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Inflation with violation of the null energy condition
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Inflation may have been driven by a component which violated the Null-Energy Condition, thereby
leading to super inflation. We provide the formalism to study cosmological perturbations when such a
component is described by a scalar field with arbitrary Lagrangian. Since the background curvature grows
with time, gravitational waves always have a blue spectrum. We apply our formalism to the case of
phantom inflation with an exponential potential (whose polelike inflationary stage is an attractor for
inhomogeneous cosmological models for any value of the potential slope) as an example. We finally
compare the predictions of super inflation with those of standard inflation stressing the role of
gravitational waves.
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I. INTRODUCTION

Inflation is the most promising theory of structure for-
mation. Its predictions for the simplest case of a single
scalar-field model with a nearly scale-invariant spectrum of
Gaussian curvature perturbations are in good agreement
with observational data. The ‘‘smoking gun’’ for inflation
is the detection of the stochastic background of relic gravi-
tational waves, which carries information on the energy
scale of inflation. For a scalar field described by a canoni-
cal Lagrangian, the amplitude PT and spectral index nT (at
a certain scale k0) of gravitational waves are locked to the
amplitude of scalar perturbations PS by the consistency
relation r � PT=PS � �8nT . While this relation is vio-
lated in multifield inflationary models, Garriga and
Mukhanov [1] showed how it can be violated also in single
scalar-field models with a noncanonical Lagrangian.

What remains a generic prediction of inflation—single
or multifield models—in Einstein theories is a red spec-
trum for gravitational waves. Such a prediction is related to
the decrease of the Hubble parameter H during inflation
[2]. In this paper we focus on the possibility that H may
grow during inflation, as it occurs when the Null-Energy
Condition (NEC), i.e. p� � � 0 (with p the pressure and
� the energy density), is violated. Although known forms
of matter seem to respect NEC, there is no evidence that
the universe as a whole does at the present time [3]: it is
then conceivable and interesting to explore the consequen-
ces of such a violation in the early past, i.e. during inflation.
For this purpose, we provide the treatment of scalar per-
turbations for general scalar-field theory, extending pre-
vious works [1]. We show that, in contrast to common
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belief, NEC violating theories can be completely stable
at the classical level when gravitational perturbations are
self-consistently taken into account.

The distinctive signature of super inflation is a blue-
tilted spectrum for relic gravitational waves, which offers
better chances to be detected indirectly in cosmic micro-
wave background (CMB) anisotropy measurements.
Specific realizations of this model may even lead to the
possibility of direct detection by space-borne interferome-
ters, such as LISA [4] or BBO [5].
II. BASIC EQUATIONS

Let us consider the action for gravity plus a scalar field
� with the generic Lagrangian p��;��,

S �
Z
d4xL �

Z
d4x

�������
�g
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�
R

2�2 � p��;��
�
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where �2 � 8�G, � � � 1
2 g

��r��r��. The back-
ground homogeneous equation of motion is
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supplemented by the Hubble law

3H2 � �2� � �2

�
2�

@p
@�
� p

�
: (4)

We note that NEC is violated when @p=@� < 0. For sim-
plicity we study scalar and tensor perturbations in the
uniform curvature gauge around a flat Robertson-Walker
(RW) line-element
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ds2 � ��1� 2��dt2 � a	;idtdx
i

� a2�
ij � hTTij �dx
idxj: (5)

The equation of motion for the scalar-field fluctuation is
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(6)

By using the energy and momentum constraints from
Einstein’s equations [6], and going to Fourier space, we
obtain

�
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a3�x
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(7)

where x � _�=H. This equation is one of the main results
of our paper. When c2

s < 0 fluctuations are unstable on
small scales. However, c2

s > 0 when �< 0 and NEC is
violated at the same time.

By defining

v � a
�
�������
j�j

p
(8)

z � a
_�
H

�������
j�j

p
� a
j�� pj1=2

csH
(9)

we find that Eq. (7) takes the form

v00k �
�
c2
sk2 �

z00

z

�
vk � 0: (10)

The latter equation and the definitions in Eqs. (8) and (9)
agree with those in Ref. [1], but are extended to the
separate region where �< 0 and �� p < 0.

For the configurations whose dynamics evolves across
the boundary �� p � 0 [7–9], Eq. (7) multiplied by �
can be used as a regular equation. The long-wavelength
solution for 
�k is


�k � C�k�
_�
H
�D�k�

_�
H

Z
dt

H2

a3 _�2�

� C�k�
_�
H
�D�k�
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2HM2
pl

Z
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c2
s

a3�1

; (11)

where the second term is the decaying mode, and in the
second line we have introduced �1 � � _H=H2 and the
reduced Planck mass Mpl � ��1.

The phantom crossing (if it indeed occurs [7]) affects �
fluctuations through � and not through @p=@� (which is
083504
instead related to the parameter of state w � p=�). As it
can be seen from Eq. (11), if � / �t� t	� in the vicinity of
the crossing _H�t	� � 0, the decaying mode diverges loga-
rithmically at t � t	. This fact has already been observed in
a different gauge for theories with cs � 1 in [9].
Nevertheless, this divergence in field fluctuations may be
softened (if not removed) in two cases: if c2

s also vanishes
at the crossing [as it can be seen in the second line of
Eq. (11)] or if � / �t� t	�1=m, with m> 1 being an odd
integer. We also note that scalar metric perturbations � and
	,

H
a
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H

�
H
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�
:
;

2H@i� � �2 @p
@�

_�@i
�;

(12)

remain finite across the transition � � 0 irrespective of
possible singularities in 
�.

In terms of the horizon flow functions �i [defined as
�n�1 � _�n=�H�n�, for i � 2] the potential can be written as

z00

z
� F�G (13)

where F is the usual (canonical) expansion term

F � a2H2
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and G depends on the sound speed,

G � 2
�
c0s
cs

�
2
�
c00s
cs
� 2aH

c0s
cs
� aH

c0s
cs
�2: (15)

Equations (13)–(15) agree with Ref. [10] for �1 > 0, but
their validity is extended to the region �1 < 0, correspond-
ing to NEC violating models.

The amplitude hTT of gravitational waves satisfies

�h TTk � 3H _hTTk �
k2

a2 h
TT
k � 0; (16)

with the usual prediction nT � �2�1. For super inflation
gravitational waves have therefore a blue spectrum [2,11]
with the slow-roll tensor-to-scalar ratio r � 8csnT .
III. A TOY MODEL

As the simplest example of super inflation we consider
the case with an exponential potential

� � �K
_�2

2
� �VV0e

���=Mpl�; (17)

where �K;�V � 
1. For �K � �V � 1 the stable phase-
space trajectories for homogeneous cosmologies occur for
 <

���
6
p

[12]. Power-law inflation [13] ( <
���
2
p

) is a local
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asymptotic attractor among inhomogeneous cosmologies
[14].

The case with �K � �V � �1 leads to solutions in
Euclidean time and we do not consider them here.

The case with negative potential (�K � ��V � 1)
leads to the simplest single field realization of the
Ekpyrotic scenario [15]. It represents a contracting solu-
tion with ultrastiff matter (w> 1) which is stable for  >���

6
p

both at homogeneous [16,17] and inhomogeneous lev-
els [17] and solves the horizon problem. Unfortunately, this
single field Ekpyrotic model cannot lead to the observed
nearly scale-invariant spectrum for cosmological fluctua-
tions [18].

The case �K � ��V � �1 leads to a stage of polelike
inflation:

a�t� � ��t�p; t < 0; p < 0;

��t� �
2


Mpl log��Mplt�; V0 � M4

plp�3p� 1�;
(18)

where p � �2=2 (i.e. p < 0). Such a solution is charac-
terized by a constant state parameter w � �1� 2=�3p�<
�1 and _H > 0 (we remind that H � p=t, where t � 0
corresponds to the big rip singularity).
IV. CLASSICAL STABILITY

The stage of polelike inflation in Eq. (18) is stable for
any negative p. It is stable within the RW backgrounds: it is
easy to show that the phase points
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H
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3
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2

6
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are stable. This stability analysis can be extended to the
case of inhomogeneous space-times following closely the
analysis in Ref. [14], by introducing

ds2 � �dt2 � ��t�2phijdx
idxj;

hij�t;x� � aij �
X
n

b�n�ij ��t�
n;

��t;x� �
2


Mpl log��Mplt� �

X
n

��n���t�n;

(20)

where aij; b
�n�
ij ;�

�n� are arbitrary space-dependent func-
tions, n 2 fkn1 � ln2 �mn3g, n1; n2; n3 are non-negative
integers, with at least a positive one, and k; l; m are positive
real numbers [14]. Inserting the expansion of Eq. (20) in
the Einstein equations, along the lines of Ref. [14], we
obtain four solutions, two of which are the residual gauge
modes of the synchronous gauge.

On the basis defined by k; l;m, we first consider n � k,
obtaining k � 1� 3p and

��k� � �
b�k�

2
; ~b�k�ij arbitrary; (21)
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where ~b�k�ij is the trace free part of the tensor b�k�ij . For n � l
we obtain l � 2�1� p� and (for p � �1)

��l� �
P

2p�p� 1��2p� 3�
;

b�l� �
p� 3

2�p2 � 1��2p� 3�
P; ~b�l�ij �

~Pij
p2 � 1

;

(22)

where P and ~Pij are the trace and traceless parts of the
three-dimensional Ricci tensor associated to aij. The case
n � m with the double solution m � 0;�1 corresponds to
a gauge mode which is not fixed by the synchronous gauge
in Eq. (20) (we note that for power-law inflation the
solution is also twofold with m � 0; 1).

Therefore we have demonstrated that phantom inflation
with an exponential potential described by Eq. (18) is a
local attractor (towards the big rip singularity) among
inhomogeneous space-times for any slope of the potential,
at the classical level. This independence on the slope of the
potential may be interesting for a theoretical motivation of
exponential potentials [19]. As for ordinary power-law
inflation [14], only the field becomes smooth while the
metric retains the initial aij�x0�, stretched to ultralarge
cosmological scales. It would be of great interest if quan-
tum effects [20] lead to the avoidance of the singularity
[21] and drive the Universe into a radiation dominated era.
More in general, some physical mechanism—a second
field, for instance—driving the Universe out of the infla-
tionary epoch has to be invoked [7,22], as for power-law
inflation.
V. PREDICTIONS OF THE TOY MODEL

It is interesting to study cosmological perturbations on
such a stable background (see also [22] for phantom in-
flation with a generic potential). For an exponential poten-
tial, both scalar and tensor fluctuations satisfy the equation
for massless fields, Eq. (16).

In the background given by Eq. (18) the solution for X
(X can be either the amplitude h of gravitational waves or
the Mukhanov variable Q) is

Xk � A�����H�1�� ��k�� (23)

where A is the normalization factor and the index � of the
Hankel function is given by

� �
1

2

3p� 1

p� 1
�

3

2
�

1

p� 1
: (24)

The spectrum of fluctuations is blue tilted with respect to
scale invariance, but the tilt is suppressed for large jpj.

As it happens also in the Ekpyrotic model, gauge invari-
ant scalar fluctuations satisfy an equation in which the
long-wavelength instabilities of field fluctuations in rigid
space-time are removed due to the opposite sign of the
kinetic and potential terms: this means that a consistent
-3



FIG. 2. Comparison of tensor contribution to CMB anisotropy
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gravitational embedding leads to a self-regulation of these
flat space-time instabilities.

Both the Ekpyrotic scenario and the super inflation
sketched here violate the condition jpj � � and lead to a
singularity (in contrast with power-law inflation). It is
therefore necessary to solve the graceful exit problem in
both cases. However there is an important difference: the
exit from super inflation needs to reverse sign to _H to
match with a radiation era, while in the Ekpyrotic case
the graceful exit is characterized by a switch in the sign of
H (as for the pre-big bang scenario [23] in the conformal
frame). This difference reflects in the perturbation sector:
in super inflation for p <�1 (i.e. for nT < 1) growing and
decaying modes remain as such before and after the grace-
ful exit, while in bouncing models growing and decaying
modes may invert their role before and after the bounce.
for super inflation with nT � 0:9 and standard inflation nT �
�0:1 (with the same amplitude in temperature anisotropies on
large scales). Besides the temperature spectrum as a triple dot-
dashed (long dashed) line, the E-mode spectrum is dashed (dot-
dashed) and the B-mode one is solid (dotted) for super (standard)
inflation. Note the different increase in the spectra and the
generic shift at larger ‘ of the first peak when increasing nT .
VI. GRAVITATIONAL WAVES WITH A BLUE
SPECTRUM

The detection of the tensor contribution to CMB anisot-
ropies is a major observational challenge. In Fig. 1 we
show that a blue spectral index nT > 0 increases the pos-
sibility of detection of gravitational waves, since the tensor
power-spectrum (in temperature and polarization) is in-
FIG. 1. Comparison of the CMB anisotropy power-spectrum
for conventional inflation and super inflation. For scalar pertur-
bations a blue spectrum nS � 1:1 is assumed (as predicted by
hybrid models in conventional inflation) for both standard and
super inflation. For tensors nT � �0:1 is assumed for inflation
and nT � 0:1 for super inflation. The tensor-to-scalar ratio r�
0:38 has been assumed. For reionization, the subroutine recfast
has been used, with optical depth � � 0:1. The other parameters
used are �CDM � 0:26, �b � 0:04, �� � 0:7 and H0 �
72 km s�1 Mpc�1. In the top panel, besides the temperature
scalar spectrum, the dashed (dotted) line corresponds to tensor
modes in super (standard) inflation. In the bottom panel, besides
the scalar E-mode (solid), the tensor E-mode is the dashed
(dotted) line and the B-mode is the triple dot-dashed (dot-
dashed) line for super (standard) inflation.
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creased at intermediate multipoles ‘ (before the tensor
contribution is cut off by the decay of gravitational waves
inside the Hubble radius), for a fixed tensor-to-scalar ratio
on the largest scales. The tensor contribution to CMB
anisotropies depends on nT , as it can be seen from Fig. 1:
for r � 0:38 (a value compatible with the WMAP 2�
bound r � 0:43, with no running spectral indices [24])
the tensor polarization signal in super inflation with nT �
0:1 is more than twice the standard inflation one with nT �
�0:1. For comparison we also show the difference in the
tensor contribution between nT � 0:9 and nT � �0:1 in
Fig. 2: increasing nT , the increase in polarization ampli-
tude is larger than in the temperature. Moreover, we also
note that the peak of the B-mode spectrum shifts to larger ‘
increasing nT . Other inflationary models beyond Einstein
theories (scalar-tensor theories or higher order gravity
theories) may also display a blue spectrum for gravitational
waves.
VII. CONCLUSIONS

In this paper we have presented a consistent framework
to study super inflation and given exact solution for a toy
model with an exponential potential. While these models
deserve further investigation both in connection with quan-
tum instabilities [20], nonperturbative effects and the exit
from the accelerated stage, they provide the distinctive
prediction that the tensor perturbation spectrum is blue
tilted (independently on the number of scalar fields in-
volved). This might also open new windows for the direct
detection of the stochastic gravitational-wave background
by interferometric antennas. Indeed, the ratio with respect
-4
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to a scale-invariant tensor spectrum of the contribution to
closure energy density in gravitational waves (per unit log
frequency) scales like �k=k	�nT � �5� 1016�nT �k=Hz�nT , if
the tensor spectrum is normalized to CMB observations at
k	 � 0:002 Mpc�1 [24]. This may lead to a relevant in-
crease of the signal for positive tilt, even without requiring
large deviations from scale invariance, unlike the
Ekpyrotic scenario with nT � 3 or pre-big bang with nT �
4. Given the completely general scalar-field theory we have
083504
considered, such a blue spectrum for gravitational waves
does not constrain the slope of the scalar perturbation
spectrum, therefore allowing agreement with observational
data.
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