameters
in this graph are 	� � 0:01, � � 1, � � 1:0, and the differ-
ences between the analytical and numerical results are under 2%.
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When the mass parameter � is set to zero, we have the
case of pure de Sitter spacetime in the Gauss-Bonnet
gravity. The metric function (4) then reduces to the follow-
ing form:

h�r� � 1�
r2

2�
�
r2

2�

����������������������������������������
1�

8��

�d� 1��d� 2�

s
: (20)

Repeating the analysis of [30,31], we come to the conclu-
sion that quasinormal modes exist only in odd spacetime
dimensions and are given by the formula:

!n � i
�

1

2�

�
1�

����������������������������������������
1�

8��

�d� 1��d� 2�

s ��
1=2
�2n� ‘�

n � 0; 1; 2; . . . :
(21)

Note that pure Gauss-Bonnet-de Sitter quasinormal modes
are purely imaginary, which corresponds to exponential
decaying without oscillations.

It is well-known that the late-time tails of black holes in
asymptotically de Sitter space-time for zero multipole and
for higher multipoles are qualitatively different. For the
zero multipole field (‘ � 0), the time domain picture is the
following: after a transient part, a quasinormal mode domi-
nated region is best observed. Following the quasinormal
mode dominated region, a late-time decay region settles. In
this latter phase, the wave-functions decay asymptotically
to a constant value, as has been the case in the
Schwarzschild de Sitter black hole which was studied
before [18,19,32]. This is illustrated in Fig. 4.

For first and higher multipoles (‘ > 0) at late times we
observe exponential tails in vicinity of GBdS black hole.
This is also an expected result, since in Einstein gravity the
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FIG. 4. Field decay in the Gauss-Bonnet-de Sitter black holes,
with ‘ � 0. A quasinormal mode dominated region is observed
(above), and asymptotically the field decays to a constant (be-
low). The fundamental mode, calculated with the WKB method
and directly from the characteristic data are 0:8356� 0:2935i
and 0:8011� 0:2608i. The parameters in this graph are d � 6,
� � 3:0, � � 0:1 and � � 1:0.
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TABLE VI. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method, for d � 6,
‘ � 0 and several values of � and �.

d � 6 WKB (3th order) WKB (6th order)
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1/4 0.580472 0.428367 0.652079 0.411337
0.1 1 0.379931 0.392027 0.401925 0.384688
0.1 2 0.0653851 0.168544 0.0636328 0.173794
1 1/2 0.582293 0.358225 0.736989 0.235326
1 2 0.318697 0.307084 0.331268 0.282461
1 4 0.00390515 0.0487306 0.0574555 0.0529852
10 100 1.5033 0.574511 1.5741 0.599309

TABLE V. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method, for d � 5,
‘ � 0 and several values of � and �.

d � 5 WKB (3th order) WKB (6th order)
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1/8 0.30485 0.278407 0.334981 0.26202
0.1 1/2 0.14922 0.217542 0.152444 0.2164
0.1 2/3 0.0677006 0.14792 0.00666957 0.150988
1 1/5 0.301869 0.218752 0.378865 0.159611
1 1 0.112613 0.148749 0.11619 0.145465
1 7/5 0.0240051 0.0683652 0.0242716 0.0709775

TABLE VIII. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method, for d � 8,
‘ � 0 and several values of � and �.

d � 8 WKB (3th order) WKB (6th order)
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1 1.1449 0.669364 1.29739 0.695376
0.1 4 0.644892 0.598472 0.682218 0.594199

TABLE VII. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method, for d � 7,
‘ � 0 and several values of � and �.

d � 7 WKB (3th order) WKB (6th order)
� � Re(!0) -Im(!0) Re(!0) -Im(!0)
0.1 1 0.769109 0.556647 0.852395 0.551612
0.1 1 0.561644 0.517639 0.598484 0.511069
0.1 1 0.00963007 0.222564 0.0939457 0.228191
1 1 0.868246 0.48557 1.12603 0.2999562
1 4 0.461426 0.419016 0.483098 0.381285
1 7 0.113334 0.215329 0.111663 0.218394

TABLE IX. Values for the quasinormal frequencies for the
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exponential tails are observed as well in usual de Sitter
black holes [18,19,32]. This is illustrated in Fig. 5. The
dependence of the quasinormal modes on �-term and
Gauss-Bonnet coupling can be learnt from Tables V, VI,
VII, VIII, IX, X, XI, and XII for different space-time
dimensionality.

The numerical simulations developed for Gauss-Bonnet-
de Sitter black hole indicate that the massless scalar per-
turbation in this geometry behave asymptotically as

R‘ 
 exp�‘�	c � cquad	2
c�t	 as t! 1;

d � 4 and � � 0;
(22)
0 50 100 150 200 250
v

10
-30

10
-24

10
-18

10
-12

10
-6

10
0

| R
l |

d = 5
d = 6
d = 7
d = 8

FIG. 5. Field decay in the Gauss-Bonnet-de Sitter black holes,
for d � 5; 6; 7; 8. It is observed a quasinormal mode dominated
region. Asymptotically, the field decays as an exponential tail.
The parameters in this graph are � � 0:1, � � 1:0 and ‘ � 1.
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where 	c is the surface gravity at the cosmological horizon
and cquad is an adjustment parameter for the 	2

c correction.
The expression (17) shows that, although the exponential
tail in the GBdS background is dependent on the Gauss-
Bonnet coupling � (since 	c is a function of�), the form of
the dependence is identical to the null � case.
Equation (17) generalizes the analogous expression found
in [32] for the usual Schwarzschild black holes.

C. Gauss-Bonnet-anti-de Sitter black holes

The quasinormal and late-time behavior of black holes
in anti de Sitter spacetime is significantly different from
those in asymptotically de Sitter or flat spacetimes. The
key difference is stipulated by the effective potential be-
havior, which is divergent at spacial infinity. Thus the anti
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method and directly
from characteristic data, for d � 5, ‘ � 1 and several values of
� and �.

d � 5 WKB (6th order) Characteristic Integration
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1/8 0.64317 0.241723 0.6451 0.2382
0.1 1/2 0.379265 0.165101 0.3856 0.1564
0.1 2/3 0.231024 0.103394 0.2247 0.1051
1 1/5 0.698655 0.181854 0.6926 0.1877
1 1 0.365998 0.111668 0.3704 0.1133
1 7/5 0.153506 0.0465747 0.1518 -0.042631
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TABLE X. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method and directly
from characteristic data, for d � 6, ‘ � 1 and several values of
� and �.

d � 6 WKB (6th order) Characteristic Integration
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1/4 1.04698 0.39859 1.0574 0.3828
0.1 1 0.74644 0.323514 0.7479 0.3183
0.1 2 0.238066 0.114496 0.2387 0.1212
1 1/2 1.09756 0.301244 1.053 0.2948
1 2 0.6962 0.244326 0.6962 0.2307
1 4 0.0847573 0.0315107 0.08965 0.03323
10 100 3.21004 0.52559 3.1940 0.5360
10 2000 — — 2.1711 0.4900
10 5000 — — 0.6228 0.2018

TABLE XI. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method and directly
from characteristic data, for d � 7, ‘ � 1, � � 0:1 and several
values of �.

d � 7 WKB (6th order) Characteristic Integration
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1 1.28621 0.519229 1.304 0.4910
0.1 2 1.00125 0.440876 1.008 0.4306
0.1 4 0.303405 0.153651 0.3091 0.1416
1 1 1.48546 0.411346 1.467 0.3623
1 4 0.899964 0.338928 0.8944 0.3224
1 7 0.361602 0.152214 0.3638 0.1398
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FIG. 6. Field decay in the Gauss-Bonnet anti de Sitter black
holes, for several values of the Gauss-Bonnet coupling. It is
observed a quasinormal mode dominated region.
Asymptotically, the field decays in quasinormal modes. The
parameters in this graph are d � 5, � � 1:0 � � �0:1 and ‘ �
0.
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de Sitter space acts as an effective confining box. Therefore
the Dirichlet boundary conditions are natural. These
boundary conditions are required also by AdS/CFT corre-
spondence for scalar field perturbations [11]. Yet, for
higher spin perturbations the true boundary conditions
may be different [33].

In the usual Schwarzschild-anti-de Sitter black holes,
the quasinormal modes govern the decay at all times and
thereby no power-law or exponential tails appear [20,21].
TABLE XII. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-de Sitter geometry,
obtained from third and sixth order WKB method and directly
from characteristic data, for d � 8, ‘ � 1, � � 0:1 and several
values of �.

d � 8 WKB (6th order) Characteristic Integration
� � Re(!0) -Im(!0) Re(!0) -Im(!0)

0.1 1 1.75036 0.697491 1.803 0.6250
0.1 4 1.10954 0.508301 1.103 0.4964
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We observe a similar behavior the scalar field perturbations
in the Gauss-Bonnet-anti-de Sitter black holes.

It is not possible to use WKB method to find the quasi-
normal modes in Gauss-Bonnet-AdS case because the
effective potential is not a potential barrier anymore. The
Horowitz-Hubeny method [11] is not applicable either,
because the Taylor expansion of the effective potential
has infinite number of terms. That is why we were limited
only by time domain analysis, which is free of the above
problems. From Fig. 6 we see that, indeed, the quasinormal
modes are dominating even at sufficiently late times. We
also have learnt from Fig. 6 that the quasinormal mode
dominated region grows, as the multipole index ‘ grows.
The quasinormal frequencies obtained through character-
istic integration are presented in Table XIII for GBAdS
black hole.

As is known from Einstein action case, as the radius of
the AdS black hole goes to zero, the quasinormal modes of
the black hole approach its pure anti de Sitter values [34].
Repeating the calculations of [31], we find the exact ex-
pression for the normal modes in GB gravity:
TABLE XIII. Values for the quasinormal frequencies for the
fundamental mode in the Gauss-Bonnet-anti-de Sitter geometry,
estimated from the characteristic data, for d � 5, ‘ � 0, � �
1:0, � � �0:1 and several values of �.

� Re(!0) -Im(!0)

0.1 0.4923 -0.01585
0.1 0.4920 -0.01593
0.5 0.4904 -0.01634
1.0 0.4885 -0.01702
1.5 0.4866 -0.01766

-8



SCALAR FIELD EVOLUTION IN GAUSS-BONNET . . . PHYSICAL REVIEW D 72, 084006 (2005)
!n�

�
1

2�

�
1�

������������������������������������
1�

8��

�d�1��d�2�

s ��
1=2
�2n�‘�d�1�;

n�0;1;2; . . . : (23)

The pure GB-AdS modes, unlike GB-dS modes, exist in
any any spacetime dimension.
V. CONCLUSIONS

We have considered here frequency and time domain
description of evolution of scalar field perturbations in the
exterior of black holes in Gauss-Bonnet theory of gravity,
generally with a �-term. The quasinormal behavior even
though being corrected by a new parameter, Gauss-Bonnet
coupling �, are qualitatively dependent mainly on the
�-term and black hole parameters such as mass � and
multipole number ‘. The late-time tails for asymptotically
flat Gauss-Bonnet black holes, do not depend on the Gauss-
Bonnet coupling in odd space-time dimensions, and there-
fore are the same as those for d-dimensional Schwarzschild
black hole in Einstein gravity. Moreover, in the case of
Gauss-Bonnet-de Sitter black holes, the late-time tails,
though dependent on �, yet, rather trivially, i.e. only
through dependence of the surface gravity at the cosmo-
logical radius on �. Thus, the Gauss-Bonnet coupling
084006
shows itself ‘‘minimally’’ in late-time behavior. The most
interesting problem which remains unsolved is, to find late-
time tails for even dimensions, and thereby, to know
whether the power-law tails depend upon the Gauss-
Bonnet term. At the same time, we have shown that cor-
rections to the quasinormal frequencies due to GB-term are
not negligible: they may reach 20% for string theory
predicted values of � 
 1.

Even though our analysis can easily be extended to the
massive scalar field, we were limited here by the massless
case. We expect that the influence of the massive term upon
the QNMs will be similar to that found in [35], i.e. the
lower overtones should be corrected by the field mass,
infinitely high overtone asymptotic will be unchanged no
matter the value of the massive term. Also we did not
consider the high overtone behavior of the GB black holes.
Generally, the high overtone asymptotics must be studied
by totally different methods [36] and deserves separate
investigation.

ACKNOWLEDGMENTS

This work was partially supported by Fundação de
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