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Soft gluon radiation and energy dependence of total hadronic cross sections
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An impact parameter representation for soft gluon radiation is applied to obtain both the initial decrease
of the total cross section (�tot) for proton-proton collisions as well as the later rise of �tot with energy for
both pp and p �p. The nonperturbative soft part of the eikonal includes only limited low energy gluon
emission and leads to the initial decrease in the proton-proton cross section. On the other hand, the rapid
rise in the hard, perturbative jet part of the eikonal is tamed into the experimentally observed mild increase
by soft gluon radiation whose maximum energy rises slowly with energy.
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I. INTRODUCTION

In this paper, we extend our approach to the role played
by soft gluon radiation in determining the energy depen-
dence of total cross sections [1] by including new low
energy features. The experimental information on the total
cross section is now sufficient to allow for definite progress
towards its description through QCD. Thanks to the recent
measurements at HERA [2–5] and LEP [6,7] providing
knowledge of total hadronic cross sections involving pho-
tons in the energy interval

���
s
p
� 1–100 GeV, we now

possess a complete set of processes to study in detail and
in depth, namely, pp, p �p, �p, and ��. The purely had-
ronic processes are well measured over an extended range,
up to cosmic ray energies [8], leading to quite precise
parametrizations [9], while the other two allow for probes
of the hadronic content of the photon versus that of the
proton. They also allow for checks of the Gribov-Froissart
factorization hypothesis [10,11].

The three basic features which the data exhibit and
which require a theoretical explanation and understanding
are (i) the normalization of the cross section, (ii) an initial
decrease, and (iii) a subsequent rise with energy. All three
are reasonably well described in the Regge trajectory
language, which suggests a parametrization of all total
cross sections [12] as a sum of powers of the square of
the c.m. energy s. The oldest and simplest of these parame-
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trizations is

�tot�s� � Xs� � Ys��: (1)

In this model, the initial decrease reflects the disappear-
ance (with increasing energy) of a Regge trajectory ex-
changed in the t channel, with � � 1� ���0� where the
intercept (at t � 0) of the leading Regge trajectory is
���0� � 0:5. At the same time, the rise in the cross section
is attributed to the exchange of a trajectory (the Pomeron)
with the quantum numbers of the vacuum, such that
�P�0� � 1� �. � is expected to be a small number so as
not to defy too much the Froissart bound, and, phenom-
enologically, � � 0:08–0:12 [13,14].

The two terms in which the cross sections are split in
Eq. (1) describe well the main features of the observed total
cross-section data, with an apparently constant behavior at���
s
p
� �

�
Y
X . For proton-proton and proton-antiproton scat-

tering, this occurs between 15 and 25 GeV, where the cross
section is about 40 mb. At large energies, the Regge term
disappears, while the first term is important everywhere
and dominates asymptotically. Thus, the decrease is due to
the Regge term, the rise described by the Pomeron with
some taming due to the Regge term, and the normalization
is determined by both the Regge and the Pomeron terms.
More recent analyses add further terms such as log2�s=s0�
terms [15].

In the following, we shall discuss these features one by
one within the context of QCD, using the simple but useful
parametrization of Eq. (1) as reference. We shall modify it
and through it develop further the model of Ref. [1] to
increase our understanding of the energy dependence
within QCD. In Sec. II, we discuss the QCD origin of the
-1 © 2005 The American Physical Society
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two component model of Eq. (1). In Sec. III, we summarize
how the Born term of the QCD contribution, the minijets, is
embedded in the eikonal formalism, which provides a
unitarized description of the total cross section. In
Sec. IV, we discuss the analyticity requirements upon the
impact parameter amplitudes of the eikonal formalism. In
Sec. V, we review the soft gluon transverse momentum
distribution on which our model for the b distribution of
partons is based. In Sec. VI, we discuss the main features of
the model [1] for the energy dependence of the impact
parameter distribution, induced by soft gluon emission. In
Sec. VII, through soft gluon emission, we obtain the trans-
verse parton overlap function for the nonperturbative part
of the cross section. In Sec. VIII, we introduce the normal-
ization of the cross section. We present our model for �tot

for pp and p �p and compare them with currently available
data. In Sec. IX, we present an interesting feature of our
model: In a proton or antiproton collision, the (average)
distance between the scattering centers (i.e., the constitu-
ents) in the transverse space decreases as the energy in-
creases. Similar results have been previously obtained in an
analysis of the hadronic events at the Tevatron, through an
impact parameter picture. We note again that our model of
the energy dependent impact parameter distribution offers
a reasonable understanding of both the initial fall and later
rise with energy of the �tot, whereas for the normalization
there is still further work to do.

Before beginning the detailed discussion, we indicate
below briefly and qualitatively why we believe that it is
both important and necessary to include effects of soft
gluon emission in the minijet formalism [16–18]. We
recall here that in the minijet picture the rise in cross
sections is driven by the increasing number of low-x
gluon-gluon collisions and that the predicted rate of the
rise is generally found to be uncomfortably large. In
Sec. VI, we give the details of the mechanism by which
the effect of soft gluon emissions can reduce the rate of this
rise, at any given c.m. energy. Below, we summarize the
effect qualitatively.

In a calculation in the QCD improved parton model, the
effect of gluon radiation on the longitudinal momentum
carried by the partons is included, at least in part, in the
Dokshitzer, Gribov, Lipatov, Altarelli, and Parisi [19]
evolved parton distribution. Here we crucially look at the
effect of initial state gluon radiation on the transverse
momentum distribution of partons. In our model, the soft
gluon resummed transverse momentum distribution of
partons in the hadrons and the parton distribution in impact
parameter space are Fourier transforms of each other. The
larger the transverse momentum, the larger is the acolli-
nearity of the two colliding partons, leading to a reduction
in parton luminosity and, hence, to a reduction of the cross
section. The higher the c.m. energy of the parent hadron,
the more energetic are the parent valence quarks emitting
gluons and the more is the acollinearity of the two partons
076001
involved in the parton subprocess. Hence, we expect the
effect to be dependent on the c.m. energy.
II. THE TWO COMPONENT MODEL

Before entering into the technical details about unitar-
ization, it is good to ask (i) where the ‘‘two component’’
structure of Eq. (1) comes from and (ii) why the difference
in the two powers (in s) is approximately one-half.

Let us first remember that the two terms of Eq. (1) reflect
the well known duality between resonance and Regge pole
exchange on the one hand and background and Pomeron
exchange on the other, established in the late 1960s
through finite energy sum rules [20]. This correspondence
meant that, while at low energy the cross section could be
written as due to a background term and a sum of reso-
nances, at higher energy it could be written as a sum of
Regge trajectory exchanges and a Pomeron exchange.

Our present knowledge of QCD description of hadronic
phenomena gives further insight into the nature of these
two terms. We shall start answering the above two ques-
tions through considerations about the bound state nature
of hadrons, which necessarily transcends perturbative
QCD. For hadrons made of light quarks (q) and glue (g),
the two terms arise from q �q and gg excitations. For these,
the energy is given by a sum of three terms: (i) the rota-
tional energy, (ii) the Coulomb energy, and (iii) the ‘‘con-
fining’’ energy. If we accept the Wilson area conjecture in
QCD, (iii) reduces to the linear potential [21,22].
Explicitly, in the c.m. frame of two massless particles,
either a q �q or a gg pair separated by a relative distance r
with relative angular momentum J, the energy is given by

Ei�J; r� �
2J
r
�
Ci ��
r
� Ci�r; (2)

where i � 1 refers to q �q, i � 2 refers to gg, � is the ‘‘string
tension,’’ and the Casimir’s are C1 � CF � 4=3, C2 �
CG � 3. �� is the QCD coupling constant evaluated at
some average value of r and whose value will disappear
in the ratio to be considered. The hadronic rest mass for a
state of angular momentum J is then computed through
minimizing the above energy

Mi�J� � Minr

�
2J
r
�
Ci ��
r
� Ci�r

�
; (3)

which gives

Mi�J� � 2
�����������������������������������
�Ci���2J� Ci ���

q
: (4)

The result may then be inverted to obtain the two sets of
linear Regge trajectories �i�s�

�i�s� �
Ci ��

2
�

�
1

8Ci�

�
s � �i�0� � �

0
is: (5)

Thus, the ratio of the intercepts is given by
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�gg�0�

�q �q�0�
� CG=CF �

9

4
: (6)

Using our present understanding that resonances are q �q
bound states while the background, dual to the Pomeron, is
provided by gluon-gluon exchanges [23], the above equa-
tion can be rewritten as

�P�0�
�R�0�

� CG=CF �
9

4
: (7)

If we restrict our attention to the leading Regge trajectory,
namely, the degenerate ��!�� trajectory, then
�R�0� � � � 0:48–0:5, and we obtain for � �
0:08–0:12, a rather satisfactory value. The same argument
for the slopes gives

�0gg
�0q �q

� CF=CG �
4

9
; (8)

so that, if we take for the Regge slope �0R � 0:88–0:90, we
get �0P � 0:39–0:40, in fair agreement with lattice esti-
mates [24].

We now have good reasons for a breakup of the ampli-
tude into two components. To proceed further, it is neces-
sary to realize that precisely because massless hadrons do
not exist, Eq. (1) violates the Froissart bound and, thus,
must be unitarized. To begin this task, let us first rewrite
Eq. (1) by putting in the ‘‘correct’’ dimensions

�� tot�s� � �1�s=�s�� � �2� �s=s�
1=2; (9)

where we have imposed the nominal value � � 1=2. In the
following, we shall obtain rough estimates for the size of
the parameters in Eq. (9).

A minimum occurs in ��tot�s� at s � �s, for�2 � 2��1. If
we make this choice, then Eq. (9) has one less parameter
and it reduces to

�� tot�s� � �1��s=�s�� � 2�� �s=s�1=2�: (10)

We can isolate the rising part of the cross section by
rewriting the above as

�� tot�s� � �1�1� 2�� �s=s�1=2� � �1��s=�s�� � 1�: (11)

Equation (11) separates cleanly the cross section into two
parts: The first part is a ‘‘soft’’ piece which shows a
saturation to a constant value (but which contains no
rise), and the second is a ‘‘hard’’ piece which has all the
rise. Moreover, �s naturally provides the scale beyond
which the cross sections would begin to rise. Thus, our
‘‘Born’’ term assumes the generic form

�Btot�s� � �soft�s� � #�s� �s��hard�s�; (12)

with �soft containing a constant [the ‘‘old’’ Pomeron with
�P�0� � 1] plus a (Regge) term decreasing as 1=

���
s
p

and
with an estimate for their relative magnitudes (�2=�1 	
2�). We shall assume that the rising part of the cross
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section �hard is provided by jets which are calculable by
perturbative QCD, obviating (at least in principle) the need
of an arbitrary parameter �.

An estimate of �1 may also be obtained through the
hadronic string picture. Equation (3) gives us the mean
distance between quarks or the ‘‘size’’ of a hadronic exci-
tation of angular momentum J in terms of the string tension

�r�J�2 �
2J� CF ��

�
: (13)

So the size R1 of the lowest hadron [which in this Regge
string picture has J � 1, since �R�0� � 1=2] is given by

R2
1 �

1

�
� 8�0: (14)

If two hadrons each of size R1 collide, their effective radius
for scattering would be given by

Reff �
������������������
R2

1 � R
2
1

q
�

���
2
p
R1; (15)

and the constant cross section may be estimated (semiclas-
sically) to be roughly

�1 � 2	R2
eff � 4	R2

1 �
4	
�
� 32	�0; (16)

which is about 40 mb, a reasonable value. In the later
sections, for the soft cross section we shall take a value
of this order of magnitude as the nominal value.

The unitarization now proceeds very simply by eikonal
exponentiation in impact parameter space, as described in
detail in the sections to follow.
III. THE RISE WITH ENERGY

QCD offers an elegant explanation of the rise in the
minijet formalism, as has been pointed out by several
authors in the past [16–18]. The original suggestion was
that the rise of �tot with energy is driven by the rapid rise
with energy of the inclusive jet cross section

�abjet �s� �
Z ��

s
p
=2

ptmin

dpt
Z 1

4p2
t =s
dx1

Z 1

4p2
t =�x1s�

dx2



X
i;j;k;l

fija�x1�fjjb�x2�
d�̂ij!kl�ŝ�

dpt
; (17)

where subscripts a and b denote particles (�; p; . . . ),
i; j; k; l are partons, and x1; x2 the fractions of the parent
particle momentum carried by the parton. ŝ � x1x2s and �̂
are hard partonic scattering cross sections. Note that
d�̂=dpt / p

�3
t ; the cross section defined in Eq. (17) there-

fore depends very sensitively on ptmin, which is supposed
to parametrize the transition from perturbative to nonper-
turbative QCD. The rise of the inclusive jet cross section
with energy is understood in terms of the increasing num-
ber of hard partons, which gives rise to an increasing
probability for the occurrence of hard scattering processes.
-3
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Quantitatively, factorization of QCD allows us to use the
currently available parametrizations of the scale dependent
parton densities and calculate the energy dependence of the
resulting jet cross section, by convoluting the parton den-
sities with the subprocess cross section determined by
perturbative QCD.

For any fixed ptmin, typically 1–2 GeV, one finds that
this cross section is a steeply rising function of energy. If���
s
p
� ptmin, the integral in Eq. (17) receives its dominant

contribution from x1;2 � 1. The relevant parton densities
can then be approximated by a simple power law, f / x�J.
In case of pp or �pp scattering, a � b and the cross section
asymptotically scales like [25]

�jet /
1

p2
tmin

�
s

4p2
tmin

�
J�1

log
s

4p2
tmin

; (18)

if J > 1. For J ’ 1:3, as measured by HERA, the jet cross
section will therefore grow much faster than the total �pp
cross section, which grows only / log2s (Froissart bound
[26]), or, phenomenologically [12] for

���
s
p
 2 TeV,

/ s0:08. Eventually, the jet cross section (17) will therefore
exceed the total �pp cross section. In fact, this rise is far
more violent than the experimentally observed gentle rise
of the total cross section [18,27]. This has led to various
phenomenological strategies (among them the eikonal for-
malism [28]) directed towards softening this rise. The
apparent paradox is solved by the observation that, by
definition, inclusive cross sections include a multiplicity
factor. Since a hard partonic scattering always produces a
pair of (mini)jets, we can write

�abjet � hnjet pairi�
ab
inel; (19)

where hnjet pairi is the average number of (mini)jet pairs per

inelastic collision. �jet
ab > �abinel then implies hnjet pairi> 1,

which means that, on average, each inelastic event contains
more than one hard partonic scatter. The simplest possible
assumption about these multiple partonic interactions is
that they occur completely independently of each other, in
which case njet pair obeys a Poisson distribution. At a
slightly higher level of sophistication, one assumes these
interactions to be independent only at fixed impact parame-
ter b; indeed, it seems natural to assume that events with
small b usually have larger njet pair. This leads to the
eikonal formalism mentioned above.

Convenient and elegant, the eikonal method reduces the
rise of this cross section and allows one to enforce
the requirement of s-channel unitarity. Here one obtains
the total cross section through the eikonal formula

�tot � 2
Z
d2 ~b�1� e�Im
�b;s� cos Re
�b; s��; (20)

and one introduces the jet cross section as the term which
drives the rise in the eikonal function. This can be done
unambiguously by defining the inelastic cross section [29]
076001
given in the eikonal formulation by

�inel �
Z
d2 ~b�1� e�2 Im
�b;s��: (21)

This expression can also be obtained upon summing
multiple collisions which are Poisson distributed with an
average number n�b; s� � 2 Im
�b; s�. Making the ap-
proximation Re
 � 0, one obtains a very simple expres-
sion

�tot � 2
Z
d2 ~b�1� e�n�b;s�=2�: (22)

To proceed further, one needs to introduce the soft pro-
cesses, which cannot be described by perturbative QCD.
Following the separation shown in Sec. II, one can ap-
proximate n�b; s� by introducing a separation between soft
and hard processes as:

n�b; s� � nsoft � nhard � Asoft�b��soft�s� � Ajet�b��jet�s�:

(23)

The separation between hard and soft processes is, of
course, approximate and so is the factorization into energy
and transverse dimension dependence. However, it is use-
ful as it allows one to break down the calculation into
building blocks, which can be separately understood and
put together again later as part of the whole structure.

The procedure of Eq. (20) reduces the fast rise due to the
minijet cross section, but the extent to which this softens
the rise is highly dependent on the impact parameter (b)
dependence of n�b; s�. The simplest [28] ansatz which
introduces a minimum number of parameters is to assume
that the b dependence is the same for both the soft and the
jet component and, further, that it is given by the Fourier
transform of the electromagnetic form factor of the collid-
ing hadron, F �q� [28]. Thus, for protons and antiprotons
one will have

Asoft�b� � Ajet�b� �
1

�2	�2
Z
d2 ~beiq�b�F p�q��2

�
1

�2	�2
Z
d2 ~beiq�b

�
�2

q2 � �2

�
4
: (24)

It is well known [30] that these eikonal minijet models
(EMM) are unable to properly reproduce the experimen-
tally observed, complete rise of the cross section from the
beginning up to the asymptotia, without introducing further
parameters. As an example, results obtained using Eq. (24)
with � � 0:71 GeV2 and current Glück, Reya, and Vogt
parton densities for the proton [31] to calculate the jet cross
sections in Eq. (17) are shown in Fig. 1. One can see from
the figure that a ptmin � 2 GeV is needed, in order to
obtain a numerical value of the total proton cross sections
in the 80 mb range, at Tevatron energies. However, for such
ptmin � 2 GeV, the rise does not begin until

���
s
p

is already
in the 100 GeV region. On the other hand, a smaller value
-4



30

40

50

60

70

80

90

100

10 10
2

10
3

10
4

√s ( GeV )

σ to
t(m

b)

GRV densities

ptmin=2.0 GeV

ptmin=1.6 GeV

ptmin=1.2 GeV

proton-antiproton
UA5
UA1
UA4
CDF
E710
E811

proton-proton

FIG. 1 (color online). Comparison between data [8,32–37]
and the EMM (see text) for different minimum jet transverse
momentum.

SOFT GLUON RADIATION AND ENERGY DEPENDENCE . . . PHYSICAL REVIEW D 72, 076001 (2005)
for the regulator ptmin, typically just above 1 GeV, would
allow for the beginning of the rise around 20–30 GeV, as
the data indicate, but then the cross section rises too rapidly
in comparison with the Tevatron data. In Fig. 1, in all jet
cross sections computed using Eq. (17), we use the strong
coupling constant �s at scale pt. Even at pt � ptmin, this
value for the scale, albeit low, is still in a range where the
asymptotic freedom expression is approximately valid. For
the low energy behavior, all the curves shown in Fig. 1 are
obtained with the same phenomenological fit as in Ref. [1].

Different solutions to the above problems have been
adopted, including energy dependence of the cutoff pa-
rameter ptmin, adding more terms in Eq. (23), or using
Eq. (24) [28,30] with different constants for the low and the
high energy part.

We have taken the approach to keep fixed ptmin (for a
given beam and target combination) and have an energy
dependent overlap function, the energy dependence being
modeled by a QCD motivated calculation. The QCD mo-
tivated model gives a transverse momentum distribution of
the partons which is energy dependent, and this, in turn,
makes our overlap functions energy dependent. We shall
see in the next sections that in this model soft gluon
emission has an effect very similar to that of an energy
dependent ptmin.
IV. ANALYTICITY REQUIREMENTS ON THE
IMPACT PARAMETER DISTRIBUTION

Within the context of QCD, the problem described in the
previous section, sometimes referred to as the soft and hard
Pomeron problem, can have (at least) two different origins.
If complete factorization between the dependence on the
energy

���
s
p

and the impact parameter ~b holds, then the
076001
above mentioned soft and hard Pomeron problem may
simply be taken to be indicative that the s dependence
generated through gluon densities is wrong. On the other
hand, given the fact that gluon densities are measured in
deep inelastic scattering experiments, one may think of an
alternative explanation of the problem. This second, com-
plementary explanation is that not all the s dependence is
due to the jet cross sections and there is further energy
dependence in the impact parameter distribution. Some
general analyticity arguments can be invoked to shed light
on the above and, thus, limit the arbitrariness in the choice
of the function 
�b; s�.

Consider the elastic scattering amplitude Tel�s; t� (with s
and t the usual Mandelstam variables) normalized so that
the total cross section is given by

�tot � 2
Z
d2 ~b�1� e�Im
�b;s� cos Re
�b; s��

�

�
2

s

�
ImTel�s; t � 0�; (25)

and the elastic differential cross section by

d2�el

d2 ~q
�

1

4	2s2 jTelj
2: (26)

Consistently with Eq. (25), one then has

Tel�s; t� � is
Z
d2 ~bei ~q� ~b�1� ei
�b;s��: (27)

For complete absorption, i.e., Re
 � 0, we get

Tel�s; t� � is
Z
d2 ~bei ~q� ~b�1� e�n�b;s�=2�: (28)

Let us briefly examine restrictions imposed on the large
b behavior of the function n�b; s� by the requirements of
analyticity. Consider the Fourier transform of the elastic
scattering amplitude,

A �s; b� �
�i
4	s

Z 0

�1
dtTel�s; t�J0�b

������
�t
p
�; (29)

where t � � ~q2, with ~q the transverse momentum variable.
Equivalently, we have

Tel�s; t� � 	is
Z 1

0
db2J0�b

������
�t
p
�A�s; b�: (30)

The finite range of hadronic interactions implies that the
partial wave expansion converges beyond the physical
region, i.e., throughout the Lehmann ellipse. This requires
that Tel�s; t� be analytic in t up to t � 4�2, where � is the
pion mass. For positive t, we continue the above expression
for

������
�t
p

� iW, with W real and positive. In this ‘‘unphys-
ical’’ region, we have

Tel�s;W
2� � 	is

Z
db2I0�bW�A�s; b

2�: (31)

For large b, I0�bW� 	 e
bW=

�������
2	
p

bW, so that for the inte-
gral to converge, one needs

jA�s; b2�j< e�bWo with Wo ’ 2�: (32)
-5
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In the purely absorptive model �Re
 � 0�, thus,

1� e�n�b;s�=2 < e�bWo=2; (33)

and we see that n�b; s� must be bounded at least by an
exponential. Stronger (but model dependent) constraints
arise provided one imposes that the elastic differential
cross section exhibit a ‘‘diffraction peak.’’ That is,

Tel�s; t� ’ f�s�eb̂�s�t; (34)

where b̂�s� is the so-called width of the diffraction peak,
which has an observed (approximately) logarithmic s de-
pendence. Then Eq. (29) gives

Â�s; b� ’
if�s�
4	s

Z
dq2J0�bq�e�b̂�s�q

2

�
if�s�
2	s

�
1

2b̂�s�

�
e��b

2=4b̂�s��; (35)

which requires a Gaussian falloff of the amplitude in the
impact parameter b, with its scale determined by the width
of the diffraction peak. In the Regge pole description,

b̂�s� 	 �0 ln�s=s0�; f�s� 	 �i�s=so�
1�� (36)

and

A �s; b� ’
�s=so�

�

4	��0so� ln�s=s0�
e��b

2=4�0 ln�s=s0��: (37)

In the EMM, where the impact parameter distribution is
given by the Fourier transform of the proton form factor, a
model we refer to as the form factor (FF) model, one has

n�b; s� �
�2

96	
��b�3K3��b���soft � �jet�: (38)

The modified Bessel functions of the third kind K��z� are
bounded by an exponential at large values of the argument,
i.e., K��z� 	

�����������
	=2z

p
e�zf1�O�1z�g. We see then that the

EMM in the FF formulation does satisfy the requirements
of analyticity in the Lehmann ellipse. But in the EMM, the
observed shrinking of the diffraction peak, corresponding
to an energy dependent near Gaussian falloff, is not
present. Even if one were to introduce an ad hoc energy
dependence (as is often the practice) instead of the constant
scale parameter �, as in the FF model, still one would be
nowhere near the stronger Gaussian decrease at large im-
pact parameter values. This is one reason why the FF
model in the eikonal formulation, where jet cross sections
drive the rise, fails to provide an adequate description of
the overall energy dependence of the total cross section,
without introducing an ad hoc modification of the scale
parameters.

V. THE SOFT GLUON TRANSVERSE MOMENTUM
DISTRIBUTION

The model for the total cross section presented in this
paper is based on the ansatz that QCD provides the main
processes at work leading to the observed energy rise of all
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measured total cross sections. An important motivation of
this model is to make quantitative calculations based on
current QCD phenomenology, namely, current parton den-
sities with their energy momentum dependence, running
behavior of the coupling constant, and soft gluon resum-
mation techniques. Of all these, at present soft gluon
resummation is the one which presents the toughest tech-
nical challenge.

Let us begin by considering the well known function
which describes soft gluon emission from a parton-parton
pair, namely, the soft gluon transverse momentum distri-
bution [38,39]

d2P�K?�
d2K?

� ��K?� �
Z d2 ~b

�2	�2
eiK?�b�h�b�; (39)

with

h�b� �
Z
d3 �ng�k��1� e

�ik?�b�

�
Z d3k

2k0

X
i;j�colors

jj�;i�k�j�;j�k�j�1� e
�ik?�b�; (40)

where d3 �ng�k� is the distribution for single gluon emission
in a scattering process, and j�;i is the QCD current respon-
sible for emission. The above expression has been widely
used to study the initial state transverse momentum distri-
bution in Drell-Yan processes [40,41] as well as W pro-
duction [42,43].

In the limit of large k?b, one can neglect the exponential
term, and the above expression reduces to the well known
Sudakov form factor [44], namely,

h�b� � S�b� �
Z
d3 �ng�k� �

Z d3k
2k0

X
colors

jj�;i�k�j�;j�k�j:

(41)

Introducing the running coupling constant and its asymp-
totic freedom expression, the integration from 1=b up to an
upper limit Q gives [45]

h�b� �
4CF

�11� 2nf=3�
ln
Q2

�2 ln
ln�Q2=�2�

ln�1=b2�2�
: (42)

For small momenta, however, the above expression is
not sufficient to reproduce the observed transverse momen-
tum distribution in various hadronic processes. Thus, an
intrinsic transverse momentum (of Drell-Yan pairs or W
boson or partons, depending on the physical process under
consideration) has to be introduced. The function now
reads [46]

h�b� � b2p2
?int � S�b�; (43)

where the intrinsic transverse momentum p?int is a con-
stant, of the order of a few hundred MeV, parametrized
according to the process under consideration.
-6
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In our model, the function in Eq. (40), in addition to
describing various hadronic transverse momentum effects,
also plays a major role in total cross-section calculations.
Our model for the hadronic transverse momentum distri-
butions due to soft gluon resummation differs in two major
points from what we have just described. Basically, we
focus on the lower and higher limits of integration in
Eq. (40). At the lower limit, since this expression refers
to soft gluons, we suggest that the correct use of this
equation requires one to integrate the gluon momentum
down to k? � 0 and avoid the introduction of ad hoc
quantities such as the intrinsic transverse momentum. At
the upper limit, one needs to specify, for each given pro-
cess, how the maximum soft gluon energy is defined.
However, in order to use the above expression for a believ-
able calculation, a number of points need to be clarified,
namely,
(i) w
hether it makes sense to use a parton picture when
the gluon momenta become close to zero, with the
related question of what the behavior is of the
strong coupling constant �s when one integrates
the gluon momentum down to zero;
(ii) w
hether the emitting particles are quarks or gluons;

(iii) w
hat the constraints are from kinematics upon the

maximum gluon momentum.

We shall discuss some of these issues in detail in the
sections to come; here we comment briefly on these three
points.

Concerning the parton picture, while we use it for the
minijet contribution to the cross section, soft gluon Bloch-
Nordsieck resummation factors out of the LO basic scat-
tering process and is thus independent of parton densities,
involving only the momenta and the QCD coupling be-
tween soft gluons and the emitting partons. On the other
hand, when k? ! 0, this coupling is not an observable
quantity, since it refers to a single soft gluon emission, and
one soft gluon is not an observable quantity (only its
integrated spectrum is). This has two effects: first, one
needs to use a nonperturbative expression for the QCD
coupling constant, since the momenta are so small, and,
second, only the integral of moments of�s will matter. The
infrared behavior of �s is a matter of speculation. We
propose our own model, whose justification rests upon a
Regge description and on the Richardson type potential for
quarkonium. As will be described in the next sections, a
specific form for �s is chosen, singular in the infrared limit
but integrable [1].

Another issue to address relates to the effect of emission
from quarks, valence and sea, and from gluons in the
parton processes. In this paper, we deal only with emission
from the initial valence quarks and use the relevant kine-
matics with their averages. This approximation is justified
by the fact that, relative to the emission from the initial
valence quarks, emission from the gluon legs is to be
considered as emission from internal legs, thus subleading
in infrared terms. A complete calculation should, of course,
076001
include also emission from partons other than the valence
quarks and, hence, mostly the low-x gluons. We expect this
inclusion may eventually increase the softening effect.

To describe the softening effect quantitatively, one needs
to focus on the maximum transverse momentum allowed to
single gluon emission. This quantity is energy dependent,
as one can easily see using the kinematics of single gluon
emission in parton-parton scattering of initial c.m. energy���̂
s
p

. For the process

pi � pj ! gluon� X; (44)

where ŝ � �pi � pj�2 and X is a final state of given mo-
mentum Q, the maximum transverse momentum of the
gluon is given by

qmax�ŝ� �

���̂
s
p

2

�
1�

Q2

ŝ

�
: (45)

If we consider the state X to be the final (mini)jet-jet
system in the inelastic collision contributing to the cross
section, then the above expression depends on the parton
subenergies and on the final state momentum of the jet-jet
system, characterized by a transverse momentum pt �
ptmin, where ptmin is a scale chosen to separate hard and
soft processes. In principle, for each subprocess of given ŝ
and Q2, one should evaluate the function h�b� with the
above qmax. In practice, we use a value for the maximum
transverse momentum allowed to single gluons, which is
averaged over the initial and final parton momenta. This is
shown more explicitly in Ref. [1] and in Sec. VI, but the
result is that, for a given ptmin cutoff in the minijet distri-
bution, for the valence quarks, the scale qmax increases with
the c.m. energy of the hadron-hadron system. This can be
qualitatively understood by considering that the valence
quarks will, on the average, carry a larger energy and can
then shed more soft gluons. Thus, in the picture we present
for hadron-hadron collisions, as the overall energy in-
creases, we have more parton-parton collisions for the
same ptmin (since the number of low x gluons increases)
but also more energy available to soft gluons both from
initial valence quarks and from all the hard partons in
general, and, thus, more of a reduction. It is the balancing
of these two effects which we believe to be responsible for
the observed softer rise of total cross sections.
VI. SOFT GLUON EMISSION AND ENERGY
DEPENDENCE IN THE IMPACT PARAMETER

DISTRIBUTION

In our previous work, we have advocated that a cure for
the difficulty in obtaining the early dramatic rise and the
softer asymptotic behavior simultaneously lies within QCD
itself; viz., the ubiquitous soft gluon emission accompany-
ing all QCD scatterings which can slow down any abrupt
rise in the cross section. To make this quantitative, we put
forward a model for the impact parameter distribution of
-7
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partons in the hadrons, based on the Fourier transform of
the transverse momentum distribution of the soft gluons
emitted in the collisions, as described in the Block-
Nordsieck (BN) summation procedure. This distribution
is energy dependent simply because the maximum energy
allowed to each single emitted soft gluon, in turn, depends
on the energy of the colliding partons. In detail, we have a
picture of parton-parton collisions at all admissible sub-
energy values and with a given transverse momentum due
to initial state radiation. In our model the soft gluon
resummed transverse momentum distribution of partons
in the hadrons and the parton distribution in impact pa-
rameter space are Fourier transforms of each other. In
principle, this formalism could be used to obtain impact
parameter dependent parton densities, but our aim in the
present paper is to obtain a prediction for the total cross
section based on currently used QCD functions and pa-
rameters such as parton densities and �QCD. We thus
follow our previous proposal [1,47] to average out the
behavior of partons in their transverse momentum variable
and arrive at the following expression:

2 Im
�b; s� � n�b; s; qmax; ptmin� � nsoft � njet

� Asoft�b��soft � ABN�b; qmax��jet: (46)

As mentioned earlier, the eikonal formulation provides a
076001
natural framework, in which different contributions to the
total cross section can be resolved into their various struc-
tural elements: The rise is incorporated in njet, and the
decrease and normalization in nsoft. In our previous work,
we had parametrized phenomenologically the soft part and
used perturbative QCD for the jet part. In this paper, we
study whether soft gluon summation can describe the
(experimentally observed) initial decrease in proton-proton
scattering.

For this purpose, we write

n�b; s� � Asoft
BN�soft � A

jet
BN�jet; (47)

with

ABN �
e�h�b;s�R
d2 ~be�h�b;s�

; (48)

where from Eq. (40) we have

h�b; s� �
8

3	

Z qmax

0

dk
k
�s�k2� ln

�
qmax �

���������������������
q2

max � k
2

p
qmax �

���������������������
q2

max � k2
p

�


 �1� J0�kb��; (49)

and qmax depends on energy and the kinematics of the
process [41]. From Eq. (45), the following average expres-
sion for qmax was proposed in our previous paper [1]:
M � hqmax�s�i �

���
s
p

2

P
i;j

R dx1

x1
fi=a�x1�

R dx2

x2
fj=b�x2�

���������
x1x2
p R

1
zmin

dz�1� z�

P
i;j

R dx1

x1
fi=a�x1�

R dx2

x2
fj=b�x2�

R
1
zmin
�dz�

; (50)
with zmin � 4p2
tmin=�sx1x2� and fi=a the valence quark

densities used in the jet cross-section calculation.
M establishes the scale which, on the average, regulates

soft gluon emission in the collisions, whereas ptmin pro-
vides the scale which characterizes the onset of hard
parton-parton scattering. For any parton-parton subprocess
characterized by a ptmin � 1–2 GeV, M has a logarithmic
increase at reasonably low energy and an almost constant
behavior at high energy [1]. The eikonal formalism which
we use to describe the total cross section incorporates
multiple parton-parton collisions, accompanied by soft
gluon emission from the initial valence quarks, to leading
order. Notice that, in this model, we consider emissions
only from the external quark legs. In the impulse approxi-
mation on which the parton model itself is based, the
valence quarks are free, external particles. In this picture,
emission of soft gluons from the gluons involved in
the hard scattering is nonleading. As the energy increases,
more and more hard gluons are emitted, but there is
also a larger and larger probability of soft gluon emission:
The overall effect is a rise of the cross section, tempered
by the soft emission; i.e., the violent minijet rise due to
semihard gluon-gluon collisions is tamed by soft
gluons. Crucial in this model are the scale and the behavior
of the strong coupling constant which is present in the
integral over the soft gluon spectrum. While in the jet
cross section, �s never plunges into the infrared region,
as the scattering partons are by construction semihard,
in the soft gluon spectrum the opposite is true and a
regularization is mandatory. We notice, however, that
here, as in other problems of soft hadron physics [48],
what matters most is not the value of �s�0� but rather its
integral. Thus, all that we need to demand is that �s be
integrable, even if singular [49]. We employ the same
phenomenological expression for �s as used in our pre-
vious works, namely,

�s�k?� �
12	

�33� 2Nf�
p

ln�1� p�k?� �
2p�

: (51)

Through the above, we were able to reproduce the effect of
the phenomenologically introduced intrinsic transverse
momentum of hadrons [49] and, more recently, obtained
a very good description of the entire region where the total
cross section rises [1]. This expression for �s coincides
-8
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with the usual one-loop expression for large values of k?,
while going to a singular limit for small k?. For p � 1 this
expression corresponds to the Richardson potential [50]
used in bound state problems. We see from Eq. (49) that
p � 1 leads to a divergent integral and, thus, cannot be
used. Notice that, presently, in the expression for h�b; s�,
the masses of the emitting particles are put to zero as is
usual in perturbative QCD. Thus, for a convergent integral,
one requires p < 1, and the successful phenomenology
indicated in Ref. [1] gave p � 3=4. However, more study
is needed, especially in the full utilization of the Bloch-
Nordsieck description, before one can completely define
an expression for �s in the infrared limit. A different
possibility is to use a so-called frozen �s model, for which
�s�k

2
?� � 12	=27 ln��k2

? � a
2�2�=�2��. These two ex-

pressions lead to very different large-b behavior of the
function n�b; s� and, in light of the above discussion con-
cerning the shrinking of the diffraction peak, give quite a
different s dependence in the rising region of the total
proton cross section.

In Ref. [1], we presented analytic approximations for the
function h�b; s�, obtaining in the frozen �s case

lim
b!1

h�b;M;�� �
2cF ��s
	

�
1

4
ln�2Mb� � 2 ln�Mb�


 ln�a�b� � ln2�a�b�
�
; (52)

while for the singular case

lim
b!1

h�b;M;�� �
2cF �b
	
�b2�2�p

�
1

8�1� p�

�
2 ln�2Mb�

�
1

1� p

�
�

1

2p

�
2 ln�Mb� �

1

p

��
;

where M � qmax, ��s � 12	=27 lna2, �b � 12	=�33�
2Nf�. From the above, one can see that an approximately
Gaussian limit results in the singular �s case but not in
the frozen case. Indeed, for the singular case, one has, to
the lowest order, limb!1n�b; s� 	 e

�b2p
, i.e., an exact

Gaussian limit for the Richardson potential, which corre-
sponds to p � 1. This provides the theoretical reason why
the entire region where the total cross section rises is well
described by perturbative QCD (jet cross section) com-
bined with Bloch-Nordsieck summation with a singular �s
in the infrared region. In contrast, neither the frozen �s
model nor the FF model are successful there.

Other models for the behavior of �s in the infrared
region and studies of the range of variability of the pa-
rameters used in Eq. (51) will be presented in a forth-
coming publication.

VII. THE DECREASE PRIOR TO THE ONSET OF
MINIJETS

Let us now address the question of the lower energy
range, prior to the rise, using the same phenomenological
076001
and theoretical tools of Ref. [1] but abandoning the FF and
the frozen �s models, which appear to be inadequate. To
study the low energy region, we apply our procedure to
proton-proton scattering, where the absence of resonances
in the s channel and leading Regge poles in the t channel
make the picture remarkably simple. At low energies, say,
before 10 GeV in the proton-proton c.m. system, one
observes a very soft decrease, which converts in a rise at
an energy of � 15 GeV in the c.m. In this low energy
region, we know that gluon densities are still very small
and that (almost) all hard parton-parton scattering takes
place among valence quarks: �jet, as defined through
Eq. (17), is a few thousandths of the observed �tot. In the
breakup of Im
 into a soft and a hard part, the parameter
ptmin separates hard and soft processes, namely, for
pparton
t � ptmin, one counts parton-parton processes as

part of the jet cross section, whereas for pparton
t  ptmin

the process can be counted as part of �soft. Thus, in this
region, we can study the contribution of valence quark
scattering without complications from inelastic gluon-
gluon collisions.

This region then exhibits the effect of soft gluon emis-
sion accompanying gluon exchanges among the valence
quarks. At higher energies, these soft interactions still take
place and are a substantial part of the cross section, but they
will be shielded by the more dramatic behavior of the
perturbative QCD processes, since as the energy increases,
smaller and smaller x values of the gluon densities are
probed and gluon exchanges among gluons start becoming
important. Thus, we must build a piece of the total cross
section which will survive at high energies but which does
not contribute to the rise. To begin with, we start with a
very simple ansatz: that for proton-proton the cross section
�soft is a constant and the slight decrease comes from the
straggling, acollinearity effect of soft gluon emission. We
therefore propose, in the first instance, the following ex-
pression for the average number of soft collisions:

nsoft�b; s� � Asoft
BN�0; (53)

with Asoft
BN calculated through Eqs. (48) and (49), and in-

vestigate whether it is possible to find a constant �0 and a
set of parameters (qmax) which can describe pp scattering
at low energy. For the soft part, the scale qmax corresponds
to the maximum energy allowed to soft gluons accompa-
nying scattering with a final parton transverse momentum
smaller than ptmin. We are dealing with soft emission (for
hard gluons pt > ptmin), and, thus, we expect qmax not to
be larger than 10%–20% of ptmin. This provides an upper
bound for qmax for soft processes.

The observation is then that, for processes contributing
to nsoft, a soft gluon will always carry away less energy
than for those contributing to nhard. The question is how
much lower the allowed energy is. We have proceeded
phenomenologically and found a set of values which, as
will be shown in the last section, can give an acceptable
-9



TABLE I. Average qmax values used for the impact parameter
distribution of the soft part of the eikonal.
���
s
p
�GeV� qsoft

max �GeV�

5 0.19
6 0.21
7 0.22
8 0.23
9 0.235
10 0.24
50 0.24
100 0.24
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FIG. 3. The impact parameter distribution function calculated
for the soft gluon summation model, using the qmax values
described in the text, for various energy values. Solid lines are
for the soft term.
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description for �pp before the rise. These values are shown
in Table I. Notice that, in order to reduce the number of free
parameters, we assume that, at low energies, there is only
one value of qmax, for both hard and soft processes.
However, as the energy increases, the scale characterizing
the soft processes does not grow as the one for the hard
case; the latter is obtained through the kinematics of jet
production in a hard parton-parton scattering. Here we
should expect the scale to start as a slowly increasing
function of s but to become a constant as soon as hard
processes become substantial for

���
s
p
� 10 GeV. This is

necessary; i.e., qmax does not increase indefinitely, because
as the energy available to soft gluons increases, at a certain
point the soft gluons will become hard and then undergo
scattering among themselves.

Clearly, a soft scale not larger than 240 MeV is consis-
tent with our understanding of how a proton is structured, if
we attribute �soft, the soft component, as the cross section
when the scattering protons (and antiprotons) manifest
themselves as a quark and a spin zero diquark. The point
0
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1
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2
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2

10
3

√s ( GeV )

q m
ax

(G
eV

)

qmax for hard processes
and GRV densities

ptmin=1.15 GeV

 qmax
soft

FIG. 2. The maximum transverse momentum allowed (on the
average) for single soft gluon emission as a function of the c.m.
energy of scattering hadrons.
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is that the slopes for meson and baryon Regge trajectories
are justifiably equal only if a baryon is pictured as a quark/
diquark system similar to a meson as a quark/antiquark
system (thus making the string tensions equal). This mode
for the nucleon is soft and diffusely spread over about a
Fermi [51]. Consequently, the soft gluon radiation distri-
bution must be limited (lest it break the system). Thus,
we estimate for the soft process qmax � 1=�1 Fermi� �
0:2 GeV.

With the value of ptmin which gave a smooth description
of the total cross section in Ref. [1], we plot in Fig. 2 the
behavior of qmax as a function of energy, where the upper
curve is the one obtained using Eq. (50), for ptmin �
1:15 GeV, whereas the soft qmax starts with the same value
obtained for the jet term and then is made to become a
constant when it reaches 240 MeV.

With these values for qmax we can now calculate ABN for
both the hard and the soft terms in the eikonal as a function
of the impact parameter b. Both soft and hard ABN are
shown in Fig. 3 for a set of representative c.m. energies,���
s
p
� 5; 10; 50; 100; 500 GeV. Notice that Asoft

BN does not
change for

���
s
p
� 10 GeV, since qmax remains constant.

VIII. NORMALIZATION AND TOTAL CROSS
SECTIONS

In order to obtain the average number of collisions and
thus the total cross sections, the overall normalization
given by �soft has to be determined.

As mentioned in the introduction, we are assuming that
the entire rise is due to �jet. For the proton-proton cross
section, one needs only one further parameter for the non-
perturbative region, namely, a constant �0 which gives the
-10
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normalization of the cross section. As far as the proton-
antiproton cross section is concerned, the rapid decrease
after the resonances is interpreted as dual to the Regge
trajectory exchange, and it should be described by a power
s�R�0��1 � 1=

���
s
p

. Neglecting the real part of the eikonal,
our model is now complete and reads as follows:

�tot � 2
Z
d2 ~b�1� e�Im
�b;s��; (54)

with

2 Im
�b; s� � ABN�b; qsoft
max��

pp; �p
soft

� ABN�b; q
jet
max��jet�s;ptmin�: (55)

We also have

�ppsoft � �0; �p �p
soft � �0

�
1�

2���
s
p

�
: (56)

We find that, in order to properly reproduce the normal-
ization of the cross section, we need a value �0 � 48 mb,
in good agreement with the considerations of Sec. II. We
now show in Fig. 4 the average number of collisions as a
function of b, distinguishing between hard and soft con-
tributions and using the values of qmax shown in Fig. 2. We
show only the low energy region

���
s
p
� 10–100 GeV,

where the transition between soft and hard processes
occurs.

Finally, in Fig. 5 we show the results of our model,
putting all the pieces together, for the total cross section
for proton-proton and proton-antiproton collisions. We see
that the model gives an overall satisfactory description of
the energy behavior of available data.
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FIG. 4. The average number of collisions at
���
s
p
�

10; 100 GeV is plotted for the soft gluon summation model,
using the qmax values described in the text. The dotted-dashed
line corresponds to the jet contribution at

���
s
p
� 10; 100 GeV.
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IX. ENERGY DEPENDENT hb2i IN THE
BLOCH-NORDSIECK MODEL

The energy dependent transverse overlap function ABN,
discussed in the previous sections, can be used to estimate
the energy dependence of the average distance among
partons in the transverse space during a scattering process,
namely,

hb2i �

R
d2 ~bb2�ABN�b; q

soft
max� � ABN�b; q

jet
max��R

d2 ~b�ABN�b; q
soft
max� � ABN�b; q

jet
max��

: (57)

The energy dependence of the average rms distance be-
tween partons so defined is shown in Fig. 6.

One can see from this figure that, for the hard part of the
eikonal in the Bloch-Nordsieck model (dotted curve), the
mean distance between the scattering partons does de-
crease as the energy increases, thereby increasing the
shadowing and taming the rise, as opposed to the form
factor model where hb2i is a constant. This is then further
reflected in a more modest high energy rise for the BN
model as seen in Fig. 5. It is also pleasing to note the
following self-consistency. That is, at low values of

���
s
p

,
values of hb2i are the same for both the soft and the hard
part of the eikonal in both models, as they must, since at
low energy the transverse overlap function from the BN
model is very similar to that from the FF model.

Observations about the need of a shrinkage in the radius
of the proton have been made in Refs. [52,53], where
multiparticle production in hadron-hadron interactions
has been studied in detail in an eikonal Monte Carlo model.
They find that, in the hard multiparton model, a good fit to
the CDF data is obtained if the proton radius is decreased
[54] by about a factor of 1:7, as compared to the form
-11
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factor model. Now the observation has been extended to
photoproduction as well [55].

X. CONCLUSION

In conclusion, we have shown that standard QCD pro-
cesses such as hard parton-parton scattering and soft gluon
076001
emission from valence quarks can account for two salient
features of the total proton-proton cross section, the rise at
high energy and the very gentle decrease at low energy. An
important characteristic of this treatment is that, as the
minijet cross section rises with energy, soft gluon emission
produces an acollinearity of the partons and reduces the
probability of collisions. This affects the cross sections in
two ways: At low energy it produces a very soft decrease in
�pptot and contributes to the faster decrease in �p �p

tot ; at high
energy it tames the rise due to �jet. It is then possible to
have a very small ptmin to see the onset of the rise around
10–20 GeV, without encountering too large a cross section
when the energy climbs into the TeV range and beyond. We
stress that the above behavior is obtained from leading soft
gluon emission from the valence quarks. Subleading emis-
sion from internal gluon legs is not considered here. It is to
be emphasized that singular �s appears necessary for this
purpose, thereby implying that confinement plays a crucial
role in the energy dependence of the total cross section.

Further input is needed to understand the scale or the
normalization, which plays a dominant role in the early
decrease of the proton-antiproton cross section.
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