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One-scale model for domain wall network evolution
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We introduce a new phenomenological one-scale model for the evolution of domain wall networks, and
test it against high-resolution field theory numerical simulations. We argue that previous numerical
estimates of wall velocities are inaccurate, and suggest a more accurate method of measurement. We show
that the model provides an adequate approximation to the evolution of key parameters characterizing the
evolution of the network. We use the model to study possible scaling solutions for domain wall networks,

and discuss some of their cosmological consequences.
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I. INTRODUCTION

Topological defects [1,2] are an unavoidable conse-
quence of cosmological phase transitions. Understanding
their formation, evolution, and cosmological consequences
is therefore a crucial part of any serious attempt to under-
stand the early Universe. Most studies to date have focused
on cosmic strings, which at least in standard scenarios are
cosmologically benign, but other elements of the defect
zoo are also of interest.

A case in point is that of domain walls. Possibly the main
reason for their relative neglect is that it was known almost
from the outset that observational constraints rule them out
if their symmetry breaking scale is 7 = 1 MeV [3]. On the
other hand, later on it has been claimed that nonstandard
domain walls can in fact have interesting cosmological
roles, in particular, as a realization of the so-called ’solid
universe’ models [4]. More recently, further motivation for
the study of cosmic defects has emerged from fundamental
theory, namely, in the context of brane inflation [5,6]. As
far as is presently known, in the more realistic such sce-
narios it is possible to argue convincingly, using the Kibble
mechanism, that only cosmic strings will form.
Nevertheless, one can certainly conceive of alternative
scenarios where domain walls or monopoles could also
form [7,8].

Here, after a very brief introduction to domain walls
(Sec. II) we extend our recent work on domain wall net-
works [9,10] by deriving (in Sec. III) an analytic model for
their evolution, in the same spirit of the model of Martins
and Shellard for cosmic strings [11-13]. The large-scale
features of the network are therefore characterized by a
length scale (or correlation length) L and a microscopically
averaged (root-mean-squared) velocity v. We will then
provide a thorough discussion of the possible cosmological
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scaling solutions of such networks (Sec. IV) as well as
testing the model by comparing it with high-resolution
field theory Press-Ryden-Spergel-type (PRS) [14] simula-
tions [9,10]. In particular, it will be shown that the standard
PRS method of estimating wall velocities is inaccurate, and
a more reliable method will be introduced. Finally (in
Sec. VI) we will revisit some key cosmological consequen-
ces of these networks, and present our conclusions.

Since the derivation of the one-scale model for domain
walls will be done by analogy with that for cosmic strings
and, as we shall see, their respective evolution equations
are very similar, we will pursue the analogy further by
discussing the domain wall and cosmic string contexts side
by side at various other points along the paper. The purpose
of this is twofold. First, it shows that for each physically
allowed regime or scaling solution for the cosmic string
case, there will be a qualitatively analogous one in the
domain wall case. Hence the existing knowledge about
the former case can be helpful in understanding the latter.
But secondly, it will also show that despite this qualitative
similarity there are differences in each case at the quanti-
tative level. Indeed, there are cases where the different
codimension leads to substantial physical differences,
and this is why in some cases a regime that is cosmolog-
ically benign for one defect type can be cosmologically
disastrous for the other.

In particular it will be seen that while for cosmic strings
the linear scaling solution L < ¢ is an ubiquitous attractor
(both in standard scenarios where strings are benign and in
nonstandard ones where they dominate the Universe—see
[15]), for domain walls the linear scaling regime, although
possible, is all but irrelevant cosmologically, and universe
domination is their long-term attractor. Throughout the
paper we shall use fundamental units, in which ¢ = 7 = 1.

II. DOMAIN WALL EVOLUTION

Domain walls arise in models with spontaneously bro-
ken discrete symmetries [1,2]. A simple example is that of
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a scalar field ¢ with the Lagrangian

L= %d),aqﬁ’“ ~ V(o). )

where the potential V(¢) has a discrete set of degenerate
minima, say for example
¢’ 2
Vo) = V(G 1) @)
b5

By varying the action

S = [dtfaﬁx,/—gﬁ 3)
with respect to ¢ we obtain the field equation of motion
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where V is the Laplacian in physical coordinates and H =
(da/dt)/a is the Hubble parameter.

In many cosmological contexts of interest, one can
neglect the domain wall thickness when compared to its
other dimensions, and thus treat the wall as an infinitely
thin surface. With this assumption, its spacetime history
can be represented by a 3D world sheet x* = x#({%), a =
0, 1, 2. A new action can then be easily derived, see for
example [2]. In the vicinity of the world sheet a convenient
coordinate choice is the normal distance from the surface.
Noticing that in the thin wall limit all fields in the
Lagrangian should depend only on this normal coordinate,
and integrating out this dependence, one finds

S = —a/d%ﬁ, (5)

4

where
Yab = g,lLI/'x:lZ'x,I;y (6)

is the world sheet metric, with the obvious definition y =
det(y,;,), and o is the mass per unit area of the wall. Notice
that this action is proportional to the 3-volume of the wall’s
world sheet, and hence is clearly the analogue of the Goto-
Nambu action for strings. Corrections to the action due to
the finite width of the wall have been discussed in [16].

The equations of motion for a domain wall can then be
derived by the well-known process of varying the action,
yielding in this case

Y120, (Jyyxl) + DhyyxtxG = 0. (7)

Since the wall action is invariant under world sheet repar-
ametrization, we are free to impose three arbitrary gauge
conditions. However, no such conditions have been found
that will lead to equations that can be readily solved, either
analytically or numerically, as in the case of cosmic
strings—see [17] for an approximate analysis. As a con-
sequence, much less is known about the dynamics of
domain walls than about the dynamics of strings. In pass-
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ing, however, we mention a curious point of contact be-
tween the two cases: in flat (Minkowski) spacetime, any
planar string solution can be trivially turned into a domain
wall solution by simply translating in the direction perpen-
dicular to the plane—see [2] for a discussion.

III. THE ONE-SCALE MODEL

We now concentrate on analytic modelling, and start by
presenting a simple phenomenological derivation of a one-
scale model for defect evolution. We will see that this
easily reproduces the broad features of one-scale models
for cosmic strings [1,11-13] (although strictly speaking it
is not self-sufficient in this regard), but has the advantage
of allowing a straightforward extension to the case of
domain walls. Other approaches to the analytic modelling
of cosmic strings and domain walls can be found in
[18,19].

Let us start by considering a network of noninteracting
straight infinite strings, oriented along a fixed direction and
all with the same value of the velocity v, in a flat
Friedmann-Robertson-Walker (FRW) universe. Since the
momentum per unit comoving length is proportional to a !
we have vy « a2 or equivalently

4V oH( - v =0, ®)
dt

where 7 is the physical time, a is the scale factor, H = d/a
is the Hubble parameter, and y = (1 — v?)~/2. On the
other hand, since the average number of strings in a fixed
comoving volume should be conserved, one has p « ya ™2
or equivalently

‘Z_’J +2H(1 + 12)p = 0, ©)
t

where p is the average energy density in cosmic strings and
we have also used Eq. (8) to obtain (9). Note that although
we are assuming the strings to be infinite and straight we
may define a characteristic length scale,

L? ==, (10)
p
which is directly related to the average distance between
adjacent strings. Here we have also defined a string mass
per unit length, w.

Of course, this case with nonintersecting straight infinite
strings all aligned along a fixed direction and having the
same value of the velocity is completely unrealistic. In
practical situations the special length scale L, defined
above, will also be approximately equal to the curvature
scale of the strings, and the strings will have a nonzero
probability of crossing and interacting with each other.
Also the value of the velocity will vary along the strings
but in the absence of interactions Eq. (9) would remain
valid, with v being taken as the root mean squared (RMS)
velocity of the strings.
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Hence, we need to add further terms to Egs. (8) and (9)
in the context of realistic models. Let us consider the latter
first. The probability of a string element of size L encoun-
tering one other segment of the same size within a time dt
is proportional to vdt/L . We may therefore add a new
term to the right-hand side of (9), which will account for
the energy lost from the long string network due to loop
production, so that the equation now becomes

dp U
2 +2H( + v¥)p = —G—p, 11
. ( )p P (11
or, writing it in terms of the length scale L,
dL
ZE =2(1 + v?)HL + ¢v. (12)

This is of course under the assumption that strings do
intercommute when they interact—see [15] for a discus-
sion of alternative scenarios. On the other hand, in the
above we assumed straight infinite strings. Realistic strings
will of course be curved, and their curvature will be re-
sponsible for an acceleration term which also needs to be
taken into account. The velocity equation is thus corrected
to

dv
dt

Notice that (12) and (13) are the evolution equations of
the simplest version of the velocity-dependent one-scale
(VOS) model [12,13]—the only things missing are the fact
that the curvature correction term k should be velocity-
dependent [13], and additional terms accounting for effects
like friction due to particle scattering, spatial curvature,
and so on. It is worth stressing at this point that one of the
basic assumptions of a one-scale model is, not surprisingly,
that there is a single large relevant length scale in the
problem. In addition to the characteristic length scale L
defined above (which is essentially a parametrization of the
energy density in strings) one can define a correlation
length ¢ and a curvature radius R, for example, and one
can certainly envisage them being different—in fact this
can be confirmed numerically [20], and other approaches
to modelling do allow for it [18]. However, from the point
of view of one-scale modelling, one is assuming that L =
& =R.

Despite the simplicity of the argument, the above deri-
vation shows that this reasoning is robust, which is useful
since we can easily apply it to the case of domain wall
networks. Again we start by considering a network of
noninteracting infinite planar domain walls oriented along
a fixed direction and all with the same value of the velocity
v in a flat FRW universe. The momentum per unit comov-

— (- v2)<§ - 2Hv>. (13)

ing area is proportional to @~ so that we have vy « a3 or
equivalently
Z_’t’ +3H(1 — )y = 0. (14)
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As before we will assume that the average number of
domain walls in a fixed comoving should be conserved
so that p = ya~! or equivalently

ci—p + H(1 +3v%)p =0, (15)
t

where p is now the average energy density in domain walls
and we have again used Eq. (14) to obtain (15). Similarly,
although we are assuming the domain walls to be infinite
and planar we may define a characteristic length scale,
=2 (16)
p
which is directly related to the average distance between
adjacent walls measured in the frame comoving with the
expansion of the Universe, and o is now the domain wall
mass per unit area. Finally, making analogous modifica-
tions to allow for energy losses and acceleration due to the
wall curvature, we find

L. _ (14 3v?)HL + c,v (17)
dt

and
dv k
Z=(1-v)X-3Hv]; 18
(1 )(L v>, (18)

the latter equation has also been previously obtained, using
a different approximation, in [17].

Note that there is a difference between the two cases
when it comes to energy losses by intercommuting. String
loops are dynamically very important due to the existence
of a range of trajectories that are not self-intersecting, and
hence are long-lived. No such solutions are known, or
believed to exist, for domain walls, so whenever closed
walls (also called ‘““vacuum bags‘‘) are produced they will
decay very quickly—a point already made by [3].

These therefore provide a phenomenological model for
domain wall evolution. As in the case of strings, we may
hope that the energy loss efficiency c,, may be constant and
possibly independent of the cosmological epoch, but by the
same token we expect the curvature parameter k,, to be a
velocity-dependent function. In the case of cosmic strings,
one can use a combination of field theory [20-22] and
Goto-Nambu numerical simulations [23,24] to provide a
successful calibration, leading to the VOS model [20,25].
For domain walls, however, only field theory simulations
are available [9,10,14,26—30] (though a simulation in the
thin wall approximation has been attempted in [17]), so no
similarly accurate calibration will be possible. Still we will
show that as far as one can ascertain, the model does
provide an adequate description of our numerical simula-
tions. Before this however, we will explore the possible
scaling solutions of the model.
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IV. SCALING SOLUTIONS

We now use the evolution Eqgs. (17) and (18) of our
phenomenological model to discuss the cosmological evo-
lution of domain wall networks, in particular, discussing all
relevant scaling solutions. The derivation of these scaling
laws is mostly analogous to what has been done for cosmic
string networks in the case of the VOS model. Hence we
will present each solution in turn and discuss the physical
mechanisms behind them, but will not in general present
detailed derivations. We refer the reader to the original
papers on cosmic string networks [11-13,15] for more
detailed discussions. Most of the derivations are fairly
straightforward, even if somewhat tedious.

Let us start by neglecting the effect of the energy density
in the domain walls on the background (specifically, on the
Friedmann equations). As we shall shortly see this is not a
good approximation, since the wall network will generally
end up dominating the energy density of the Universe.
However it is this scenario that is effectively considered,
for example, when one performs numerical simulations of
domain wall networks.

In this case it is easy to see that, just as for cosmic string
networks, the attractor solution to the evolution Egs. (17)

and (18) corresponds to a linear scaling solution
L = e€t, v = const. (19)

Assuming that the scale factor behaves as a « ¢* the de-
tailed form of the above linear scaling constants is

skl ¥ )

, 20
3a(l — a) (20)
l—a &
2= 2B 21
YT 34k, fe, @h

As in the case of cosmic strings [15], an energy loss
mechanism (that is, a nonzero c¢,,) may not be needed in
order to have linear scaling. In fact, by considering the
¢,, — 0 limit one finds that for

1
a> 22)

a linear scaling solution is always possible. Hence in this
case a linear scaling solution may exist in both matter and
radiation eras (in the case of cosmic strings this is only
guaranteed to be the case in the matter era.) This means
that having nonstandard (that is nonintercommuting) do-
main walls is by no means sufficient to ensure a frustrated
wall network.

On the other hand, if @ < 1/4 then an energy loss
mechanism is necessary to have linear scaling. Note, how-
ever, that the linear scaling solutions are physically very
different for cosmic strings and domain walls. In the case
of cosmic strings, in the linear scaling phase the string
density is a constant fraction of the background density,
whereas in the case of domain walls we have
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Pw

— xf, 23

Pb 3)
so the wall density grows relative to the background den-
sity, and will eventually become dominant. This happens at
a time

te ~(Go)™ L. (24)

Since the domain wall mass per unit area is related to the
energy scale of the phase transition, o ~ 1, we can also
write out a given epoch as

() 5)

e \mp

hence walls that would become dominant around today
would have been formed at a phase transition with an
energy scale

70 ~ 100 MeV; (26)

notice that this is 2 orders of magnitude larger than the
standard Zeldovich-Kobzarev-Okun bound [3]. It will be
seen from the discussion that follows that networks that are
much heavier would have become dominant well before
having reached the linear scaling regime, whereas net-
works that are much lighter would not yet have reached
the linear regime by today. Hence the range of cosmologi-
cal scenarios where the linear scaling solution is of interest
is quite limited.

There is, moreover, an effect which we have neglected
thus far. At early times, in addition to the damping caused
by the Hubble expansion, there is a further damping term
coming from friction due to particle scattering off the
domain walls. Phenomenologically, it can be shown [2]
that its effect can be adequately described by a frictional
force per unit area

t=—Ty, 27)
7

where v is the string velocity. In the above we have defined
a friction length scale

o
€= N T « a*, (28)
where T is the temperature of the background and N, is the
number of light particles changing their mass across the
walls [1]. If the self-coupling of the domain wall field and
its couplings to the other fields are not very small, then this
expression holds at all times after the wall formation. In
other cases the behavior might be slightly different very
close to the phase transition [2], but since we are mostly
interested in the behavior of wall networks at recent times
we shall neglect this subtlety. (Also N,, can be effectively
zero at low temperature if the wall is described by a single
field.)
Just like in the case of cosmic strings [11-13] it is then
easy to modify the evolution equations of our one-scale
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model to account for this extra friction term. They become

dL L
= =HL+ 1> +c,v, 29
dt £y 29)
dv k, v
=0 -v)[E-") 30
== (30)
where we have defined a damping length scale
L _ 3H + ! 3D

which includes both the effects of Hubble damping and
particle scattering. If no particles scatter off the walls
(N,, = 0) then the friction length scale is infinite, and the
only damping term comes from Hubble damping. Note that
since €f o« g*, the friction term will be dominant at early
times, while the Hubble term will dominate at late times, so
the late-time linear scaling solution is unchanged.
However, notice that the time scale when Hubble damping
dominates over friction (which is also the time scale for the
walls to become relativistic) is again ¢, given by Eq. (24).
Thus we see that domain wall networks will dominate the
energy density of the Universe even without ever becoming
relativistic or reaching the linear scaling regime.

Just as in the case of cosmic strings [12,13], there will be
two possible scaling solutions (which are necessarily tran-
sient) during the friction-dominated epoch. Also as in the
case of strings [15], these solutions will exist regardless of
whether or not the walls interact with each other (that, is,
whether c,, is nonzero or vanishes). If the defect-forming
phase transition is such as to produce a low-density net-
work there will be an initial period where the network will
be conformally stretched. The scaling laws will therefore
be

L, =aq, (32)
¢

v, oo =L, (33)
a

Notice that for domain walls this gives v = a°, whereas for
cosmic strings we would have v * a?. Going back to the
domain walls we, respectively, have, in the radiation and
matter-dominated epochs

L, </ v, o« 132 (34)

and

L, = t*3, v,, « 1% (35)

We emphasize that although the network is being stretched
as the scale factor, and is nonrelativistic, the velocities are
increasing rather fast, due to the effect of the domain wall
curvature. This indicates that even in the absence of other
mechanisms this regime would only be a transient. The
only situation where such a stretching regime could persist
would be during an inflationary phase, but in that context
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the much faster expansion is enough to counter the wall
velocities, and in fact make them decrease. It is indeed easy

to see that in the case of an exponential expansion the
solution of (29),(30) has the form

Ly = a, (36)

Vjnf & a_l. (37)

Following the conformal stretching regime, or perhaps
right after the formation of the network if it is formed with
high enough density, there is a further transient scaling
regime. The inevitability of such a regime for both strings
and walls was first argued for, using simple physical argu-
ments, in [1], so we shall call this the Kibble regime. In the
context of velocity-dependent models the existence of the
Kibble regime can be rigorously derived. The scaling
solution has precisely the same form for both types of

defects
L b\ (38
oc | —L
vy« (€.H)'?, (39)

although of course the friction length scale will not have
the same form in the two cases. For domain walls we,
respectively, have, in the radiation and matter-dominated
epochs

L, x t3/2, v, « 11/2 40)

and

L, « '/ v,, * 1/°. 41)

Notice the differences relative to the stretching regime.
Here the correlation lengths grow much faster, while the
velocities grow relatively more slowly. Physically, the
difference between the two regimes is one of interactions
and energy losses. In the stretching regime the walls are
typically quite far apart, so there is very little interaction
between them—typically less than one per Hubble volume
per Hubble time. In the Kibble regime, on the other hand,
the walls are so close together that there is a very large
number of interactions—in fact there are more than in the
case of the linear scaling regime. This enhanced energy
loss makes the correlation length grow quite fast. The wall
velocities are still nonrelativistic and growing, but because
regions of the network with higher velocity than average
have a larger interaction probability than slower regions
(thereupon leaving the network) the enhanced energy loss
is also responsible for making the velocities grow more
slowly than in the stretching case. Still the Kibble scaling is
also a transient, which in the absence of other mechanisms
will necessarily end when the network becomes
relativistic.

In passing, it is again interesting to compare these scal-
ing solutions to the ones for cosmic strings, as derived in
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[12]. We notice that wall velocities become relativistic
faster than those of strings, and also that wall densities
grow faster relative to the background. In fact in both the
stretching and Kibble regimes the wall density grows
relative to the background. On the other hand, the string
density grows relative to the background in the stretching
regime, but decreases relative to the background in the
Kibble regime. Thus the friction-dominated epoch will last
comparatively less for domain walls than for strings.

Even allowing for friction, linear scaling would be an
attractor of the above equations if one neglected the effect
of the wall density on the expansion of the universe.
However, we have seen that in every scaling regime con-
sidered the wall density grows relative to the background,
so that a wall density term

g

. (“2)

Pw =
must be included in the Einstein equations. This changes
the situation for it is easy to see that the domain wall
network will eventually dominate the energy density of
the Universe (unless some mechanism like a subsequent
phase transition were to make it decay and disappear).

Thus we again see that linear scaling is of little practical
importance, since it is never reached for any cosmologi-
cally realistic network. Heavy domain walls will quickly
dominate the energy density of the Universe, thus changing
the behavior of the Friedmann equation, typically before
linear scaling is reached—in any case any networks where
it could have been reached already must be sufficiently
heavy to be observationally ruled out. Light walls, on the
other hand, will not yet have reached that solution: their
dynamics will still be friction-dominated today if they are
to be cosmologically viable.

Since a domain wall network will eventually dominate
the energy density of the Universe it is important to study
the dynamics of the Universe in this regime. The expecta-
tion [3] is that the domain wall network will again become
frozen in comoving coordinates with

Lxa (43)
so that the scale factor should now grow as
a «< 2. (44)

In this case the average distance between the walls also
grows as ¢ and rapidly becomes greater than the horizon.
This will happen at a time that is again given by 74 in
Eq. (24). An inertial observer will see domain walls mov-
ing away towards the horizon, and as walls fade away the
spacetime around the observer will asymptotically ap-
proach Minkowski space. Notice that this solution does
not depend on c¢,,—it is valid whether or not the domain
walls interact. In the case of cosmic strings it has been
shown [13,15] that the asymptotic solution is always L o ¢
(again, whether or not the strings intercommute). The onset
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of domain wall domination will be studied in more detail
(both analytically and numerically) in future work.

V. NUMERICAL SIMULATIONS

We now proceed to compare the predictions of our
analytic phenomenological model, whose evolution equa-
tions are (17) and (18), with the results of numerical
simulations. We shall use our own set of high-resolution
field theory numerical simulations, done on the COSMOS
supercomputer and using the PRS algorithm [14], which
were first discussed in [9,10]. As we said above, there is no
analogue of the Goto-Nambu 1D simulations for the case
of domain walls, though an attempt in that direction has
been performed (with moderate success) in [17].

The fact that linear scaling is of almost no relevance in
realistic cosmological scenarios involving domain walls
counts against producing a well-calibrated model here,
for the scenarios that one can easily simulate numerically
are not the most interesting ones in practice, and vice versa.
A further difficulty with the calibration of the code using
simulations with the PRS algorithm [14] is that this modi-
fies the wall thickness. This has the side effect of erasing
small-scale structures on the walls, and hence also destroy-
ing small closed walls when the wall thickness becomes
comparable to their size.

A. Measuring wall velocities

A crucial point, which has been somewhat neglected in
previous analyses, is that estimating the velocities of do-
main walls is notoriously difficult in field theory simula-
tions—see [20] for a detailed discussion of the problems
involved in the case of cosmic strings. Earlier field theory
simulations, using the PRS algorithm [14] typically find

Vprs ~ 0.4, (45)

no significant difference being found (when allowance is
made for the magnitude of the numerical errors involved)
in the values for 2D and 3D simulations. On the other hand,
Kawano [17], which as we have said uses a thin wall
approximation (akin to the Goto-Nambu simulations for
strings), and further simplifies the problem by considering
only 2D simulations, typically finds smaller velocities

Viaw ~ 0.25 — 0.30. (46)

We note that also in the case of cosmic strings it has been
observed that velocities measured from field theory simu-
lations tend to be somewhat higher—again see [20] for a
detailed discussion. Both types of simulations find some
evidence for an approach to linear scaling, both in the
radiation and matter eras. A more detailed discussing of
the approach to linear scaling in domain wall field theory
simulations can be found in [9,10]. These findings prompt
us to study the issue of velocity estimations in more detail.
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The frictionless evolution of a domain wall network in a
flat homogeneous and isotropic FRW universe is given by
Eq. (4), with the potential given by Eq. (2). If we neglect
the damping term then the solution for a plane wall with
velocity v is given by

b= (i)gtanh[%(z — 70— vt)} (47)

where z is a physical coordinate and @ = 7w¢/(2V,)!/? is
the constant wall thickness in physical coordinates. It is
straightforward to show that the ratio between the kinetic
part of the wall energy density and the total energy density
p(z) is independent of the z coordinate and is equal to

2 @) _ ¢
p(z)  2y2V(¢)

(48)

where

|V<75|2

pz) = —- + + V(g). (49)

2

The domain walls in realistic network simulations will

obviously not be planar and the velocities will vary along

the walls. However, an estimate of the microscopic rms
velocity in field theory simulations can be made using

2y?) = (50)

2V 2V(¢)’

where the sum is limited to the points on the grid which
intersect a domain wall. We define the wall region to be the
region for which —e¢y < ¢ < e, but of course there is
some ambiguity on the choice of €. However, taking into
account the result obtained for the planar wall one expects
that the results will converge for small enough € (note that
we cannot realistically make e arbitrarily small, since in
that case we would have very poor statistics). This is indeed
what we find. Our approximation almost completely elim-
inates the radiated energy from the walls which otherwise
would contaminate the estimate of the velocities. This is an
important advantage over previous estimations of v where
the energy radiated from the walls was not eliminated in
the velocity estimations. We therefore expect that these
previous estimates have overestimated the wall velocities.
Following [14] we have modified the equations of mo-
tion in such a way that the walls’ comoving thickness is
fixed in comoving coordinates in order to be able to resolve
the domain walls through the network evolution. Ignoring
the damping term due to the expansion of the Universe the
modified equations become
2
M — v2¢ = — d_V
an? 4 d¢

where Vé is the Laplacian in comoving coordinates. The
planar wall solution can now be written as

D
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my
b = ¢ tanh[; (qz — 40— Uﬂ)}- (52)
Notice that here w is a fixed comoving thickness so that the
physical wall thickness decreases with time. Consequently,
with this approximation the estimation of (v?y?) in real-
istic domain wall network simulations must now be made
as

(V*y?) = ZM (53)

2v(¢) -

rather than
Wy = ¥ (d/d1)*/ V() (54)

It is easy to show from Eq. (4) that for a planar wall
solution

AP 4394y o, (55)
dt a

so that {¢) « a3 and yv « a 3. In order for the momen-
tum conservation law of the wall evolution in an expanding
universe to be maintained one must add a damping term to
Eq. (51) so that now {d¢/dn) = a3 and we have

2
Yb  3dadd gy AV (s
an> adn dn 4 do

The standard PRS method of estimating velocities can
be readily compared with ours. We have thus estimated the
velocities by both methods in series of 2D and 3D, radia-
tion and matter era runs. Velocities were measured at all
time steps, and then sorted in increasing order, so that the
two velocities can be plotted directly against each other
without reference to time. A standard cloud-in-cell algo-
rithm was used for data smoothing. The results of this
analysis are shown in Fig. 1 and 2, respectively, for the
radiation and matter eras.

We can see that the standard PRS method of velocity
estimation typically overestimates velocities by something
like 20%. Note that in either case the result is the same for
2D and 3D simulations (when allowance is made for
numerical error bars, which were not plotted), and there
is also very little difference between the radiation and
matter cases. Indeed, if one fits a linear function to the
above data, we find for the radiation era

Vpad = 0.79v,,. + 0.03, (57)

prs

while in the matter era

VUmat = 0.83vp, + 0.00. (58)

Notice that these fitting functions should not be used out-
side the specified range. In particular, one expects that
there will be deviations from this simple linear behavior
for very small (nonrelativistic) velocities.
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FIG. 1 (color online). Comparing the standard (PRS) and our
(new) velocity estimation methods, for 2D (solid line) and 3D
(dashed line) radiation era runs. Each curve corresponds to an
average of 10 simulations. Clearly the PRS method overesti-
mates velocities by about 20%.
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FIG. 2 (color online).
tions.

Same as Fig. 1 for matter era simula-

B. Testing the analytic model

Mindful of these caveats, we have compared our analytic
model with the numerical simulations of [9,10]. We took
four series of high-resolution field theory simulations, in
2D and 3D and for the radiation and matter-dominated
epochs. Each such series is composed of 100 different
runs. For each series we have averaged the result of the
100 runs, in particular, calculating averaged correlation
lengths and RMS velocities that can be readily compared
with the predictions of the model. As we have pointed out,
although we expect the parameter k,, to have some depen-
dence on velocity, it is not easy to determine it. Hence, as a
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first approximation, we shall start by assuming that it is a
constant, just like c,,. In these circumstances, we find that
the best fit to the simulations is the one shown in Fig. 3,
which corresponds to the parameters

¢, ~ 0.5, k,, ~ 0.9. (59)

Several comments are in order here. The first one is that
the fit is quite good (especially for the velocities), given
that as we said we know that a constant k,, is only an
approximation. Importantly, the same parameters provide a
good fit both in the radiation and in the matter epochs.
(Looking for separate best fits in the two epochs would lead
to only slightly different parameters, but given the inherent
error bars they would effectively be indistinguishable.)
Interestingly, the fit would be much worse if we had used
the velocities measured by the standard PRS method.

Obviously the fit is only good at late times. At early
times, one is still very close to the phase transition and
fields are relaxing, so the domain wall network is not yet
well-defined, and obviously the analytic model cannot be
expected to account for such complicated dynamics. We
could nevertheless improve the early-time fit if we had
allowed for friction and radiation terms in the model—
this has been successfully done for field theory simulations
of cosmic string networks, as described in [20]. Given the
simplicity of the present model and the approximations
being made elsewhere, we think this would be an unnec-
essary complication at this stage, though it should certainly
be addressed in the future.

We emphasize that we are dealing with a phenomeno-
logical model (in fact, rather more so than in the case of
cosmic strings), so one should not attach too deep a mean-
ing to the parameters one finds. Presumably these will
change if one has a proper ansatz for k,. Even though
we have not attempted to calculate this, we can for the sake
of the argument see what happens if we assume that the
function k(v) that was obtained for cosmic string networks
is also applicable for domain walls. This has the following
form

— Q40

k(v) = 2*—5(1 — )1+ 2\/§v3)ﬂ; (60)
T 1+ 8v°

we refer the reader to [13] for a detailed derivation and
further discussion. Notice that with this ansatz k is no
longer a free parameter, and it is always smaller than unity.
The result of this alternative fit is shown in Fig. 4, and we
now find a best-fit parameter

¢, ~ L.0. 61)

As expected, this does not provide a very good fit. The
energy loss term is now much larger, which has an effect on
the velocities. Again a single value provides a reasonable
fit for the correlation lengths in the radiation and matter
epochs, but the new fit significantly underestimates the
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FIG. 3 (color online). Comparing our analytic model with field theory numerical simulations in the matter (left-side panels) and
radiation (right-side panels) epochs. Top panels show the evolution of the correlation length (in fact L/f) whereas bottom panels show
the RMS velocity. In both cases the longer solid curves correspond to 2D simulations, while the shorter solid curves correspond to 3D
simulations. Each such curve is in fact an averaged curve for the outcome of 100 such simulations. The corresponding dashed curves
are the outcome of our analytic model, for the initial conditions relevant to each case. For all such curves we have used c,, = 0.5 and

k,, = 0.9, which provides the best fit.

FIG. 4 (color online). An alternative fit to the model, now using an ansatz for k,,(v) that has been derived for cosmic strings—see
main text for further discussion. Panel and line conventions are as in Fig. 2.
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velocities. The velocity fit could of course be improved, at
the expense of a poor fit for the correlation lengths.

VI. CONCLUSIONS

We have introduced a new phenomenological one-scale
model for the evolution of domain wall networks, by
analogy with the standard analytic model for cosmic string
evolution. This model has then been tested against high-
resolution field theory numerical simulations (in radiation
and matter-dominated epochs), and a good agreement has
been found. Importantly, we have argued that previous
numerical estimates of wall velocities are inaccurate, and
tend to overestimate the wall velocities due to the effect of
the radiation background. We have quantified the inherent
inaccuracy (which is found to be at around the 20% level)
and provided a more accurate method of measurement. Our
phenomenological model provides an adequate approxi-
mation to the evolution of key parameters characterizing
the evolution of the network, but more accurate modelling
can lead to even better fitting.

We have also used the analytic model to exhaustively
study possible scaling solutions for domain wall networks,
and discuss some of their cosmological consequences.
Comparison with analogous results for cosmic string net-
works has led to the identification of a number of similar-
ities and differences between the two cases. Indeed, for
each physically allowed regime or scaling solution for the
cosmic string case, there is to be a qualitatively analogous
one in the domain wall case. However, beyond this quali-
tative similarity there are differences in each case at the
quantitative level. The different codimension leads to sub-
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stantial physical differences, and this is why in some cases
a regime that is cosmologically benign for one defect type
can be cosmologically disastrous for the other.

A case in point is that while for cosmic strings the linear
scaling solution L © ¢ is an ubiquitous attractor (both in
standard scenarios where strings are benign and in non-
standard ones where they dominate the Universe), for
domain walls the linear scaling regime, although possible,
is all but irrelevant cosmologically, and universe domina-
tion (with L = #?) is their long-term attractor.

Finally, let us end by noting that in the present work we
have restricted ourselves to numerical simulations of do-
main walls in universes dominated by radiation and matter.
These are of course the easiest scenarios to simulate, but
plainly they are not the most relevant cosmologically. It
would therefore be interesting to carry out analogous
simulations of domain wall dominated universes, not
only to understand how the domination sets in but also to
test our phenomenological model in this context. We will
tackle this issue in a future publication.
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