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Can superhorizon cosmological perturbations explain the acceleration of the universe?
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We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the
universe could be explained by large superhorizon fluctuations generated by inflation. We show that no
acceleration can be produced by this mechanism. We begin by showing how the application of
Raychaudhuri equation to inhomogeneous cosmologies results in several ‘‘no go’’ theorems for accel-
erated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which
application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no
acceleration is present. We show that the discrepancy can be traced to higher-order terms that were
dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general
relativity to argue that causality severely limits what observable effects can be derived from superhorizon
perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no
infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be
eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the
variance of the deceleration parameter for the case of single-field inflation using usual coordinates and
show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several
additional terms not considered in their analysis. Finally, we argue that introducing isocurvature
perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be
explained by superhorizon modes.
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I. INTRODUCTION

There are now several lines of evidence pointing toward
an accelerating expansion of the universe. These include
the luminosity distance-redshift relation measured from
Type Ia supernovae (SN Ia) [1–6]; the combination of
the angular diameter distance to the surface of last scatter-
ing and the physical matter density �mH

2
0 measured from

the cosmic microwave background (CMB) with the low
values of �mH0 favored by large-scale structure data [7–
11]; and, most recently, the integrated Sachs-Wolfe effect
[12–19]. It is well known that such an accelerating expan-
sion is impossible if one makes the following three as-
sumptions:
(1) T
he strong energy condition (SEC) holds, i.e. the
density and isotropic part of the pressure seen by
all observers on timelike trajectories satisfy ��
3p � 0
(2) th
e universe is described by general relativity (GR);
and
(3) th
e universe is homogeneous and isotropic, in par-
ticular, the Friedmann-Robertson-Walker (FRW)
metric is applicable.
Any explanation for the acceleration of the universe must
drop at least one of these three assumptions. Usually either
assumption (1) or (2) is dropped. In such a case, we use the
term ‘‘dark energy’’ to describe any SEC-violating matter
field, and ‘‘modified gravity’’ to denote any departure from
address: chirata@princeton.edu
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GR. These explanations for the acceleration could be
considered unsatisfying since there is presently no other
experimental motivation for modifications to GR, and the
matter fields normally considered in cosmology, including
baryonic matter, photons, neutrinos, and cold dark matter
(CDM) all obey the SEC. In either case, new physics must
be invoked. In contrast, it is observed that assumption (3) is
not exactly valid in the real universe. Therefore several
recent papers [20,21] have asked whether in fact the
‘‘backreaction’’ from these perturbations to the universe
can explain the acceleration, without dropping the SEC
or GR.

The purpose of this paper is to examine the recent
suggestions by Barausse et al. [20] (hereafter BMR) and
Kolb et al. [21] (hereafter KMNR) that perturbations on
scales larger than the Hubble length can explain the accel-
eration. In particular, these papers suggest that the time
evolution of these large-scale perturbations produce a large
variance of the deceleration parameter q. Since potential
perturbations at the horizon scale are of order �10�5, one
would expect the fluctuations in q to be of this order,
however KMNR argues that corrections due to very
large-scale modes (hundreds of e-folds outside the hori-
zon) can cause the standard deviation of q to be� 10�5. In
particular, for spectral index ns � 1 they claim that the
corrections from very large-scale modes contain an infra-
red divergence. If the variance is very large, this could
mimic dark energy and cause an apparent acceleration.
Indeed, the existence of perturbations on scales well
beyond the horizon is likely in the context of inflation
-1 © 2005 The American Physical Society
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[22–24], since the inflaton field may have been in the
‘‘slow roll’’ regime for many more e-folds than the mini-
mum of �60 necessary to solve the horizon problem. This
paper focuses on the possibility of accelerated expansion
from superhorizon perturbations; we do not consider
mechanisms based on subhorizon physics here.

We argue that in fact no acceleration is produced. Our
arguments can be summarized as follows:
(i) T
he result that GR� SEC forbids accelerating ex-
pansion is more general than the FRW cosmology.
The application of the Raychaudhuri equation to
inhomogeneous cosmologies immediately yields
several ‘‘no go’’ theorems for accelerating expan-
sion with zero vorticity, depending on how accel-
eration is defined. One of these theorems rules out
the KMNR mechanism. We treat the definition of
the deceleration parameter q and the conditions
under which q < 0 is possible in Sec. II.
(ii) I
n Sec. III, we examine the physical reason why
KMNR found that their deceleration parameter
becomes negative, in contradiction to our conclu-
sion in Sec. II B. In particular, we examine one
configuration of initial perturbations that can be
solved exactly; we show that in this case, the dis-
crepancy arises because of higher-order terms in
the perturbative expansion of � [their Eq. (7)] that
were dropped in their analysis. Once the full result
for � is used, the deceleration parameter q never
becomes negative. The results of Sec. III are less
general than those of Sec. II, since they only apply
to a specific configuration. Nevertheless they pro-
vide important insight into the calculation of
KMNR.
(iii) C
ausality severely limits what observable effects
can be derived from superhorizon perturbations. If
one constructs an initial 3-dimensional hypersur-
face � at the end of inflation, then any observable
quantities can in principle be determined purely
from the values of the initial perturbations on � \
J��O�, where J��O� is the causal past of the ob-
server. There may be perturbations on very large
scales, e.g. due to the early stages of inflation, but
one can only observe these to the extent that they
affect the initial conditions on � \ J��O�. We
show in the first half of Sec. IV that the observable
effect of superhorizon perturbations found by
BMR—including the infrared divergence—is in
fact due to a local rescaling of the coordinates
caused by the particular choice of gauge for the
superhorizon modes.
(iv) I
n Sec. IV C, we calculate the contribution of very
long-wavelength modes to the deceleration pa-
rameter in single-field inflation models. We find
that this contribution vanishes when all effects,
including non-Gaussianity and loop corrections to
the scalar power spectrum, are taken into account.
083501-2
This means that the long-wavelength modes in
single-field inflationary models cannot produce a
large variance of the deceleration parameter.
Section II shows that regardless of the potential perturba-
tions, ‘‘acceleration’’ as defined by KMNR cannot be
obtained without sacrificing the SEC or GR or invoking
vorticity (which is not present in KMNR and is not pre-
dicted by inflation), while Sec. IV argues that there is no
infrared divergence and that the fluctuations in q at the
horizon scale are indeed of order �10�5. Sections III and
IV C deal with the more specific issues of why KMNR
found acceleration and infrared divergence, respectively,
and address technical points about their calculation. Note
that our arguments involving the ‘‘no go’’ theorems are
logically independent from the arguments involving cau-
sality. Either one rules out the KMNR mechanism as the
explanation for the accelerating expansion of the universe.

The results of Sec. IV C are specific to single-field
inflation, and do not apply to other models. For example,
in multifield inflation large isocurvature perturbations are
possible, which can produce large variances in the decel-
eration parameter when one averages over different por-
tions of the universe [25]. However the analysis of Sec. II
still applies to these cases, i.e. for several of the definitions
of the deceleration parameter there is no possibility of
obtaining q < 0 without rejecting the SEC or GR.

The notation used in this paper is as follows: the metric
signature will be ���� , with hij denoting the spatial
metric. Greek indices will range over f0; 1; 2; 3g whereas
Latin indices range only over the spatial directions f1; 2; 3g.
In cases where we do explicit calculations with the metric,
we will use the synchronous CDM-comoving gauge, in
which g00 	 �1, g0i 	 0, and the CDM particles move
along curves of constant spatial coordinates xk (we show in
Sec. II that this gauge exists in any scenario, including
KMNR, where the CDM vorticity vanishes). Sym-
metrization of indices will be defined by A�ab� 	

1
2 �Aab �

Aba�, and similarly for antisymmetrization, which is de-
noted with square brackets A
ab�. In the model of KMNR,
there are only scalar perturbations present initially, and the
spatial metric becomes
hij�t; xk� ! a2�t�e�10’�xk�=3�ij (1)
at early times when the perturbation mode of interest is
outside the horizon (but after the end of inflation); we use
this as the definition of ’. The overdot will denote deriva-
tives with respect to the physical time coordinate t; we will
not do any calculations with the conformal time in this
paper. The analyses of Secs. III and IV are done on a flat
FRW background with a scale factor a�t� / t2=3 normal-
ized to a�t0� 	 1 today.
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II. DECELERATION PARAMETER

In order to make a statement about the universe accel-
erating, it is necessary to have a precise definition of the
deceleration parameter that makes sense in non-FRW cos-
mologies. In the recent backreaction papers, several defi-
nitions have been proposed. We consider these here.

A. Definitions

The simplest definition is based on the congruence of
timelike geodesics formed by the CDM particles with 4-
velocity u�; one may define a local Hubble constant

H1 	
1

3
r�u

� (2)

and then a deceleration parameter

q1 	 �1�H�2
1 u�r�H1: (3)

Here u�r� is the Lagrangian proper time derivative
d=dtproper associated with a CDM particle. Also Eq. (2)
implies that H1 is related to the expansion tensor ��� via
� � ��� 	 3H1. Since the CDM particles follow geodesics,
the expansion tensor is purely spatial in the CDM particle’s
frame, i.e. it is orthogonal to u: ���u� 	 ���u� 	 0 (c.f.
Eq. 9.2.2 of [26]). We will need to decompose ��� into the
usual irreducible tensors

��� 	
1

3
��g�� � u�u�� �!�� � ���; (4)

where g�� � u�u� is the spatial metric (where ‘‘spatial’’ is
defined by an observer sitting on a CDM particle), !�� 	

r
�u�� is a 3 3 purely spatial antisymmetric tensor
with 3 independent components, and ��� is a traceless-
symmetric spatial tensor with 5 independent components.

In the special case where the vorticity 2-form ! 	 1
2du

is zero, we can integrate the exact 1-form u and write u 	
�dt for some locally defined 0-form t. (In most cases of
interest, the spacetime is simply connected and t is defined
globally.) The congruence of CDM particles is then said to
be irrotational. If one labels the CDM particles with coor-
dinates xi, then u 	 �dt implies that the covariant com-
ponents of u are u� 	 ��1; 0; 0; 0�. However since the
particle spatial coordinates are constant, ui 	 0; normal-
ization u�u� 	 �1 requires u0 	 1 and u� 	 �1; 0; 0; 0�.
The requirement that these components of u� and u� be
consistent forces g00 	 �1 and g0i 	 0, and the line ele-
ment of the metric then becomes

ds2 	 �dt2 � hij�x
k; t�dxidxj: (5)

A straightforward computation shows that

H1 	
1

3
����u� 	

1

6
hij@thij 	

1

6
@t lndeth; (6)

and this is recognized as the definition of the variable
083501
‘‘H�t; xi�’’ used by Ref. [25]. It is also equivalent to the
operational definition used by KMNR since our deth is
equivalent to their �a6e�6�s and they ignore the small-scale
perturbation modes �s. In the latter case where a decel-
eration parameter is used, it is defined as

�
�a@2

t �a

�@t �a�2
	 �1�

@tH1

H2
1

	 q1; (7)

i.e. the deceleration parameter �q used by KMNR is equiva-
lent to our q1.

The Hubble and deceleration parameters H1 and q1 as
defined above are functions of both the time coordinate t
and the spatial coordinates xi. It is sometimes proposed to
measure spatially averaged values of the Hubble constant,

H2�t� 	

R
V H1

���
h
p
d3xR

V

���
h
p
d3x

	
1

3
@t ln

Z
V

���
h
p
d3x (8)

and

q2�t� 	

R
V q1

���
h
p
d3xR

V

���
h
p
d3x

: (9)

Note that, unlike the case of q1, we have q2 �

�1� _H2=H
2
2 .

The deceleration parameters q1 and q2 are convenient
because they are easy to compute in many cosmological
models, avoiding the complicated process of tracing null
geodesics and estimating luminosity distances used by
BMR. The latter, of course, is their principal shortcoming:
q1 and q2 do not correspond to the observables in any of
today’s major cosmological probes. The famous Hubble
plot of z versus dL allows one to measure H1, however
extragalactic astronomy is only�102 years old and this is a
woefully inadequate baseline with which to directly mea-
sure the time derivative _H1 and hence the deceleration
parameter q1. We also cannot cover the entire universe
with astronomers so as to measure spatially averaged
quantities such as H2 or q2.

Since SN Ia luminosity distances are one of the major
pieces of evidence for the accelerating expansion of the
universe, one way to make contact with observations is to
calculate the luminosity distance-redshift relation. This
was first done in the context of backreaction by BMR,
who expanded the luminosity distance dL as a Taylor series
in redshift,

dL 	 H�1
30 z�

1� q30

2H30
z2 �O�z3�: (10)

As defined here, the Hubble and deceleration parameters
H30 and q30 depend not only on the observer’s spacetime
coordinates t; xi, but also on the direction of observation
(RA and Dec), because in a perturbed universe there is no
reason why the dL-z relation should be the same in every
direction. BMR then went on to average these over solid
angle to obtain
-3
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H3 	 hH30 i4� and q3 	 hq30 i4�: (11)

A related procedure is to write Eq. (10) as a function z�dL�,

z 	 H30dL �
1

2
H2

30 �1� q30 �d2
L �O�d

3
L�: (12)

This motivates the definition

hzi4� 	 H4dL �
H2

4�1� q4�

2
d2
L �O�d

3
L�; (13)

where we take the angular average over the redshift at fixed
dL rather than averaging the Taylor coefficients. This
procedure has the advantage of making sense in slightly
more general conditions. In particular, if �ij has a direction
ni, not necessarily an eigenvalue, where �ijninj 	 0, then
H30 	 0 in that direction and q30 in Eq. (10) is undefined.
Then q3 is not defined either. In contrast, Eq. (13) breaks
down only under the more restricted condition that H4 	
0, i.e. that the angular average of H30 vanishes. As we will
see in the next section, it is also easier to prove theorems
about q4 because one can avoid angular averages with
quantities such as H30 in the denominator.

One can relate H4 and q4 to H3 and q3 by considering
the angular average of the coefficients of dL and d2

L in
Eq. (12),

H4 	 hH30 i4� 	 H3 and

H2
4�1� q4� 	 hH2

30 �1� q30 �i4�: (14)

Thus we always have H3 	 H4. If H30 is isotropic, then it
cancels out in the second line implying q3 	 q4, but q3 and
q4 need not be identical in general.

B. Conditions for acceleration

Having written down several definitions of the decelera-
tion parameter, one can ask: under what conditions can the
universe be accelerating, i.e. under what conditions is
q < 0 possible?

The condition for acceleration is easiest to derive in the
case of q1. We begin with the Raychaudhuri equation,

d�
dt
	 �

�2

3
� ������ �!��!�� � R��u�u�; (15)

where R�� is the Ricci tensor. Using this Eq. (3) can be
rewritten as

H2
1q1 	

1

3
���� ��� �!

�
�!�

�� �
1

3
R��u

�u�: (16)

The Einstein equation allows us to rewrite the last term in
terms of the matter content in the CDM particles’ rest
frame,

H2
1q1 	

1

3
���� ��� �!

�
�!�

�� �
4�G

3
��� 3p�; (17)

where � 	 T00 is the total density and p 	 1
3T

i
i is the
083501
isotropic pressure. Since � is purely spatial in the local
Lorentz frame of a CDM particle, its square is semipositive
definite, ������ � 0. Thus we immediately see that if the
strong energy condition (SEC) is satisfied (so that ��
3p � 0) and there is no vorticity (! 	 0), it follows that
q1 � 0.

The vorticity ! plays a key role in all of the ‘‘no go’’
theorems regarding accelerated expansion, as well as in the
existence of the synchronous CDM-comoving gauge
[Eq. (5)] and the spatially averaged deceleration q2, so it
is worth exploring when it can be nonzero. It can be shown
(see e.g. Eq. 9.2.14 of [26]) that if! 	 0 at one time then it
remains zero at all future times (at least until orbit cross-
ings appear). In particular, the existence of the synchro-
nous CDM-comoving gauge implies u 	 �dt and
! 	 du 	 �d2t 	 0, so if the synchronous CDM-
comoving gauge exists at early times then ! 	 0.
KMNR explicitly use the synchronous CDM-comoving
gauge in their calculations, so their model has zero vor-
ticity. This means that the ‘‘no go’’ theorems that q1 � 0
applies to KMNR; since they use q1 as their definition for
the deceleration parameter, the KMNR mechanism cannot
produce acceleration. A corollary is that q1 ! �1 in
KMNR must be an artifact of the perturbative expansion.
We will return to this point in Sec. III.

Since q2 is a spatial average of q1, it follows trivially that
in the absence of vorticity or SEC violation, q2 � 0.

The deceleration parameters q3 and q4 in terms of
luminosity distances can be related to observations. The
simplest way to do this is to consider the photon trajecto-
ries that arrive at the observer O, and find the luminosity
distance dL�v� and redshift z�v� as a function of affine
parameter v. The photon is assumed to arrive at the ob-
server at affine parameter v 	 0 with unit energy, i.e. its 4-
momentum k satisfies k�u� 	 �1 at v 	 0. We will
assume that the vorticity of the CDM particles vanishes
so that we can use the synchronous CDM-comoving gauge
[Eq. (5)]. In this gauge, the ‘‘0’’ direction coincides with
the CDM particle 4-velocity, so the purely spatial nature of
the expansion tensor ��� can be used: �00 	 �0i 	 �i0 	
0, and we will henceforth simply write �ij. We also define
the photon’s 3-velocity at the observer ni 	 ki�v 	 0�, and
note that this is a unit vector since the photon is massless.
Note that v < 0 on the observer’s past light cone.

The redshift associated with a particular point on the
photon’s trajectory is simply 1� z�v� 	 k0�v�, since k0�v�
is the photon’s energy as measured by the CDM particle
and the observer sees energy 1. We can expand k0�v� to
second order using the geodesic equation,

dx�

dv
	 k� and

dk�

dv
	 �����k

�k�: (18)
The derivatives of k0 are then
-4
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dk0

dv
	 ��0

ijk
ikj 	 �

1

2
_hijkikj (19)

since �0
00 	 �0

0i 	 0 in the synchronous gauge, and

d2k0

dv2
	 �

1

2
k��@� _hij�kikj � _hijki�

j
��k�k�: (20)

Plugging in the Christoffel symbols yields

k0 	 1�
dk0

dv
v�

d2k0

dv2

v2

2

	 1�
1

2
_hijninjv�

�
�
ninj

2
� �hij � nk _hij;k� �

_hijn
j

2

�2hik _hklnl � hilhmk;lnknm � 2hilhml;knknm�
�
v2

2
:

(21)

Introducing the extrinsic curvature Kij 	 �
1
2

_hij, and its 3-
dimensional covariant derivative Kijjk,

K�ijjk� 	 K�ij;k� � K
l
�ihjk�;l � 2hl�j;kK

l
i�; (22)

yields the redshift

z 	 Kijn
injv� � _Kij � Kijjkn

k � 4Kk
i Kkj�n

inj
v2

2
: (23)

Since u is the unit normal to the hypersurfaces of constant
t, it follows that Kij 	 ��ij (c.f. Eq. 9.3.19 of [26]).

The luminosity distance to a spherical source whose
surface is at affine parameter vs is given by Eq. (2.14) of
Ref. [27]

dL�vs� 	 R
A�vs�
A�0�


1� z�vs��; (24)

where A is the photon amplitude (normalized by T�� 	
A2k�k�) and R is the radius of the source; the amplitude A
is given by

A / exp
�
�

1

2

Z
�̂dv

�
; (25)

where �̂ 	 r�k
� is the photon expansion. The photon

expansion near the source can be expanded as

�̂ 	
2

v� �vs ��vs�
�O
v� �vs � �vs��; (26)

where ��vs is the difference affine parameter from the
source’s center to its surface at radius R; this can be shown
by the same argument leading to BMR’s Eq. (A27). This
affine parameter can be found by noting that k� 	
dx�=dv. Here the photon’s energy at the source is k0 	
1� z and the time it takes to travel from the center to the
surface is R, so

�vs 	 �
k0

�t
	 �

1� z
R

: (27)
083501
Also, integration of Eq. (25) using Eq. (26) gives

A�vs�
A�0�

	
��vs

�vs � �vs
	

1� z
�vsR

; (28)

where the last equality uses j�vsj � jvsj. This yields

dL�vs� 	 �vs
1� z�vs��2 �O�v3
s�: (29)

Comparing to Eq. (23) gives the result, to second order,
that

z 	 �
Kijn

injdL
�1� z�2

� � _Kij � Kijjknk � 4Kk
i Kkj�n

inj
d2
L

2
;

(30)

or

z 	 �KijninjdL � 2�Kijninj�2d2
L

� � _Kij � Kijjknk � 4Kk
i Kkj�n

inj
d2
L

2
: (31)

We can then calculate the deceleration parameter q4 by
comparing Eq. (31) to Eq. (13). The Kijjk term drops out in
the angular averaging, and we have hninii4� 	

1
3 , so we get

H4 	 �
1

3
K (32)

where K 	 Ki
i. Note that this implies H4 	 H1. The de-

celeration parameter is

q4 	 1�H�2
4

�
�4KijKkl

h�ijhkl�

5
�

1

3
_Kijh

ij �
4

3
Ki
jK

j
i

�
:

(33)

This can be simplified by separatingK into its isotropic and
anisotropic pieces, Ki

j 	 �H4�ij � �
i
j. Then we find

q4 	 1�
_Kijh

ij

3H2
4

�
4

5
H�2

4 �ij�
j
i : (34)

A further simplification comes from the formula for _Kij

(Eq. 21.82 of Ref. [28]),

R0
i0j 	 ��

_Kij � KikKk
j �; (35)

the antisymmetry property of the Riemann tensor coupled
with the Einstein equation allows us to write

hijR0
i0j 	 R0

0 	 8�G�T0
0 �

1

2
T��� 	 �4�G��� 3p�;

(36)

hence

_K ijhij 	 4�G��� 3p� � 3H2
4 � �

i
j�

j
i : (37)

Substitution into Eq. (34) yields

q4 	
4�G��� 3p�

3H2
4

�
7�ij�

j
i

15H2
4

: (38)
-5
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Once again, we see that if the SEC holds then q4 � 0. Thus
by this definition too a universe with only matter cannot
accelerate.

The deceleration parameter q3 is only well defined for a
positive-definite spatial expansion tensor �ij. It is also
more difficult to work with than q4: from Eq. (12), we find

q30 	 1� 2
�@2z=@d2

L�jdL	0

�@z=@dLjdL	0�
2 : (39)

The presence of variables in the denominator of this equa-
tion makes it very difficult to prove theorems about the
angular average q3 	 hq30 i4�. We do know from Eq. (14)
that H4 	 H3. Since the mean of the square is always at
least the square of the mean, this implies

H2
4 � hH

2
30 i4�: (40)

Combining Eq. (40) with the second line of Eq. (14) yields

hH2
30q30 i4� 	 hH2

30 i4� �H
2
4 �H

2
4q4 � H2

4q4: (41)

If the SEC holds then q4 � 0 and it follows that
hH2

30q30 i4� � 0. This inequality does allow for the possi-
bility that q3 	 hq30 i4� < 0. This can happen if there is an
anisotropic expansion tensor (i.e. � � 0) so that
hH2

30q30 i4� � H2
3hq30 i4� and the universe is ‘‘accelerating’’

with q30 < 0 in some directions ni. Nevertheless even for
an anisotropic expansion, the inequality hH2

30q30 i4� � 0
implies that if there are accelerating directions (q30 < 0)
then there must be decelerating directions (q30 > 0) as
well.

III. ACCELERATION OF UNDERDENSE
REGIONS?

KMNR concluded that an underdense region of a post-
inflationary universe filled with only dark matter can ap-
pear to accelerate (according to q1) due to the influence of
superhorizon perturbations. However, with CDM only the
SEC should hold, and after inflation there should be no
vorticity. In Sec. II B, we showed that the SEC and zero
vorticity imply q1 � 0. These conclusions are obviously
inconsistent. The purpose of this section is to show, in a
particular case that can be solved exactly, that the reason
for the inconsistency is that KMNR dropped higher-order
perturbative terms in their gravitational potential �‘.
These terms, when incorporated into their Eq. (10), result
in a deceleration q1 that never becomes negative.

The particular case that we shall consider here is the
potential

’ 	
3

5
ln
�
1�

1

4
Cjxj2

�
; (42)

where jxj2 	 �x1�2 � �x2�2 � �x3�2 and C is a constant. In
order for the conclusions derived below to be valid, it is
sufficient by causality for ’ to take on the above value
inside our horizon. Also, by Birkhoff’s theorem, if the
083501
potential is spherically symmetric and takes on the form
of Eq. (42) for jxj less than some radius R, the future
evolution at jxj<R is as computed below.

Since forC> 0 we haver2’< 0, the potential Eq. (42)
can be used as a model for an underdense region. Not all
underdense regions look like Eq. (42), however this poten-
tial can be solved and it is conceptually useful for under-
standing why the higher-derivative terms dropped in
KMNR are in fact important. The spherically symmetric
underdensity and overdensity have been studied exten-
sively as models of voids in large-scale structure [29] and
the formation and growth of collapsed objects [30] respec-
tively, however these studies were not aimed at under-
standing backreaction. Our aim here is to understand the
implications of the spherical underdensity for the KMNR
mechanism.

Substitution of the potential in Eq. (42) into Eq. (1)
yields initial conditions for the spatial metric,

hij�t; x
k� 	

a2�t�

�1� 1
4Cjxj

2�2

�ij �O�t

2=3��: (43)

This is simply the metric for a 3-dimensional open universe
with spatial curvature �C and a coordinate system given
by the stereographic projection, analytically continued to
the case of negative curvature. The future evolution of this
universe is equivalent to an open FRW universe and thus
can thus immediately be written down:

ds2 	 �dt2 �
a2

open�t�

�1� 1
4Cjxj

2�2
dxidxi; (44)

where aopen�t� satisfies the Friedmann equation for an open
universe, which has the parametric solution�

aopen 	 �
����
C
p
�cosh	� 1�;

t 	 ��sinh	� 	�;
(45)

where � is a constant and 	 is the parameter. Comparison
of Eqs. (43) and (44) shows that at early times,
aopen�t�=a�t� ! 1. Since the evolution of a�t� is simply
that of the Einstein–de Sitter universe,

a�t� 	
�
3

2
H0t

�
2=3
; (46)

we can use this as the early-time limit of aopen�t� to
determine �,

� 	
1

2
H2

0C
�3=2: (47)

KMNR defined the metric perturbation variable � ac-
cording to

ds2 	 �dt2 � a2�t�e�2��xi;t�dxidxi: (48)

Comparison of Eq. (44) with Eq. (48) then allows us to
determine the full nonperturbative evolution of � for the
potential ’ of Eq. (42):
-6



CAN SUPERHORIZON COSMOLOGICAL PERTURBATIONS . . . PHYSICAL REVIEW D 72, 083501 (2005)
��xi; t� 	 ln
�
1�

1

4
Cjxj2

�
� ln

aopen�t�

a�t�
: (49)

The first term in this result is independent of time and, as
correctly argued by KMNR, it does not affect q1. The
second term can be evaluated by expressing 	 in terms
of t and hence a�t� in the second line of Eq. (45) and then
finding aopen using the first line. The functional form 	�t�
cannot be expressed analytically, but a power series can be
developed via reversion of series,

	 	
�
6t
�

�
1=3
�

1

60

�
6t
�

�
�

1

1400

�
6t
�

�
5=3
� :::: (50)

Substitution into the Taylor expansion of aopen�t� 	
�

����
C
p
�cosh	� 1� gives

aopen�t� 	 a�t� �
C

5H2
0

a2�t� �
3C2

175H4
0

a3�t�

�O�C3H�6
0 a4�: (51)

We are interested in the expression for aopen as a perturba-
tion series in C, since ’! 0 when C! 0. Equation (51)
provides this series, although it turns out to also be a power
series in a. [The reason for this is that C has units of
length�2, andH0 is the only other quantity containing units
of length once we have eliminated �0 using the Friedmann
equation. Thus C and H0 appear together in the combina-
tion C=H2

0 when expanding aopen. Furthermore, there is an
invariance associated with the choice of epoch of the
observer: if one places the observer at a later time 
t
instead of t, then the scale factors a and aopen are multiplied
by 
�2=3 (since a / t2=3), H0 is multiplied by 
�1, and the
change in definition of comoving length multiplies the
‘‘curvature’’ constant C by 
�4=3, hence C=H2

0 is multi-
plied by 
2=3. The invariance with respect to 
 forces the
terms in the above expansion to take the form
�C=H2

0�
jaj�1. Thus the expansion in C turns out to also

be an expansion in a.] Substitution into Eq. (49) gives

��xi; t� 	 ln
�
1�

1

4
Cjxj2

�
�

C

5H2
0

a�t� �
13C2

350H4
0

a2�t�

�O�C3H�6
0 a3�: (52)

Aside from the irrelevant time-independent term, ��xi; t�
depends only on the time. Technically the perturbation
series in Eq. (52) has a finite radius of convergence of
jCH�2

0 aj< �32��
2=3 (see the appendix), but if one had the

full perturbative expansion one could analytically continue
it to later times.

Our result for the evolution of the gravitational potential
should be compared to Eq. (7) of KMNR, which after
plugging in Eq. (42) yields
083501
��xi; t� 	 ln
�
1�

1

4
Cjxj2

�
�

C

5H2
0

a�t� �
C2jxj2

60H2
0

a�t�:

(53)

The constant in this equation agrees with Eq. (52). The
first-order perturbation terms (i.e. / C) also agree. Beyond
first order in C, however, two discrepancies appear. One is
the spurious term in Eq. (53) proportional to C2 that has
spatial dependence. We will consider � and q the spatial
origin xi 	 0, where the spurious term vanishes. [This is
also where the KMNR calculation is most likely to be
valid, since they neglected terms containing �r’�2, and
r’ 	 0 at the origin for our specific potential, Eq. (42).]
The other discrepancy is that Eq. (53) is missing the
higher-order spatially independent terms proportional to
�Ca�2, �Ca�3, etc. The �Ca�n term has 2n derivatives in it
and presumably are not included in Eq. (7) of KMNR
because they dropped ‘‘higher-derivative’’ terms.

We finally consider the implications of the difference
between Eqs. (49) and (53) for the determination of the
deceleration parameter q1. This is given by Eq. (6) of
KMNR,

q1 	 �1�
3
2�H

�2 ��

�1�H�1 _��2
: (54)

Here we have dropped the subscript on �‘ since � 	 �‘
at the level of approximation in KMNR, and H represents
the unperturbed Hubble constant. According to Eq. (53),
the value of q1 at the spatial origin xi 	 0 is

q1�KMNR� 	 �1�
3
2�

1
10H

�2
0 Ca

�1� 1
5H
�2
0 Ca�2

: (55)

According to the full nonperturbative calculation, and
defining Hopen�t� 	 _aopen�t�=aopen�t�, we find

_� 	 H�t� �Hopen�t� and �� 	 _H�t� � _Hopen�t�:

(56)

Substituting into Eq. (54) yields

q1�true� 	 �1�
_Hopen�t�

H2
open�t�

; (57)

where H�t� completely drops out if one uses the identity
_H 	 � 3

2H
2. We can use Eq. (45) to find Hopen�t�, which

gives

Hopen�t� 	 A�1 sinh	
cosh	� 1

(58)

and

q1�true� 	
1

1� cosh	
: (59)

Equations (55) and (59) have some features in common:
they both approach 1=2 at early times, and as the universe
-7
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expands they decrease, as expected for an underdense
region of the universe. However the long-time behavior
is different: as t! 1, q1�KMNR� ! �1, as noted by
KMNR, whereas 	! 1 and hence q1�true� ! 0. We
thus see explicitly that no acceleration is possible in this
case and that the result found by KMNR is a consequence
of neglecting higher-order terms in their analysis: if the full
perturbation series had been calculated (and analytically
continued to late times), KMNR would have found no
acceleration.
FIG. 1. The regions of spacetime described in the text. Initial
data are supplied on the Cauchy hypersurface �. Causality
implies that the observables seen by observer O can depend
only on the initial data within the shaded region � \ J��O�.
Within the context of perturbation theory around an FRW space-
time, the perturbations to the observables can be determined
given initial data within any open set U containing � \
J��O;FRW�. Superhorizon perturbations can only be observed
to the extent that they affect the initial data inside U.
IV. SUPERHORIZON ADIABATIC
PERTURBATIONS

BMR have recently analyzed the effect of superhorizon
adiabatic perturbations on the dL-z relation. In particular
they considered the value of the isotropically averaged
deceleration parameter q3 (hq0i� in their notation). They
found a large contribution to the variance of q3 coming
from the interaction of infrared and ultraviolet modes. In
this section we rederive this result by selecting an appro-
priate new coordinate system. This method illuminates the
physical origin of the large Varq3 found by BMR, namely,
that BMR assumed the ultraviolet modes to be statistically
homogeneous, isotropic, and Gaussian in their coordinate
system with the cosmic power spectrum P’�k�. Because
of the infrared perturbations, this coordinate system
differs from the locally FRW coordinate system erected
by an observer, and the power spectrum of ultraviolet
modes seen by a specific observer differs from P’�k�. In
Sec. IV C, we consider the ’ field generated by single-field
inflation, and show that in this case the BMR infrared
divergences are canceled by non-Gaussian features and
loop corrections to the power spectrum.

The KMNR mechanism makes use of this infrared di-
vergence. Specifically, they argue that in some models of
inflation, there is a very large variance of the deceleration
parameter q1 resulting from the interaction of infrared and
horizon-scale modes. Within the context of single-field
inflation, or indeed any mechanism in which small-scale
perturbations are laid down after the large-scale perturba-
tions have exited the horizon and frozen out, there is then
no infrared divergence. We discuss the implications for
KMNR in Sec. IV D.

A. Gauge transformation; causality

The initial state of any system in classical general rela-
tivity is described by a spatial metric hij on the initial
hypersurface, its time derivative, i.e. extrinsic curvature
Kij, and the appropriate variables Xa to describe the matter
fields. These quantities are not all independent since they
must satisfy the energy and momentum constraints. It is
also well-known that two distinct sets of initial conditions
fhij; Kij; Xag may actually correspond to the same space-
time because they differ by a gauge transformation, which
083501
may involve either (i) a reparametrization of the initial
hypersurface, or (ii) selection of a different spacelike hy-
persurface as the initial slice. We will focus our analysis on
using gauge transformations of type (i) since (ii) is more
difficult to analyze.

If one considers an initial hypersurface � after the end of
inflation, one need only specify the initial data on the
portion of � that can be seen by the observer, O, i.e. one
needs initial data on � \ J��O�. In the unperturbed stan-
dard CDM model with the usual initial hypersurface (a
surface of constant cosmic time), � \ J��O� is a closed
ball with comoving radius less than the horizon size �h,

�h 	
Z 1

0

da

a2H�a�
	 2H�1

0 ; (60)

where we have used H�a� / a�3=2. In a non-FRW universe
the nature of � \ J��O� is more complicated.
Nevertheless, Cauchy stability [31] implies that, for suffi-
ciently small perturbations, the observables seen by O can
be uniquely determined from the initial data on any open
set U in � with U � � \ J��O; FRW�, where
J��O; FRW� is the causal past of the observer assuming
the FRW metric (see Fig. 1). In particular this means that
given such a U, one can calculate the observables seen by
O to any order in perturbation theory. It is also easy to
construct U: any open ball centered at the origin and
extending out to coordinate radius RU > �h will do. We
assume RU 	 2�h for definiteness.

The initial hypersurface considered by BMR has a spa-
tial metric
-8
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hij�t�; x
k� 	 a2�t���ij�t�; x

k�

	 a2�t��e�10’�xk�=3
�ij �O�t2=3�� (61)

and extrinsic curvature

Kij�t�; xk� 	 �
1

2
_hij�t�; xk�

	 �H�t��hij�t�; xk� �O�Kijt2=3�; (62)

where we write O�Kijt2=3� to mean that the fractional
correction is of order t2=3. Instead of xi coordinates we
want to construct a coordinate system which is explicitly
locally inertial. We will therefore impose a gauge trans-
formation to new coordinates yi�xj� such that at early
times, hij is very close to a2�ij (without the conformal
factor). One realization of such a coordinate system is to
construct geodesics in all directions from the center and
decompose their tangent vectors in terms of a chosen
basis: the resulting coordinates are the Riemann normal
coordinates.

We begin by splitting ’ in Eq. (61) into a large-scale and
a small-scale piece,

’�xi� 	 ’L�x
i� � ’S�x

i�: (63)

We will work to first order in’S and in the wave number kL
of the large-scale modes. That is, any terms containing ’2

S
or k2

L’L �rr’L will be dropped. Note that the split into
‘‘long’’ and ‘‘short’’ wavelengths here differs from the split
� 	 �‘ ��s in KMNR: we are including both, and are
doing the separation so that kL and ’S are the expansion
parameters, whereas in KMNR �s is dropped.

Next we construct a Riemann normal coordinate system
on the initial slice, centered at xi 	 0, with respect to the
large-scale metric �L. The construction of such a coordi-
nate system begins with the choice of an orthonormal basis
of three vectors f�e �a�

ig3�a	1 tangent to � at the point
�t�; 0; 0; 0�. (We use the barred indices �a to denote the
components associated with these basis vectors and with
the y coordinate system that will be defined based on
them.) Such a basis is not unique; here we choose

ei�a 	 
�
�1=2
L �0�� �a

i; (64)

where one takes the �1=2 power of the 3 3 matrix of
covariant components of �Lij. The Riemann normal coor-
dinates are then constructed via

xi�y �j� 	 exp0fe �j
iy �jg; (65)

where exp represents the exponential geodesic mapping. In
our case, the argument of the exponential simplifies to the
vector

e �j
iy �j 	 
��1=2

L �0�� �j
iy �j 	 e�5’L�0�=3yi: (66)

The geodesic equation of the �L metric can be found from
its Christoffel symbols,
083501
d2xi

d2
	 ��ijk

dxj

d
dxk

d

	
5

3
e10’L=3

�
�
@’L
@xi

��������dx
j

d

��������2
�2

@’L
@xj

dxi

d
dxj

d

�
:

(67)

Solving this equation to second order in yi subject to the
initial conditions x� 	 0� 	 0 and x0� 	 0� given by
Eq. (66) gives

xi 	 xi� 	 1�

	 e10’L�0�=3yi �
5

6
e20’L�0�=3
�jyj2’L;i�0�

� 2yiyj’L;j�0��: (68)

The metric �L in Riemann normal coordinates defined with
an orthonormal basis is ��i �j at 0 and its first spatial deriva-
tives vanish (see e.g. Sec. 11.6 of [28]). Thus

�L�i �j�y
�k� 	 ��i �j �O�k

2
L’Ljyj

2�; (69)

where k2
L’L is the second spatial derivative of’L, which is

suppressed for long-wavelength perturbations. Note that
within the set U, jyj2 is at most of order H�1

0 . The full
metric ��i �j 	 e10’S=3�L�i �j is then

��i �j�y
�k� 	 e10’S
x�y��=3��i �j �O�k

2
L’Ljyj

2�: (70)

We may now calculate the deceleration parameter in the
new coordinate system. BMR has found the deceleration
parameter to be, to first order in ’,

q3 	
1

2
�

5

9
H�2

0 r
2
x’�O�’2�: (71)

Since Eq. (70) is now simply the Euclidean metric with a
first-order perturbation, we can apply Eq. (71) in the y
coordinate system to yield

q3 	
1

2
�

5

9
H�2

0 r
2
y’S �O�’

2
S;H

�2
0 k2

L’L�: (72)

The order of the error is now H�2
0 k2

L’L since Eq. (70) had
error O�k2

L’Ljyj
2� and causality requires that we can only

observe out to distances jyj<RU �O�H�1
0 �. Thus in

Riemann normal coordinate system, which is constructed
locally and does not make reference to anything farther
from the observer than the horizon, the result for the
deceleration parameter is extremely simple and large am-
plitude long-wavelength modes have no impact on the
deceleration parameter.

B. Deceleration parameter in x coordinates

BMR expressed the deceleration parameter q3 in the
x coordinate system rather than y. We have already shown
that the analysis in y coordinates results in Eq. (72) and that
superhorizon modes cannot affect the deceleration parame-
ter. Nevertheless, we wish to compare our result to BMR,
-9
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who did the calculation in the x coordinates. Since the final
result for any observable cannot depend on the choice of
coordinates we must obtain the same answer as suggested
by Eq. (72). We will show below that this is indeed the case
and is a result of a precise cancellation between several
terms, some of which were not considered by BMR or
KMNR.

We can recover all terms in the deceleration parameter
up to order kL’L by using Eq. (68) to turn r2

y’S into
derivatives with respect to x:

r2
y’S 	 �

5

3
e20’L=3’L;i’S;i � e

10’L=3r2
x’S: (73)

Plugging into Eq. (72) yields

q3 	
1

2
�

5

9
H�2

0

�
�

5

3
e20’L=3’L;i’S;i � e10’L=3r2

x’S

�

	
1

2
�

2

H2
0

�
5

18
r2

x’S �
25

54
’L;i’S;i �

25

27
’Lr

2
x’S

�
;

(74)

where in the last line we have worked to order ’L. This
should be compared to Eq. (36) of BMR, which reads

q3 	
1

2
�

2

H2
0

�
5

18
r2

x’�
25

54
jrx’j2 �

25

27
’r2

x’
�

�O�H�4
0 �: (75)

In particular, the infrared-divergent term ’r2
x’ identified

by BMR appears in Eq. (74). The ’L;i’S;i term is not
infrared divergent (unless ns � �1), nevertheless it is first
order in kL so it appears here; the coefficient is double that
in BMR because of the factor of 2 in the binomial expan-
sion of �r’�2. The variance of the divergent term is

Var �’r2
x’� 	

�Z
P’�k�

d3k
�2��3

��Z
k4P’�k�

d3k
�2��3

�

�
Z
k2

3k
2
4T’�fkjg��

 X4

j	1

kj

!Y4

j	1

d3kj

�2��3
;

(76)

where T’ is the connected trispectrum of the potential in
the x coordinate system. BMR argues that since inflation
produces Gaussian initial conditions, the trispectrum term
drops out, and if ns � 1, where P’�k� / kns�4, there is an
infrared divergence. We show in the next section that this
divergence disappears in the context of single-field infla-
tion if one calculates the variance of q3 instead of just a
single term.

C. Infrared divergences in single-field inflation

The computation of Var�’r2
x’� is an important step in

determining the observable deceleration parameter.
Nevertheless, we cannot observe ’r2

x’ directly, rather
what we observe is q3. Therefore we want to know
083501
Varq3. This section examines the contribution of the very
long-wavelength modes to Varq3 predicted by single-field
inflation. We are especially interested in the case of ns � 1,
where the variance I�1 � Var’ is infrared divergent:
I�1 ! �1.

In this section, we retain the terms from Eq. (74) that
have no factors of kL, i.e. we drop ’L;i’S;i, and are no
higher than second order in ’L, which is the order at which
BMR found an infrared divergence. BMR argued that the
’L;i’S;i term is subdominant and in any case the variance
of ’L;i has no infrared divergence for ns � �1. The equa-
tion for q3 is then

q3 	
1

2
�H�2

0

�
5

9
�

50

27
’L �

250

81
’2
L

�
r2

x’S: (77)

In order to determine the mean and variance of q3 we need
a measure. The two most obvious measures are the coor-
dinate measure d3x and the measure dN associated with
the number N of CDM particles. Since at early times the
CDM density is constant in the synchronous comoving
gauge, it follows that dN is proportional to the volume
element at early times,

dN / e�3��xi;t	0�d3x 	 e�5’�xi�d3x: (78)

We can unify these two measures by working with the
measure d� defined by

d� 	

"
1�

X1
j	1

�j’j�x�

#
d3x � Jd3x; (79)

where �j are constants. The choice �j 	 0 corresponds to
the coordinate measure, and �j 	 ��5�j=j! corresponds to
the CDM particle number measure, up to an overall con-
stant that does not affect the averages. The function J is the
Jacobian.

In order to compute the mean and variance of q3 in
Eq. (77), we must compute some averaged values involv-
ing ’L and r2’S. The values linear in ’S that we need are

hr2
x’Six 	 0; (80)

which holds by spatial homogeneity;

h’Lr
2
x’Six 	 0; (81)

which results from ’L and ’S having different wave
numbers; and

h’2
Lr

2
x’Six 	 0; (82)

which results from the small-scale wave numbers being
very large compared to the large-scale wave numbers so
that the triangle inequality cannot be satisfied. Note that
these averages are all taken with respect to the coordinate
measure (we convert to d� later).

We will also need the average values h’nL�rx’S�2ix that
are quadratic in ’S. To write these, we follow KMNR in
defining
-10
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I# 	
Z
k#�1P�0�’ �k�

d3k
�2��3

; (83)

where P�0�’ �k� is the power spectrum of ’ calculated by
standard first-order perturbation theory in inflation (i.e.,
with only quadratic terms in the perturbation Lagrangian).
In what follows we will consider only the long-wavelength
contributions to I�1, as these are the contributions that
produce the infrared divergence reported by BMR (and in
any case they dominate for ns � 1). The first-order theory
power spectrum is given explicitly by [see e.g. Eq. (2.20) of
Ref. [32]]

P�0�’ �k� 	
288�4GH4

�

25k3 _�2
�

; (84)

where H� is the Hubble rate when the mode k becomes
super-Hubble and _�� is the rate of change of the inflaton
field � at that time. (Note that our ’ is denoted by� 3

5 � in
Ref. [32].)

The easiest average value to compute is

h’2
L�rx’S�

2ix 	 h’
2
Lixh�rx’S�

2ix 	 I�1I3; (85)

which results from decoupling of the long- and short-
wavelength modes. The integral I3 is dominated by short
wavelengths, and (for ns � 1) I�1 by long wavelengths.
The average values with 0 or 1 power of ’L are however
more complicated because of corrections for the non-
Gaussianity of ’. The average value with 1 power of ’L
and 2 of ’S is determined from the bispectrum configura-
tion of ’ where the Fourier-space triangle has one short
and two long sides, k3 � k1 � k2. This configuration has
been computed by Ref. [32] (see Eq. 4.7 in that paper) and
is

h’k1
’k2

’k3
i 	

5

3

n�0�s �k1� � 1�P�0�’ �k1�P

�0�
’ �k3��

 X3

j	1

kj

!
;

(86)

where n�0�s �k1� is the scalar spectral index [33]. This implies

h’L�rx’S�
2ix 	

5

3
I�1

Z

n�0�s �k1� � 1�k4P�0�’ �k�

d3k
�2��3

:

(87)

The average h�rx’S�2ix at first glance appears to be just
I3. However we require the lowest-order correction due to
long-wavelength perturbations. Thus one must return to the
derivation of Eq. (86) in order to obtain the correct result.
The argument provided by Ref. [32] for this situation is
that the small-scale modes’S are unaffected by large-scale
modes except that these large-scale modes rescale when kS
becomes super-Hubble. In particular, for fixed large-scale
perturbation ’L, the small-scale modes exit the horizon
�L 	 �

5
3’L e-folds of inflation earlier than in the unper-

turbed case. Therefore their power spectrum, conditioned
083501
on ’L, is

k3

2�2
P’�k�j’L 	

�ke��L�3

2�2 P�0�’ �ke��L�

	
�ke5’L=3�3

2�2 P�0�’ �ke5’L=3�: (88)

If we want the power spectrum of the small-scale modes
averaged over all regions of space, then one needs to
average Eq. (88) over the probability distribution of ’L.
Taylor-expanding Eq. (88) to second order in ’L and doing
the averaging yields

k3

2�2
P’�k� 	

k3

2�2 P
�0�
’ �k� �

h’2
Lix
2

d2

d’2
L



�
�ke5’L=3�3

2�2 P�0�’ �ke5’L=3�

�
; (89)

where the second derivative term comes from the variance
of ’L, and there is no first derivative term because
h’Lix 	 0. The variance of ’L is h’2

Lix 	 I�1. If we
define the variable

~� �0�s �k� 	
1

k3P�0�’ �k�

d2

�d lnk�2

k3P�0�’ �k��

	 ��0�s �k� � 
n
�0�
s �k� � 1�2; (90)

which is related to (but different from) the scalar running
��0�s �k�, Eq. (89) simplifies to

h�r2’S�2i 	
Z
k4P�0�’ �k�

�
1�

25

18
~��0�s �k�I�1

�
d3k
�2��3

:

(91)

Physically, Eq. (91) represents the ‘‘smearing’’ of the
relation between k and physical scale due to the variance
of ’L. This smears the power spectrum P’�k�. Thus it is
not surprising that Eq. (91) contains a second derivative of
the power spectrum. The smearing effect can be thought of
as a loop correction to the scalar power spectrum in the
sense that it involves an integration over an undetermined
momentum (that of ’L, which is packaged into I�1 here).

The above results are most easily expressed if we define
the integrals

I#;� 	
Z
k#�2f@�lnk
k

3P�0�’ �k��g
d3k
�2��3

: (92)

In particular,

I3;1 	
Z
k4
n�0�s �k� � 1�P�0�’ �k�

d3k
�2��3

(93)

and

I3;2 	
Z
k4 ~��0�s �k�P

�0�
’ �k�

d3k
�2��3

: (94)
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Then the average values containing �r2
x’S�

2 are

h�r2’S�
2i 	 I3 �

25

18
I3;2I�1;

h’L�r2’S�2i 	
5

3
I3;1I�1; and

h’2
L�r

2’S�
2i 	 I3I�1: (95)

Finally we come to the issue of the mean and variance of
q3. The mean of any quantity X with respect to the measure
� is related to the Jacobian J via

hXi� 	
hXJix
hJix

: (96)

We have evaluated q3 including all terms of order ’aL’
b
S,

where a � 2 and b � 1. Therefore we can calculate the
mean hq3i only up to order ’2

L’S. In principle with the
Taylor series cut off in this way we can only evaluate Varq3

to this order as well. However, if one switches the variables
to Q3 	 q3 �

1
2 , then it turns out that the Taylor expansion

of Q3 in ’L and ’S contains no terms zeroth order in ’S.
This fact allows us to compute VarQ3 and hence Varq3 to
order ’2

L’
2
S.

We now calculate hq3i� to first order in ’S and ’L:

hq3i� 	
1

2
�H�2

0

hJ�59�
50
27’L �

250
81 ’

2
L�r

2
x’Six

hJiX
: (97)

Now if we are dropping all terms second order in’S, then J
can be considered a function of ’L for the purposes of
evaluating the numerator. Thus the numerator in Eq. (97) is
the mean value of r2

x’S times a function of ’L. Since we
are working only to order ’2

L, and we know that
h’nLr

2
x’Six 	 0, it follows that the numerator in Eq. (97)

vanishes. Therefore

hq3i� 	
1

2
�O�kL; ’

2
S; ’

3
L�: (98)

We will compute Varq3 to first order in the power
spectrum of the long-wavelength modes or to second order
in the long-wavelength modes themselves, i.e. to order ’2

L.
We will also work to second order in ’S. Using Eq. (98),
and defining Q3 	 q3 �

1
2 , we find

Varq3 	 hQ
2
3i� � hQ3i

2
� 	 hQ

2
3i� �O�k

2
L; ’

4
S; ’

6
L�:

(99)

That is, the term hQ3i
2
� cannot contribute at order ’2

S even
though we have only computed hQ3i� to order ’S. Then

Varq3 	
hJQ2

3ix
hJix

: (100)

The denominator is

hJix 	 h1� �1�’L � ’S� � �2�’
2
L � 2’L’S�ix

	 1� �2I�1: (101)
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The numerator is

hJQ2
3ix 	

25I3

81H4
0

�
625I3;2I�1

1458H4
0

�
2500I3;1I�1

729H4
0

�
5000I3I�1

729H4
0

�
125�1I3;1I�1

243H4
0

�
500�1I3I�1

243H4
0

�
25�2I3I�1

81H4
0

:

(102)

The physical origin of the terms in Eq. (102) is as follows:
the first term is the usual variance of the deceleration due to
some patches of the universe being over- or underdense.
The second term is the smearing loop correction described
above. The third term is a correlation between the order
r2

x’S and ’Lr2
x’S in q3 [Eq. (77)] that arises from the

nonvanishing bispectrum from inflation. The fourth term
comes from two places: the variance of the ’Lr2

x’S term
(which is the infrared-divergent term identified by BMR)
and the correlation between r2

x’S and ’2
Lr

2
x’S terms in

Eq. (77). In this case, the variance term contributes a
coefficient of 2500=729 and the correlation contributes
2500=729, yielding the total coefficient of 2500=729.
The fifth, sixth, and seventh terms represent the modulation
of the earlier terms by the noncoordinate measure.

Looking at Eqs. (101) and (102), it appears at first glance
that I�1 affects Varq3 in a highly nontrivial way depending
on the values of I3, I3;1, and I3;2. This is in fact not the case,
because I3, I3;1, and I3;2 are not independent quantities.
Integration by parts in the definition [Eq. (92)] and drop-
ping boundary terms gives

I#;� 	 ��# � 1�I#;��1: (103)

Noting that the definitions imply I3 	 I3;0, we conclude
that I3;1 	 �4I3 and I3;2 	 16I3. One might object that the
boundary terms cannot be neglected because I3 is ultravio-
let divergent. Of course, if this divergence is not regulated,
I3 	 1, in which case even the first-order perturbation
theory result for Varq3 is infinite and it makes little sense
to talk about higher-order corrections. Physically, the di-
vergence is regulated by putting in some cutoff in wave
number k. In the case of KMNR, the regulator is placed at
the horizon scale, k�H0, where one separates super-
Hubble perturbations from the sub-Hubble modes (the
latter are considered to be observable perturbations to the
universe, rather than a correction to the observed scale
factor). In the case of deceleration parameter measure-
ments from SNe Ia, the cutoff scale is roughly of the order
of the distance D to the supernovae; modes with wave-
lengths less than this cannot be treated by a local decel-
eration parameter based on the second derivative of the
dL-z relation at z 	 0. In either case, the cutoff occurs at a
fixed physical scale (the horizon scale or the distance to the
supernovae), rather than at a fixed coordinate scale x.
Therefore the position of the cutoff in terms of coordinate
wave number k is modulated by ’L as kcutoff / e�5’L=3.
Since this is the same as the modulation of the wave
-12
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number in the inflationary power spectrum P’�k� by large-
scale modes [see Eq. (88)], one can simply absorb the
cutoff into P�0�’ �k�. Then I3 becomes finite and Eq. (103)
is valid.

Substituting our results that I3;1 	 �4I3 and I3;2 	 16I3

into Eq. (102) reduces it to

hJQ2
3ix 	

25I3

81H4
0

�1� �2I�1� (104)

and hence

Varq3 	
25I3

81H4
0

; (105)

independently of the value of I�1. The long-wavelength
contribution to I�1, which is responsible for the infrared-
divergent terms, cancels out when all contributions are
included. This is true for both the coordinate and the
particle number measure. This specific example confirms
the general conclusions based on causality found above.

D. Interpretation

The correspondence between our results and BMR re-
veals the origin of the infrared divergence: it comes from
the assumption that ’S was taken as a function of x rather
than y. Since the x coordinate system is distorted by super-
horizon perturbations, these superhorizon modes distort
structures within the horizon and affect the luminosity
distance. Whether this effect is observable depends on
whether the values of ’S within the horizon are a
Gaussian random field with the usual power spectrum
P’�k� in x or in y. This can be answered only by a theory
of the initial conditions. If the initial conditions are set by
single-field inflation, then the fluctuations ’L that deter-
mine the relation between the coordinates x and y are set
down when these large scales leave the horizon. They then
become classical, and later on (i.e. many e folds of inflation
later) the perturbations ’S are generated. Since the gen-
eration of ’S must be causal, one would expect that within
regions small compared to the wavelength of ’L, inflation
generates ’S homogeneous and isotropic in the y coordi-
nate system. If the calculation is done in the x coordinate
system, as we did in Sec. , then the infrared divergence
from the second-order perturbation theory found by BMR
cancels against three other infrared divergences: one aris-
ing from the correlation of first- and third-order perturba-
tion terms, one from the correlation of first- and second-
order perturbation terms that arises from the primordial
bispectrum, and one from loop corrections to the power
spectrum predicted by inflation. Physically, the disappear-
ance of I�1 from the statistical properties of observables
such as Varq3 is a manifestation of the fact that inflation
wipes out initial conditions: the later stages of inflation
prevent one from observing the preexisting larger-scale
structure of the universe, including the perturbations gen-
083501
erated during the early stages of inflation. (Recall that this
is also how inflation solves the flatness and homogeneity
problems.)

The scenario proposed by KMNR is closely related to
the infrared divergence. Specifically, they argue that the
e10’L=3r2

x’S term in Eq. (74) has a large variance that
causes the deceleration parameter to also have a large
variance. At second order in perturbation theory, this
term is the infrared-divergent ’Lr2

x’S found by BMR,
which we find to be canceled by other divergences that
were not considered by BMR. KMNR uses the full pre-
factor e10’L=3 and hence includes the divergence associated
with the ’2

Lr
2
x’S term, but does not consider the diver-

gences from the bispectrum or the loop correction to the
power spectrum. From the perturbative calculation of
Sec. IV C, it is not obvious whether this cancellation ex-
tends to arbitrary order. However if the later e-folds of
inflation produce perturbations homogeneous and isotropic
with power spectrum P�0�’ �k� in the y coordinate system, as
must happen on account of causality, then we need only
consider Eq. (72) to realize that the superhorizon structure
is irrelevant, and the cancellation of the infrared divergen-
ces that arise in the x coordinate system must be exact.

[As noted in Sec. II, KMNR use q1 rather than q3 as their
deceleration parameter. As far as Eq. (74) is concerned,
this does not matter since Eq. (71) is valid for q1 as well as
for q3. To see this, note that in first-order perturbation
theory, if one does a spherical expansion of the perturba-
tion around the observer, symmetry implies that only the
l 	 0 modes contribute to q1 or q3. If only the l 	 0 modes
are present then we have q30 independent of direction ni

and q3 	 q4. Since H1 	 H4, a comparison of Eqs. (17)
and (38) with the assumption that � 	 ! 	 0 from spheri-
cal symmetry implies q1 	 q4. We then have q1 	 q3 by
transitivity. Hence Eq. (71) and thus Eq. (74) are valid for
q1 instead of q3.]

V. CONCLUSIONS

In this paper, we have investigated the KMNR explana-
tion for the accelerating expansion of the universe, which
suggests that (i) in sufficiently underdense regions of the
universe, the Hubble expansion appears to accelerate (q1 <
0) even with only normal matter present and Einstein
gravity; and (ii) the variance Varq1 of the deceleration
parameter is much greater than the simple calculation
��10�5�2 because of the influence of perturbation modes
with wavelengths many orders of magnitude larger than the
Hubble length, so that the acceleration q1 < 0 has a non-
negligible probability of actually occurring. We have
shown that suggestion (i) is ruled out by the
Raychaudhuri equation, i.e. with GR and the SEC one
always has q1 � 0. We have also shown that suggestion
(ii) is not true for the perturbations generated by single-
field inflation, which does indeed predict Varq1 of order
I2

3 � �10�5�2 (assuming an ultraviolet cutoff at the Hubble
-13
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scale, as in KMNR). Therefore the KMNR mechanism
cannot explain the acclerating expansion of the universe.

What freedom is there to construct models related to
KMNR that do explain the acceleration of the universe
with superhorizon perturbations? Of the two elements of
the KMNR mechanism, (ii) may be the easiest to circum-
vent. In single-field inflation, the perturbations laid down
by the early stages of inflation are adiabatic so the pertur-
bations laid down by the later stages of inflation must
‘‘look the same’’ (i.e. have the same power spectrum in
our y coordinate system) everywhere. This requirement is
the physics underlying the particular limiting forms for the
bispectrum and the one-loop correction to the power spec-
trum that we used in Sec. IV C to argue that single-field
inflation produces no infrared divergences. In contrast,
multifield inflation models can produce isocurvature
modes so that different patches of the universe look differ-
ent. In this case Varq1 may be large because one takes the
variance over regions with a different mix of cosmological
fluids [25]. Even then, however, an observer can only see
one Hubble volume because of causality and so Varq1 is
not an observable, rather it is the variance of a distribution
from which one obtains a single sample. In such a case the
only role played by the superhorizon perturbations is to
alter the initial conditions: all observables, including q1,
are obtained from causal evolution that can be calculated
from knowledge of the perturbations within the observer’s
horizon. More importantly for the dark energy question,
the combination of GR and the SEC still forbids q1 < 0.

If one is to find a way to keep GR, the SEC, zero
vorticity, and neglect perturbations with wavelengths small
compared to the Hubble length, and still maintain consis-
tency with the observational results, one is forced to find a
situation in which q1 as defined above is not what is
actually measured in the SN Ia experiments. BMR argued
that q3 is a better representation of what is observed, since
it is based on luminosity distances; the concordance cos-
mology has q3 ��0:6. Unfortunately, we found in Sec. II
that q3 < 0 is possible within the GR+SEC framework
only for anisotropic expansion, since the angular average
hH2

30q30 i4� must be non-negative. In this case, there must
also be lines of sight along which q30 > 0. There is no
observational evidence that this is the case. Indeed, it
would be an extraordinary mystery to have the deceleration
parameter q30 vary by an amount of order unity on scales
comparable to the Hubble length and still produce a CMB
isotropic to the level of a few parts in 105.

We conclude that cosmological models based on GR
with irrotational initial conditions and perturbations only at
and above the Hubble scale and only matter fields that
conform to the SEC cannot explain the accelerating ex-
pansion. This paper does not exclude the possibility of
using backreaction from sub-Hubble perturbations to ex-
plain the accelerating expansion. The latter possibility is
difficult to investigate as it involves complicated nonlinear
083501
physics; the perturbative calculations [34], which account
for the nonlinear evolution of density perturbations, but not
for strong field GR effects, suggest that the sub-Hubble
backreaction is small [35]. Nevertheless, only a full non-
perturbative analysis would be definitive since there are
rare regions of the universe such as black holes that cannot
be described as a perturbation of an FRW spacetime.
Regardless of the sub-Hubble physics, however, the super-
horizon perturbations are not a viable mechanism to ex-
plain the acceleration of the universe: evolution of
perturbations that lie beyond the horizon in real space
cannot affect observables, and the superhorizon perturba-
tions can only act via their effects on the initial conditions
within our horizon. These effects are then constrained by
the ‘‘no go’’ theorems that require q1 and q4 to be non-
negative unless one invokes vorticity, modified gravity, or
dark energy.
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APPENDIX A: CONVERGENCE RADIUS OF
SERIES FOR �

The purpose of this appendix is to investigate the con-
vergence properties of the power series Eq. (52) for � in
the model of Sec. III. Our framework will be the result
from complex analysis that a Taylor series of an analytic
function has a radius of convergence given by the distance
to the nearest singularity. We begin by defining the dimen-
sionless scale factor

� 	
Ca

H2
0

	

�
3t
4�

�
2=3
; (A1)

so that Eq. (45) becomes

aopen 	 �C1=2�cosh	� 1� (A2)

and

�3=2 	
3

4
�sinh	� 	�: (A3)

It will be most convenient for the purposes of this appendix
to treat Eq. (52) as a Taylor series in the dimensionless
variable � rather than a or C. If we determine the radius of
convergence in �, then this immediately yields the radius
of convergence in a or C.

We want to determine the singularities of the function �
of Eq. (49) or equivalently ln�aopen=a�. First we comment
on the analytical structure near � 	 0. The function 	���
defined by Eq. (A3) is double-valued near zero, with two
solutions 	1 and �	1. This presents no problem because
both result in a single value for aopen. Specifically, near
-14



CAN SUPERHORIZON COSMOLOGICAL PERTURBATIONS . . . PHYSICAL REVIEW D 72, 083501 (2005)
� 	 	 	 0, we have 3
4 �sinh	� 	� � 1

8	
3 so 	� 2�1=2

and

aopen ��C1=2 	
2

2
� 2�C1=2��

H2
0

C
�: (A4)

Thus aopen is well behaved at the origin (even for complex
values).

Equation (52) is the Taylor expansion of Eq. (49) in �
and hence the value of � with smallest absolute value that
makes ln�aopen=a� singular determines the radius of con-
vergence of Eq. (52). We can find these singularities by
taking the derivative,

d
d�

ln
aopen���

a���
	

d
d�

ln
cosh	� 1

�

	
sinh	

cosh	� 1

d	
d�
� ��1: (A5)

Using the implicit derivative of Eq. (A3),

3

2
�1=2 	

3

4
�cosh	� 1�

d	
d�

; (A6)

we find

d
d�

ln
aopen

a
	

2 sinh	

�cosh	� 1�2
�1=2 � ��1: (A7)

This function appears to have singularities where cosh	 	
1 or� 	 0. The singularity at � 	 0 is only apparent since
at small values of �, we know that ln�aopen=a� ! 0. Thus
083501
the only singularities can appear when cosh	 	 1 and� �

0. The solutions to cosh	 	 1 are 	 	 �2�imwherem is
any integer. Any point with 	 	 �2�im, m � 0 must
actually be a singularity since for 	 	 �2�im� �, we
have (by periodicity of the hyperbolic functions with pe-
riod 2�i)

2 sinh	

�cosh	� 1�2
	

2 sinh�

�cosh�� 1�2
�

2�

��2=2�2
� 8��3; (A8)

then since �1=2 and ��1 are analytic for � � 0 there must
be a singularity in Eq. (A7). The points with 	 	 �2�im,
m � 0 correspond to

�3=2 	
3

4

sinh��2�im� � 2�im� 	

3�im
2

: (A9)

The values m 	 0 correspond to � 	 0 where there is no
singularity. The other singularities occur at the points

� 	
�
3

2
�
�

2=3
m2=3E; (A10)

m � 0, where E is any cube root of �1. The closest such
singularities to the origin have m 	 �1 and hence j�j 	
�32��

2=3. Thus we conclude that the radius of convergence
of Eq. (52) is j�j< �32��

2=3 or

jCH�2
0 aj<

�
3

2
�
�

2=3
: (A11)
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