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Analytic Kerr black hole lensing for equatorial observers in the strong deflection limit
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In this paper we present an analytical treatment of gravitational lensing by Kerr black holes in the limit
of very large deflection angles, restricting to observers in the equatorial plane. We accomplish our
objective starting from the Schwarzschild black hole and adding corrections up to second order in the
black hole spin. This is sufficient to provide a full description of all caustics and the inversion of lens
mapping for sources near them. On the basis of these formulae we argue that relativistic images of low
mass x-ray binaries around Sgr A� are very likely to be seen by future x-ray interferometry missions.
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I. INTRODUCTION

General relativity predicts that light rays passing close to
a black hole suffer gravitational lensing, so that an observer
almost aligned with the line connecting a source and a
black hole sees two images of the original source. These
images are due to small deviations of photons that pass far
enough from the black hole to allow a weak field approxi-
mation of the metric tensor. However, already Darwin in
1959 noticed that photons passing very close to a black
hole may suffer much larger deflections without falling
into the event horizon [1]. In principle, an observer situated
on the line connecting the source and the black hole, be-
sides the two classical weak field images, would detect two
infinite series of images very close the black hole. These
images are produced by photons making one or more
complete loops around the black hole before reemerging
in the observer direction. Of course, these relativistic im-
ages are largely demagnified with regard to (w.r.t.) the
original source and for some time they just remained a
mathematical curiosity of general relativity.

Nevertheless, things changed after the great progress of
interferometric techniques and the widely accepted opin-
ion that the radio-source Sgr A� in the Galactic center
actually hosts a supermassive black hole of 3:61� 105

solar masses [2] (for a review see [3]). These facts moti-
vated Virbhadra and Ellis to propose that this black hole
may be an ideal candidate for the generation of relativistic
images of sources eventually passing behind it [4]. In fact,
the angular radius of the shadow of Sgr A� is predicted to
be 23 �as, which is comparable to the best resolution
achieved in the millimeter band (18 �as [5]). A complete
imaging in the sub-mm band was suggested in Ref. [6].
Future space missions in the infrared and in the x rays may
reach even higher resolutions (for a complete discussion,
see Ref. [7]).
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A new field of Gravitational lensing was definitively
opened and several authors proposed alternative methods
to overcome the evident difficulties of full general relativ-
ity calculations of geodesics which typically result in
cumbersome equations and heavy numerical integrations
[8,9]. However, Darwin himself proposed a surprisingly
easy formula for the positions of the relativistic images
generated by a Schwarzschild black hole [1]. This formula
and its consequences were later discussed or rediscovered
several times [10–13] before the Virbhadra and Ellis pro-
posal. After that work, it was revived in Ref. [14], where it
was called the strong field limit of the deflection angle. It
was then extended to Reissner-Nordstrom black holes in
Ref. [15] and applied to microlensing by Sgr A� by Petters
[16]. In this paper, as suggested by Perlick [9], we shall
revise this terminology, referring to a strong deflection
limit (SDL), since an infinite deflection angle is not nec-
essarily related to a large curvature. This can be realized by
considering a very large black hole. The minimum distance
reachable by a photon without being captured is of the
same order of the horizon radius. The Riemann invariant
R����R

����, evaluated in the inner region probed by the
photon, scales as the curvature at the horizon, i.e. 1=M4.
Increasing the mass of the black hole, the curvature felt by
the photon becomes arbitrarily low, even if its deflection
may be large. So, it is more correct to speak of a strong
deflection limit without referring to the curvature.

The power of the SDL expansion of the deflection angle
became evident when its universality was demonstrated in
Ref. [17]. Any class of spherically symmetric black holes
leads to the same SDL expansion; the coefficients of this
expansion depend on the specific class of the black hole,
representing a sort of identity card, from which all the
parameters of the black hole can be extracted. By observ-
ing the relativistic images of a gravitational lensing event
induced by a black hole, it is possible, in principle, to
-1 © 2005 The American Physical Society
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deduce all its parameters and properties. Since this could
also provide the key to discriminate between general rela-
tivity and some extended theories of gravitation, this
method has been applied to several interesting classes of
black holes coming from string theory, braneworlds, and
wormholes [18]. Some limitations were removed in
Refs. [19,20], while time delay analysis was performed
in Ref. [21].

As regards spinning black holes, the story is more com-
plicated. Almost 40 years have passed since Carter reduced
the geodesics equations in Kerr spacetime to first order
equations depending on four constants of motion [22]. This
fundamental achievement allowed a complete study and
classification of all possible trajectories of massive parti-
cles and photons moving around spinning black holes [23].
In order to visualize and study these geodesics, a very large
amount of numerical methods has been developed through
years. In the context of gravitational lensing, these methods
have been used to describe the light curve of a star orbiting
a black hole [24] and the apparent shape of the accretion
disk [11,25]. Rauch and Blandford have proved the for-
mation of extended 4-cusped caustics numerically [26].

Extending the SDL methodology to axially symmetric
black holes is not immediate and the simplicity of the
approach may be easily lost. In Ref. [27] the SDL formula
was recovered for light rays lying close to the equatorial
plane of a Kerr black hole, but the coefficients of the
formula had to be calculated numerically as functions of
the black hole spin. Vazquez and Esteban solved the lens
equation far from the equatorial plane for some particular
cases [28], but a complete analytical treatment of Kerr
lensing is still missing.

In this paper we make a considerable step toward this
objective, focusing on observers lying on the equatorial
plane and solving the general lens equation for small
values of the black hole spin. Perturbative methods allow
us to use the Schwarzschild SDL formula as starting point
to describe the deflection of light rays looping around a
Kerr black hole in a completely analytical way. Our treat-
ment leads to an amazingly simple description of all rela-
tivistic caustics and to the immediate inversion of lens
mapping for sources near caustics. The limitation to the
equatorial observer is motivated by the fact that the most
important candidate black hole, Sgr A�, is likely to have a
spin axis perpendicular to the galactic plane, where the
solar system lies, in a first approximation. It is natural,
then, to take advantage of this configuration and deal with
considerably simplified equations.

Our paper is structured as follows. Section II recalls the
main results of Kerr geodesics. Section III explains how the
SDL is introduced in Kerr gravitational lensing and illus-
trates the strategy we use to solve the geodesics equations.
Section IV contains the derivation of the caustics order by
order. In Section V we analyze the lens map close to the
relativistic caustics, finding the additional images and their
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magnification. Section VI considers the perspectives for
observations in the light of what we have found, focusing
on the study of relativistic images around Sgr A�.
Section VII summarizes the main results of the paper.
Two appendices complement the calculations explained
in Section III with more details.

II. KERR GEODESICS

In Boyer-Lindquist coordinates [29] x� � �t; x; #;��,
the Kerr metric reads

ds2 �
�� a2sin2#

�2 dt2 �
�2

�
dx2 � �2d#2

�
�x2 � a2�2 � a2�sin2#

�2 sin2#d�2

�
2axsin2#

�2 dtd�; (1)

� � x2 � x� a2; (2)

�2 � x2 � a2cos2#; (3)

where a is the specific angular momentum of the black
hole. All distances are measured in Schwarzschild radii
(2MG=c2 � 1). # and� represent the polar and azimuthal
angles, respectively, while x is the radial coordinate.
The event horizon is a spherical surface of radius xH �
�1�

�����������������
1� 4a2
p

�=2. In our notations, a runs from 0
(Schwarzschild black hole) to 1=2 (extremal Kerr black
hole).

Carter showed that the Kerr geodesics can be resolved in
terms of first integrals of motion [22]. The final expressions
for lightlike geodesics take the following form (following
Ref. [23])

	
Z dx����

R
p � 	

Z d#�����
�
p ; (4)

�f ��0 � a
Z x2 � a2 � aJ

�
����
R
p dx� a

Z dx����
R
p

� J
Z csc2#�����

�
p d#; (5)

where

� � Q� a2cos2# � J2cot2#; (6)

R � x4 � �a2 � J2 �Q�x2 � �Q� �J� a�2�x� a2Q:

(7)

In these expressions, J and Q are two constants of motion
that, along with the initial condition �0, completely iden-
tify the geodesic. The double signs in front of the integrals
in Eq. (4) remind that the integrals must be performed
piecewise, between two consecutive values of x and #
-2
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FIG. 1. The limiting values Jm and Qm for the constants of
motion J and Q corresponding to trajectories reaching the
unstable orbit around the black hole asymptotically. The solid
line is for a � 0, the dashed line is for a � 0:1, and the dotted
line is for a � 0:2.
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that annihilate the denominators R and � (inversion
points). Then the sign of each piece between two inversion
points is chosen in such a way that all of them sum up with
the same sign, giving a final positive contribution.

In the context of gravitational lensing, we are interested
to those photons that come from an infinite distance,
approach the black hole reaching a minimum distance x0,
and then escape back to infinity. This selects trajectories
characterized by Q 
 0. Moreover, since the roots of R
represent inversion points in the radial motion, we have to
impose that R has one nondegenerate positive root. This
amounts to require that R�x0� � 0, R0�x0� � 0. The limit-
ing situation, when x0 becomes a degenerate root, is ob-
tained when the equations R�xm� � 0, R0�xm� � 0 are
simultaneously fulfilled at some point xm. Solving these
equations w.r.t. J and Q we get

Jm �
x2
m��3� 2xm� � a2�1� 2xm�

a�1� 2xm�
; (8)

Qm �
x3
m�2a2 � xm�xm � 3=2�2�

a2�xm � 1=2�2
: (9)

Given a value of xm, the quantities Jm andQm represent the
values of J and Q that characterize those trajectories that
bring a photon down to the distance xm in an infinite time.
Asymptotically the photon keeps orbiting forever at a fixed
distance xm from the black hole. However, this orbit is
unstable and small perturbations make the photon fall
into the black hole or deviate it back to infinity. In
Schwarzschild black hole, the radius xm of the unstable
photon orbit is fixed to 3=2 in Schwarzschild units (the
sphere of radius xm is then called photon sphere). In the
case of Kerr black holes, the radius of the orbit depends on
the initial orientation of the photon trajectory. In practice,
xm may vary between two limiting values xm�, xm�, which,
respectively, represent the radius of the orbit described by a
photon corotating with the black hole and the radius of the
orbit of a counterrotating photon in the equatorial plane.
All intermediate values correspond to photons whose orbits
are not equatorial and do not lie on a single plane. In order
to find these limiting values, we have to impose Qm � 0.
So, xm� and xm� are found as the two largest roots of this
equation. This is a third degree equation whose solution
can be found exactly. However, since the successive cal-
culations would soon become too cumbersome, we will
already consider their expansions in powers of a. To de-
scribe second order effects in the lens equation, it is
necessary to take terms up to the third order:

xm	 �
3

2


2���
3
p a�

4

9
a2 

20

27
���
3
p a3 �O�a4�: (10)

We see that in the limit a! 0, the two limiting values
converge to the Schwarzschild photon sphere xm � 3=2.
When a is different from zero, xm� and xm� are distinct.
The specific value of xm in the interval [xm�, xm�] uniquely
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fixes the amplitude of the oscillations on the equatorial
plane performed by the photon along its orbit. In consid-
eration of this fact we introduce a more convenient pa-
rametrization, replacing a by a�:

xm��� �
3

2
�

2���
3
p a��

4

9
a2�2 �

20

27
���
3
p a3�3: (11)

Varying the parameter � in the range [� 1, 1] we obtain all
possible values of xm in the range [xm�, xm�], correspond-
ing to orbits with different amplitudes of the oscillations on
the equatorial plane (a different parameterization with
similar properties was used in Ref. [30]). We shall see
that all quantities assume very simple expressions in terms
of this parameter �. Now, using this parametrization in
Eqs. (8) and (9), we can expand Jm andQm to second order
in a and read them as functions of �:

Jm��� �
3
���
3
p

2
�� 2a�

a2��2� �2����
3
p �O�a3�; (12)

Qm��� �
27

4
�1� �2� � 3a2�2�1� �2� �O�a3�: (13)

Notice that the presence of a in the denominators of
Eqs. (8) and (9) allows � to appear at zero order already.
That is why we needed a third order expansion for xm. So,
even in the Schwarzschild limit, � can be used to parame-
trize the photon sphere in the (J, Q) plane.

In Fig. 1 we plot the locus of points (Jm, Qm) when we
vary � in the range [� 1, 1], for different values of a. We
recall that purely prograde photons travelling on the equa-
torial plane are characterized by Q � 0 and positive J,
while retrograde photons have negative J. Photons with
J � 0 and Q> 0 run on polar trajectories. Any geodesics
characterized by J and Q outside this locus (with Q 
 0),
correspond to acceptable gravitational lensing trajectories.
-3
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FIG. 2. The shadow shape in the observer sky. The solid line is
for a � 0, the dashed line is for a � 0:1, and the dotted line is
for a � 0:2.
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All photons with J and Q inside this locus are destined to
fall inside the black hole.

There is an immediate connection between these con-
stants and the point in the sky where the observer detects
the photon. Throughout the paper, we consider a static
observer at a radial Boyer-Lindquist coordinate DOL, lying
on the equatorial plane. This restriction will keep all equa-
tions simple enough to be solved, while ensuring an ex-
haustive description of the expected phenomenology for
Sgr A�. This definition has no ambiguity from a mathe-
matical point of view, but needs to be linked to the astro-
physical notion of distance from the solar system to Sgr A�.
The current measurements of the distance to the Galactic
center are typically based on the dynamical investigation of
the stars orbiting around Sgr A�. The orbital fits are done in
the context of Newtonian gravity. As a consequence, the
current estimate of the distance to the Galactic center,
which amounts to about 8 kpc [2,31], assumes a flat
background geometry. This flat distance makes sense as
long as all scales are much larger than the Schwarzschild
radius of the central black hole, which is

RSch �
2GM

c2 � 1:1� 1010 m (14)

for M � 3:61� 106 M� [2]. Now it is evident that in the
limit of large distances, one can simply translate any flat
distance from the black hole, as calculated by Newtonian
physics, into Boyer-Lindquist coordinates in the Kerr ge-
ometry. In fact, far from the black hole, in the asymptotic
region, the Boyer-Lindquist coordinate coincides with the
Euclidean spherical coordinates centered on the black hole.
The ambiguity in this identification is of the order of
RSch=x (x being the distance from the black hole) and
becomes relevant only close to the event horizon, where
Newtonian physics loses any meaning. So, we can safely
assume DOL � 8 kpc, when speaking about Sgr A� in any
calculations.

Then, considering only observers in the asymptotic re-
gion (DOL � 1), where the geometry is close to be
Minkowskian, it is possible to define angular coordinates
(	1, 	2) in the observer sky. We will put the black hole in
(0,0), and let 	1 run parallel to the equatorial plane of the
black hole while 	2 will run on the perpendicular axis (see
Fig. 2). AsDOL � 1, 	1 and 	2 will always be assumed to
be very small. As shown in Ref. [23], photons reaching the
observer from the generic point (	1, 	2) are characterized
by the constants

J � �	1DOL; (15)

Q � 	2
2D

2
OL; (16)

w.r.t. to the black hole. We have taken the spin axis of the
black hole parallel to the 	2 direction and we have consid-
ered a photon moving toward the observer. Then, it is
immediate to pass from (J, Q) to the corresponding coor-
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dinates in the observer sky (	1, 	2) and vice versa, apart
from an ambiguity of sign in 	2.

We can use these formulae to translate the locus (Jm,
Qm) into a new one (	1;m, 	2;m) in the plane (	1, 	2). This is
given by

DOL	1;m��� � �
3
���
3
p
�

2
� 2a�

a2��2� �2����
3
p �O�a3�;

(17)

DOL	2;m��� � 	
�
3
���
3
p

2
�
a2�2���

3
p

� ��������������
1� �2

q
�O�a3�; (18)

and is called the shadow of the black hole.
Figure 2 shows the shape of the shadow in the observer

sky for different values of a. From what we have said
before, all photons deflected by the black hole must reach
the observer from directions (	1, 	2) outside the shadow.
Photons reaching the observer from the inside of the
shadow cannot come from gravitational deflection but
must have been generated by sources in front of the black
hole. So, if we had enough resolution to fully image a black
hole, we would see a black shadow with the shape de-
scribed by Eqs. (17) and(18), bordered by a luminous ring
due to gravitational lensing of all sources around the black
hole [6].

In Fig. 2 we see that the Schwarzschild shadow is
circular. Increasing the black hole spin a, the shadow is
slightly distorted and gets displaced to the right, meaning
that prograde photons (coming from the left side as seen
from the observer) are allowed to get closer to the black
-4
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hole, while retrograde photons (coming from the right side)
must keep farther.

Here, for later convenience, we are introducing and
making use of expressions expanded to the second order
in a. However, the exact expression for the shadow can be
easily derived, combining Eqs. (8) and (9) with Eqs. (15)
and (16). Comparing the exact shadow to its second order
approximation, we find that the latter works surprisingly
well up to very high values of the black hole spin. In Fig. 3,
we plot the relative error in the radial angular distance of
the apparent shadow 	m in the approximate solution w.r.t
the exact one as a function of the variable �, which follows
the azimuthal angle in the observer’s sky. Up to a & 0:28,
relative variations are well under 1%, at a � 0:4 we find an
error of 2%, while in the extremal case a � 0:5 the error
only reaches 5%. Such errors must be compared to the
displacement of the relativistic rings from the shadow, see
Section IV, and turn out to be negligible for the higher
order critical curves up to large values of the spin.
III. KERR LENSING IN THE STRONG
DEFLECTION LIMIT

It is useful to introduce the following parametrization:�
	1�
; �� � 	1;m����1� 
�
	2�
; �� � 	2;m����1� 
�

: (19)

Varying � in the range [� 1, 1] and 
 in the range [� 1,
1], we can obviously cover the whole upper half of the
observer sky, since � establishes the anomaly of the light
ray w.r.t. a reference axis in the sky (through Eqs. (17) and
(18)) and 
 fixes the angular distance from the center of the
black hole.

In this paper, we are interested in light rays experiencing
very large deflections by a Kerr black hole. These light rays
reach the observer from directions (	1, 	2) very close to the
shadow. In the parametrization (19), they are thus de-
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scribed by light rays with very small positive 
, while
keeping � in the whole range [� 1, 1]. The SDL amounts
to performing the integrals in the geodesics Eqs. (4) and
(5), to the lowest orders in 
.

Now, we can easily derive the values of J andQ for these
strongly deflected photons using Eqs. (15) and (16):

J��; 
� � Jm����1� 
�; (20)

Q��; 
� � Qm����1� 2
�: (21)

Substituting these expressions in Eq. (7) and solving the
equation R � 0 for x0, we get the closest approach distance
as

x0��; �� � xm����1� ��; (22)

� �

������
2

3

s �
1�

2

3
���
3
p a��

8

27
a2�4�2 � 3�

�
: (23)

In general, we see that the relation between � and 

depends on �, contrary to what happens in the
Schwarzschild case, which, by the way, is correctly recov-
ered when a is set to zero (compare with Ref. [17]). In the
resolution of the geodesics equation we will mostly use �
rather than 
. However, they can be immediately inter-
changed by Eq. (23) and its inverse.

A. Resolution strategy

Let us introduce our gravitational lensing configuration.
As said before, we restrict to observers on the equatorial
plane of the black hole at radial coordinate DOL. We
choose the zero of the azimuthal Boyer-Lindquist coordi-
nate � on the observer position. The source is assumed to
be static at Boyer-Lindquist coordinates (DLS, #s, �s). To
make contact with previous works, we call � � �s � �.

Our lens equations are provided by Eqs. (4) and (5),
where we identify �f � 0, �0 � �s. In these equations
there are four different integrals to solve:

I1 � 2
Z 1
x0

dx����
R
p ; (24)

I2 � 2
Z 1
x0

x2 � a2 � aJ

�
����
R
p dx; (25)

J1 � 	
Z 1�����

�
p d#; (26)

J2 � 	
Z csc2#�����

�
p d#: (27)

In the radial integrals I1 and I2 we have taken the higher
extrema to be infinite, because we assume DOL;DLS � 1.
As the two integrands go to zero as x�2 for x! 1, the
relative errors committed in this approximation are of order
-5
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D�1
OL and D�1

LS , respectively. Moreover, since the only in-
version point in the radial motion is x0, the infalling pieces
and the outgoing pieces of the integral are equal and we can
solve the sign ambiguity considering only the outgoing
pieces and putting a factor 2 in front of the integrals. The
radial integrals I1 and I2 can then be solved using the SDL
technique explained in Ref. [17]. In practice, considering
photons with minimum distance very close to some xm, and
introducing the parametrizations (20), (21), (22), we can
expand the integrals in terms of the parameter �, intro-
duced before. The leading terms diverge logarithmically as
� goes to zero, while the next-to-leading order terms are
constants in �. The details of this procedure are reported in
Appendix A. Here we just rewrite the final results

I1 � �a1 log�� b1; (28)

I2 � �a2 log�� b2; (29)

where the coefficients ai and bi are functions of a and �.
Their expansions to second order in a are reported in
Appendix A.

As regards the angular integrals (26) and (27), it is
convenient to introduce the new variable � � cos#. The
final results, expanded to second order in a are functions of
� and the source position �s � cos#s. They are reported
with a full derivation in Appendix B. We will just recall
them in the following sections when we need them.

Once all integrals are calculated, we have to solve
Eqs. (4) and (5) in terms of the source coordinates (�,
�s), so that they are in the lens map form�

�s � �s��; ��
� � ���; ��

: (30)

Since all transformations from (�, #s) to (�, �s) and
from (	1, 	2) to (�, �) are nonsingular (except for the
points � � 	1), the singularities of the Jacobian of the
map (30) represent gravitational lensing critical points.

In the following sections, we will calculate the critical
curves and the caustics of the Kerr gravitational lens order
by order. Then we will describe the lens mapping in a
neighborhood of a generic caustic, deriving the images
position and magnification.
IV. DERIVATION OF THE RELATIVISTIC
CAUSTICS

A. Zero-order caustics

Sending a to zero, we must recover the Schwarzschild
results, i.e. that critical curves are concentric rings corre-
sponding to pointlike caustics aligned on the optical axis,
alternatively located behind and in front of the black hole.
Of course, as a! 0, all expressions are considerably
simplified, and it is possible to follow calculations without
too much effort.
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Reading all the zero-order results for the integrals in
Appendices A and B, Eq. (4) becomes

�2 log�� 2 log�12�2�
���
3
p
�� � 	 arcsin

�s��������������
1� �2

p �m�:

(31)

Defining the new variable

 � �2 log�� 2 log�12�2�
���
3
p
��; (32)

Eq. (31) can be easily solved as

�s � 	
��������������
1� �2

q
sin : (33)

The second lens equation (5) now reads

� � ��m� 1�� arctan
�s����������������������������

1��2
s � �2

p : (34)

Using Eq. (33) to eliminate �s, we find

� � ��m� 1��� arctan�� tan �: (35)

The number m appearing in this equation is the integer
part of ( =�� 1=2) and must be interpreted as the number
of inversions in the polar motion of the photon.

Equations (33) and (35) represent the lens equations for
a Schwarzschild black hole without the classical identifi-
cation of the equatorial plane with the source-lens-observer
plane. We can recover the results of Ref. [17] imposing that
the motion takes place on the equatorial plane, i.e. setting
� � 1. Then we have �s � 0 (the source must coherently
lie on the equatorial plane) and � � � � �. The quantity
 � � represents the deflection angle of a photon ap-
proaching the Schwarzschild black hole at a distance x0 �
xm�1� ��. Equations (33) and (35) can also be obtained
from the traditional planar treatment by a trivial rotation by
an angle arccos� of the reference plane around the optical
axis using some spherical trigonometry.

Now we can easily calculate the Jacobian of our lens
map. We find

@�s

@�
� 

���������������
1� �2

p sin ; (36)

@�s

@ 
� 	

��������������
1� �2

q
cos ; (37)

@�
@�
� �

tan 

1� �2tan2 
; (38)

@�
@ 
� �

�sec2 

1� �2tan2 
; (39)

and

D �
@�s

@�
@�
@ 
�
@�s

@ 
@�
@�
� 	

sin ��������������
1� �2

p : (40)
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The critical curves are the solutions of the equation D �
0, which, in our case, simply gives

 cr � k�: (41)

The critical  does not depend on �. Recalling that  is
just a function of � expressed by Eq. (32), we have

�cr � 12�2�
���
3
p
�e�k�=2: (42)

Switching to 
 by Eq. (23), we have


cr � 216�2�
���
3
p
�2e�k�: (43)

Then, recalling the meaning of 
 by Eq. (19) and taking
	1;m and 	2;m from Eqs. (17) and (18), we finally find

DOL	1;cr��� � �
3
���
3
p
�

2
�1� 
cr�k��;

DOL	2;cr��� � 	
3
���
3
p

2

��������������
1� �2

q
�1� 
cr�k��;

(44)

that is a series of rings parameterized by �, slightly larger
than the shadow of the black hole, in full agreement with
Refs. [1,13,14,17]. The critical curves are labeled by the
number k. We shall refer to k as the critical curve order or
the caustic order, when we consider the corresponding
caustic.

Coming to the caustics, inserting Eq. (41) in the lens
equations (33)–(35) and noting that the number of inver-
sions in polar motion is m � k, we find

�s � 0; � � ��k� 1��: (45)

The caustics are points aligned on the optical axis. For
odd k they are behind the black hole, while for even k they
are in front of the black hole (retrolensing caustics). In the
Schwarzschild limit, the number of loops performed by
photons forming critical images of order k is just �k�
1�=2. However, this is not exactly true for spinning black
holes, as we shall see in the next section. So, it is better to
think of the order of the critical curve k as the number of
inversions in the polar motion done by photons associated
to it.

Of course, the first caustic for k � 1 is the classical weak
field limit one, which is outside the range of the SDL
approximation, so we cannot expect to recover the
Einstein ring radius putting k � 1 into Eq. (44) (the first
caustic is no longer described even by the weak field
approximation if the source is close to the black hole).
However, as shown in Refs. [7,17], the SDL approximation
works better and better for higher k, starting from the first
retrolensing caustic in k � 2. It is these caustics that we are
going to study in the following sections. In particular, we
will find out how they are displaced and deformed by the
black hole spin, obtaining a full analytic description of
their shape.
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B. First-order caustics

Up to now we have just reobtained all the Schwarzschild
black hole results in a more complicated form, starting
from Kerr geodesics equations and sending a back to zero.
Now, we shall introduce first-order corrections to our lens
equations, rederiving the critical curves and the caustics.
We anticipate that the caustics get displaced from the
optical axis in the azimuthal direction, though remaining
pointlike.

Using the first order terms of the radial and angular
integrals from the Appendices A and B, we can add the
terms proportional to a in the Eqs. (33) and (35). The
inversion of the �s equation can be easily performed order
by order in a. Then, repeating the same steps of the
previous section, we find

�s � 	
��������������
1� �2

q
sin 	

4a�

3
���
3
p

��������������
1� �2

q
sin ; (46)

� � ��m� 1��� arctan�� tan �

�
4a

3
���
3
p

�
 �

�2 tan 

1� �1� �2�sin2 
� tan 

� 3
���
3
p

log�2
���
3
p
� 3�

�
: (47)

Note that for  close to m�� �=2 and � close to zero,
the first order correction to �s may bring it to absolute
values larger than 1. As�s is the cosine of the polar angle,
these values are unphysical. This inconsistency comes out
because, when we solve for �s order by order, we expand
the arcsin function in points very close to the extrema of its
definition range, where the arcsin is not analytic. Then, the
linear approximation obviously takes us out of the interval
[� 1, 1]. The dangerous values of  and � correspond to
nearly polar trajectories where the final direction is very
close to 1 of the two poles. However, as we shall see, the
highest magnification for the relativistic images is obtained
when the source is close to a caustic. Luckily, the caustics
lie at � ’ 0 for an equatorial observer, so that we will
always work very far from these dangerous regions. This
danger will become effective for very high order caustics,
which may become very large, as we shall see in the next
subsection.

Now we can calculate the derivatives of the lens equa-
tion as before. The Jacobian reads

D � 	
sin ��������������
1� �2

p �
1�

8a�

3
���
3
p

�
; (48)

which tells us that the critical curves are still described by
Eq. (41) even at first order. This means that there is no
correction to the critical � (42) of the previous section. The
fact that we do not get any corrections to � does not mean
that the shape of the critical curves is not altered by the
black hole spin at first order. Indeed going back from � to 

we get a first-order correction, according to Eq. (23).
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Moreover, the shadow shape is modified according to
Eqs. (17) and (18). Then, to first order, the critical curves
are

DOL	1;cr��� � �
3
���
3
p
�

2
�1� 
cr� � 2a�1� 
cr�1� �

2��;

DOL	2;cr��� � 	
3
���
3
p

2

��������������
1� �2

q
�1� 
cr�

	 2a
cr�
��������������
1� �2

q
; (49)

with 
cr still given by Eq. (43).
Also the caustics are modified. In fact, plugging  cr �

k� into Eqs. (46) and (47), we find

�s � 0; (50)

� � ��k� 1��� 4a
�
k�

3
���
3
p � log�2

���
3
p
� 3�

�
: (51)

The caustics are still fully confined to the equatorial
plane, they are still pointlike, but they are displaced from
the optical axis. The displacement is negative, which
means that the caustics drift clockwise if we look at the
Kerr black hole from the northern pole. So, we can say that
if a source lies on a caustic point of order k, prograde light
rays perform more than �k� 1�=2 loops while retrograde
light rays perform less than �k� 1�=2 loops. The number
of inversions in the polar motion is still k. Higher-order
caustics are more displaced, because of the k dependence
in Eq. (51). Of course, as said before, this formula correctly
describes all caustics except for the weak field one, corre-
sponding to k � 1. Going to second order in a we will
describe the full shape of the caustics.

C. Second-Order Caustics

At first order in a the caustics still remain pointlike,
while it is known that they get a finite extension when a is
different from zero [26,27]. So, it is necessary to proceed to
second order. To the right-hand side of Eqs. (46) and (47)
we have to add the following quantities, respectively:

���2�s � 	

��������������
1� �2

p
108

���
3
p a2�12

���
3
p
�1� �2� n cos 

�
���
3
p
�1� 31�2� sin �

���
3
p
�1� �2� sin3 �; (52)

���2� �
2a2

27�2 �1� �
2��23�2 � 4� arctan��t�

�
2

9
a2��16�  n� �

1� �2

9�1� �2t2�
a2�

�
�1� t2� n

�
t
3

�
23�

8

�2 � 16
1� t2

1� �2t2

��
; (53)

where t � tan and  n � 5 � 8
���
3
p
� 20.
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Note that a term directly proportional to  appears in
Eq. (52) through  n. This is another danger for the ap-
proximation, since for very large  , i.e. photons perform-
ing several loops around the black hole, ���2�s may become
even larger than 1. This breakdown sets the true limit to the
applicability range of the perturbative expansion in a,
which gets smaller and smaller for photons making many
loops. However, the brightest images are formed by pho-
tons associated to critical images of low order. For these
images, as we shall see, the range of applicability of the
perturbative expansion is considerably large.

Now let us find out the corrections to the critical curves.
Once we have calculated all derivatives of the lens equa-
tions and written the Jacobian to the second order in a, we
set

 � k�� a2� ; (54)

as we already know the zero-order critical curve and we
know that there is no correction at the first order. Then we
easily get rid of all the trigonometric functions and the final
Jacobian reads

D � 	
��1�ka2

9
��������������
1� �2

p �9� � �92� 24
���
3
p
� 15k���1� �2��:

(55)

The ��1�k is a consequence of the expansions of the
trigonometric functions, while the double sign inherited by
the Jacobian at all orders depends on the fact that the (
, �)
parametrization only covers half of the observer sky and
we are forced to introduce a double sign in the equation for
�s.

The equationD � 0 gives the second order correction to
the critical  in a very simple form

� �
92� 24

���
3
p
� 15k�

9
�1� �2�: (56)

Now we can remount the complete second-order expan-
sion of the critical curves, which reads

DOL	1;cr��� � �
3
���
3
p
�

2
�1� 
cr� � 2a�1� 
cr�1� �

2��

�
�a2���

3
p

�
�2� 2�

�
15

2
k��1� �2� �

176

3

� 12
���
3
p
�

�
179

3
� 12

���
3
p �

�2

�

cr

�
;

DOL	2;cr��� � 	
3
���
3
p

2

��������������
1� �2

q
�1� 
cr� 	 2a
cr�

��������������
1� �2

q

	

��������������
1� �2

p ���
3
p a2

�
�2�

�
15

2
k��1� �2�

� 12
���
3
p
� 54�

�
179

3
� 12

���
3
p �

�2

�

cr

�
:

(57)
-8



−0.4 −0.2 0.2 0.4
a

2

4

6

8

10

12
− γκ/π

FIG. 4. Comparison between the intersections of the caustics
with the equatorial plane as calculated in Ref. [27] without the
perturbative approximation for the black hole spin (solid lines)
and the ones calculated in the present paper (dashed lines). The
plot refers to the caustics of order 2 � k � 7.
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FIG. 5. The typical caustic in Kerr gravitational lensing has the
astroid shape and the same angular extension rc (given by
Eq. (60)) along the azimuthal and the polar direction.
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Here, again, we have k� terms which become large for
higher-order critical curves.

Finally, let us calculate the caustics at the second order
in a. Plugging Eq. (54) with (56) into the lens equations,
we find

�s � 	��1�krc�1� �
2�3=2; (58)

� � ��k� 1��� 4a
�
k�

3
���
3
p � log�2

���
3
p
� 3�

�
� rc�

3;

(59)

where we define

rc �
2

9
a2�5k�� 8

���
3
p
� 36�: (60)

The analytical expressions of the Kerr black hole caus-
tics, given by Eqs. (58) and (59) to the second order in the
black hole spin a, represent a major achievement of this
paper. Before discussing their shape and all the physical
implications, it is a good idea to test our formulae by
comparing them to the results obtained by alternative
methods. In Ref. [27], the intersections of the caustics
with the equatorial plane were found using the SDL ap-
proximation only, without any limitation for the black hole
spin. The first test is to analytically expand the formulae of
Ref. [27] to the second order in a, without using any
numerical integrations. Indeed, we get the same expres-
sions as in Eq. (59), evaluated for � � 	1. Furthermore,
we can draw in the same plot the intersections of the
caustics with the equatorial plane as calculated in this
paper along with those calculated in Ref. [27]. Rather
than making two separate plots for prograde and retrograde
photons, we can make a unique plot, letting a vary in the
range [� 0:5, 0.5] and keeping the values of Eq. (59) for
� � 1. So, the left side of the plot (a < 0) represents
the intersections for retrograde photons and the right side
(a > 0) represents the intersections of prograde photons.
We see in Fig. 4 that the second-order approximations
(dashed lines) follow the exact expressions of Ref. [27]
very accurately. We can estimate that for lower-order
caustics the perturbative approximation works up to a ’
0:3, while for the last caustic in the plot (k � 7) we have to
stop at a ’ 0:1. In any case, the validity range is impres-
sively large, reaching values of the black hole spin com-
parable to the extremal case. This encourages us to make
extensive and confident use of the second-order approxi-
mation for a full description of Kerr lensing
phenomenology.

Now, let us discuss the shape and the extension of Kerr
lensing caustics. Looking at Eq. (58), it is interesting to
note that the upper half of the critical curve is mapped in
the lower half of the caustic for odd k, while it is mapped in
the upper half if k is even. As already found numerically in
Ref. [26], the caustics have the characteristic astroid shape
shown in Fig. 5, common to all tangential caustics after the
083003
breaking of the axial symmetry. The four cusps are in � �
	1 and � � 0 choosing different signs for �s.

The caustics have the same extension in � and �. We
recall that � is just the azimuthal angle of the Boyer-
Lindquist coordinates taken from the reference axis start-
ing from the black hole and going in the direction opposite
to the observer, while � is the cosine of the polar angle #.
As said before, we can trust our results as long as the
-9



TABLE I. Drift (in radians) of the caustics of order k with 2 �
k � 7, for different values of a.

a � 0:01 a � 0:05 a � 0:1 a � 0:2

��2 0.018 0.088 0.18 0.35
��3 0.042 0.21 0.42 0.84
��4 0.066 0.33 0.66 1.3
��5 0.09 0.45 0.9 1.8
��6 0.11 0.57 1.14 2.3
��7 0.14 0.69 1.39 2.8
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perturbative terms remain small. In this regime, � ’ �
2 �

#. Then, we deduce that the caustics have the same ex-
tension in the azimuthal and in the polar direction.

The extension is parameterized by the quantity rc, which
is the semiaxis of the caustic. We see that it grows with the
black hole spin a and with the caustic order k. Thus, for
higher caustic orders, the perturbative approximation fails
for smaller and smaller values of a, while it remains good
for lower order caustics. This was already noted while
commenting Fig. 4.

The drift from the optical axis of the caustic is given by
the first order term in Eq. (59). Indicating it by ��, in
Table I we report the obtained values for the first 6 rela-
tivistic caustics, starting from k � 2, for values of the black
hole spin going up to a � 0:2. We see that the drift may
become very large, amounting to several radians already
for the fifth-order caustic, while still in a regime where the
perturbative solution is valid. For higher-order caustics, the
number of loops may be significantly different from the
planar orbit result �k� 1�=2. Another important consid-
eration is that we do not need perfect alignment between
source, lens, and observer to have gravitational lensing. To
enhance the images associated with a critical curve of order
k, the source must align with the corresponding order k
caustic, which may be well off the optical axis. Moreover,
the relativistic images are not enhanced all at the same
time, since caustics of different order move far away from
each other.

In Table II we report the radii of the first 6 relativistic
caustics for different values of a. The extension of the
caustics is of second order in a and thus remains much
smaller than the drift, reaching some tenth of radians in the
TABLE II. Radius (in radians) of the caustics of order k with
2 � k � 7, for different values of a.

a � 0:01 a � 0:05 a � 0:1 a � 0:2

rc;2 0.00021 0.0052 0.021 0.082
rc;3 0.00056 0.014 0.056 0.22
rc;4 0.0009 0.023 0.09 0.36
rc;5 0.0013 0.031 0.13 0.5
rc;6 0.0016 0.04 0.16 0.64
rc;7 0.002 0.05 0.2 0.78
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perturbative regime. Outside of this regime, it is difficult to
know what would happen to higher-order caustics. Would
their vertical extension saturate before reaching the poles
or would they wrap around the pole? Would they meet each
other and make transitions to more complicated structures?
The answers to these questions need further research, both
analytically and numerically. We just want to remark that
the finite extension of relativistic caustics is of striking
importance for phenomenology, as will be clear in the next
sections.
V. GRAVITATIONAL LENSING NEAR CAUSTICS

The description of the caustics is the fundamental step
for a full description of gravitational lensing. In this section
we will give a complete analytic resolution of the Kerr lens
equation for sources close to relativistic caustics.

The starting point is the second-order lens equations,
built adding (52) to (46) and (53) to (47). Let us consider a
source whose distance from the kth-order caustic is of
order a2 (thus being comparable to the caustic size).
Then its position can be expressed in the following way

�s � a2��s; (61)

� � ��1�cau � a2��; (62)

where ��1�cau is the caustic position at the first order in a,
expressed by Eq. (51). Correspondingly, the images asso-
ciated to the critical curve of order k will be enhanced.
They will be described by

 � k�� a2� : (63)

Substituting Eqs. (61)–(63) in the lens equations, the
zero and first-order terms cancel out and we are only left
with the second-order terms

��s � S
��1�k

9

��������������
1� �2

q
�9� � �1� �2��5k�� 8

���
3
p

� 20��;

(64)

�� � �
�
9
�9� � 32� �3� �2��5k�� 8

���
3
p
� 20��:

(65)

This is the Kerr lens equation close to the caustic of
order k. S is just a sign which takes into account the fact
that the ( , �) parametrization only covers half of the
observer sky. So, S � �1 for the upper half of the observer
sky and S � �1 for the lower half. We can easily check
that the Jacobian (55) is just a2 times the Jacobian of this
lens equation

D

a2
�
@���s�

@�
@����
@�� �

�
@���s�

@�� �
@����
@�

: (66)
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The surprisingly simple form of the lens equation en-
courages its analytical resolution. The �� equation can be
easily solved for � :

� � �
��
�
�

1

9
�32� �3� �2��5k�� 8

���
3
p
� 20��:

(67)

Plugging this expression into the ��s equation, we can
write it in the form

��s� � �S��1�k
��������������
1� �2

q
���� xc��; (68)

where xc � rc=a2 and rc is the semiaxis of the caustic as
defined by Eq. (60). Squaring both sides we get a fourth-
order equation for �

x2
c�

4 � 2xc���
3 � ���2 � ��2

s � x
2
c��

2 � 2xc���

� ��2 � 0: (69)

The real solutions of this equation are images for a
source in (���1�cau � a2��, a2��s). It is easy to check that
we have two images if the source is outside the caustic and
four images if it is inside.

Once we have found the solutions of the squared equa-
tion, we have to go back to the original Eq. (68). Each root
of Eq. (69) satisfies Eq. (68) only with one choice of S.
This determines the half-sky where the image appears. It is
the upper half if S � 1 and the lower half if S � �1. Then,
we can easily calculate the value of � for each image
through (67) and then go back to 
 by Eqs. (32) and (23).
Finally we can write the images as

DOL	1 � �
3
���
3
p

2
��1� 
cr� � 2a�1� 
cr�1� �

2��

�
a2�

6
���
3
p �12� 6�2 � 
cr�76� 82�2 � 27� ��;

(70)

DOL	2 � S
3
���
3
p

2

��������������
1� �2

q �
�1� 
cr� �

4

3
���
3
p a�
cr

�
a2

27
�6�2 � 
cr�48� 82�2 � 27� ��

�
; (71)

with � and � solving Eqs. (64) and (65).
In the particular case ��s � 0 (source on the equatorial

plane), the solutions are � � 	1 and � � ��=xc (double
root). The first two solutions are two images staying on the
equatorial plane, which are physical for any value of ��.
The other two are acceptable only if j��j � xc because �
is defined in the range [� 1, 1]. This is in agreement with
the fact that xc represents the caustic semiaxis. These two
images form symmetrically w.r.t. the equatorial plane,
grazing the critical curve from the outside. When these
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additional images are present, the former two are inside the
critical curve, while when they are absent the remaining
images are one inside and the other outside of the critical
curve so that global parity is conserved in caustic crossing.

On the other hand, if �� � 0, we have the solutions � �

0 (double root) and � � 	
�������������������������������
1� ���s=xc�2

p
. The first two

form very close to the polar direction on opposite sides of
the critical curve, while the last two are real only for
j��sj< xc. They form symmetrically w.r.t. the polar di-
rection and graze the critical curve from the inside. As
before, things work in such a way that global parity is
conserved.

Now let us make an example with a physical source and
a physical black hole. Sgr A� has a mass of 3:61� 105

solar masses. Let us suppose that its spin is a � 0:02 (Liu
and Melia estimate a � 0:044 [32], but different methods
point to different values). Then we are able to calculate the
caustic positions and shapes. As a source, consider a star
with a radius RS � 3R� at 200 AU from Sgr A�. This is the
order of magnitude of the periapse distance of the observed
stars orbiting Sgr A�, like S2 or S14 [2]. In Fig. 6 we show
what we would see if this star approaches the first retro-
lensing caustic. The position of this caustic is in � �
177:98�, so slightly displaced from the optical axis. This
means that the source should be almost in front of the
observer, very close to the optical axis. On the left panels
of Fig. 6 we show several positions of the source relative to
the caustic, as seen by the black hole. Notice that with these
values of a, source radius, and distance the size of the
source is comparable to that of the caustic. On the right
panels, we show the corresponding images and the shadow
in dashed style. We see that when the source is far from the
caustic (top panels) there are two small images. The bigger
one is below the black hole if the source is above the
equatorial plane (we recall that this is normal in a retro-
lensing situation). When the source approaches the caustic
(second row panels), the two images do not lie on opposite
sides w.r.t the black hole. This distortion is a consequence
of the axial symmetry breaking. When the source enters the
caustic, two more images form (third and fourth row
panels). If the source orbits with a velocity of the order
of the circular orbit speed

��������������������
GM=DLS

p
, the whole caustic

crossing takes 3.4 hours, much longer than the typical
times of the primary caustic crossing, which takes just
few seconds [26]. Furthermore, since the higher-order
caustics are much more extended, the probability of caustic
crossing is much higher.

In Fig. 7 we have shown the case where the same source
approaches the first relativistic standard lensing caustic
(k � 3), which now is displaced to � � 4:8� on the right
of the black hole. As this caustic is larger, the source now
looks smaller compared to the caustic, as we see in the left
panels. When the source is far from the caustic (top pan-
els), there are two images, the bigger one being on the same
side of the source (standard lensing situation). As the
-11
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thickness of the images has been exaggerated to make them more
evident.
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first retrolensing caustic (k � 2). On the left we show several
positions for a source and on the right we have the corresponding
images around the shadow (in dashed style). The thickness of the
images has been exaggerated to make them more evident.
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source approaches, the images and the black hole are no
longer on the same line (second row panels), then forma-
tion of two new images takes place (third and fourth row
panels). In this case, the caustic crossing takes 9.2 hours,
for a source velocity equal to the circular orbit velocity.

Figure 8 zooms on two images generated by different
sources in the caustics k � 2 and k � 3. The first source
generates the outer tangential arc while the second source
083003
generates the inner tangential arc. This is because the more
loops the photons perform, the closer they get to the black
hole. Then higher-order images appear closer and closer to
the shadow. What is astonishing of this picture is the
tremendously small thickness of the arcs. These may be
greatly elongated and even form full rings if the source is
larger than the caustic, but their radial size is really very
-12
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small. In Figs. 6 and 7, we had to exaggerate the thickness
in order to show them in a more evident way. The next
section will be devoted to the calculation of the length and
the thickness of the arcs, i.e. the magnification of the
images.

A. Magnification

In standard weak field gravitational lensing the magni-
fication is the ratio between the angular area of an image
and the angular area of the source if no lensing occurred.
This does not necessarily make sense when high deflection
takes place, since the side of the source seen by the black
hole is generally different from the side seen by the ob-
server. Then, if the source does not emit isotropically, a
magnification calculated in the standard way would not
give the correct ratio between the brightness of the image
and that of the source. For example, in the retrolensing
situation, the source is in front of the black hole. So the
photons going toward the black hole leave the source from
the side opposite to the one seen by the observer. For
simplicity, in this section we shall assume that the source
emits isotropically. The formulae can be easily corrected in
the case this does not happen. The isotropic emission
hypothesis ensures that the source as seen by the observer
is simply D2

LS=D
2
OS smaller than as seen by an observer in

the black hole position in the absence of the lens.
The angular area of the image in the observer sky is

simply d	1d	2. The angular area of the source in the black
hole Boyer-Lindquist coordinates is j sin#sd�d#sj �
d�d�s, when the source is very far from the black hole.
Then, the magnification matrix is just the Jacobian matrix
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of the lens map in the form�
� � ��	1; 	2�

�s � �s�	1; 	2�
: (72)

Yet, we have Eqs. (64) and (65) in the form�
�� � ���� ; ��
��s � ��s�� ; ��

(73)

and Eqs. (70) and (71) in the form�
	1 � 	1�� ; ��
	2 � 	2�� ; ��

: (74)

Then we can find the Jacobian matrix of Eq. (72) as

@��;�s�

@�	1; 	2�
� a2 @���; ��s�

@�� ; ��

�
@�	1; 	2�

@�� ; ��

�
�1
; (75)

where we have used the matrix notation

@�y1; y2�

@�x1; x2�
�

@y1

@x1

@y1

@x2
@y2

@x1

@y2

@x2

 !
(76)

and we have noted that d� � a2d���� and d�s �
a2d���s�.

Then writing the explicit expression of the elements of J
is straightforward, once we correctly take care of all the
signs. We will not write them here, but we shall give the
two eigenvalues of the Jacobian matrix

�r �
2DOL

3
���
3
p

cr

; (77)

�t �
2DOL

3
���
3
p
�1� 
cr�

D0; (78)

with D0 being proportional to the Jacobian studied in the
former section (55)

D0 � 	
��������������
1� �2

q
D

�
��1�ka2

9
�9� � �92� 24

���
3
p
� 15k���1� �2��:

(79)

Since 
cr is fixed by the caustic order k, �r is always
positive, while �t vanishes whenever D0 does. This condi-
tion is fulfilled when Eq. (56) holds, i.e. on critical images.
It is possible to show that the two eigenvectors associated
to �r and �t, respectively become radial and tangential in
the limit a! 0. So, when the source is close to a caustic,
all images are elongated in a direction nearly tangential to
the critical curve, as already noticed in the previous sub-
section. We shall call �r and �t radial and tangential
eigenvalues, respectively, though they are such only in
the limit a! 0, actually.

Finally, we can write the radial and tangential magnifi-
cation of the images w.r.t. the source as seen by the
observer. These are
-13



0.001 0 -0.001 -0.002
∆γ

-0.001

0

0.001

0.002

µ s

2

3

4
10

FIG. 9. Tangential magnification map centered on the k � 2
caustic (the first retrolensing caustic) for a � 0:02 and DLS �
100 AU.

V. BOZZA, F. DE LUCA, G. SCARPETTA, AND M. SERENO PHYSICAL REVIEW D 72, 083003 (2005)
�r �
DOS

DLS

1

�r
�
DOS

DLS

3
���
3
p

cr

2DOL
; (80)

�t �
DOS

DLS

1

j�tj
�
DOS

DLS

3
���
3
p
�1� 
cr�

2DOLjD0j
: (81)

Of course, the total magnification is � � �r�t. A good
check is to reduce this formula in the Schwarzschild limit
to compare with Refs. [12,14,17,20], and in the equatorial
limit, to compare with Ref. [27]. The first limit is obtained
sending a to zero keeping the source position (a2��,
a2��s) fixed. This is equivalent to put xc to zero in
Eqs. (69) and (67). Then the images are in

� � 	��=
������������������������
��2 � ��2

s

q
; (82)

� � �
16��2

s

9���2 � ��2
s�


������������������������
��2 � ��2

s

q
: (83)

Substituting in Eq. (81), we find

�Sch �
D2
OS

D2
LSD

2
OL

27
cr�1� 
cr�

4a2
������������������������
��2 � ��2

s

p : (84)

Identifying a2
������������������������
��2 � ��2

s

p
with the misalignment of the

source with the pointlike caustic position, we exactly find
the magnification of Refs. [12,20].

The equatorial limit is recovered when ��s � 0. Then
we have two equatorial images plus two nonequatorial
images if the source is inside the caustic. The two equato-
rial images are described by

� � 	1; (85)

� � �rc  ��: (86)

Inserting these values in Eq. (81), we find

�eq �
D2
OS

D2
LSD

2
OL

27
cr�1� 
cr�

4a2j��	 rcj
; (87)

which is the leading term close to the equatorial cusps as
found in Ref. [27].

The magnification of relativistic images is usually very
low. This is expected by the fact that a very small pertur-
bation in the photon trajectory may completely change its
final direction. Referring to a source at 100 AU from Sgr
A�, by Eq. (80) we find a radial magnification

��2�r � 5:3� 10�5

�
100 AU
DLS

�
; (88)

��3�r � 2:3� 10�6

�
100 AU
DLS

�
(89)

for the relativistic images of order 2 and 3, respectively.
These very low values, which are independent (at lowest
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order) of the distance of the source from the caustic, justify
the very thin arcs of Fig. 8.

The tangential magnification diverges when the source
crosses a caustic. However, at most the images may merge
to form a full Einstein ring, which gives the maximal
tangential magnification. Dividing the angular area of a
circular corona of radius 3

���
3
p
�1� 
cr�=�2DOL� and thick-

ness �r�2RS�=DOS by the angular area of the source
��RS=DOS�

2, we obtain the maximal total magnification

��2�max �
1

RS

D2
OS

DLS

27
cr�1� 
cr�

D2
OL

� 8:7� 10�3

�
RS
R�

�
�1
�
DLS

100 AU

�
�1
; (90)

��3�max �
1

RS

D2
OS

DLS

27
cr�1� 
cr�

D2
OL

� 3:8� 10�4

�
RS
R�

�
�1
�
DLS

100 AU

�
�1
: (91)

In Fig. 9 we show a map of the tangential magnification
centered on the first retrolensing caustic (the caustic order
is k � 2) for a � 0:02. To get the total magnification map,
it is necessary to multiply the values on this map by the
radial magnification (88), which is practically constant in a
the neighborhood of the caustic. It is interesting to note that
the tangential magnification is greater than one in a large
region surrounding the caustic. This means that the cross
section for the generation of large relativistic tangential
arcs is quite high. This is a very important characteristic of
relativistic images that we are going to exploit in the next
section when discussing their observability.
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For a source at the center of the caustic, we have an
Einstein cross where all images have the same magnifica-
tion. Then the total magnification takes a very simple
expression

�c �
D2
OS

D2
LSD

2
OL

27
cr�1� 
cr�
rc

; (92)

where rc is the semiaxis of the caustic as defined by
Eq. (60).
VI. PERSPECTIVES FOR OBSERVATIONS

The relativistic images appear just outside the shadow of
the black hole. In order to distinguish them, we need a
resolution of the order of �as. The present world record
has been achieved with very long baseline interferometry
(VLBI) in the mm band and amounts to 18 �as [5].
However, in this band, there are no good compact candi-
date sources around Sgr A� for gravitational lensing. More
interesting are the infrared and especially the x-ray band.

A. Infrared band

In the infrared K-band, centered at � � 2:2 �m, the
extinction by interstellar dust allows good observations
of the stellar environment around Sgr A� [2]. Many stars
have been detected and followed during their orbital mo-
tion around Sgr A�, providing the best dynamical con-
straints on its mass distribution. Surprisingly, these stars
are of early spectral types, leaving open the question on the
presence of such young stars in the galactic center. In the
K-band, these stars have magnitudes between mK � 13
and mK � 16.

As regards the angular resolution in the K-band, the VLT
units can be combined to perform interferometry observa-
tions with an equivalent baseline of 200 m and a maximal
angular resolution of 2.2 mas (http://www.eso.org/projects/
vlti). Some space missions performing nulling inter-
ferometry (TPF, http://www.terrestrial-planet-finder.com;
DARWIN, http://ast.star.rl.ac.uk/darwin) should be
launched in the near future. According to the mission
designs, some spacecraft should fly in formation at dis-
tances of the order of tens of meters. A futuristic develop-
ment of such idea might lead to much higher resolutions.
The baseline needed for 1 �as resolution is of the order of
hundreds of kilometers. High precision formation flying
may be achieved by laser ranging and microthrusters in the
wake of what is being studied for LISA (http://lisa.nasa.-
gov), where the distance between the spacecraft is 5�
106 km.

Some of the stars around Sgr A� may cross some caus-
tics and generate bright relativistic images. However, they
would be embedded in the flux coming from Sgr A�

environment. In the quiescent state, Sgr A� flux in the K-
band should have mK * 18:8 [33]. The infrared emission
of Sgr A� is believed to originate in the inner 10
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Schwarzschild radii of the black hole [34], with the
Schwarzschild radius being

RSch �
2GM

c2 � 1:1� 1010 m: (93)

Then it is necessary to establish whether relativistic images
can overcome the background flux. As conservation of
surface brightness holds in gravitational lensing, the rela-
tivistic images must have the same surface brightness of
the original source as seen by the observer,

IS �
LS

4�D2
OS�S

; (94)

where LS is the intrinsic luminosity of the source, DOS ’
8 kpc is the distance to the source, and �S is the angular
area in the sky subtended by the source, which is �S ’
��RS�2=D2

OS . For a source of 10 solar radii withmK � 15,
the surface brightness of the relativistic images is 4 order of
magnitudes larger than that of Sgr A�.

However, relativistic images have a tiny angular area
and their contribution to the number of photons collected
by a pixel in a CCD detector may be very small. To get an
idea of this fact, let us consider a CCD detector where
every pixel collects energy flux from an angular area of
size !2

p. If a relativistic image, in the form of a tangential
arc of angular thickness !arc � �r�2RS�=DOS, lies on the
pixel area, the flux received is S / IS�!p �!arc�. On the
other hand, the noise coming from the environment of Sgr
A� to the single pixel is N / ISgr!2

p. Then, the signal-to-
noise ratio for a single pixel is

S
N
�

IS
ISgr

!p

!arc
(95)

’ 2:2
� !p

1 �as

�
�1
�
RS

10 R�

�
�1
�
DLS

100 AU

�
�1
; (96)

i.e. a pixel with a tangential arc receives only twice more
K-band photons than other pixels. The S=N could be
improved by taking a smaller pixel size or stars with lower
radii and higher brightness, but we cannot go very far.
Taking into account absorption by the matter surrounding
the black hole that would surely take place and fluctuations
in the surface brightness of Sgr A�, we doubt that relativ-
istic images of stellar sources can be actually detected in
the K-band by present or near future technology.

B. X-ray band

In the x rays, Chandra is leading very important obser-
vations discovering the physics of high energy electromag-
netic sources in the central region of the Galaxy [35] with a
resolution of the order of 0.5 arcseconds. The space mis-
sion project MAXIM (http://maxim.gsfc.nasa.gov) will
represent a major leap toward high resolution, reaching
the striking resolution of 0.1 �as. With such observational
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facility, a complete and detailed imaging of the black hole
will be possible.

It is very interesting to consider that Sgr A� luminosity
in the 2–10 keV band is 2� 1033 ergs s�1, which is much
lower than expected if the black hole were accreting at the
Eddington rate, i.e L � 3� 1044 ergs s�1 [35]. There are
several models for Sgr A� accretion. Models based on
Bondi accretion (spherically symmetric inflow) predict
the x-ray emission to be created in a region of the order
of 102RSch [36]. Models based on advection dominated
flow [37] predict the emission to be dominated by cooler
gas at larger radii, of the order of 104RSch.

Indeed, many x-ray sources have been detected in the
neighborhood of Sgr A�, with a luminosity comparable or
even slightly higher than the supermassive black hole [38].
These sources are probably low mass x-ray binaries
(LMXB) which seem very numerous in the galactic center.
The situation seems really appealing, since we have a
population of bright compact sources, with possibly poor
contamination from the intrinsic luminosity of Sgr A�. It is
believed that most of the x-ray emission from a LMXB
comes from a region of tens of kilometers. Then we can
assume RS ’ 102 km, with an x-ray flux of LS ’ LSgr �

2� 1033 ergs s�1. If we consider an emitting region of
102RSch for Sgr A�, there are 14 orders of magnitude
between the surface brightness of a LMXB and the surface
brightness of the x-ray emission of the supermassive black
hole environment. Then, the signal-to-noise ratio for a
single pixel imaging a tangential arc, Eq. (95), is

S
N
� 0:9� 106

� !p

1 �as

�
�1
�

RS
100 km

�
�1
�
DLS

100 AU

�
�1
;

(97)

i.e. the signal in a pixel touched by a tangential arc is nearly
6 order of magnitudes higher than the noise from Sgr A�

environment for a detector with the accuracy of 1�as. The
contamination from Sgr A� environment seems to be com-
pletely under control. Relativistic gravitational self-lensing
of Sgr A� would just produce relativistic Einstein rings
with the same surface brightness of Sgr A�. The only
serious danger for photons coming from outside Sgr A�

and deflected by the central black hole is absorption by the
matter surrounding it. However, even if some absorption
certainly occurs, it seems difficult to fill a gap of so many
orders of magnitudes between the surface brightness of the
relativistic images and that of Sgr A� without affecting the
luminosity of Sgr A� as well.

Of course, the idea firstly proposed by Rauch and
Blandford that some x-ray flares may be explained by
lensing of nearby sources is fully plausible in this scenario
[26].

VII. CONCLUSIONS

In this paper we have made an analytical treatment of
gravitational lensing by Kerr black holes in the strong
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deflection limit. In order to achieve our objective we
have made three approximations.

The first one is the strong deflection limit approximation
for all radial integrals. This is just an expansion of the
elliptic integrals that result from integrations over the full
radial motion of a photon. Restricting to photons suffering
a very large deflection, for all the radial integrals we have
only kept the leading term diverging as log
 and the
constant term (
 being the separation between the image
and the shadow border as seen by the observer). As shown
in several articles, this limit gives a very good approxima-
tion starting from photons deflected by an angle of order �
[1,7,12,14].

The second approximation has been to consider only
small values of the black hole spin a. This has allowed us to
take the Schwarzschild gravitational lensing as a starting
point for the derivation of the corrections due to the pres-
ence of an intrinsic angular momentum of the black hole.
As far as we could compare our results with available exact
ones, we have verified a considerably wide applicability
range of our approximation. For the first relativistic im-
ages, we can safely apply our treatment up to a � 0:1 (a �
0:5 being the extremal Kerr black hole in our units).

The third restriction concerns the position of source and
observer. Besides the limitation to far sources and observ-
ers (DLS;DOL � RSch), we have also restricted to equato-
rial observers. This considerably simplifies all calculations
without affecting the complete investigation of the most
significant physical situation, namely, the black hole in Sgr
A�. In fact, it is natural to assume that the equatorial plane
of this supermassive black hole coincides with the galactic
plane. In any case, a full investigation stepping beyond
these restrictions is in progress.

The first achievement of this paper has been the analyti-
cal description of the Kerr caustics. At the first order in a
we find that they are just shifted along the equatorial plane
still remaining pointlike, while at second order they are
resolved into typical diamond-shaped figures. We are thus
able to calculate the position and the extension of the
caustics for any order of relativistic images (as long as
we remain in the perturbative regime). As stated in
Section IV, the strong deflection limit treatment does not
cover the primary caustic (k � 1 in our formulae), since
this caustic is formed in the weak field regime forDLS � 1
[26,39]. With no regard to the lensing regime, the effect of
the angular momentum of the deflector is similar, with
caustics getting a diamond-shaped structure and drifting
from the optical axis. Whereas magnification effects due to
the primary caustic are very large, its size is very small, so
that the creation of additional pairs of images (which is the
most evident manifestation of the presence of a non-
negligible spin) is very difficult to achieve. The significant
extension of relativistic caustics strongly enhances the
cross section for additional images and puts them in a
much better position for testing the Kerr nature of the black
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hole. It has to be remarked that our perturbative investiga-
tion still leaves open the possibility that metamorphosis
may occur at large values of a. Though this has been
numerically excluded for the primary caustic [26], it is
possible that higher-order caustics develop more compli-
cated structures in a strongly nonpertubative regime.

The second achievement has been the analytical inver-
sion of the lens mapping near the caustics, which has
allowed us to draw fascinating pictures of the relativistic
images generated by a hypothetical source close to a
relativistic caustic.

However, the most important result has been the possi-
bility of doing concrete analytical estimates of the size and
luminosity of the relativistic images. The LMXBs sur-
rounding Sgr A� provide an ideal population of sources,
which may eventually bump into a relativistic caustic and
generate appreciable relativistic images. This is because
they are compact sources with very high surface brightness
in the x rays, compared to that of Sgr A�. This seems not to
be the case for stellar sources in the infrared K-band, which
have too little surface brightness. Using our formulae for
the magnification of relativistic images, we are entitled to
claim that future space missions performing x-ray interfer-
ometry with resolutions of the order of 1�as will see these
relativistic images with high probability.
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APPENDIX A: RESOLUTION OF RADIAL
INTEGRALS

In this appendix we recall the SDL technique used in
Ref. [17] to solve radial integrals, applying it to the inte-
grals that appear in the geodesics equations. We rewrite
them here for an easier reading

I1 � 2
Z 1
x0

dx����
R
p ; (A1)

I2 � 2
Z 1
x0

x2 � a2 � aJ

�
����
R
p dx: (A2)
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First we change the integration variable from x to z by
the transformation

x �
x0

1� z
: (A3)

As a consequence, the integration domain [x0,1] becomes
[0, 1].

Then, each of the integrals I1, I2 can be written in the
form

Ii �
Z 1

0
Ri�z�f�z�dz; (A4)

f�z� �
1���������
R�z�

p ; (A5)

where the two functions Ri�z� can be easily read by
Eqs. (24) and (25) taking into account the Jacobian of the
transformation (A3):

R1�z� �
2x0

�1� z�2
; (A6)

R2�z� �
2x0

�1� z�2
x2

0 � �1� z�
2�a2 � aJ�

x2
0 � x0�1� z� � a

2�1� z�2
: (A7)

Now we consider the expansion of R�z� in a neighbor-
hood of z � 0. Since z � 0 means x � x0 and x0 is a root
of R�x�, we deduce that R�z � 0� � 0. Then the expansion
of R�z� reads

R�z� � �z� �z2 � o�z2�; (A8)

where the coefficients of the expansion are

� � x0��a� J�
2 �Q� 2�a2 � J2 �Q�x0 � 4x3

0�; (A9)

� � x0��a� J�
2 �Q� 3�a2 � J2 �Q�x0 � 10x3

0�:

(A10)

We use this expansion to define

f0�z� �
1��������������������

�z� �z2
p : (A11)

The radial integrals can be split in two pieces

Ii � Ii;D � Ii;R; (A12)

Ii;D �
Z 1

0
Ri�0�f0�z�dz; (A13)

Ii;R �
Z 1

0
�Ri�z�f�z� � Ri�0�f0�z��dz: (A14)

The first integral gives the result

Ii;D �
2Ri�0�����
�
p log

����
�
p
�

��������������
�� �
p����
�
p : (A15)

�, �, and Ri�0� are known functions of x0, J, Q, and a.
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Now we can use the SDL parametrizations (20)–(22) for
all these quantities, so that they become functions of �, �
(or equivalently 
), and a. Then, in the spirit of SDL
approximation, we keep the leading order in �, which
goes as log�, and the next-to-leading order which is con-
stant in �. Finally, we expand the obtained expression to
second order in a.

As regards the integrals Ii;R, the integrand function is
regular in the whole integration domain. Sending � to zero,
the integrand does not diverge. So, this integral contributes
to the SDL expansion with another constant in � plus
higher-order terms that we can neglect. It is convenient
to make the second-order expansion in a before the inte-
gration, in order to have a sum of easily integrable func-
tions. We can then add the result of the integral Ii;R to the
integral Ii;D, to reconstruct the full SDL formulae for radial
integrals:

I1 � �a1 log�� b1; (A16)

I2 � �a2 log�� b2: (A17)

The coefficients expanded to second order in a read

a1 �
4

3
���
3
p �

16

27
a��

8

27
���
3
p �1� 3�2�a2; (A18)

b1 � a1 log�6�
���
3
p
� 1�2� �

8

27
���
3
p a2�5� 2

���
3
p
��1� �2�;

(A19)

a2 �
4���
3
p �

8

3
a��

8
���
3
p

27
�1� 7�2�a2; (A20)

b2 � �a2 � 4�1� 2a2�� log�6�
���
3
p
� 1�2�

� 2�1� 2a2� log48�
8

3
���
3
p a��3

���
3
p
� 2�

�
8

27
a2�19

���
3
p
� 12� �2�14� 25

���
3
p
��: (A21)

The separation of Ii into Ii;D and Ii;R is necessary to
isolate the term generating the log� into an easier integral.
APPENDIX B: ANGULAR INTEGRALS

This appendix is devoted to the resolution of the angular
integrals

J1 � 	
Z 1�����

�
p d#; (B1)
083003
J2 � 	
Z csc2#�����

�
p d#: (B2)

Introducing the variable � � cos#, the two integrals be-
come

J1 � 	
Z 1��������

��

q d�; (B3)

J2 � 	
Z 1

�1��2�
��������
��

q d�; (B4)

where

�� � a2��2
� ��2���2

� ��
2�; (B5)

�2
	 �

�����������������������������
b2
JQ � 4a2Qm

q
	 bJQ

2a2 ; (B6)

bJQ � a2 � J2
m �Qm; (B7)

and we have already replaced J and Q with Jm and Qm,
coherently with the fact that we only retain terms which are
logarithmically diverging or constant in � (or equivalently

).

�� has two zeros in � � 	��. Then the photon per-
forms symmetric oscillations of amplitude �� w.r.t. the
equatorial plane. It is useful to write the explicit expres-
sions of �� and �� in terms of a and �, using Eqs. (12)
and (13) and expanding to second order in a. We find

�� �
��������������
1� �2

q �
1�

4a�

3
���
3
p �

8a2�2

27

�
; (B8)

�� �
3
���
3
p

2a
� 2��

a�4� 8�2�

3
���
3
p �

4a2��12� 17�2�

27
:

(B9)

The oscillation amplitude is
��������������
1� �2

p
plus corrections

due to the black hole spin. This is coherent with the fact
that for a photon reaching the observer from the equatorial
plane (� � 	1) the amplitude of the oscillation goes to
zero. On the other hand, a photon moving on a polar orbit
(� � 0) performs oscillations of maximal amplitude,
touching the poles of the black hole. Now, to perform the
angular integrals, it is wise to expand the integrands to
second order in a and then integrate. Then, the primitive
functions read
-18
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FJ1
��� �

2

3
���
3
p arcsin

���������������
1� �2

p �
8

27
a�
�

arcsin
���������������

1� �2
p �

����������������������������
1��2 � �2

p �

�
2a2

81
���
3
p

�
�33�2 � 9� arcsin

���������������
1� �2

p �
���4 � 2�2��2 � 1� � 1� 6�2 � 7�4�

�1��2 � �2�3=2

�
; (B10)

FJ2
��� �

2

3
���
3
p
�

arctan
�����������������������������

1��2 � �2
p �

8

27�2 a
�

arctan
�����������������������������

1��2 � �2
p �

�����������������������������
1��2 � �2

p �

�
4a2

81
���
3
p

�
12� 21�2 � 20�4

�3 arctan
�����������������������������

1��2 � �2
p �

4��1� �2��3�2 � 3� 4�2�

�2�1��2 � �2�3=2
� arctan

����������������������������
1��2 � �2

p �
:

(B11)
The integration limits are the values of� at the observer
and source position. The observer is at�o � 0, since it lies
on the equatorial plane, while the source is in �s � cos#s.
Notice that the choice of an equatorial observer leads to a
considerable simplification, since FJ1

�0� � FJ2
�0� � 0.

Moreover, we have to consider that during the photon
motion, � may perform several oscillations between
��� and ��, depending on how many loops the photon
makes around the black hole before escaping. So, we have
to add an arbitrary integer number m of integrals covering
the whole domain [���, ��]. The final results read

J1 � 	FJ1
��s� �

2m�

3
���
3
p

�
1�

4a�

3
���
3
p �

a2�11�2 � 3�

9

�
;

(B12)
083003
J2 �	FJ2
��s�

�
2m�

3
���
3
p
�

�
1�

4a

3
���
3
p
�
�

2a2�12� 21�2��3� 20�4�

27�2

�
;

(B13)

where the minus signs hold if the photon initially increases
its latitude and the plus signs hold if the latitude decreases
initially.
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