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Analytic gravitational-force calculations for models of the Kuiper Belt, with application
to the Pioneer anomaly
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We use analytic techniques to study the gravitational force that would be produced by different Kuiper-
Belt mass distributions. In particular, we study the 3-dimensional rings (and wedge) whose densities vary
as the inverse of the distance, as a constant, as the inverse-squared of the distance, as well as that which
varies according to the Boss-Peale model. These analytic calculations yield physical insight into the
physics of the problem. They also verify that physically viable models of this type can produce neither the
magnitude nor the constancy of the Pioneer anomaly.
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I. INTRODUCTION

There has long been interest in the gravitational force
that could be produced by the Kuiper Belt [1]. It has been
observed that total masses of much more than an Earth
mass, M�, would lead to conflicts with orbital observa-
tions. (See, e.g., Refs. [1,2] and Sec. VII-E of [3].) Further,
it has also been calculated that a Kuiper-Belt ring with a
mass of this magnitude could not explain an acceleration
the size of the Pioneer anomaly [1–3]. This anomaly [3,4]
is the apparent unmodeled constant acceleration of the
Pioneer spacecraft, observed between �20� 70 astro-
nomical units (AU), of magnitude

aP�20 AU< r< 70 AU� � ��8:74� 1:33�

� 10�8 cm=s2; (1)

which is directed approximately towards the Sun.
Even so, this type of Kuiper-Belt mechanism has re-

mained a fascinating one as a possible explanation of the
anomaly. In particular, it has recently been proposed [5]
that gravitation from the Kuiper Belt, modeled by a
cylindrically-symmetric ring of matter whose density
goes as

�1�p� �
�1L
p
; p �

����������������
x2 	 y2

q
; (2)

where

�1 � 1:74� 10�16 g=cm3; L � 20 AU; (3)

can explain the constant anomaly. The ring has a width

R1 � 20 AU 
 p 
 100 AU � R2 (4)

and a thickness

2D � 2 AU: (5)
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The mass is thus

M ring � 4��1LD�R2 � R1� � 1:17� 1028 g

� 1:96M�: (6)

This proposal is somewhat surprising, given the obser-
vations noted above. However, one is thereby motivated to
take a different looks at the problem [6]. Here we do so
emphasizing analytic calculations. This will help to better
understand the underlying physics of the situation.

To start, although it is well known that a spherically
symmetric ball with a density that goes as 1=r can produce
a constant acceleration within the ball, there only is a
constant acceleration from a complete spherical ball, not
from a shell. Therefore, as we emphasize in the next
section, with only a cylinder ring, not even a cylindrical
disk, satisfying a constant acceleration is doubly hard to
do. Specifically, it can not come from an exact
cylindrically-symmetric 1=p density. Indeed, although
the appeal to Gauss’ Law in Eq. (3) of [5] is correct, the
argument that Eq. (4) of [5] implies there will be a constant
acceleration within the ring is not exact. We will demon-
strate this by specific analytical calculation.

Before continuing, we note again that the mass of the
model belt of Ref. [5] appears to be somewhat high, as has
been determined elsewhere [1–3]. Further, it is known that
the amount of dust is much smaller than this, and the
gravitational mass of the Kuiper Belt is dominated by large
rocks and ices. The interplanetary dust is actually supplied
by collisions between the rocks and ices and lives for only
of order 100 000 years in the inner solar system, an order of
magnitude longer in the outer solar system. Further, the
dominant mass of the rocks and ices is overwhelming
subject to gravity and not other forces. Hence, there tend
to be resonant concentrations in it vs a smooth distribution
[7–11].

In Sec. II we will describe the gravity of spherical balls
and shells. This is followed by an introduction to the
gravity of cylindrically-symmetric disks and rings in
-1 © 2005 The American Physical Society
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Sec. III. (These objects are examined in both the complete
3-dimensional framework and also in the ‘‘thin-ring’’ ap-
proximation, where the distribution in the z direction is a
�-function.) In Sec. IV we apply the ‘‘thin-ring’’ approxi-
mation to both the 1=p model and the Boss-Peale model
[1]. We then go on to full 3-dimensional calculations. In
Secs. V, VI, and VII we discuss, respectively, the
1=p-density cylindrical ring, the constant-density cylindri-
cal ring, and the 1=r2-density wedge (as well as the
1=p2-density ‘‘thin ring’’). We end with a discussion where
we compare the results. In particular, we compare the
accelerations produced by the 3-dimensional 1=p-, 1=r2-,
and constant-density rings, as well as those from the Boss-
Peale and 1=p2 ‘‘thin rings.’’

We find, as expected, that neither the magnitude nor the
shape of the Pioneer anomaly can be reproduced. (For
comparison, in our numerical plots we will adhere as
much as possible to the model parameters of Eq. (3).
However, since the basic formulae are analytic, they can
be renormalized at will.)

II. SPHERICAL BALLS AND SHELLS

The 1=r2 gravitational-force law yields that any spheri-
cally symmetric distribution with total mass M exerts a
force outside that distribution that is proportional to the
total mass divided by the square of the distance to the
center of symmetry: �GM=r2. Contrarily, if the observa-
tion point is inside a spherical distribution of mass, no
force is exerted.

This is an important result for understanding the effects
of a general spherically symmetric density distribution,
��r�. Since we are heading towards the 1=r distribution,
consider density distributions that go as

��r� !
�n�r�Ln

rn
; �1 
 n 
 1: (7)

Here f�n; Lg give the overall normalizations in terms of
some density and length scale. These types of densities
have long been studied by geophysicists. They often like to
think in terms of spherical distributions and shells of the
Earth having different functional dependences and thus
causing different gravity signals [12,13]. But note: We
are talking about spherical shells, not cylindrical rings.

In the present study, we will concentrate on the distri-
butions for n � f0; 1; 2g, the constant, 1=r, and 1=r2 dis-
tributions. Specifically, start with the 1=r distribution,

�1�r� �
�1L
r
: (8)

It has a total mass out to a radius R of

M ball�R� � 2��1LR
2: (9)

(Of course, if the density distribution went to infinity there
would be infinite mass.) From the spherical symmetry
condition mentioned before, we have that interior and
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exterior to the sphere

aball�r < R� �
�GMball�r�

r2 � �G2��1L; (10)

aball�r > R� �
�GMball�R�

r2 �
�G2��1LR

2

r2 : (11)

That is, there is a constant acceleration inside the ball and
the ordinary Newtonian inverse-square force outside the
ball. Even so, there remains a singularity at the origin since
there the acceleration is a nonzero constant pointing radi-
ally in from all directions.

If we now use the parameters of Ref. [5] given in Eq. (3)
above, �1 � 1:74� 10�16 g=cm3 and L � 20 AU, then
even the spherical ball of Eq. (10) would only produce
an acceleration of magnitude

aball�r < R� � �Cball � ��2�G�1L�

� �2:18� 10�8 cm=s2: (12)

But this is smaller than aP. So, if an entire ball of this
density can not cause the Pioneer anomaly, how can a disk,
let alone a ring?

To continue, what if this were only a spherical shell
(from R1 � 20 AU to R2 � 100 AU)? Then, even inside
the shell the acceleration would not be constant. By sub-
tracting out the gravitational attraction of the mass interior
to radius R1 the acceleration is

ashell�0< r < R1� � 0; (13)

ashell�R1 < r< R2� � �G2��1L	
GMball�R1�

r2

� �G2��1L	
G2��1LR

2
1

r2 ; (14)

ashell�r > R2� �
�G2��1L�R2

2 � R
2
1�

r2 ; (15)

where we write

ashell�r� � ��2�G�1L�gshell�r� � �Cballgshell�r�; (16)

Mshell � 2��1L�R
2
2 � R

2
1� � 60Mring

� 7:03� 1029g: (17)

Therefore, there is a constant acceleration towards the
center of a spherical 1=r-density distribution of matter
given by Eq. (8) only if the mass distribution goes all the
way into the origin; that is, if it is a spherical ball, not a
spherical shell. In Fig. 1 we show �ashell�r� vs r for the
values fR1; R2g � f20; 100g AU. This figure will be useful
for comparison when we go to rings.
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FIG. 1. A plot of�ashell�r� in units of 10�8 cm=s2 vs r in AU.
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Particular values of the acceleration are

�108ashell�f10; 60; 120gAU� � f0; 1:94; 1:45g cm=s2:

(18)

However, even here with only the first 20 AU of the 100 AU
ball deleted, the acceleration varies by an order 10% in the
outer half of the shell and rapidly decreases to zero interior
to that.
III. CYLINDRICAL DISKS AND RINGS

A. Full 3D disks and rings

Now we go on to disks and rings. We use a method
inspired by techniques to analyze [14] cylindrically-
symmetric objects in laboratory big-G experiments [15–
18]. The general potential functional and acceleration from
a cylindrical symmetric ring are

V �r� � V�r�=mtest; (19)

V �r� � �G
Z 	D
�D

dz
Z R2

R1

dpp��p�

�
Z 2�

0

d����������������������������������������������������������������������
p2 	 r2

x � 2rxp cos�	 �rz � z�
2

q ;

(20)

ax�r� � �G
d
drx
�V �r�
; (21)

az�r� � �G
d
drz
�V �r�
: (22)

In the above, by convention we take the component of
the direction to the test mass in the plane of the ecliptic to
be along the x axis: rfx;yg ! rx. This is useful since we will
concentrate on the case of axial symmetry. We also observe
that the z-component of the acceleration in Eq. (22), for
general positions out of the ecliptic, is easier to handle
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[19,20] in the ‘‘thin-ring’’ approximation of the next
subsection.

We denote these various choices by

r ! �rx; 0; rz� !
ecliptic

�r; 0; 0�: (23)

(Note for future reference that, with cylindrical symmetry,
the volume element, p, cancels the �1=p� of a �1�p� density
function.)

B. ‘‘Thin-ring’’ approximation

1. General thin rings

As an initial step, we start in the next section by using an
analytic approximation,

��r� ! 2D��z���p�: (24)

We can do this because z is generally small compared to p
so the change in the overall result should be small and still
symmetric about the z axis.

This yields

V thin�r� � �2GD
Z R2

R1

dpp��p�

�
Z 2�

0

d��������������������������������������������������������
p2 	 r2

x � 2rxp cos�	 r2
z

q ; (25)

athin�r� � 2GD
d
drx

�Z R2

R1

dpp��p�

�
Z 2�

0

d��������������������������������������������������������
p2 	 r2

x � 2rxp cos�	 r2
z

q �
: (26)
2. Taking the r-derivative first

One tack that can be taken (and will be in Secs. IVA and
IV B below) is to first perform the rx-derivative in Eq. (26),

athin�r� � �4GD
Z R2

R1

dpp��p�

�
Z �

0

d��rx � p cos��

�p2 	 r2
x � 2rxp cos�	 r2

z

3=2
; (27)

and then do the �-integral. Going to the plane of the
ecliptic, rz ! 0, the result is

athin�r� � �4GD
Z R2

R1

dpp��p�
� K�

�������������������
�4pr

r2�2pr	p2

q
�

r
�������������������������������
r2 � 2pr	 p2

p
	
�r� p�E�

�������������������
�4pr

r2�2pr	p2

q
�

r�r	 p�
�������������������������������
r2 � 2pr	 p2

p �
(28)
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� �4GD
Z R2

R1

dpp��p�
�K�

�������������������
4pr

r2	2pr	p2

q
�

r�r	 p�

	
E�

�������������������
4pr

r2	2pr	p2

q
�

r�r� p�

�
; (29)

where the last two equalities are related by 8.127 of
Ref. [21] and the complete elliptic integrals of the first
and second kind (see 8.113 and 8.114 in [21]) are

K �t� � K�t2� �
�
2
F
�

1

2
;
1

2
; 1; t2

�

�
�
2
�1	

t2

4
	

9t4

64
	 . . .	

�
�2n� 1�!!

2nn!

�
2
t2n 	 . . .

�
;

(30)

E�t� � E�t2� �
�
2
F
�
�

1

2
;
1

2
; 1; t2

�

�
�
2

�
1�

t2

4
�

3t4

64
� . . .�

�
�2n� 1�!!

2nn!

�

�
t2n

2n� 1
� . . .

�
: (31)

This yields a physically intuitive p-integration that can
be handled numerically [1]. We will use Eq. (29) in
Secs. IV B and IV C below.
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FIG. 2. A plot of �aT=p�r� in units of 10�8 cm=s2 vs r in AU.
IV. SPECIFIC THIN RINGS

A. Analytic, thin-ring, 1=p-density model

Returning to Sec. III B 1, it turns out that the thin ring,
1=p-density problem is analytically solvable. If one does
the �-integral before the r-differentiation in Eq. (26) one
can also do the second integral. (Again note, for this
1=p-density case, the density function cancels the p in
the volume element, making the integrals simpler.)
Proceeding, the potential functional in the plane of the
ecliptic is

V T=p�r���G�12DL
Z R2

R1

dp
Z 2�

0

d�����������������������������������������
p2	r2�2rpcos�

p :

(32)

The � integral is analytic and is (3.674.1 in [21])

I��r > p� �
4

r
K
�
p
r

�
; (33)

I��r < p� �
4

p
K
�
r
p

�
: (34)

(Equations (32) and (33) demonstrate that for very large r
the potential goes to �GMring=r, as it should.)

This means that the potentials outside, within, and inside
of the ring are
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V T=p�R2 < r� � �8G�1LD
Z R2

R1

dp
r

K
�
p
r

�
; (35)

V T=p�R1 < r< R2� � �8G�1LD
�Z r

R1

dp
r

K
�
p
r

�

	
Z R2

r

dp
p

K
�
r
p

��
; (36)

V T=p�r < R1� � �8G�1LD
Z R2

R1

dp
p

K
�
r
p

�
: (37)

Changing variables to t � p=r or r=p, respectively, and
using the properties of the complete elliptic integral, the
acceleration (aT=p � �dV T=p=dr) is

aT=p�r� � �C1gT=p�r�; (38)

C1 � 8G�1L � �4=��Cball � 2:779� 10�8 cm=s2;

(39)

gT=p�R2 < r� �
DR2

r2 K
�
R2

r

�
�
DR1

r2 K
�
R1

r

�
; (40)

gT=p�R1 < r< R2� �
D
r

K
�
r
R2

�
�
DR1

r2 K
�
R1

r

�
; (41)

gT=p�r < R1� �
D
r

K
�
r
R2

�
�
D
r

K
�
r
R1

�
: (42)

This acceleration is not a constant for �R1 < r < R2�.
Putting the remaining distances in terms of AU, in Fig. 2

we plot�aT=p�r� vs r using the parameters of Ref. [5]. One
can note the general features. Most importantly, the size of
the acceleration within this model of the Kuiper Belt is
about a factor of 100 smaller than the anomaly. In particu-
lar, specific values of the acceleration are

�aT=p�f10;60;120gAU�� f�0:0309;	0:0610;	0:0338g

�10�8 cm=s2; (43)

which can be compared to the values from a shell given in
-4
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Eq. (18). The acceleration within the ring is of order 40
times smaller than that within the shell.

Observe that aT=p�r� manifestly has other appropriate
physical properties. First, aT=p�R2 � r� ! �GMring=r

2.
Next, as it should on physical grounds, �aT=p�r! 0� !
0�. Analytically, Eqs. (30), (38), and (42), show that
�aT=p�r� is slightly negative as r! 0 and goes to zero
in the limit.

One also sees the breakdowns at r � fR2; R1g where the
F are singular because the arguments are unity. (Here and
later we will cut off the heights of the 2D spikes.) As we
will see, these singularities result from having only a 2D
approximation for the nonsmooth (hard-edged) ring. When
the density is continuous in the p variable the spike singu-
larity in the acceleration disappears, even for 2D problems.
When the problem is 3D, the spikes become finite cusps.
(See Sec. V.)

As observed, far out aT=p�r� goes as 1=r2. As one comes
in, approaches, and then passes r � R2, the quantity
�aT=p�r� starts to decrease since less mass is interior to
the test point. Within the interior of the ring, for a short
distance aT=p�r� is ‘‘roughly,’’ but not exactly, flat. (It will
be less constant in the true 3D calculation.) Further, as one
gets closer to R1 the acceleration changes sign because
more mass begins pulling out rather than in. As predicted
one sees that �aT=p�r� is slightly negative as r! 0 and it
goes to zero at the origin.

B. Another thin-ring, 1=p-density calculation

We demonstrate here that an equivalent result for the
1=p-density can be obtained by the method of Sec. III B 2.
This demonstration illuminates this method which will be
useful in the following subsection.

If the 1=p-density given in Eq. (2) is placed in Eq. (29),
this yields the acceleration (again D will be 1 AU)

aBP=p�r� � ���4GL��1
D
Z 100

20
dp�

�K�
�������������������

4pr
r2	2pr	p2

q
�

r�r	 p�

	
E�

�������������������
4pr

r2	2pr	p2

q
�

r�r� p�

�
(44)

� ���8GL�1�=2
gBP=p�r� (45)

� ��C1=2�gBP=p�r� � ��2=��CballgBP=p�r�: (46)

The numerical integration yielding gBP=p�r� has to deal
with integrable singularities at p � r, which exist because
there the argument of K is unity. By avoiding the singu-
larities, the integral is doable, except for the two singular-
ities coming from the discontinuous nature of the ring’s
density at the boundaries. The result agrees numerically
with the result in the previous subsection. That is,

aBP=p�r� � aT=p�r�; gBP=p�r� � 2gT=p�r�: (47)
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C. The Boss-Peale model

Equation (29) is the integral used by Boss and Peale [1]
to study gravity from a smooth cylindrical mass distribu-
tion of the form

�BP�p� �
�BP0 �p� A�

2

D2 exp
�
�
�p� A�

5

�
; (48)

A � 50 AU 
 p 
 100 AU � B; D � 1 AU: (49)

For comparison we take this model to have the same mass,
Mring, given in Eq. (6). Therefore,

M ring � 4�D�BP0 D2
Z 100

50
dpp�p� 50�2

� exp
�
�
�p� A�

5

�
� 4�D�BP0 D254�25:8826
:

(50)

(If one makes the approximation that the upper limit of the
integral goes to infinity, then the last term in the second line
would be 26 � ���4� 	 10��3�
.) Therefore,

�BP0 �
64

�25:8826� � 25
�1 � �0:172� � 10�16 g=cm3:

(51)

If we place this density in Eq. (29) we obtain

aBP�r� � �CBPgBP�r�; (52)

CBP � �4GD�
BP
0 � �

8

53 � �25:8826�
C1

� 0:002473C1 � �0:00687� � 10�8 cm=s2; (53)

where the quantity gBP�r� is

gBP�r� �
Z 100

50
dpp�p� 50�2 exp

�
�
�p� 50�

5

�

�

�K�
�������������������

4pr
r2	2pr	p2

q
�

r�r	 p�
	

E�
�������������������

4pr
r2	2pr	p2

q
�

r�r� p�

�
: (54)

As in the last subsection, gBP�r� can be integrated nu-
merically [1], but with difficulty because of the integrable
singularities when r � p. The result for �aBP�r� is shown
in Fig. 3, which agrees with Fig. 1 of Ref. [1] (except for
the small, narrow spike at B � 100—see below).

Particular values of the acceleration are

�aBP�f10; 53; 73; 120g AU�

� f�0:00686;�0:212;	0:159;	0:0325g10�8 cm=s2:

(55)

These values, and the shape of Fig. 3 reflect the different
type of density profile of this ring. Note that the curve for
�aBP�r� is smooth when r � 50. This is because the
density varies continuously from zero at this point. On
-5
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FIG. 3. A plot (solid line) of �aBP�r� in units of 10�8 cm=s2

vs r in AU. Also shown is a dashed plot of �BP�p� in units of
10�15 g=cm3.
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the other hand, note the small, narrow spike at r � 100,
which occurs since the ‘‘thin’’ ring abruptly ends there with
the density �BP�p�=�0

BP going discontinuously from
�2500 exp��10
� � 0:113 to zero. If the ring density is
allowed to smoothly continue on past r � 100, decreasing
exponentially out to infinity, the spike disappears and the
resulting�aBP1�r� becomes very slightly higher (lower) in
magnitude than �aBP�r� going somewhat further out (in)
from the position of the spike.

A comparison of the normalized acceleration, aBP�r�,
with that for other models will be given in Sec. VIII.
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V. 3D, CYLINDRICAL-COORDINATE,
�1=p�-DENSITY RING

Now we calculate the acceleration from the
�1=p�-density in the 3D case. Begin with the complete,
exact, 3-dimensional integral defined in Eqs. (20) and (21)
with the ring �1=p�-density of Eq. (2):

a1=p�r���G
�
�d
drx

�Z 2�

0
d�

Z 	D
�D

dz

�
Z R2

R1

dpp�1L

p
��������������������������������������������������������������
p2	r2

x�2rpcos�	�z�rz�
2

q : (56)

Going to the plane of the ecliptic, performing the
p-integration (which is easy since the density cancels the
volume element), and then doing the r-derivative yields

a1=p�r� � ��C1=4�g1=p�r� (57)

a1=p�r� � �
C1

4

�
�d
dr

�Z �

0
d�

Z 	D
�D

dz ln
�
p� r cos�

	
�����������������������������������������������������
p2 	 r2 	 z2 � 2pr cos�

q �
R2

R1

� �
C1

4

Z �

0
d�

Z 	D
�D

dz���r; R2; z; ��

���r; R1; z; ��
; (58)
��r;R;z;���
cos�	�Rcos��r�=S
�R�rcos��	S

�

�
�rsin2�

z2	r2sin2�

�
	

�
Scos�	���R2	r2�cos�	pR�1	cos2��
=S

z2	r2sin2�

�
; (59)

S �
�����������������������������������������������������
R2 	 r2 � 2rR cos�	 z2

q
: (60)

The z-integration can be done analytically using the two sets of square brackets in Eq. (59) separately, with the complicated
second piece adding an additional part to the first term. This yields

H�r;R;Z;����2sin�tan�1

�
Z

rsin�

�
	cos� ln�Z	S
	sin�tan�1

�
rZsin�

R2	r2�2Rrcos�	��R	rcos��S

�
; (61)
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FIG. 4. A plot of �a1=p�r� in units of 10�8 cm=s2 vs distance
in AU, obtained from a �1=p�-density ring, with a 3-dimensional
calculation.
S!
������������������������������������������������������
R2 	 r2 � 2rR cos�	 Z2

q
: (62)

Although it is technically possible to do the
�-integration, the result is so complicated that it is pref-
erable to do the final integral numerically. The result,

g1=p�r� �
Z �

0
d��H�r; R2; D;�� �H�r; R2;�D;��

�H�r; R1; D;�� 	H�r; R1;�D;��
; (63)

is used to obtain a1=p�r�, which is shown in Fig. 4. (The
numerical singularities to be overcome occur when �r�
Rf1;2g cos�� � 0.

This figure again has the correct behavior. It is a more
delicate version of the ‘‘thin ring’’ shown in Fig. 2. The
-6
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most noticeable change from the ‘‘thin ring’’ is that the
spikes of �aT=p�r� near fR1; R2g in Fig. 2 become finite
cusps at fR1; R2g of �a1=p�r� in Fig. 4. The cusps are also
less extreme compared to the spikes. This is because, for
the 3D ring, all the nearby mass is not at a point on the
ecliptic, but along a line perpendicular to it. The proper
limit can be seen by evaluating both the 2D and 3D forms
as r becomes large. By r � 1000 the two forms already
agree to three significant figures.

To summarize: A 1=p-density potential in a ring does
not produce a constant acceleration within the ring.

A comparison of the normalized acceleration, a1=p�r�,
with that for other models will be given in Sec. VIII.
VI. CARTESIAN, CONSTANT-DENSITY RING

We next consider a constant-density disk. This is of
interest for both physical and mathematical comparisons.
We use Cartesian coordinates because for Cartesian coor-
dinates the volume element is unity. Therefore, a constant
density has the simplest integrals with these coordinates.

(We already observed how the 1=
����������������
x2 	 y2

p
density cancels

the
����������������
x2 	 y2

p
volume element in cylindrical coordinates.)

This current calculation is similar to that used in Ref. [14]
to study the metrology of a solid cylinder for big-G
Cavendish experiments.

To settle on �0 we take the same total mass and shape as
the 1=p ring. This means

�0 � �1
2L

R1 	 R2
� �1=3: (64)

Now proceed by using Eq. (20), giving

V Con�r� � �G�0�
Z R2

�R2

dy
Z �����������

R2
2�y

2
p

�
�����������
R2

2�y
2

p dx

�
Z R1

�R1

dy
Z �����������

R2
1�y

2
p

�
�����������
R2

1�y
2

p dx


�
Z 	D
�D

dz������������������������������������������������������
�x� rx�2 	 y2 	 �z� rz�2

q : (65)

The two integrals represent the gravitational effect of a
disk of radius R2 minus the effect of a disk of radius R1,
thus yielding a ring. Again, in the plane of the ecliptic
(rz � 0) the acceleration is obtained by taking the negative
of the derivative of the integrand with respect to r:

�
d
dr

1

��r� x�2 	 y2 	 z2
1=2
�

r� x

��r� x�2 	 y2 	 z2
3=2
:

(66)

(Note that since one is taking the derivative of the square
root of a square, one must be careful that the correct overall
sign emerges.)
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Now do the integral with respect to z. This yields

Iz �
�

z�r� x�

��r� x�2 	 y2
�z2 	 �r� x�2 	 y2
1=2

�
D

�D
: (67)

Thus,

aCon�r� � �G�0

�Z R2

�R2

dy
Z �����������

R2
2�y

2
p

�
�����������
R2

2�y
2

p dx

�
Z R1

�R1

dy
Z �����������

R2
1�y

2
p

�
�����������
R2

1�y
2

p dx
�

�
2D�r� x�

��r� x�2 	 y2
�D2 	 �r� x�2 	 y2
1=2
:

(68)

The x integral is

Ix � ln�	D	
����������������������������������������
D2 	 �r� x�2 	 y2

q


R2
R1
� ln��D

	
����������������������������������������
D2 	 �r� x�2 	 y2

q


R2
R1
; (69)

so

aCon�r� � �G�0

�Z R2

�R2

dyF�r; y; R2; D�

�
Z R1

�R1

dyF�r; y; R1; D�
�
; (70)

F�r;y;R;D�� ln
��
�	D	

�������������������������������������������������������
D2	R2	r2�2r

����������������
R2�y2

pq



��D	
�������������������������������������������������������
D2	R2	r2�2r

����������������
R2�y2

pq



�

�

�
��D	

�������������������������������������������������������
D2	R2	r2	2r

����������������
R2�y2

pq



�	D	
�������������������������������������������������������
D2	R2	r2	2r

����������������
R2�y2

pq



��
:

(71)

This final integral can be done analytically using in-
volved transformations similar to those used in Ref. [14].
But the end result is very complicated. Therefore, for
clarity, a simple 1-dimensional numerical integral will be
used. (As a result we leave unaddressed the implications of
the relative sizes of r vs fR1; R2g, which implications can
play in the analytic form of this final integral.) We change
all units to AU, e.g., change the variable y to t � y=D and
multiply the external constants by the same D � 1 AU.
Then,

aCon � �C0

�Z 100

�100
dtF�r; t; 100; 1�

�
Z 20

�20
dtF�r; t; 20; 1�

�
(72)

� �C0gCon�r�; (73)

C0 � G�0D � C1=480 � 0:00579� 10�8 cm=s2: (74)
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FIG. 5. A plot of �aCon�r� in units of 10�8 cm=s2 vs distance
in AU for a uniform ring.
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In Fig. 5 we show �aCon�r�. Again we see the correct
general behavior. With the 3D calculation, the cusps at the
discontinuous boundaries of the ring are large, but finite
and hence physical. Interesting values of the acceleration
are

�aCon�f10;�20;60;�100;120gAU��108

�f�0:0165;�0:0870;	0:03146;	0:130;	0:371g cm=s2:

(75)

Since the total mass is the same as for the 1=p ring, the
acceleration should tend to the same limit as r gets large,
and it does.

A comparison of the normalized acceleration, aCon�r�,
with that for other models will be given in Sec. VIII.
VII. WEDGE 1=r2 (THIN-RING 1=p2) DENSITY

A. Wedge configuration

Now we consider a wedge-shaped slice with the spheri-
cal density

p2�r� �
�2L

2

r2 : (76)

As before, the slice goes between R1 and R2, except in
spherical distance from the origin. The opening wedge
angle is

�0 � tan�1�D=R1� � 0:049958 radians: (77)

Keeping the mass of the slice the same,

M ring � 2��2���2L
2�R2 � R1�; (78)

� � sin�0 � 1=
��������
401
p

� 0:049938; (79)

one has

�2 � D=��L��1 � ��1 � �1:0012��1: (80)

In the plane of the ecliptic the acceleration from the
wedge is
083004
a1=r2�r� � �G
�
�d
dr

�Z �=2	�0

�=2��0

d� sin�
Z 2�

0
d�

�
Z R2

R1

�2L2

t2
t2dt�������������������������������������������������

t2 	 r2 � 2rt cos� sin�
p : (81)

Because the density-functional again cancels the volume
element, the t-integral yields

I t � ln�t� r sin� cos�	
�������������������������������������������������
t2 	 r2 � 2tr sin� cos�

q


R2
R1
:

(82)

Now taking the negative of the r-derivative yields

a1=r2�r� � �G�2L2
Z �=2	�0

�=2��0

d�

� sin�
Z 2�

0
d�U�r; R1; R2; �; ��; (83)

U�r;R1;R2;�;���
�
��sin�cos��St	r� tsin�cos�

�t�rsin�cos�	St
St

�
R2

R1

;

(84)

St �
�������������������������������������������������
t2 	 r2 � 2rt cos� sin�

q
: (85)

The �-integral is completely analytic, and yields

I ��r; R1; R2; �� �
�

4t
rS�

K
� ���������������������
�4tr sin�

S2
�

s ��
R2

R1

; (86)

�

�
4t
rS	

K
� ����������������

4tr sin�

S2
	

s ��
R2

R1

; (87)

S� �
�������������������������������������
t2 	 r2 � 2rt sin�

p
: (88)

We thus have

a1=r2�r� � �C2g1=r2�r�; (89)

C2 � G�2L
2=D � C1=�8�� � 2:5031C1; (90)

g1=r2�r� � D
Z �=2	�0

�=2��0

d� sin�I��r; R1; R2; ��: (91)

This integral can be done numerically and is used in
a1=r2�r�, shown in Fig. 6. (The only numerical singularity
problems are if both � � �=2 and also r is either R2 or R1.)

The most interesting observation is that this result is
very similar to that from the 1=p-density cylindrical ring
shown in Fig. 4. (This point will be shown even better in
Sec. VIII.) The fact that the density is falling off faster with
distance (1=r2 vs 1=p) is compensated for by the increas-
ing spherical width, which is growing as r sin�0.

A comparison of the normalized acceleration, a1=r2�r�,
with that for other models will be given in Sec. VIII.
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FIG. 7. A plot of�aT=p2 �r� in units of 10�8 cm=s2 vs r in AU.
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FIG. 6. A plot of �a1=r2 �r� in units of 10�8 cm=s2 vs r in AU.

ANALYTIC GRAVITATIONAL-FORCE CALCULATIONS . . . PHYSICAL REVIEW D 72, 083004 (2005)
B. Thin-ring configuration

To demonstrate the correctness of the assertion that the
growing width of the wedge with distance caused the
wedge to behave more like a 1=p ring, we now quickly
look at the ‘‘thin-ring’’ 1=p2 problem. Keeping the same
mass as before and using the formalism of Sec. III B 2
yields (also see Eq. (44))

�T=p2�p� �
�T2L

2

p2 ; (92)

�T2 �
�R2 � R1�

L ln�R2=R1�
� �2:485��1; (93)

aT=p2�r� � �CT2gT=p2�r�; (94)

CT2 � C1
�R2 � R1�

4D ln�R2=R1�
� �24:85�C1; (95)

gT=p2�r� � D2
Z R2

R1

dp
�K�

�������������������
4pr

r2	2pr	p2

q
�

pr�r	 p�
	

E�
�������������������

4pr
r2	2pr	p2

q
�

pr�r� p�

�
:

(96)

In Fig. 7 we show a plot of aT=p2�r�. One clearly sees the
difference between the 1=r2 wedge and the 1=p2 thin ring.
With its rise going inward within the ring, �aT=p2�r� dis-
plays the higher mass concentration at r � R1. (Again
there is the thin-ring caveat that the spikes at r �
fR1; R2g would be finite cusps in a 3D calculation.)

A comparison of the normalized acceleration, aT=p2�r�,
with that for other models is also given in Sec. VIII.
VIII. DISCUSSION

The different physical models we have investigated in
this paper provide an intuitive understanding about what
type of accelerations can be obtained from Kuiper-Belt
models. In particular, they can not easily yield a constant
083004
(or even an approximately constant) gravitational accel-
eration in a cylindrical system.

As to the specific gravitational accelerations in the plane
of the ecliptic, a�r�, we found:
(a) S
-9
tarting out with Fig. 1, one sees that even a spheri-
cal shell with a 1=r density only yields an approxi-
mately constant acceleration near the outer edge of
the shell.
(b) C
ontinuing on to a ‘‘thin ring’’ with sharp edges, the
1=p density produces an acceleration that is singular
at the edges of the ring and is approximately con-
stant near the middle of the ring. (See Fig. 2.)
(c) C
ontrary to this, the smoother-density, ‘‘thin-ring’’
Boss-Peale model produces a smooth acceleration at
the inner edge and shows only a slight, narrow spike
if the density has a small discontinuous jump at the
outer edge instead of decreasing smoothly to infin-
ity. (See Fig. 3.) Thus, the physical differences in
shape between the 1=p and Boss-Peale models end
up being instructive.
(d) T
he full 3-dimensional, 1=p model, yields a finite
acceleration everywhere, so the cusps at the edges of
the ring are finite compared to the spikes of the 2-
dimensional ‘‘thin-ring’’ approximation. (See
Fig. 4.)
(e) T
he 3-dimensional constant-density ring produces
softer cusps yet a more undulatory variation than the
1=p ring. (See Fig. 5.) It is intermediate in its effects
between the 3D, 1=r ring and the 2D, Boss-Peale
thin ring.
(f) T
he 3-dimensional wedge, with a spherical fall off
in density of 1=r2, produces an acceleration that is
very similar in shape to that from the 1=p cylindrical
ring. (See Fig. 6.) This is because the growing width
of the wedge with distance approximately makes up
for the faster fall off of density with distance.
(g) T
he above assertion is demonstrated by the contrast-
ing behavior of the 1=p2-density, thin ring’s
aT=p2�r�, compared to the wedge’s a1=r2�r�. It varies
much more in the belt and reaches a high maximum
near r � R1. (See Fig. 7).
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FIG. 8. Plots of ��a�r�
, in units of 10�8 cm=s2, vs distance
(in AU), for: (i) the 3D, 1=p-density ring, ��a1=p�r�
—short-
dashed line, (ii) the Boss-Peale 2D ‘‘thin ring,’’ ��aBP�r�
—
narrow line, (iii) the constant-density ring, ��aCon�r�
—me-
dium line, (iv) the 1=r2-density, wedge, ��a1=r2 �r�
—dashed
line, and (v) the 1=p2-density, ‘‘thin ring,’’ ��aT=p2 �r�
—wide
line.
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(We also mentioned how to extend these results to out of
the plane of the ecliptic by taking rz � 0 and then studying
both a�rx� and a�rz� � ��d=drz�V �r�.)

The results emphasize how difficult it is to achieve a
truly constant acceleration within a finite cylindrically-
symmetric system (not even considering how much mass
would be needed to mimic the Pioneer anomaly). This
083004
difficulty can be put in mathematical context. Consider
just the ‘‘thin ring,’’ which is mathematically simpler
than the full 3D ring. Starting with Eq. (25), a constant
acceleration between R1 and R2 would be produced by a
density �C�p� that satisfied

r � const.
Z R2

R1

dpp�C�p�I��r�; (97)

where I��r� is given in Eqs. (33) and (34). That is a
complicated inverse problem. Formally it could be done
by a decomposition into cylindrical harmonics, but that is
not the point here.

Finally, in Fig. 8, we show a direct comparison of the
physical accelerations of (i) the 3D, 1=p ring, (ii) the 2D,
Boss-Peale ‘‘thin ring,’’ (iii) the 3D, constant ring, (iv) the
3D, 1=r2 wedge, and (v) the ‘‘thin,’’ 1=p2 ring, all with the
same total mass, 1.96M�. (As before we cut off the infinite
spikes at the boundaries of the thin rings.) When r! 1,
all the curves tend to �GMring=r

2
, as they should. This is
even though the differing density distributions produce
quite different accelerations within the ring.

To within normalizations, the results in Fig. 8 agree with
the type of results published previously for Kuiper-Belt
disks [1,3]. Most importantly, within the ring the accelera-
tion is not constant. Further, especially in the central
portions of the rings, the accelerations are approximately
2 orders of magnitude too small to explain the Pioneer
anomaly.
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