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The asymptotic scheme of post-Newtonian approximation defined for general relativity in the harmonic
gauge by Futamase & Schutz (1983) is based on a family of initial data for the matter fields of a perfect
fluid and for the initial metric, defining a family of weakly self-gravitating systems. We show that
Weinberg’s (1972) expansion of the metric and his general expansion of the energy-momentum tensor
T, as well as his expanded equations for the gravitational field and his general form of the expanded
dynamical equations, apply naturally to this family. Then, following the asymptotic scheme, we derive the
explicit form of the expansion of T for a perfect fluid, and the expanded fluid-dynamical equations. (These
differ from those written by Weinberg.) By integrating these equations in the domain occupied by a body,
we obtain a general form of the translational equations of motion for a 1PN perfect-fluid system in general
relativity. To put them into a tractable form, we use an asymptotic framework for the separation parameter
�, by defining a family of well-separated 1PN systems. We calculate all terms in the equations of motion
up to the order �3 included. To calculate the 1PN correction part, we assume that the Newtonian motion of
each body is a rigid one, and that the family is quasispherical, in the sense that in all bodies the inertia
tensor comes close to being spherical as �! 0. Apart from corrections that cancel for exact spherical
symmetry, there is in the final equations of motion one additional term, as compared with the Lorentz-
Droste (Einstein-Infeld-Hoffmann) acceleration. This term depends on the spin of the body and on its
internal structure.
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I. INTRODUCTION

Explicit, tractable equations of motion of celestial
bodies can be used to compute ephemerides which have
to represent the prediction of a given theory of gravitation
for these motions. Such tractable, actually used equations
of motion are among the most important ones in a theory,
of course. Naturally also, such equations are necessarily of
an approximate nature, and this is all the more so in
relativistic theories of gravitation, all of which are much
more complex than is Newton’s theory. Most of the pa-
rameters that enter these equations of motion are adjusted
for the very construction of the ephemerides, or at least are
adjusted under the assumption that the theory considered is
correct [1,2]. Therefore, the ephemerides represent in fact a
fitting of astronomical observations by the given theory of
gravitation or, more precisely, by the actually used, ap-
proximate equations of motion derived from that theory.
Einstein’s general relativity (GR) is by very far the mostly
investigated theory, and the literature about the post-
Newtonian (PN) equations of motion for the mass centers
(EMMC’s) of an isolated system of celestial bodies in GR
is quite vast. However, the EMMC’s that are actually used
in relativistic celestial mechanics [1–3] were obtained only
two years after the proposal of GR: these are the Lorentz-
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Droste (LD) equations [4]. They are more widely known as
the Einstein-Infeld-Hoffmann equations, because that
work of Lorentz and Droste [4] seems to have been
forgotten until rather recently [5], and because these
same equations were derived (though under different as-
sumptions and for two bodies only) by Einstein and his
coworkers [6].

The most satisfactory derivation of the LD equations is
that provided by Damour, Soffel, and Xu (hereafter
‘‘DSX’’ for short) [5]. As shown by DSX, the LD equations
are the ‘‘monopole-truncated’’ EMMC’s, corresponding to
the ideal case where the gravitational field of each body is
characterized by just one parameter (its constant mass), all
higher-order multipole moments and all spin moments
being zero. For each body, a set of such moments is defined
by these authors [5]: generalizing results obtained by
Blanchet and Damour (which were based on an exact
multipole expansion of the retarded potential due to a
compact source) [7], these moments are defined from
multipole integrals, limited to this body, of the relevant
current and energy densities; these moments then deter-
mine the coefficients in multipole series expansions of the
(external) PN gravitational potentials produced by this
body. The results of DSX [5,8], in particular, the exact
recovering of the LD equations as the monopole-truncated
EMMC’s, are further confirmed by Racine and Flanagan
[9] who also consider multipole expansions, but use a
somewhat different approximation method [based on a
separation between Newtonian and (first) post-Newtonian
-1 © 2005 The American Physical Society
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1Our method is closer to that used by Fock [13], but it differs
from it in that we use the ‘‘asymptotic’’ scheme of PN approxi-
mation [14,15], instead of the ‘‘standard’’ scheme developed by
him [13] and by Chandrasekhar [16]. The difference between
these two schemes will be demonstrated in Sec. II, especially
Sec. II C. In the particular case of a test particle in a
Schwarzschild field, these two schemes are yet equivalent
[17]. Another important difference is that we use also a definite
asymptotic framework for the separation parameter, which is
exposed in Sec. IV.
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equations and, therefore, leading to Poisson equations in-
stead of d’Alembert equations for the gravitational poten-
tials; moreover, in order to extend the validity of the results
to strong fields, Racine and Flanagan [9] use surface-
integrals definitions of the multipole moments and the
mass centers]. A question arises as to the relevance of the
monopole-truncated model (or, for short, the monopole
model) leading to the LD equations: does this model
approach the relevant exact general-relativistic motion
accurately enough? (The fact that the LD equations do
allow one to compute accurate ephemerides does not
give a strong argument for answering ‘‘yes’’: from the
purely logical point of view, one cannot preclude that the
observational agreement could be less good if one would
use a more accurate approximation.) Within the DSX
framework [5], the answer to this question should be
obtained by incorporating higher-order multipole moments
and spin moments, and by checking the magnitude of the
corresponding new terms in the equations of motion. DSX
[8] have indeed studied a ‘‘monopole-dipole’’ model for
which, in addition to the monopole mass moment, the spin
dipole moments are also nonzero, and in fact may be
considered constant. Although DSX [8] did not discuss
the magnitude of the new (spin-orbit and spin-spin) terms
in the equations of motion, one may guess that they should
be very small in the solar system, because they turn out to
be of a high order in the separation parameter. However, in
view of the infinite number of multipole and spin moments,
there is no a priori guarantee that the set of the other
moments gives a negligible contribution. Indeed DSX
‘‘state clearly that these models [such as the monopole
model and the monopole-dipole model] do not need to
represent the first step in some asymptotic approximation
to reality, but only to be able to ’save the phenomena’
with an acceptable accuracy, and in a logically consistent
manner.’’ [8]

By definition, neither in the monopole model nor in the
monopole-dipole model does the internal structure of the
gravitating bodies influence the equations of motion.
However, there are indications that, in fact, the internal
structure might play a non-negligible role. There is first a
qualitative argument: in any relativistic theory, the mass-
energy equivalence implies that any kind of energy should
both contribute to the gravitational field and be sub-
jected to its influence. Thus, for instance, the rest-mass
energy, but also the energy due to the interaction between
matter and gravitational field, of which the Newtonian
potential energy gives a first approximation, should
play a role—as does the kinetic energy due to the internal
motion: the influence of the latter is attested by the pres-
ence of the spins in the equations of motion derived
from the monopole-dipole model. And since the distribu-
tion of the energy among these different forms can
vary from one celestial body to the other, one a priori
expects that the different distributions might affect the
084002
motion. A more quantitative argument follows from a
derivation of the EMMC’s in an alternative scalar theory,
which has been done recently [10–12]. Indeed, it has been
found there that several structure parameters enter the
explicit EMMC’s tailored to eliminate numerically negli-
gible terms, and it has been argued that the same should
occur ‘‘in nearly any other theory’’ if a similar method was
used [12].

Therefore, the goal of the present investigation was to
check whether this conjecture about the influence of struc-
ture parameters does apply to GR. The method used in
Refs. [10–12], which will also be used in the present work,
is very different from that followed by DSX [5,8] and by
Racine and Flanagan [9], who use multipole expansions
from the beginning and who, in a first step, analyze the
equations for the moments in reference frames attached to
the different bodies.1 Instead, our first step consists simply
of an integration of the PN field equations for a perfect
fluid in the global reference frame, say F, which provides a
general (but not tractable) form of the PN EMMC’s—the
mass centers themselves being defined as local barycenters
of the PN rest-mass density in the frame F [10]. Such
general PN EMMC’s were not given in previous works,
except in the form involving infinite series of multipole and
spin moments [9], which is quite complex. Of course, our
restriction to perfect fluids means some loss of generality
as compared with the approach of Refs. [5,8,9], which does
not need to consider a particular material model; but this
restriction is not a serious one in the solar system [18],
essentially because, inside massive bodies, the deviatoric
stresses are small as compared with the isotropic pressure.
(Moreover, the present method might be used with a more
sophisticated material model, at the price of redoing the
calculations.) In a second step, to get tractable equations,
we use three simplifications which do occur for the solar
system: (i) the fact that its main bodies are well separated.
This is an essential assumption, which is set by assuming
that a precise separation parameter [11], which we denote
by�, is a small number �0 for the system of interest, S, and
by introducing a family �S�� of well-separated systems
(each system is weakly gravitating, with the field strength
being nearly the same for all systems, and with S�0 � S). It
enables one to define a hierarchy of well-defined approxi-
mations for the ‘‘tidal’’ effects, by calculating asymptotic
expansions, with respect to �, of the integrals that enter the
general form of the PN EMMC’s [12]. (ii) The second
-2
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simplifying feature of the solar system is that its main
bodies have a nearly rigid rotation about themselves.
(iii) Lastly, the main bodies of the solar system are nearly
spherical. We use the sphericity assumption only for the
zero-order rest-mass density, �0 (but this implies that the
zero-order pressure and the self-Newtonian potential are
also spherically symmetric in each body). But, as well as
for the rigidity assumption, we use the sphericity assump-
tion merely at the stage of calculating the PN corrections,
not for the zero-order calculations themselves. Moreover,
we shall simultaneously derive an explicit (though less
condensed) form of the equations of motion without
using this sphericity assumption, and using instead a
much weaker ‘‘quasisphericity’’ assumption, expressed
by Eq. (4.11).2 We argued previously [11] that, in the solar
system, the sphericity assumption is likely to lead to rela-
tive errors smaller than 10�3 when calculating the PN
corrections, which are already very small. In summary,
we believe that the assumptions introduced in the present
paragraph are enough justified in the solar system. The
asymptotic PN scheme, which is used here, leads to a
separation between zero-order (Newtonian) and first-order
(1PN) equations. Therefore, the small effects neglected,
such as the departure from rigidity or the shear stresses
[19], could be described accurately enough by taking them
into account merely for the Newtonian calculations. (Such
Newtonian calculations using a more general model of the
bodies are, of course, a well-developed subject in geophys-
ics.) Hence, due to this separation in the scheme used here,
it would not make much practical sense to include such
small effects into the calculations of the PN corrections,
unless at the same time one would compute second post-
Newtonian corrections to the motion.

This paper is organized as follows: the next section
summarizes the asymptotic-expansion method of the local
fields and equations for a perfect fluid in GR under the
harmonic gauge. The general form of the equations of
motion for a perfect-fluid system in GR (in the harmonic
gauge) is derived in Sec. III. The framework which is used
to rigorously account for the good separation between
bodies is summarized in Sec. IV. Based on Appendix A,
in which we compute the integrals entering the general
form of the EMMC’s, for the case of well-separated,
rigidly rotating, and quasispherical bodies, Sec. V presents
2Thus, the incompatibility between exact spherical symmetry
and nonzero self-rotation is not relevant here, first because we do
give the formulas for the nonspherical case. Second, when we
use the assumption of spherical zero-order densities to get a
more tractable expression of the PN corrections, this assumption
has the status of a relevant approximation. According to this
view, the zero-order calculations might take into account the
departure from sphericity. The spherical zero-order density �0
considered when calculating the PN corrections might then be
defined as some relevant approximation (a least-squares approxi-
mation, say) to the exact, nonspherical zero-order density. The
same can be said about the rigidity assumption.
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the explicit EMMC’s obtained, together with their special-
ization to the case with spherical mass densities. Our
conclusion is presented in Sec. VI.

II. ASYMPTOTIC PN APPROXIMATION FOR A
PERFECT FLUID IN GR UNDER THE HARMONIC

GAUGE

The standard PN approximation is based on the classical
works of Fock [13] and Chandrasekhar [16]. At those
times, the numerical analysis of partial differential equa-
tions (PDE’s) was far less developed than it is now. It
would now seem relevant to build an approximation
scheme in agreement with the asymptotic schemes cur-
rently used in the numerical analysis of PDE’s. In such a
scheme, one has a regular family of systems, �S�� (each
system being defined by a boundary-value problem—an
initial-value problem for that matter, because relativistic
gravitational equations are hyperbolic), so that one may
make the ‘‘small parameter’’ � as small as desired, indeed.
Then, for the corresponding family of fields, one should be
able to state some asymptotic expansions with respect to �;
in particular, all of the unknown fields should be expanded,
because, in general, they all depend on �. Moreover, the
family should be associated in a physically natural way
with the system of interest S, which should correspond to a
small value �0 of the parameter, S � S�0

, so that it makes
sense to use the expansions for the given system S. Finally,
� should be the natural field-strength parameter [13], so
that a small value of � means indeed a weak gravitational
field. It has been shown by the work of Futamase and
Schutz [14] how to develop a post-Newtonian approxima-
tion along this line for GR (in the harmonic gauge). Below,
we indicate first (Secs. II A and II B ) how, starting from
their initial condition, one indeed obtains the general ex-
pansions and expanded equations derived by Weinberg in
Sections 9.1 and 9.3 of his classical book [20]. Our aim is
not to present mathematically rigorous proofs but to show
that the main features of Weinberg’s approach occur rather
naturally and convincingly from the point of view of
asymptotic analysis. Futamase and Schutz [14] did not
investigate the relation between their asymptotic PN ap-
proximation and Weinberg’s expansions, which, in our
opinion, remained difficult to understand. Then we show
(Sec. II C) that, however, the explicit expansion of the
energy-momentum tensor T and the explicit expanded
equations obtained according to this ‘‘asymptotic scheme’’
for a perfect fluid are different from the equations stated by
Weinberg in his Section 9.8.

A. Expansion of the matter fields and the metric

Futamase and Schutz [14] assume the following initial
data for the fields p (pressure), �� (proper energy density
-3
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in mass density units),3 u (coordinate velocity), and g
[space-time metric; in this paper, we follow the conven-
tions of Weinberg [20], in particular, the signature is (3,1)]:
at time t � 0,

p����x� � �4p�1��x�; (2.1)

������x� � �2���1��x�; (2.2)

u ����x� � �u�1��x�; (2.3)

������������
�g���

q
g���ij�x� � �ij; �

������������
�g���

q
g���ij�;0�x� � 0

�1 � i � 3; 1 � j � 3� (2.4)

[here g � det�g���, �g��� is the inverse matrix of �g���,
and x � �xi� is the spatial position]. Conditions (2.1), (2.2),
and (2.3) for the matter fields are suggested by an exact
similarity transformation valid for the Euler-Newton equa-
tions, which defines the weak-field limit for a perfect-fluid
system in Newton’s theory [14,15]. This indeed suggests to
define the initial conditions for the Newtonian limit of any
‘‘relativistic’’ theory by applying the similarity transfor-
mation to the initial data, at least for the matter fields—and
this leads exactly to Eqs. (2.1), (2.2), and (2.3). As to
condition (2.4), it is just the condition that one would
impose if one would wish to have the following ‘‘confor-
mally Euclidean’’ (or isotropic) form for the space metric
� (the spatial part of g in the frame defined by the coor-
dinate system):

�ij �
�������
�g
p

�ij; (2.5)

without imposing any a priori restriction on the factor�������
�g
p

. [Hence, it is legitimate to postulate this condition
(2.4), but it is not clear that one has to postulate it, unless
one does so precisely to enforce spatial isotropy.] Note that
condition (2.4) does not depend on �. Thus, using first
Eqs. (2.1), (2.2), and (2.3) to go from the finite small value
�0, valid for the physically given system S, to � � 1, and
then once more to go from � � 1 to the arbitrary value �,
one indeed naturally associates with S a family �S�� of
systems.

Now, let us change the mass and time units for system S�
in this way [15]: �M	� � �2�M	 and �T	� � �T	=�, where
�M	 and �T	 are the units for system S1. In these units, the
initial data (2.4) for the metric is unchanged (because the
metric is adimensional), but Eqs. (2.1), (2.2), and (2.3)
become simply

p����x� � p�1��x�; ������x� � ���1��x�;

u����x� � u�1��x�:
(2.6)
3Futamase and Schutz [14], as well as Weinberg [20], use the
notation � for ��. Moreover, they set c � 1, so that the physical
dimensions are not apparent in their equations.
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Thus, the initial condition is independent of �; moreover
we have just � � c�1 (we take the velocity of light to be
c � 1 in the units for system S1). The initial-value problem
still depends on � or more exactly on �2, since in general
units the Einstein equations involve the square c2 � ��2:

R�� �
1

2
g��R�� � �

8	G

c2 T�� (2.7)

(this writing is in accordance with Weinberg’s, which itself
follows his conventions about the Riemann and Ricci
tensors; we take T in units of mass density, thus ML�3;
note that G with dimension L3M�1T�2 is invariant in the
change of units). The effective small parameter is thus �2,
rather than �. Hence, it suggests itself to state Taylor
expansions with respect to �2 � c�2, starting from the
zero-order term (denoting with a prime the fields as ex-
pressed in these varying units):

p0 � p00 
 p
0
1c
�2 
O�c�4�;

�0� � �0�0 
�
0�
1 c
�2 
O�c�4�;

u0 � u00 
 u01c
�2 
O�c�4�;

(2.8)

etc. When coming back to the fixed units (of system S1),
these expansions are modified in a straightforward way:

p � �p0 
 p1�2 
O��4�	�4;

�� � ���0 
�
�
1�

2 
O��4�	�2;

u � �u0 
 u1�2 
O��4�	�:

(2.9)

On the other hand, the definition of tensor T from the
matter fields is for a perfect fluid

T�� � ��� 
 pc�2�U�U� 
 pc�2g�� (2.10)

[13,20], where U� is the four-velocity of the fluid:

U� � dx�=ds; ds � ��g��dx�dx��1=2; (2.11)

hence

Ui � U0ui=c (2.12)

since ui � dxi=dt and x0 � ct. Therefore, the definition of
T from the matter fields does involve directly c�1 � �.
However, the equation T��;� � 0, once written in terms of
the matter fields using this definition, will contain only
c�2. (This is not immediate to check on the usual forms of
the exact perfect-fluid equations in GR, e.g. Font [21],
because usually it is set c � 1; see Ref. [15], Eqs. (3.8)
and (3.10), for the equations in an alternative theory, based
on a slightly different conservation equation.) Thus, this
passage by the �-dependent units at least suggests that the
expansions in the usual field-strength parameter �
[13,20,22,23], or the formal expansions in 1=c [16], could
be in fact expansions in the square � � �2, or 1=c2. (One
sometimes invokes the invariance by time reversal, but this
applies to the equations, not to their solutions for a generic
situation.) As stated by Weinberg [20], ‘‘the real justifica-
-4



EQUATIONS OF MOTION ACCORDING TO THE . . . PHYSICAL REVIEW D 72, 084002 (2005)
tion for these expansions will come below when we show
that they lead to a consistent solution of the Einstein
equations.’’ We will use below the varying units for the
metric, whose expansion is less straightforward.

In order that there are well-defined zero-order fields and
equations, it is necessary that the metric has a finite limit as
�! 0. This should occur in the fixed units, for we know
that in a real weak field, thus for a finite small value �0 of
the field strength, we can approximate the metric by a finite
metric which is independent of �0, namely, a flat one. Thus,
without anticipating the flatness, the metric should have an
expansion with a first term of order zero:

g � g0 
O��
2�: (2.13)

Setting � � diag��1; 1; 1; 1� and h � ��
�������
�g
p

g, the
harmonic gauge condition writes h��;� � 0 and in this
gauge the Einstein equations take the (‘‘relaxed’’) form
[14]

�h
� � ����h
�;�� � 16	�
�; (2.14)

where �
� is the sum of a term linear in tensor T and a
polynomial P
��h��; h��;� ; h

��
;���, having at least quadratic

terms. The zero-order equations are hence simply

�h
�0 � 16	�
�
0 (2.15)

(with h
�0 and �
�
0 the zero-order coefficients in the ex-

pansions of h
� and �
�). From the expansions (2.9), it
results that tensor T is O��2� (in the fixed units) and hence
makes no contribution to �
�

0 . Hence, we have �
�
0 �

P
��h��0 ; h��0;�; h
��
0;���. Thus, the zero-order equations (2.15)

are still nonlinear, just as the equations for the exact field
h. However, h0 � 0 (hence g0 � �) is a solution of these
equations which is compatible with the initial data deduced
from (2.4), h�t � 0;x� � 0 and @0h�t � 0;x� � 0.
Moreover the solution of the initial-value problem for these
nonlinear wave equations should be unique. Thus the
limiting metric is flat indeed:

g 0 � �: (2.16)

However, if one reexpresses this limit in our varying units
(or, for that matter, if one just uses the varying unit of time,
thus replacing the time t by the ‘‘dynamical time’’ t0 � �t
[9,14]), he finds that the limit g0 has the following compo-
nents, one of which is singular at the limit �! 0:

�0g
0
��� � diag����2; 1; 1; 1� � diag��c2; 1; 1; 1�: (2.17)

From (2.17), it follows that, to 1PN order, i.e., including
terms up to the order c�2 in the varying units, it is natural to
postulate the following expansions:

g000 � �c
2 
 1g

0
00 
 2g

0
00c
�2 
O�c�4�; (2.18)

g0ij � �ij 
 1g
0
ijc
�2 
O�c�4�; (2.19)
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g00i � 1g
0
0ic
�2 
O�c�4�: (2.20)

This leads, in the fixed starting units, to

g00 � �1
 1g00�
2 
 2g00�

4 
O��6�;

gij � �ij 
1 gij�
2 
O��4�; g0i � 1g0i�

3 
O��5�:

(2.21)

This is the expansion written by Weinberg [20] (accounting
for the fact that this author incorporates the small parame-
ter in the expansion coefficients) and used by Racine and
Flanagan [9].

The asymptotic expansions of the fields have to, first of
all, be valid at fixed values of the time and space variables,
of course. Since the velocities in the system S� vary like �,
it follows that the characteristic times (e.g. the orbital
periods) vary like ��1. Therefore, the relevant time vari-
able in the expansions is not the time t in fixed units, but the
‘‘dynamical time’’ t0 � �t [9,14,15]. This is in fact obvious
if one remembers that the initial data in the varying units
(and thus with the time t0) is independent of �. Thus, the
coefficients of the expansions: p0, p1, etc., are functions of
x and t0 but they are by definition independent of �. With
this in mind, the insertion of (2.9) into the initial data (2.1),
(2.2), and (2.3) gives the initial data for the coefficients: at
the initial time,

p0�x� � p�1��x�; p1�x� � 0; (2.22)

��0�x� � ���1��x�; ��1�x� � 0; (2.23)

u 0�x� � u�1��x�; u1�x� � 0: (2.24)

B. Expanded field equations

It is easy to check that the calculations done by
Weinberg [20] in his Sections 9.1 and 9.3 follow exactly
from the expansions (2.9) and (2.11) of the matter fields
and the metric. (We stay in fixed units with c � 1 until the
end of Sec. II.) One difference is that, because the relevant
time variable in the asymptotic expansions is the dynami-
cal time t0 � �t, the coefficients in the expansions, e.g. 1gij
in the second formula in Eq. (2.21), are functions of t0 (and
of the space coordinates xk). Hence, when differentiating
the �-dependent fields with respect to x0 � t, as this occurs
e.g. in the definition of the connection and the Ricci tensor,
one increases of one the order in � (which is what
Weinberg essentially assumes), but also one ends up with
a derivative of the expansion coefficient with respect to t0.
For instance, in uniform conditions, differentiating the
second formula in Eq. (2.21) gives

@gij
@t
�
@�1gij�

@t0
�3 
O��5�: (2.25)

Another difference is that the unique small parameter �
now appears explicitly in the expansions (but of course it
-5



MAYEUL ARMINJON PHYSICAL REVIEW D 72, 084002 (2005)
does not in the expanded equations, which are obtained by
coefficient identification in the expansions). Thus, for in-
stance, the components R00, Ri0, and Rij of the Ricci tensor
are indeed of order 2, 3, and 2 in �, respectively,
Eqs. (9.1.23–25) in Ref. [20], but (at least for a fluid),
the corresponding components T00, Ti0, and Tij of tensor T
are now, respectively, of order 2, 3, and 4, in the same �,
hence the expansions

T�� � �n���0T
�� 
 1T

���2 
O��4��;

n00 � 2; ni0 � 3; nij � 4:
(2.26)

{Compare Eqs. (9.1.42–44) of Weinberg [20].} Defining
tensor S�� � T�� �

1
2g��T

�
� , one then finds that S00, Si0,

and Sij do have expansions with the same orders as R00,
Ri0, and Rij, respectively, the coefficients of these expan-
sions being given by his Eqs. (9.1.49–52). The Einstein
equations (2.7), equivalent to R�� � �8	GS��, thus split
to Weinberg’s equations (9.1.53–56). It follows that the
expansion (2.21) of the metric is explicitly [his
Eqs. (9.1.57–58, 60–61, 63–64)]:

g00 � �1� 2��2 � 2��2 
  ��4 
O��6�;

gij � �ij�1� 2��2� 
O��4�; g0i � 2i�3 
O��5�;

(2.27)

the potentials �,  , and i being solutions of the Poisson
equations

�� � 4	G0T
00; (2.28)

� �
@2�

@t02

 4	G�1T

00 
 0T
ii�; (2.29)

�i � 16	G0T
i0; (2.30)

where � is the Laplacian corresponding to the Euclidean
metric which has components �ij in the given harmonic
coordinate system utilized, thus �’ � ’;ii.

In the same way, starting from the general expansion
(2.26) of the energy-momentum tensor T and the explicit
expansion (2.27) of the metric g, one checks straightfor-
wardly that the same expanded equations are derived from
the local dynamical equations T��;� � 0 as Eqs. (9.3.2–5) in
Ref. [20], namely

@�0T
00�

@t0


@�0T

0j�

@xj
� 0; (2.31)

@�0T
0i�

@t0


@�0T

ij�

@xj
� �0T

00 @�

@xi
; (2.32)
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@�1T
00�

@t0


@�1T

0j�

@xj
� 0T

00 @�

@t0
; (2.33)

@�1T
0i�

@t0


@�1T

ij�

@xj
��1T

00 @�

@xi
� 0T

00

�
@�2�2
 �

@xi


@i
@t0

�


 0T
0j
�@j
@xi
�
@i
@xj

�

 40T

0i @�

@t0


 40T
ij @�

@xj
� 0T

jj @�

@xi
: (2.34)

Note that, so far, the assumption of a perfect fluid was
necessary only to ensure that the components of tensor T
have orders in � given by Eq. (2.26), which can be easily
checked to be consistent with the expansions (2.9) of the
matter fields and with the definition of tensor T for a
perfect fluid, Eq. (2.10) above. (The next subsection shows
the explicit expansions of tensor T that one thus gets.) Of
course, much more general constitutive laws would still
lead to the same orders for tensor T. One would then have
to adapt the initial data (2.1), (2.2), and (2.3) and the
expansions (2.9) correspondingly, however.

C. Explicit expansion of the energy-momentum tensor
and expanded equations for a perfect fluid

To obtain the PN field equations for a perfect fluid, we
must first write the explicit expansion of the energy-
momentum tensor of a perfect fluid as a function of the
expansions of the matter fields and the metric field. We
insert the matter field expansions (2.9) and the expansions
of g�� and U0 deduced from (2.21) by Weinberg into the
expression of the energy-momentum tensor for a perfect
fluid (2.10), in which c � 1. This leads easily to the
explicit expansion of the energy-momentum tensor:

0T
00 � ��0; 1T

00 � ��1 
�
�
0�u

2
0 � 2��; (2.35)

0T
0i � ��0u

i
0;

1T
0i � ���1 
�

�
0�u

2
0 � 2�� 
 p0	u

i
0 
�

�
0u

i
1; (2.36)

0T
ij � ��0u

i
0u

j
0 
 p0�ij;

1T
ij � ���1 
�

�
0�u

2
0 � 2�� 
 p0	u

i
0u

j
0 
�

�
0u

i
1u

j
0


��0u
i
0u

j
1 
 p1�ij 
 2p0��ij: (2.37)

This expansion is different from that obtained by
Weinberg {Eqs. (9.8.4–6), (9.8.10–13) in Ref. [20]}.
This is because Weinberg does not expand the matter fields
of a perfect fluid: p, ��, and u. This same difference
between the standard PN scheme of Fock [13] and
Chandrasekhar [16] and the asymptotic-expansion method
has previously been noted by Futamase and Schutz [14]
and by Rendall [24]. Weinberg’s approach is distinct from
those of Fock and Chandrasekhar in that, in a first step,
Weinberg derives the PN equations for a general form of
-6
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the energy-momentum tensor, which tensor he does ex-
pand. For this reason, Weinberg’s equations essentially
coincide with those obtained with the asymptotic scheme
(the differences being explained at the beginning of
Sec. II B), until the explicit expansion of tensor T for a
fluid is written. From this stage, Weinberg’s equations [his
Sec. (9.8)] coincide with those of Chandrasekhar [16],
which are essentially equivalent to those of Fock [13]. In
Weinberg’s work, the departure from the asymptotic
scheme can be seen e.g. in the fact that the same field
denoted � by Weinberg cannot be interpreted at the same
time as the exact proper energy density, which we note ��,
as it is in his Eq. (9.8.1), and as the lowest-order coefficient
in the expansion of T00, thus our ��0, as it is in his
Eqs. (9.8.4) and (9.8.9). Moreover, the second formula in
Eq. (2.35) here, that gives the following coefficient in the
expansion of T00 in the asymptotic scheme, has the cor-
rection term ��1 as compared with the corresponding equa-
tion of Weinberg, his Eq. (9.8.10). As suggested by
Futamase and Schutz [14], the interpretation of the unex-
panded matter fields of the standard scheme that is closest
to bridging the gap with the asymptotic scheme is to
consider them as the second approximations of the exact
fields. This interpretation means assuming the following
correspondence between Weinberg’s notation in his
Eqs. (9.8.4–15), and the present notation:

�$ ���1� � �2���0 
�
�
1�

2�;

p$ p�1� � �4�p0 
 p1�2�;

v$ u�1� � ��u0 
 u1�2�:

(2.38)

With this interpretation, his Newtonian equations
[Eqs. (9.8.4–9)] are valid up to O��2� terms not included,
and his 1PN equations [Eqs. (9.8.10–15)] should be valid
up to O��4� terms not included—provided that, when
needed, one inserts the relevant power of �, the small
parameter being incorporated in the coefficients in
Weinberg’s notation. Thus, for instance, Eq. (9.8.4) of
Weinberg becomes

0T
00�2 � ���1��1
O��

2��; (2.39)

and his Poisson equation (9.8.9) for the Newtonian poten-
tial � becomes

�2�� � 4	G���1��1
O��
2��; or

�� � 4	G���0 
�
�
1�

2� 
O��2�;
(2.40)

which is obviously compatible with the exact equation of
the asymptotic scheme, Eq. (2.28) with the first formula in
(2.35):

�� � 4	G��0: (2.41)

However, if one uses Eq. (2.40) instead of the exact equa-
tion (2.41) to compute �, then � is determined only up to
unknown O��2� terms, really. (Indeed, except at the initial
084002
time, Eq. (2.23), the coefficient ��1 will, of course, not be
zero.) But the Newtonian potential � intervenes already at
the lowest order in the 1PN equation of motion
[Eq. (9.8.15)], namely, by the term��r� in this equation.
Hence, if one does interpret Weinberg’s unexpanded matter
fields as the second approximations of the exact fields, thus
writing Weinberg’s equation (9.8.9) as Eq. (2.40) above,
then his 1PN equation of motion (9.8.15) is accurate only
up to unknown O��2� terms, in fact—i.e., it is not more
accurate than the Newtonian equation of motion. This is
the reason why, in our opinion, the standard PN scheme is
not compatible with the asymptotic scheme. We note that
the scheme used by Damour et al. for 1PN approximation
[5,8] does not pertain to the standard scheme of Fock and
Chandrasekhar, because, in the DSX scheme, neither the
gravitational field nor the matter fields are expanded: DSX
consider the second-approximation fields, which we note
u�1�, p�1�, �1�g��, etc., and they do not split them into zero-
order and first-order parts. In the standard scheme, the
gravitational field is expanded (split), but the matter fields
are not. In the asymptotic scheme, all fields are expanded.
Hence, we feel that the DSX scheme is compatible with the
asymptotic scheme, though it differs from the latter. As to
Racine and Flanagan [9], they use that part of Weinberg’s
approach {Secs. (9.1) and (9.3) in Ref. [20]} which is
compatible with the asymptotic scheme.

Our aim in the present paper is to follow the asymptotic
scheme until tractable equations of motion are obtained. To
do that, we will moreover assume barotropic perfect fluids
(one fluid per astronomical body). Recall first that the
proper energy density �� that enters the expression
(2.10) of tensor T for a perfect fluid is, precisely, the sum
of the proper volume densities of rest-mass and of (elastic)
internal energy, �� � ���1
��. The assumption of a
barotropic fluid means that �� � F�p� depend only on
the pressure p, as well as does �, the latter being given
by [13]

� � G�p� �
Z p

0

dq
F�q�

�
p

F�p�
: (2.42)

For a barotropic fluid, it is hence convenient to replace the
initial condition (2.2) for the proper energy density �� by
one for the proper rest-mass density ��:

at t � 0; ������x� � �2���1��x� instead of

������x� � �2���1��x�;
(2.43)

which makes �� order 2 in �, like ��. Accordingly, the
initial condition for the expansion coefficients (2.23) is
replaced by

at t � 0; ��0�x� � ���1��x�; ��1�x� � 0: (2.44)

To ensure that the pressure and density fields obey
Eqs. (2.1) and (2.43) simultaneously, one assumes that
the function defining the barotropic state equation for
-7
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system S� is [14,15]

F��p� � �2F1��
�4p�: (2.45)

The expansions of the auxiliary matter fields ��, �, and��

follow then, of course, from the expansion in the first
formula of (2.9) of the leading field p [15]:

�� � �2���0 
 �
�
1�

2 
O��4��; ��0 � F1�p0�;

��1 � p1F
0
1�p0�;

(2.46)

� � �2��0 
O��2��; �0 � G1�p0�; (2.47)

��0 � ��0; ��1 � ��0�0 
 �
�
1: (2.48)

Since Eq. (2.42) is equivalent to the isentropy equation:
d� � �pd�1=���, a barotropic fluid is isentropic; hence,
as shown by Chandrasekhar [25], its rest mass is exactly
conserved. This suggests introducing the density of rest
mass with respect to the Euclidean volume measure dV �
dx1dx2dx3 associated with the considered harmonic coor-
dinate system [13],

� �
�������
�g
p

U0��; (2.49)

which obeys thus the usual continuity equation with the
velocity u. The expansion of � is

� � �2��0 
 �1�2 
O��4��; �0 � ��0 � ��0;

�1 � ��1 
 �0��3�
 u2
0=2�:

(2.50)

Using the second formula in (2.50) in the first formula in
(2.35), the first of (2.36) and (2.37), and reporting in
Eqs. (2.31) and (2.32), one checks that the latter ones
reduce to the Newtonian equations in which �0 plays the
role of the Newtonian density:

@t0�0 
 @j��0u
j
0� � 0; (2.51)

@t0 ��0ui0� 
 @j��0ui0u
j
0� � ��0�;i � p0;i: (2.52)

Thus, Eq. (2.31) {Eq. (9.3.2) in Ref. [20]} expresses the
zero-order conservation of mass, not the PN mass conser-
vation. But, rewriting the 1T

��’s [the second of Eqs. (2.35),
(2.36), and (2.37)] in terms of �0 and �1, one gets (2.33) as

@t0 �w0 
 �1� 
 @j��w0 
 p0 
 �1�u
j
0 
 �0u

j
1	 � �0@t0�;

w0 � �0

�
u2

0

2

�
�0

�
; (2.53)

which, combined with the Newtonian energy equation
deduced in a standard way from (2.51) and (2.52), gives
[15,24] the order-one component of the continuity equa-
tion:

@t0�1 
 @j��1u
j
0 
 �0u

j
1� � 0: (2.54)

It remains to find the field equation for 1PN correction to
the fluid motion. Setting
084002
�1 � �1 
 �0

�
u2

0

2
� 3�
�0

�

 p0; (2.55)

�1 � 1T
00 
 0T

jj � �1 
 �0

�
3

2
u2

0 
�
�0

�

 3p0;

(2.56)

we may first rewrite the expansion coefficients in the
second formulas of (2.36) and (2.37) as

1T
0i � �0u

i
1 
 �1u

i
0 
 4�0T

0i��; (2.57)

1T
ij � �0ui0u

j
1 
 �0ui1u

j
0 
 �1ui0u

j
0 
 �p1 � 2p0���ij


 4�0T
ij��: (2.58)

Inserting this into Eq. (2.34), and simplifying terms with
Eq. (2.32), we obtain the sought-for equation:

@t0 ��0ui1 
 �1ui0� 
 @j��0ui0u
j
1 
 �0ui1u

j
0 
 �1ui0u

j
0�


 @i�p1 � 2p0��

� ��1�;i � �0� ;i 
 @t0i 
 �i;k � k;i�u
k
0	: (2.59)
III. GENERAL FORM OF THE 1PN EQUATIONS OF
MOTION FOR A PERFECT-FLUID SYSTEM IN GR

(IN THE HARMONIC GAUGE)

A. The definition of the mass centers and its motivation

In GR, as in any relativistic theory of gravitation, any
form of material energy must both contribute to the gravi-
tational field and be subjected to its action. It is not
obvious, therefore, to state which energy density may be
used as a weight function so as to define relevant mass
centers. Two arguments justify the choice made [10] of the
rest-mass density � in the global reference frame,
Eq. (2.49): (i) since this density obeys exactly the usual
continuity equation, one may commute time differentiation
and barycentration. (In other words, the velocity of the
mass center of the body equals the average velocity in
the body.) This was advocated by Will [18] as a practical
advantage, which it certainly is. In our opinion, this prop-
erty is also an essential feature of the classical (Newtonian)
definition of the mass center, without which the notion of a
mass center becomes less useful physically; for the loss of
this property means that, following the motion of all con-
stituents of the body, one could not tell what is the motion
of the mass center. (ii) Rest mass is well correlated with
astronomical observations, because it is indeed the pres-
ence of matter in the usual sense, thus characterized by its
rest-mass density, that leads to the electromagnetic emis-
sion detected by the telescope. In practice, one determines
an ‘‘optical center’’ which, once corrected from the ‘‘phase
effects,’’ is used to define the astronomical (observational)
position of the mass center [26,27]. Hence, when giving the
theoretical definition of the latter, one has to indeed check
-8
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that the density selected is well correlated with the lumi-
nous density. Thus, in our opinion, the mass centers defined
with the help of � are directly relevant to the astronomical
observations. Several works have also used the choice of
the rest-mass density (2.49) as the weight function to define
the mass centers, e.g. Fock [13], Will [18], Brumberg [28].
(These works were based on the standard PN approxima-
tion scheme, however, which is distinct from the asymp-
totic scheme used in the present work: see Sec. II.) In the
literature on the PN equations of motion in GR, it has been
more usual to define the mass centers as the local bary-
centers of a density �0 which is obtained by adding three
(small) densities to �: the density of internal energy, the
energy density associated with the self-Newtonian poten-
tial of the relevant body, and the density of the kinetic
energy associated with its motion with respect to a local
frame attached to the mass center of that body. See e.g.
Misner et al. [22], Spyrou [29], Will [23] {cf. Eqs. (6.21)
and (6.25) in the latter work}. Instead of the continuity
equation, that density �0 would obey a balance equation
with a source term (this equation is not written in the
quoted works [22,23,29]). In the DSX formalism, the
definition of the mass centers is more involved {see around
Eq. (5.10) in Ref. [5]}, but it also is not based on a density
obeying the usual continuity equation. For sure, (i) does
not hold true with such choices, although the final equa-
tions of motion may be simpler. In addition, such densities
as �0 might be slightly less well correlated with the lumi-
nous density, because there is no reason that the latter
increases with, for instance, the local density of the proper
kinetic energy. However, the three additional densities are,
of course, very small [O�c�2�] as compared with �. More
precisely, they are of the order ��GM0a=�c2ra� where M0a
is the total mass energy in body �a� and ra is its size.
Therefore, by itself, the difference in the densities � and �0

which may be chosen as the weight function can imply
only small and nonsecular differences in the positions of
the mass centers, at least in a weakly gravitating system
such as the solar system.

According to DSX [5], one should consider carefully
chosen local reference frames to properly analyze the
‘‘internal problem’’ of celestial mechanics (i.e., that of
determining the motion of each body around its own
mass center), in order to avoid introducing metrical effects
due to the global velocity and the external potential. (See
also Kopeikin and Vlasov [30].) In the present work, we
limit the PN calculations to those necessary to get the
translational equations, thus to solve the ‘‘external prob-
lem’’ in the terminology of DSX. Using the expanded field
equations of the asymptotic scheme, derived in the fore-
going section, we shall derive in this section a general form
of the 1PN translational equations for the ‘‘�-centers,’’
Eq. (3.17). The remaining work to solve the external prob-
lem at the 1PN level is just to compute the integrals enter-
ing that equation. We shall compute these integrals up to
084002
and including the terms of the order 3 in the separation
parameter (see Sec. IV for a discussion of the good sepa-
ration and the way we account for it). By using the sim-
plifying assumption of a rigid Newtonian motion for each
body [Eq. (4.5)], the only dynamical equations that we still
have to use for that purpose are the Newtonian equations
[in addition to the field equations for the gravitational
potentials, Eqs. (2.28), (2.29), and (2.30)]. The New-
tonian dynamical equations, when they are used, are writ-
ten in the global reference frame: we do not have to
introduce any ‘‘body-attached’’ reference frame. Thus,
we define the exact masses and mass centers through the
rest-mass density � [Eq. (2.49)]:

Ma �
Z

Da

�dV; Maa �
Z

Da

�xdV (3.1)

where Da is the (time-dependent) domain made of the
spatial positions x � �xi� of the particles constituting
body �a� (a � 1; . . . ; N) in the considered harmonic coor-
dinate system �x��. At the 1PN approximation, the mass
and the mass center are approximated by4

M�1�a � M0
a 
M1

a=c2; M0
a �

Z
Da

�0dV;

M1
a �

Z
Da

�1dV;
(3.2)

M�1�a a�1� �
Z

Da

��1�xdV � M0
aa0 
M1

aa1=c2; (3.3)

with

M0
aa0 �

Z
Da

�0xdV; M1
aa1 �

Z
Da

�1xdV: (3.4)

Note that M0
a and a0 are the Newtonian mass and mass

center. Using Eqs. (2.51) and (2.54), one shows easily [10]
(i) that M0

a and M1
a are constant in time (exactly so, insofar

as the matter fields cancel on the boundaries @Da—in fact
they are negligible there), and (ii) that

M�1�a _a�1� �
Z

Da

��1�u�1�dV 
O�c�4�;

u�1� � u0 
 u1c�2;
(3.5)

which is, at the 1PN level, the commuting property of time
differentiation and barycentration, referred to at the begin-
-9
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ning of this section; in direct connection with this, we have
also [10]Z

Da

��1u0 
 �0u1�dV � M1
a _a1 
O�c�2� (3.6)

(this will be used later). Moreover, one finds from (3.2),
(3.3), and (3.4) that the PN correction to the position of the
mass center is given by

a �1� � a0 �
M1
a

c2M0
a
�a1 � a0� 
O�c�4�: (3.7)

In the final equations of motion, we shall also use the
notation

x 0a � a0; x1a � c2�a�1� � a0�;

xa � a�1� � x0a 
 x1ac
�2;

(3.8)

v a � _a�1� � _xa � _x0a 
 _x1ac�2: (3.9)
B. General form of the 1PN equations of motion

As mentioned in the Introduction, the (1PN) equations
of motion of the mass centers (EMMC’s) are obtained by
integrating the spatial components of the 1PN field equa-
tions of motion in the domains Da. Since the equations for
the orders zero and one are separated [Eqs. (2.52) and
(2.59)], the same occurs for the EMMC’s. The integration
of the zero-order field equation gives simply the
Newtonian equation of motion

M0
a �ai0 � �

Z
Da

�0��a�;i dV; (3.10)

where an upper dot indicates time derivative, and where we
use Fock’s [13] decomposition

� � ��a� 
�a; (3.11)

��a��x� � �G
X
b�a

Z
Db

�0�y�dV�y�=jx� yj; (3.12)

�a�x� � �G
Z

Da

�0�y�dV�y�=jx� yj (3.13)

(the corresponding usual expression of � being the solu-
tion of Eq. (2.28) under the usual boundary condition).
When integrating the field equation (2.59) for the PN
correction, we note that, due to Eq. (2.51),Z

Da

�0�@ti 
 i;ku
k
0	dV �

d

dt

�Z
Da

�0idV
�
; (3.14)

and, assuming that the matter fields cancel on the bounda-
ries @Da, we get

d

dt

�Z
Da

��0�ui1 
 i� 
 �1ui0	dV
�
�
Z

Da

fi1dV; (3.15)
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with

fi1 � ��1�;i � �0 ;i 
 �0k;iu
k
0: (3.16)

With the help of (2.55) and (3.6), this may be rewritten as

M1
a �a1 
 _Ia � Ja 
Ka 
O�c�2�; (3.17)

where

Ia � �Iai�;

Iai �
Z

Da

��
p0 
 �0

�
u2

0

2
� 3�
�0

��
ui0 
 �0i

�
dV;

(3.18)

Jai �
Z

Da

���1�;i � �0 ;i�dV; (3.19)

and

Kai �
Z

Da

�0k;iu
k
0dV: (3.20)

Owing to Eq. (3.7), Eq. (3.17) allows one to compute the
1PN correction to the acceleration of the 1PN mass centers
a�1�:

�a �1� � �a0 � �x1ac
�2

�
� _Ia 
 Ja 
Ka �M1

a �a0

c2M0
a


O�c�4�: (3.21)

This is the general form of the 1PN equation of motion for
a perfect-fluid system in GR (in the harmonic gauge),
according to the asymptotic scheme. To use this equation
in practice, we must bring the integrals (3.18), (3.19), and
(3.20) to a tractable form, using relevant simplifications.
This is done in the next sections. However, we can already
see that these integrals all depend on the Newtonian and
1PN matter fields, hence on the internal structure of the
gravitating bodies. It is hence a priori clear that, unless a
‘‘miraculous’’ cancellation would occur, in (3.21), of the
different ways in which the internal structure influences the
integrals (3.18), (3.19), and (3.20), the dependence on the
internal structure should subsist in the final equations of
motion.
IV. ACCOUNTING FOR THE GOOD SEPARATION
BETWEEN CELESTIAL BODIES

The ‘‘good separation’’ between the bodies of the sys-
tem of interest means that the separation parameter [11]

�0 � max
a�b
�rb=ja� bj�

�
rb �

1

2
Supx;y2Db

jx� yj
�
(4.1)

is small. We assume that the system of interest is described
accurately enough by the equations of the asymptotic 1PN
approximation, presented in the foregoing sections—thus,
-10
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a 1PN system S0 is substituted for the ‘‘exact’’ system S.
Then, to take the good separation into account in a clean
asymptotic framework, we introduce again a (conceptual)
family of systems (S0�), each being this time a 1PN system,
and with S0 � S0�0 . The family (S0�) is defined by initial
conditions [12]. We refer to Ref. [12] for a more complete
motivation of this approach, involving references to the
literature. As pointed out there [12], this approach seems to
be new and came from the realization that, in our previous
work [11], the lack of considering the small parameter �
within such a definite asymptotic framework (based on a
conceptual family of well-separated systems) had led to
the inappropriate neglect of some numerically signi-
ficant terms in the 1PN equations of motion of our alter-
native scalar theory. Those terms turned out to be of order
�3 [12]. This order should be enough in the main solar
system, for which we have �0 � �radius of the Sun�=
�minimum Mercury-Sun distance� ’ 1:4� 10�2, and
�3

0 ’ 3� 10�6. In particular, using equations of motion
derived from our alternative scalar theory and taking into
account terms up to and including �3, we could reproduce
the solar-system ephemeris DE403 of the Jet Propulsion
Laboratory [31] up to a 300=cy difference [32], the latter
being due to the difference in the theories and in the
approximation schemes.

Let us state the initial conditions for system S0�. Owing
to the 1PN equations, it turns out to be sufficient to define
the initial zero-order density and velocity fields. To define
�0�t � 0�, we first define the initial position of the mass
centers in system S0�:

a �
0 �t � 0� � a0�t � 0��0=�: (4.2)

Equation (4.2) ensures that, at least near t � 0, the sepa-
ration distances between bodies are of order ��1:

�r0
ab�

� � ja�0 � b�0 j � ord���1� for a � b: (4.3)

Then, we just have to define the initial shape and size of
each body �a� in system S0�, as some deformation of the
initial shape and size of �a� in the system of interest
corresponding to �0. The simplest is to assume that, in
fact, the bodies themselves do not depend on the separation
parameter �. This is expressed by the following definition
of the density ��0 �t � 0�:

��0 �x; t � 0� � �0�a
 y; t � 0� if x � a�0 
 y

with a0 
 y 2 Da:
(4.4)

Equation (4.4) defines the field ��0 �t � 0� so that it is
independent of � [setting ��0 �x; t � 0� � 0 if x does not
have the form above for some a � 1; . . . ; N].

To define the velocity u�0 �t � 0�, we use the assumption
that each body undergoes a rigid motion at the Newtonian
approximation:
084002
ui0 � _ai0 
��a�ji �x
j � aj0�; ��

�a�
ji 
��a�ij � 0�; or

u0 � _a0 
!a ^ �x� a0�; for x 2 Da:
(4.5)

This assumption is discussed in Appendix C. It is shown
there that this assumption is consistent with the accuracy
aimed at in this work, i.e., to get the EMMC’s up to the
order �3 included. We define the initial translation veloc-
ities of system S0� as

� _ai0�
��t � 0� � ��=�0�

1=2 _ai0�t � 0� (4.6)

and the initial spin velocities by

���a�ji �
��t � 0� � ��=�0�

1=2��a�ji �t � 0�: (4.7)

Thus, the fields ��0 �t � 0� and u�0 �t � 0� are well defined,
and it follows from the 1PN equations that in fact all 1PN
fields are then defined at t � 0. We assume that, as a
consequence of this initial condition, the ord���1� separa-
tion (4.3) holds true at any time in a relevant interval, in
which one has moreover, consistently with (4.6) and (4.7),

� _ai0�
� � ord��1=2� (4.8)

and

���a�ji �
� � ord��1=2�: (4.9)

Assumption (4.8) for the magnitude of the Newtonian
velocities is justified by the Newtonian estimate in a sys-
tem with a dominating body, say body �N�:

_a 2
0 � 2GM0

N=r
0
aN (4.10)

together with the good separation (4.3). In the solar system,
the angular velocities of the main bodies are quite small: at
most of the same magnitude, in linear values, as the trans-
lation velocities—which is consistent with (4.8) and (4.9),
accounting for the fact that the size of the bodies is ord��0�.
But in addition, the spins, including their axes, are very
nearly constant. Since the spin evolution is determined by
the rotational equations of motion, we cannot simply as-
sume that the rates _��a�ji are very small, but have to derive it
from these equations. In the asymptotic scheme used here,
the zero-order (Newtonian) equations apply exactly to the
zero-order fields, hence the rates _��a�ji are determined by
the Newtonian rotational equations. We shall prove in
Appendix B that these rates are O��3�, provided that
(i) the system is made of rigidly rotating well-separated
bodies, in the sense of Eqs. (4.3), (4.5), (4.8), and (4.9), and
(ii) these bodies have a ‘‘quasispherical’’ inertia tensor, in
the sense that

j��a�i � �
�a�
k j � O��2� �a � 1; . . . ; N; i; k � 1; 2; 3�;

(4.11)

where the ��a�i ’s are the eigenvalues of the inertia tensor I�a�ik
defined in Eq. (A7). This amounts approximately (or ex-
-11
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actly, for homogeneous bodies) to assuming that the dif-
ference between the linear dimensions of each body in the
different directions isO���. It would be easy to modify the
definition of the initial density field (4.4) so that it becomes
compatible with (4.11), e.g. by introducing an orthogonal
affinity centered at a0 and leaving one dimension of the
body unchanged while adjusting the other two. Thus, to
account in an asymptotic framework for the numerical
situation in the solar system, we need that our conceptual
family of 1PN systems couples the good separation with
the quasisphericity.

In Appendix A, we use the orders in � given by (4.3),
(4.8), and (4.9) to evaluate the integrals (3.18), (3.19), and
(3.20) up to and including ord��3� terms. [Of course, the
density fields �0, �1, etc., as well as the massesM0

a andM1
a

084002
and other energy integrals, are ord��0�.] There, we use
some of the calculations done in Refs. [11,12], and also we
use Newtonian or purely mathematical calculations of
Fock [13]. We shall use the quasisphericity assumption
(4.11), leading to the estimate (B8), only in two cases: to
get Eq. (A16) giving _Iai, and to get Eq. (A44).

V. EXPLICIT 1PN EQUATIONS OF MOTION FOR
WELL-SEPARATED, RIGIDLY ROTATING,

QUASISPHERICAL BODIES

The explicit form of the 1PN correction to the equations
of motion is obtained by inserting the explicit form of the
integrals _Ia, Ja, Ka, Eqs. (A16), (A35), (A44), (A48), and
(A52), into the general form (3.21) of the 1PN correction.
In a first step, we thus obtain
�x1a �

�
� _a2

0

2

 3��a��a0� �

6Ta 
 2"a
3M0

a

�
�a0 
G

X
b�a

M0
b

�n0
ab:�4 _a0 � 3 _b0�	� _a0 � _b0�

�r0
ab�

2

�G
X
b�a

�
M1
b 
M

0
b

�
2� _a0 � _b0�

2 �
_a2
0

2
�

3

2
�n0

ab: _b0�
2 
��a��a0� 
��b��b0�

�

 "ab

�
n0
ab

�r0
ab�

2


G
X
b�a

M0
b

�
x1b � x1a 
 3��x1a � x1b�:n0

ab	n
0
ab

�r0
ab�

3 

�n0

ab: �b0�n0
ab 
 7 �b0

2r0
ab

�



M�a�: �a0

M0
a
�

_Ians

M0
a

 jans



La

1ns 
La
2ns

M0
a


O��7=2� 
O�c�2�; (5.1)
"ab � 8
�
Ta
M0
b

M0
a

 Tb

�



2

3

�
"a
M0
b

M0
a

 "b

�
; (5.2)

in which the space tensor M�a�, related to the spin ��a�, is
given by Eq. (A18), and the (spatial) vectors _Ians, jans, La

1ns,
and La

2ns are given by Eqs. (A17), (A37), (A45), and (A47),
respectively. The four latter quantities reduce to zero if the
Newtonian density fields are assumed spherical in the
sense of Eq. (A20). It may be worth to repeat here that,
in the asymptotic scheme which has been used in this work,
the equations for the zero-order quantities and the 1PN
corrections are separated [14,15,24] (see Sec. II). For this
reason, it is not directly possible to compare Eq. (5.1) with
the LD equation. However, if we define the vector radius in
terms of the full 1PN positions (3.8),

rab � jxa � xbj; nab �
xa � xb
rab

; (5.3)
instead of defining it in terms of the zero-order positions, as
in (A36), then it is easy to derive the following 1PN
expansion: �r0

ab�
3

nab
r2
ab

�
n0
ab

�r0
ab�

2 

1

c2

�
x1a � x1b � 3��x1a � x1b�:n0

ab	n
0
ab

�r0
ab�

3

�

O�c�4�: (5.4)

We use this and the fact that, up to O��4� terms, one may
use the spherical estimate (A19) for the external
Newtonian potentials ��a��a0� and ��b��b0� in Eq. (5.1).
[This is independent of the ‘‘optional’’ sphericity assump-
tion (A20). Moreover, we use the expression (A32) for M1

b
in (5.1) and we switch to the notation (3.8) and (3.9).] This
enables us to group Eq. (5.1) with the Newtonian equation
of motion (3.10) so as to get
�xa � �
X
b�a

GM0
b

r2
ab

nab

�
1
 �b 


1

c2

�
v2
a 
 2v2

b � 4va:vb �
3

2
�nab:vb�2 � 4

X
d�a

GM0
d

rad
�
X
d�b

GM0
d

rbd

�
1


rab
2rdb

nab:ndb

�



6Ta
M0
a

��
�

7

2

X
b�a

GM0
b

rab

X
d�b

GM0
d

c2r2
bd

nbd 

X
b�a

GM0
b

c2r2
ab

�
�nab:�4va � 3vb�	�va � vb� �

M�a�:nab
M0
a

�



1

c2

�
�

_Ians

M0
a

 jans 


La
1ns 
La

2ns

M0
a

�

O��7=2� 
O�c�4�; (5.5)
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with, as before, matrix M�a� of Eq. (A19), and with

�b �
1

c2

"
3
X
d�b

GM0
d

rbd�t � 0�



1

2
v2
b�t � 0� 


27Tb 
 20"b
3M0

b

#

 1: (5.6)

The �b’s are constant up to O��7=2�; see Eq. (A13).
Obviously, the term in (5.5) that involves this small con-
stant may be absorbed, up to O�c�4� corrections, in a
redefinition of the zero-order masses, replacing them in
(5.5) by

M00b � M0
b�1
 �b�: (5.7)

Moreover, we recall that _Ians, jans, La
1ns, and La

2ns are given
by Eqs. (A17), (A37), (A45), and (A47), respectively, and
that these terms cancel in the ‘‘spherical’’ case in the sense
of Eq. (A20). In that spherical case, the right-hand side
(r.h.s.) of (5.5) coincides exactly with the LD acceleration
ALD
a , apart from a term depending on the spin and on the

internal structure:

�xa �ALD
a �

�
6Ta
M0
a



M�a�

M0
a

�
:

 
�
X
b�a

GM0
b

c2r2
ab

nab

!

�

�
6Ta
M0
a



M�a�

M0
a

�
:

�x0a

c2 
O��
4� 
O�c�4�

�
�a
c2M0

a
�6�!�a��2 
��a�:��a�	: �x0a


O��4� 
O�c�4�: (5.8)

Here, �a is the spherical inertia moment (A21), which does
depend on the internal structure, and �!�a��2 � ��a�jk ��a�jk =2
is the square of the angular velocity. f��a�:��a� is the
‘‘tensor’’ [see the footnote with Eq. (A18)] with ik com-
ponent ��a�ij ��a�jk .gWe note that this new term is order 3 in
�. It is clearly different from the two spin-orbit terms and
the spin-spin term appearing in the monopole-dipole equa-
tions of DSX [8], e.g. because, on the basis of Eqs. (4.3),
(4.8), and (4.9) here, the latter terms {Eqs. (6.32,33,34) in
Ref. [8]} are of order �4, �4, and �5, respectively. Many
more structure-dependent parameters appear in the non-
spherical case; see Eqs. (A37), (A45), and (A47). But, as
discussed in the Introduction, the departure from sphericity
is unlikely to give numerically important 1PN corrections.
VI. SUMMARY AND CONCLUSION

We started from the family of initial data proposed by
Futamase and Schutz [14], which defines a family �S�� of
perfectly fluid gravitating systems. This family is obtained
by applying a Newtonian exact similarity transformation to
the initial data defining the matter fields for the system of
084002
interest, S � S�0
, and by assuming for the spatial metric an

initial data which enforces spatial isotropy. That family
allows one to define the PN approximation in a clean
asymptotic framework [14]. (A similar family, differing
only in the initial data for the gravitational field, allows one
to do the same for an alternative scalar theory [15].) We
call the corresponding PN scheme ‘‘the asymptotic
scheme.’’ By using a change of units depending on the
parameter � [15], we are naturally led to postulate definite
expansions for the independent fields, Eq. (2.9) for the
matter fields and Eq. (2.21) for the metric. The latter is
equivalent to the expansion of Weinberg [20], but
Weinberg did not expand the matter fields. However, in a
first step, he did expand the energy-momentum tensor T,
by assuming, for its different components, expansions in
terms of the typical velocity in the system, his
Eqs. (9.1.42–44). This is a slightly different expansion
from the one we postulated in terms of the unique small
parameter �, Eq. (2.26) here, but, together with the expan-
sion of the metric, it leads to the same expanded equations:
the Einstein equations, written in terms of the 1PN gravi-
tational potentials, lead to Eqs. (2.28), (2.29), and (2.30),
while the dynamical equation leads to Eqs. (2.31), (2.32),
(2.33), and (2.34) for tensor T. But since we do expand the
matter fields, the explicit dynamical equations, as written
in terms of the matter fields, are definitely different from
those of Weinberg [20] in his Sec. 9.8, which coincide with
those obtained by Chandrasekhar [16]. The hydrodynam-
ical equation for the 1PN corrections according to the
asymptotic scheme valid for GR in the harmonic gauge
was written here explicitly for the first time, Eq. (2.59):
Futamase and Schutz {[14], the second of Eq. (4.28) with
the second and third of (4.27)}, as well as Rendall {[24],
Eq. (44)}, did not write this equation in such a fully explicit
form. Moreover, in these two works, equations for the
‘‘1

2 PN’’ order were considered necessary. In the present
work, we used �-dependent units in which the small pa-
rameter becomes � � c�1 and all fields are order zero (thus
justifying the formal expansions in powers of c�1) and in
which, moreover, only �2 � c�2 plays a role in most
equations—thus suggesting to postulate Taylor expansions
in c�2, for which there is no 1

2 PN term. In fixed units, this
leads to an expansion of the metric and a general expansion
of the energy-momentum tensor that are equivalent to
those postulated by Weinberg [20], involving merely
even powers of � or merely odd powers. The calculations
of his Secs. 9.1 and 9.3 show that these expansions are
consistent.

We used the asymptotic PN scheme to derive 1PN
equations of motion for the mass centers (EMMC’s) in a
weakly self-gravitating system, according to GR (in the
harmonic gauge). This was not done (with the asymptotic
scheme) before. Like Fock [13], Will [18], and Brumberg
[28], we define the mass centers through the rest-mass
density, Eq. (3.1), and we obtain the EMMC’s by integrat-
-13
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ing the 1PN dynamical equations in the domain occupied
by the relevant body. One difference is that we use the
asymptotic PN scheme instead of the standard PN scheme
proposed by Fock [13] and by Chandrasekhar [16]. As a
consequence, we get separated EMMC’s for the zeroth
(Newtonian) order and for the first PN correction. In a first
step, these are general equations valid for any 1PN system,
Eqs. (3.10) and (3.21). These general equations show that
one has a priori to expect an influence of the structure of
the gravitating body (e.g. the density profile) and its inter-
nal motion (e.g. the rotation velocity), since they depend on
integrals of all matter fields. Another important difference
with previous works (not only with Refs. [13,18,28]) is that
we use a definite asymptotic framework for the separation
parameter �, see Sec. IV, which enables us to obtain results
including an asymptotic error estimate. In the present
work, we got explicitly the 1PN correction to the
EMMC’s when including the terms up to the order �3

included, Eq. (5.1). To do that, we assumed, merely when
calculating the 1PN correction, that, at the Newtonian
approximation, the bodies are rigidly rotating (as is nearly
the case for the main bodies of the solar system), and
quasispherical in the sense of Eq. (4.11) (which simulates
in an asymptotic framework the real situation for these
same bodies).

It turns out that the separated EMMC’s of the zeroth and
first order can be grouped together to give Eq. (5.5). The
latter may be readily compared with the Lorentz-Droste
(Einstein-Infeld-Hoffmann) equation. In addition to new
(structure-dependent) 1PN terms accounting for the depar-
ture from exact spherical symmetry, there is a new 1PN
term depending on the internal structure and on the rotation
velocity of the body considered, Eq. (5.8). It is worth
emphasizing that the present derivation depends essentially
on the weak-field assumption and is invalid for a strong-
field system [although the definition of the mass center
through the rest-mass density, Eqs. (2.49) and (3.1), makes
sense also for a strong field]. Thus, for a binary system of
two neutron stars, each maximally spinning, the new term
might lead to 10% corrections to Newtonian physics,
whereas in fact, if the binary is widely separated, the
Newtonian dynamics is known to be a good approximation.
5An exception is for the order in Eq. (A4) here. It was proved
in Ref. [33], Eq. (A12), that Fock’s ‘‘Lyapunov’s equation’’ [13],
Eq. (73.26) indeed applies to a body in a well-separated system,
with a definite remainder in �:

p0 
 �0�0 � �0��a ��a� 
O��3�; (A3)

where �a is defined in Eq. (A7) below. [In this proof, the fact
was used that _��a�ji � O��3� as a consequence of the Newtonian
rotational equations—this is proved in Appendix B below, yet
that proof needs quasispherical bodies in the sense of Eq. (4.11).]
We have ui0 � ord��1=2� [Eqs. (4.8) and (4.9)]. Equation (A5),
including the order of the remainder, follows by a straightfor-
ward computation.
APPENDIX A: THE INTEGRALS Ia, Ja, AND Ka

FOR WELL-SEPARATED, RIGIDLY ROTATING
BODIES

Let us first note the following correspondence between
the notations of Weinberg [20], used in the present work,
and those of Fock, also used in Refs. [10–12] {see
Eqs. (2.30), (2.36), and (2.50) here, and Eq. (73.03) in
Fock [13]}:

�$ �U; i $ �4Ui: (A1)
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1. Integral Ia

This integral [Eq. (3.18)] is equal to

Iai �
Z

Da

�
p0 
 �0

�
u2

0

2
��
�0

��
ui0dV


 2
Z

Da

���0��a�ui0�dV 
 2
Z

Da

���0�au
i
0�dV



Z

Da

�0idV

� Iai1 
 2Iai2 
 2Iai3 
 I
ai
4 : (A2)

Integral Iai1 on the r.h.s. was in fact denoted by Iai in
Refs. [10–12] [it indeed played the same role there as the
integral (3.18) plays in Eq. (3.17) here] and it is given in
two pieces by Eqs. (A20)–(A21) in Ref. [11]; the second
piece, Eq. (A21) in Ref. [11], is just integral Iai2 above. In
Ref. [11], it could not be assigned a definite order in � to
the remainders, but now it is, in general, easy to do that,
using Eqs. (4.3), (4.8), and (4.9).5 We have thus

Iai1 � Iai2 
 �M
0
a _a2

0=2
 2Ta 
 4"a� _ai0


 � _ak0��a�lk I
�a�
jl 
 2Taj 
 4"aj��

�a�
ji 
O��

7=2�; (A4)

Iai2 �
Z

Da

���0��a�ui0�dV

� �M0
a _ai0��a��a0� � I

�a�
jk ��a�ki ��a�;j �a0� 
O��

7=2�;

(A5)

where [13]

"a � �
Z

Da

�0�adV=2;

"aj � �
Z

Da

�0�a�xj � a
j
0�dV=2;

(A6)

I�a�ij �
Z

Da

�0�xi � ai0��x
j � aj0�dV;

�a � ��a�ik ��a�jk �x
i � ai0��x

j � aj0�=2;

(A7)
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6Recall that we are using a fixed system of harmonic coor-
dinates x�, such that the initial condition has the form (2.1),
(2.2), (2.3), and (2.4). However, the equations written here are
covariant under a ‘‘Cartesian’’ spatial coordinate change, x00 �
x0; x0i � Rijx

j with R � �Rij� a (constant) orthogonal matrix,
R 2 O�3;R�. Hence the upper or lower indices need not be
distinguished (they may be exchanged by the Euclidean metric
that has components �ij in all these coordinate systems).
Moreover, these equations may be brought to a form covariant
under an arbitrary spatial coordinate change: y0 � x0; yi �
 i�xj�, provided some care is taken, e.g., in handling the time
derivatives: the components of the velocity vector v along a
trajectory t � x�t� are, in any space coordinates yi, the time
derivatives vi � _yi, but the acceleration A must be defined as the
‘‘absolute’’ time derivative of the velocity vector using the
connection associated with the Euclidean metric; the compo-
nents of A are �x0i only in Cartesian coordinates x0i.
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Ta �
Z

Da

�0�adV; Taj �
Z

Da

�0�a�x
j � aj0�dV:

(A8)

The third integral is immediately computable from
Eq. (4.5) above, in terms of the potential-energy integrals
(A6):

Iai3 �
Z

Da

���0�aui0�dV � 2�"a _ai0 
 "aj�
�a�
ji �: (A9)

By dividing the potential i (the negative Newtonian po-
tential associated with the density 40T

i0 � 4�0u
i
0) into

‘‘external’’ and ‘‘self’’ parts Z�a�i and ai, exactly as for
� in Eq. (3.11), one finds [cf. Fock’s integrals (75.36) and
(76.29–30)]

Iai4 � �4Iai3 
 I
ai
5 ; (A10)

with
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(A11)

Summing these different contributions, we get
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5

� �M0
a _a2

0=2
 2Ta� _ai0 
 � _ak0��a�lk I
�a�
jl 
 2Taj��

�a�
ji

� 3M0
a _ai0��a��a0� � 4GM0

a

X
b�a

M0
b

_bi0
ja0 � b0j

� 3I�a�jk ��a�ki ��a�;j �a0�


 4GM0
a

X
b�a

��b�ji I
�b�
jk

@

@ak0

1

ja0 � b0j

O��7=2�:

(A12)

When differentiating this with respect to the time, as is
needed for insertion in the equation of motion (3.17), we
note that, for well-separated, rigidly rotating and quasi-
spherical bodies (at the Newtonian approximation), the rate
of the (Newtonian) angular rotation velocity is O��3�
[Eq. (B8)]. Moreover, independently of the quasisphericity
assumption (4.11), we have by the Newtonian rotational
equations (B3) {cf. Fock [13], Eq. (72.32)}

dTa
dt
� O��3j��a�ji j� � O��7=2�: (A13)

In addition, due to the assumed rigid zero-order motion
(4.5), the (Newtonian) inertia tensor is constant in the
frame following the (Newtonian) rotation of the body, so
084002
that its time derivative in the starting harmonic coordinates
is known explicitly as [13]

_I �a�ik � ��a�ji I
�a�
jk 
��a�jk I

�a�
ij : (A14)

In the same way, we have by (B8) and Fock’s Eqs. (72.24)
and (74.06)

dTaj
dt
�

1

2
��a�kj ��a�lj ��

�a�
mi I
�a�
mkl 
��a�mkI

�a�
iml 
��a�ml I

�a�
ikm�


O��3�;

I�a�ikl �
Z

Da

�0�xi � ai0��x
k � ak0��x

l � al0�dV: (A15)

Therefore, we get

_Ia � M0
a� _a0: �a0� _a0 
 fM

0
a� _a2

0=2� 3��a��a0�	 
 2Tag �a0

� 3M0
a _a0

d

dt
���a��a0�	

� 4GM0
a

d

dt

X
b�a

M0
b

_b0

ja0 � b0j
�M�a�: �a0 
 _Ians


O��7=2�; (A16)

_I ains � _ak0��a�lk _I�a�jl ��a�ji � 3 _I�a�jk ��a�ki ��a�;j �a0�


 4GM0
a

X
b�a

��b�ji _I�b�jk
@

@ak0

1

ja0 � b0j

 2

dTaj
dt

��a�ji ;

(A17)

in which the rates of the inertia tensor are given by (A14),
and where6

M �a�: �a0 � �M
�a�
il �al0�; M�a�il � ��a�ij I

�a�
jk ��a�kl : (A18)

To have _Ia up to the O��7=2� remainder, we may use in
(A16) and (A17) the spherical (or monopole) estimates of
the Newtonian potentials; in fact the dipoles cancel due to
the first of Eq. (3.4), so that
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��a��a0� � �
X
b�a

GM0
b

ja0 � b0j

O��3�;

d

dt
���a��a0�	 � �

d

dt

X
b�a

GM0
b

ja0 � b0j

O��7=2�:

(A19)

In the case that the Newtonian mass density �0 is assumed
spherical inside each body,

8 x 2 Da; �0�x� � �a�r�;

r � jx� a0j �a � 1; . . . ; N�;
(A20)

we have

I�a�ik � �a�ik; �a �
4	
3

Z ra

0
r4�a�r�dr: (A21)

Then the rates (A14) cancel. The same is true for the Taj’s
[13], hence _Iains cancels.

2. Integral Ja

To calculate integral Jai [Eq. (3.19)], we introduce
Fock’s auxiliary potential

W�x; t� �
Z
Gjx� yj��y; t�dV�y�=2 (A22)

and we note that, due to Eqs. (2.29) and (2.56), and since
�W � ��, the potential  is given by

� � B
 @2W=@t2; (A23)

where B satisfies the Poisson equation

�B � �4	G�1: (A24)

Therefore, integral Jai is exactly the integral denoted so in
Ref. [10], Eq. (4.11) and after, though here the field �1 is
defined by Eq. (2.56). This integral has been studied in
detail in Refs. [10–12], under the assumption that the
boundary condition for B ensures that it is indeed the
(positive) Newtonian potential associated with the matter
field �1, the latter having spatially compact support. We
have {[12], Eq. (A14)}

Jai � Lai � GM0
a

@

@xkx�a0

X
b�a

�

b

jx� b0j

 �bj

xj � bj0
jx� b0j

3

�

� 
a
@��a�

@ai0
� �aj

@2��a�

@ai0@a
j
0


O��4�; (A25)

with

Lai �
Z

Da

�0
@3W

@xi@t2
dV; (A26)


a �
Z

Da

�1dV; �aj �
Z

Da

�1�x��xj � a
j
0�dV�x�:

(A27)
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The coefficients 
a and �aj (a � 1; . . . ; N, j � 1; 2; 3)
defined by (A27) have been computed in Ref. [12], though
with a slightly different �1 from the one valid for GR (in
the harmonic gauge), Eq. (2.56) here. The calculation is
easy, using the rigid velocity field (4.5) together with
Eq. (A3) and a Taylor expansion of ��a� at a0. Because
of the presence in (2.56) of the field p0, we have to now
know the following integrals [Fock’s Eqs. (74.24–25)],
which also follow from ‘‘Lyapunov’s equation’’ (A3),
and which have the same remainder as the latter:

3
Z

Da

p0dV � "a � 2Ta 
O��
3�; (A28)

2
Z

Da

p0�xj � a
j
0�dV � �aj � Taj 
O��3�;

�aj � �B
�a�
kjk 
 B

�a�
jkk�=2;

(A29)

where [13]

B�a�jik �
Z

space
��ik�r�a�

2=2��a;i�a;k	�xj � a
j
0�dV=4	G:

(A30)

{In this integral, the integrand, say f, is not Lebesgue
integrable, but we have f � fspher 
 �f, where fspher is
the integrand corresponding to spherical symmetry [with
�a�x� � �a�r�, r � jx� a0j, and �a�r� � �GM

0
a=r for

r � ra], and where �f is Lebesgue integrable. Hence,
the integral exists in the sense of

R
space fdV �

limR!1
R
jx�a0j�R

fdV, because
R
jx�a0j�R

fspherdV � 0

for any R � 0.g We thus find


a � M1
a 
M0

a�
3

2
_a2
0 
��a��a0�	 
 8Ta 


2

3
"a 
O��3�

(A31)

with

M1
a � M0

a

�
_a2
00

2
� 3��a��a00�

�

 Ta 
 6"a 
O��

3�;

(A32)

a 00 � a0�t � 0�; _a00 � _a0�t � 0�;

or


a � M0
a

�
3 _a2

0 
 _a2
00

2

��a��a0� � 3��a��a00�

�

 9Ta



20

3
"a 
O��

3�; (A33)

and

�aj � M1
a�a

j
1 � a

j
0� 
 3 _ak0��a�lk I

�a�
jl 
 3Taj 
 �aj 
O��2�

� M1
a�a

j
1 � a

j
0� 
 �aj 
O���: (A34)

To the purpose of getting the EMMC’s up to �3 included,
-16



7This does not strictly follow from the assumption (4.11),
which concerns merely the departure from sphericity of the
inertia tensor. However, if one would explicitly define, in a
natural way, the density field ��0 satisfying (4.11), as outlined
after that equation, then he should indeed obtain (A43), and
probably even the "aj’s and the B�a�jik’s should be O��� or higher.
To be logically consistent, we may content ourselves by simply
assuming that the family does satisfy (A43) in addition to (4.11).

8because the assumed rigid motion implies that _I�a�jk �
O��ij� � O��1=2�; see Eq. (A14).
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the second estimate of �aj, up to O��� not included, is
enough since �aj is multiplied by O��3� in (A25). To the
same purpose, we may use the spherical estimate in the first
formula of (A19) for ��a� in the expression (A33) for 
a,
and also in the expression (3.10) of the Newtonian accel-
eration �a0, which enters the PN correction to the accelera-
tion (3.21). We also use Eqs. (3.7) and (3.8) to reexpress the
terms with the �’s. This gives

Ja �La �M1
a �a0

M0
a

� G
X
b�a

�

b 
 �
a �M

1
a�
M0
b

M0
a

��
�n0

ab

�r0
ab�

2

�


 jans 
G
X
b�a

M0
b

�r0
ab�

3 �x1b � x1a


 3��x1a � x1b�:n0
ab�n

0
ab	 
O��

4�:

(A35)

Here,

r0
ab � ja0 � b0j � jx0a � x0bj; n0

ab �
a0 � b0

r0
ab

(A36)

and

jains � G
X
b�a

�
�bj �

M0
b

M0
a
�aj

��ij � 3n0i
abn

0j
ab

�r0
ab�

3 : (A37)

The latter cancels, as do the �bj’s, when all bodies are
spherical in the sense of (A20)—see the second of
Eq. (A29) and Eq. (A42).

Integral (A26) was calculated in Ref. [11] to an order
which turns out to be sufficient. It is given by {[11],
Eqs. (A14), (A20)}:

Lai �
d

dt

Z
Da

�0
@2wa
@xi@t

dV 

Z

Da

�0
@3W�a�

@xi@t2
dV 
O�c�2�

� Lai1 
 L
ai
2 
O�c

�2�; (A38)

where the self part is given by the following equation
{[11], Eq. (A21)}, which is an exact one:

Lai1 �
d

dt
��"a _ai0 
 B

�a�
ik _ak0 � "aj�

�a�
ji 
 B

�a�
jik�

�a�
jk �; (A39)

with [13]

B�a�ik �
Z

space
��ik�r�a�

2=2��a;i�a;k	dV=4	G: (A40)

Because of the assumed rigid motion (4.5), the rates of the
quantities "a; "aj; B

�a�
ik ; B

�a�
jik are known: _"a � 0, B�a�ik fol-

lows the rule (A14), and we have [13]

_" aj � ��a�kj "ak;

_B�a�jik � ��a�lj B
�a�
lik 
��a�li B

�a�
jlk 
��a�lk B

�a�
jil :

(A41)

Moreover, in the case that the Newtonian density �0 is
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exactly spherical in body �a�, then we have [11]

"aj � 0; B�a�ik � �ik"a=3; B�a�jik � 0: (A42)

Recall that we shall obtain the EMMC’s for a family of
well-separated and quasispherical bodies, i.e. a family of
bodies, indexed by the separation parameter �, and whose
family all bodies become closer and closer to being spheri-
cal as �! 0. For such a family, we should have7

"aj ! 0 and B�a�jik ! 0 as �! 0: (A43)

Therefore, we get from (A39) and (B8)

L a
1 � �

2

3
"a �a0 
La

1ns (A44)

with

Lai1ns � �
1

3
"a �ai0 
 B

�a�
ik �ak0 
 _B�a�ik _ak0 � _"aj�

�a�
ji 
 _B�a�jik�

�a�
jk


 o��3�: (A45)

We have Lai1ns � 0 (exactly) if the Newtonian density fields
are spherical in the sense of Eq. (A20).

The external part is given by Eq. (A24) of Ref. [11], of
which the last term is O��4�,8 hence it may be omitted
here:

Lai2 � �
GM0

a

2

X
b�a

M0
b

�
�bk0
@2ja0 � b0j

@ai0@a
k
0

� _bk0 _bj0
@3ja0 � b0j

@ai0@a
k
0@a

j
0

�

 Lai2ns 
O��

4�; (A46)

Lai2ns � �
1

2

X
b�a

�I�b�jk
@3ja0 � b0j

@ai0@a
k
0@a

j
0

(A47)

(the latter cancels in the case of spherical symmetry), or
more explicitly

La
2 �

GM0
a

2

X
b�a

M0
b

�
�n0

ab: �b0�n0
ab �

�b0

r0
ab



�3�n0

ab: _b0�
2 � _b2

0	n
0
ab � 2�n0

ab: _b0� _b0

�r0
ab�

2

�

La

2ns 
O��
4�: (A48)
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3. Integral Ka

To calculate integral Kai [Eq. (3.20)], we first note that,
due to the Poisson equation (2.30) with the expansion in the
first formula of (2.36), we have {Eq. (75.27) of Fock [13]}

Z
Da

�0ka;iu
k
0dV � 0: (A49)

Hence it merely remains the external part; i.e., we have

Kai �
Z

Da

�0Z
�a�
k;i u

k
0dV: (A50)

To compute it, we use Fock’s Eq. (76.23), which we rewrite
in the present notation, also giving the (easily evaluated)
order of the remainder:

Z�a�k �x� � �4G
X
b�a

M0
b

_bk0
jx� b0j


 4G
X
b�a

��b�lk I
�b�
lj

@
@xj

1

jx� b0j


O��7=2�: (A51)

Inserting (A51) and the Taylor expansion of 1=jx� b0j
into Eq. (A50) with the rigid velocity field (4.5), we get

K a � 4GM0
a

X
b�a

M0
b _a0: _b0

n0
ab

�r0
ab�

2 
O��
4�: (A52)
APPENDIX B: NEWTONIAN SPIN EVOLUTION
FOR A SYSTEM OF WELL-SEPARATED, RIGIDLY

ROTATING, QUASISPHERICAL BODIES

We start from Fock’s Eqs. (72.06) and (72.09), which,
combined together, write

d

dt
M�a�ik �

Z
Da

�0

�
��xi� ai0�

@��a�

@xk

 �xk� ak0�

@��a�

@xi

�
dV;

(B1)

where

M�a�ik �
Z

Da

�0��xi � ai0�u
k
0 � �x

k � ak0�u
i
0	dV: (B2)

Equation (B1) may be seen as the application to body �a� of
the Newtonian theorem stating that the rate of change of
the total angular momentum of a system is equal to the sum
of the external torques on the system. Recall that the
Newtonian equations apply exactly to the zero-order quan-
tities (Sec. II C), and that we are actually considering a
family (S0�) of 1PN gravitating systems (Sec. IV)
(although we omit the superscript � on the fields for the
simplicity of notation). Because of the good separation, the
r.h.s. of (B1) may be evaluated as {Fock [13], Eq. (72.13) in
which we evaluate the order of the remainder with the help
of Eq. (4.3) here}
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d

dt
M�a�ik �

X
b�a

3GM0
b�a

j
0 � b

j
0�

ja0 � b0j
5
��ak0 � b

k
0�I
�a�
ij

� �ai0 � b
i
0�I
�a�
kj 	 
O��

4�: (B3)

As to the angular momentum tensor (B2), using the rigid
velocity field (4.5) as well as the definitions of the
Newtonian mass center in the first formula of (3.4) and
the inertia tensor in the first of (A7), it is easily calculated
to be

M�a�ik � ��a�jk I
�a�
ji ���a�ji I

�a�
jk : (B4)

We differentiate this with respect to the time, using the rate
(A14) of the inertia tensor. Then, we rewrite the result in
space coordinates �x0i� which are Cartesian for the
Euclidean space metric [that one having components �ij
in the given harmonic coordinate system �x�� utilized] and
which, at the current time t, bring the inertia tensor of body
�a� to the diagonal form (the x0i’s are deduced from the xi’s
by a space rotation):

I�a�ik � �ij�
�a�
j �jk: (B5)

This yields

d

dt
M�a�ik �

_��a�ik ��
�a�
i 
 �

�a�
k � 
��a�ij ��a�jk ��

�a�
i � �

�a�
k �:

(B6)

We also simplify (B3) with the help of (B5), and we equate
the result with (B6). We thus get in the coordinates �x0i�

_� �a�
ik �

��a�i � �
�a�
k

��a�i 
 �
�a�
k

�X
b�a

3GM0
b�a

i
0 � b

i
0��a

k
0 � b

k
0�

ja0 � b0j
5

���a�ij ��a�jk

�

O��4�: (B7)

If, now, we account for the fact that ��a�ik � O��1=2�
[Eq. (4.9)] and for the quasisphericity assumption (4.11),
we do see that

_� �a�
ik � O��3�: (B8)
APPENDIX C: JUSTIFICATION OF ASSUMING A
RIGID ROTATION FOR WELL-SEPARATED

BODIES

Let us shortly discuss the possibility for a perfectly fluid
body in a weakly self-gravitating system to have a rigid
motion at the zero-order approximation [Eq. (4.5)]. Using
the continuity equation (2.51), we rewrite the zero-order
dynamical equation (2.52) as Euler’s equation, and in the
latter we insert the rigid velocity field (4.5). This yields

�0� �ai0 
 �
_��a�ji ���a�ik ��a�jk ��x

j � aj0�	 � ��0�;i � p0;i:

(C1)
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Thus, the r.h.s. must depend linearly on the position x, as
does the left-hand side (l.h.s.). According to Eq. (3.11), the
Newtonian potential � decomposes into the self-potential
�a and the external potential ��a�. If the body is isolated,
the latter cancels. In that case, Eq. (C1) can certainly be
verified, for it is well known that an isolated rotating mass
made of a perfect-fluid body is dynamically possible (per-
haps under certain restrictions on the state equation). Thus,

�0�
_��a�ji ���a�ik ��a�jk ��x

j � aj0� � ��0�a;i � p0;i (C2)

can be satisfied exactly. (The mass center has no accelera-
tion in that case, of course.) The presence of external
bodies produces time-varying tidal forces which prevent
the exact validity of the equilibrium (C1). This means that,
in fact, the body will undergo some time-dependent defor-
mation: tides. If we consider a family of well-separated
systems, we have

��a�;i �x� � ��a�;i �a0� 
��a�;i;j�a0��x
j � aj0� 
O��

4�

�x 2 Da�:
(C3)

Inserting this Taylor expansion into the equation of motion
for the zero-order mass center, Eq. (3.10), and accounting
for (3.4), we find that

�a i0 � ��a�;i �a0� 
O��
4�: (C4)

We can then rewrite (C1) as
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�0�
_��a�ji ���a�ik ��a�jk ��x

j � aj0�

� ��0��a;i 
��a�;i;j�a0��xj � a
j
0�	 � p0;i 
O��4�:

(C5)

This shows that, to accommodate a given spin ���a�ji �, we
cannot start from a solution of Eq. (C2) and modify just the
spin rate _��a�ji [which, we recall, is primarily subject to
Eq. (B7)]: we must also modify the pressure field p0,
which (through the state equation) determines the field
�0, the latter determining, in turn, the self-field �a. This
would need a detailed study. But if in the equilibrium
equation (C1) we neglect not only O��4� but even
O��3�, then we are left with

�0�
_��a�ji ���a�ik ��a�jk ��x

j � aj0�

� ��0�a;i � p0;i 
O��
3�; (C6)

in which, owing to Eq. (B8), we may further neglect
_��a�ji —provided the system is quasispherical in the sense

of Eq. (4.11). This is all that we used. In particular, this is
what was used in Ref. [33] to derive ‘‘Lyapunov’s equa-
tion’’ reproduced above, Eq. (A3). Thus, to get the trans-
lational equations of motion up to �3 included, we need
only to solve the Newtonian internal equilibrium up to the
order �2 included. The latter is not influenced by the
external bodies, Eq. (C6), hence it is compatible with a
rigid rotation (at the Newtonian approximation), as postu-
lated in Eq. (4.5).
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