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The CP asymmetry in the B! KSKSKS decay is being measured by the two B factories. A large
deviation of the CP asymmetry SKSKSKS from �S KS and/or of CKSKSKS from zero would imply new
physics in b! s transitions. We try to put upper bounds on the Standard Model size of these deviations,
using SU(3) flavor relations and experimental data on the branching ratios of various decay modes that
proceed via b! d transitions. We point out several subtleties that distinguish the case of three-body final
states from two body ones. We present several simple relations that can become useful once all relevant
modes are measured accurately enough.
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I. INTRODUCTION

The Belle [1] and Babar [2] experiments have recently
presented their first results on the CP asymmetries in B!
KSKSKS decays. The average of the two measurements is
given by [3]

SKSKSKS � �0:26� 0:34; CKSKSKS � �0:41� 0:22:

(1)

The B! KSKSKS decay is a flavor changing neutral cur-
rent process and, consequently, does not proceed via tree
level diagrams. Within the Standard Model, the b! s
penguin contributions are dominated by a single weak
phase, that is the phase of V�cbVcs. The effects of a second
phase, that is the phase of V�ubVus, are CKM suppressed by
O��2�. Neglecting the latter contributions, and taking into
account that the KSKSKS state is purely CP even [4], the
SM predictions are then as follows:

SKSKSKS � �S KS CKSKSKS � 0; (2)

where, experimentally, S KS � 0:726� 0:037 [3]. These
predictions are valid also in extensions of the SM where the
B0 � �B0 mixing amplitude is possibly affected by new
phases, but the b! s decay amplitudes are not.

In order to understand whether violations of Eq. (2)
signal new physics, it is necessary to estimate or, at least,
put an upper bound on the CKM-suppressed SM contribu-
tions. Such a calculation involves, however, in addition to
the CKM factors, hadronic physics. Currently, no first
principle method for calculating hadronic matrix elements
has been proven to work to a high level of precision.
Furthermore, existing methods (for example, [5–8]) have
only been applied to two body final states, while our
interest here lies in the three-body mode B! KSKSKS.

In this work we use the approximate SU�3� of the strong
interactions to constrain the relevant hadronic matrix ele-
ments [9]. While this method has the advantage of being
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hadronic-model independent, it has the following two
weaknesses. First, SU�3� breaking effects can be of order
30%, so that our results cannot be trusted to better accuracy
than that. Second, since we have no information about the
strong phases that are involved, we make the most con-
servative assumption, whereby all amplitudes interfere
constructively. This leads to upper bounds on the devia-
tions from Eq. (2) that are often much weaker than the
actual deviations expected in the Standard Model. Fur-
thermore, the quality of our upper bounds depends on the
precision of current measurements. Thus, one should not
think of our bounds as estimates of the deviation expected
within the Standard Model. They are only approximate (to
O�0:3�) and, in most cases, very conservative upper bounds
(with the advantage of being model independent).

This type of analysis has been previously applied to CP
asymmetries in decays into two body final states using the
full SU�3� symmetry or into three-body final states using
an SU�2� subgroup [9–14]. For the mode of interest to us,
an SU�2� analysis is not enough. We thus study three-body
decays in the framework of the full SU�3� group.

The analysis of three-body final states involves several
subtleties and technical complications. We have developed
methods to overcome these difficulties that are of more
general applicability than just the KSKSKS mode. As con-
cerns our final results, we find that current experimental
data give no constraint on the CP asymmetry in B!
KSKSKS using only SU�3�. It is possible, however, that
future measurements of branching ratios of a few addi-
tional three-body modes, together with an improvement in
the constraints on a few other, will lead to useful con-
straints. (When we add a rather mild dynamical assumption
to our SU�3� analysis, we do obtain a bound with present
data. The experimental range of the CP asymmetries is
consistent with this bound.)

The plan of this paper is as follows. In Sec. II we
introduce formalism and notations that are specifically
suitable for three-body decays. In Sec. III we explain the
principles of how to obtain SU�3� relations that constrain
the CP asymmetries in three-body decays. In Sec. IV we
focus on the mode of interest, B! KSKSKS, and give a
-1 © 2005 The American Physical Society
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few concrete examples of amplitude relations, as well as a
Table that allows one to derive all relevant relations. We
conclude in Sec. V. Technical details are further discussed
in two appendices. In App. A we derive the relations
between the CP asymmetries and the parameters that we
define in Sec. II, and we justify the approximations that we
use. In App. B we describe the techniques that we devel-
oped to deal with the complicated SU�3� decomposition of
the decay amplitudes. Appendix C contains a list of rele-
vant branching ratios.
II. NOTATIONS AND FORMALISM

In this section we show how to modify and generalize
the analysis of Ref. [9] so that it can be applied to three-
body decays.

Unlike two body decays, the final state in three-body
decays is not uniquely determined by the identity of the
final mesons. Additional quantum numbers (for example,
the momenta) are needed to specify the state. We use
abstract vector notation, e.g. ~AKSKSKS , where the vector
index runs over all possible values for the quantum num-
bers, to describe the various states. The total decay rate is
given by

��B0 ! KSKSKS� �k ~AKSKSKS k
2 : (3)

This equation defines the normalization of the decay am-
plitudes ~Af. The norm in the right hand side of Eq. (3)
represents a sum over all possible final states. If we choose
to describe the different final states using definite linear
momenta, the norm is actually calculated by an integral
over all momentum configurations. We stress that the norm
is the same, no matter which basis we choose to span the
final states with.

In order to derive SU�3� relations, we choose to span the
final states in a basis with definite linear momenta. Our
convention is that the order in which we write the three
final mesons corresponds to their momentum configura-
tion:

jMiMjMki � jMi�p1�Mj�p2�Mk�p3�i: (4)

We further define symmetrized states, jS�f�i, as follows:

jS�M1M1M1�i � jM1M1M1i;

jS�M1M1M2�i �
1���
3
p �jM1M1M2i 	 jM1M2M1i

	 jM2M1M1i�;

jS�M1M2M3�i �
1���
6
p �jM1M2M3i 	 jM2M3M1i

	 jM3M1M2i 	 jM3M2M1i

	 jM2M1M3i 	 jM1M3M2i�:

(5)

In Eq. (5), M1, M2 and M3 stand for different mesons.
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Focussing on the mode of interest to us, namely B0

decay into a final jKSKSKSi state, we note it can proceed
via any of the three �s � �1 transitions whereby a B0

meson decays into jK0K0 �K0i, jK0 �K0K0i or j �K0K0K0i.
Owing to the symmetry of the jKSKSKSi state under
exchange of any two of the final mesons, it can only
come from the totally symmetric combination of the three
states, jS�K0K0 �K0�i. Neglecting CP violation in the neu-
tral kaon mixing (the experimental measurement of "K
guarantees that this approximation is good to O�10�3�),
we have

hKSKSKSjS�K0K0 �K0�i �

���
3

8

s
V�csVcd
jV�csVcdj

; (6)

for every set of values for the momenta p1; p2; p3. There
are two additional combinations of jK0K0 �K0i, jK0 �K0K0i
and j �K0K0K0i which are orthogonal to jS�K0K0 �K0�i.
However, since the projection of these combinations on
jKSKSKSi is zero, we can write

~A KSKSKS �
��������
3=8

p

�V�csVcd�=jV

�
csVcdj� ~AS�K0K0 �K0�: (7)

Within the Standard Model, the violation of CP is
encoded in the complex phases of the CKM elements. It
is therefore convenient, for the purpose of discussing CP
asymmetries, to have the CKM dependence explicit.
Following the discussion above, we thus write the B0 !
KSKSKS decay amplitudes as follows:

~A KSKSKS � �V
�
cbVcs ~a

c
S�K0K0 �K0�

	 V�ubVus ~a
u
S�K0K0 �K0�

�

�
��������
3=8

p

�V�csVcd�=jV�csVcdj�: (8)

Here, and for all other processes discussed below, the
amplitudes for the CP-conjugate processes, B0 ! f, have
the CKM factors complex-conjugated, while the ~au;cf fac-
tors remain the same.

Generalizing [9], we introduce a parameter �:

� �
jV�ubVusj
jV�cbVcsj

~ac
S�K0K0 �K0�

 ~au
S�K0K0 �K0�

k ~ac
S�K0K0 �K0�

k2 ; (9)

where the dot product of complex vectors is defined by ~X 
~Y �

P
�X
�
�Y�. Another useful parameter, j�j, is defined as

follows:

j�j �
jV�ubVusj
jV�cbVcsj

k ~au
S�K0K0 �K0�

k

k ~ac
S�K0K0 �K0�

k
: (10)

We have

j�j

j�j
�

j ~ac
S�K0K0 �K0�

 ~au
S�K0K0 �K0�

j

k ~ac
S�K0K0 �K0�

k  k ~au
S�K0K0 �K0�

k
� 1: (11)

The parameter j�j is the one which can be constrained by
SU�3� relations, and that would lead, through Eq. (11), to a
constraint on j�j.
-2
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FIG. 1 (color online). The upper bound that can be placed on
j�j as a function of the upper bound on j �̂�j, according to Eq. (26).
The three curves correspond to different ways of treating the
weak phase �: � � 59:0�, the experimental central value (solid
black); � 2 
35:9�; 80:1��, the 3� range [20] (dark-gray
dashed); � unconstrained (light-gray dotted).
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The case of two body decays [9] constitutes a specific
example of our more general notation (9), where the vec-
tors are simply one dimensional and, as can be seen from
Eq. (11), j�j � j�j. The way in which � of Ref. [9] is
defined differs, however, by a weak phase factor: �(Ref.
[9]) � ei�� (Eq. (9)) .

Before concluding this section, we introduce one more
definition. Experiments often measure charge-averaged
rates,

��B! f� �
1

2

��B0 ! f� 	 �� �B0 ! �f��; (12)

where �f is the CP-conjugate state of f. For CP eigenstates,
�f � �f. When a single weak phase dominates, the
CP-conjugate rates are equal, ��B0 ! f� � �� �B0 ! �f�,
and there is no reason to make a distinction between
��B! f� and ��B0 ! f�.

III. CONSTRAINING THE CP ASYMMETRIES

As we show in App. A, we can write, to first order in
Re��� and Im���,

�SKSKSKS � S KS � 2 cos2� sin�Re���; (13)

CKSKSKS � �2 sin�Im���: (14)

The significance of the parameter � is that it encodes all
hadronic physics that affects the deviation of �SKSKSKS
from sin2� and of CKSKSKS from zero. The other parame-
ters, � and �, are weak phases that can be determined
rather accurately from other measurements. We learn that
if we are able to put an upper bound, j�j � j�jmax, we will
obtain an unambiguous test of the Standard Model CP
violation by asking whether the relation [9]


�SKSKSKS 	 S KS�= cos2��2 	 C2
KSKSKS

� 4sin2��j�jmax�2

(15)

is fulfilled. As mentioned above, the parameter that appears
in the SU�3� relations is actually j�j. In this and the next
section, we assume that SU�3� is exact, and use it to
constrain j�j.

In order to constrain j ��j we consider �s � 0 decay
amplitudes and write, using our vector notation,

~A f � V�cbVcd ~b
c
f 	 V

�
ubVud ~b

u
f: (16)

SU�3� relations lead to amplitude relations of the form

~a q
S�K0K0 �K0�

�
X
f

X0f ~b
q
f �q � u or c�: (17)

Most generally, in the sum over f, states which are permu-
tations of each other are treated as different states (for
example, K	K��0 and K	�0K� are different states).
However, since the state jS�K0K0 �K0�i is completely sym-
metric, the strongest constraint is obtained from summing
only over completely symmetric terms. Making this choice
075013
for Eq. (17) allows us to rewrite it as follows:

~a q
S�K0K0 �K0�

�
X
f

Xf ~b
q
S�f�: (18)

The Xf’s of Eq. (18) are related to the X0f’s of Eq. (17) by
symmetry factors. Taking the norm of Eq. (17) needs to be
done with care: the sum can involve states with different
symmetry properties, and the corresponding norms have
different meanings. On the other hand, there is no ambi-
guity in taking the norm of Eq. (18). Consequently, we can
write

k ~aq
S�K0K0 �K0�

k�
X
f

jXfj k ~b
q
S�f� k : (19)

We provisionally assume, for simplicity, that �s � �1
decays are dominated by the ~ac terms (this assumption is
justified if j�j is small, see Eq. (10)), while �s � 0 decays
are dominated by the ~bu terms. (Below we obtain our
constraints without making these assumptions, in a fashion
similar to [9].) Then the amplitudes are related to the decay
rates by

jV�cbVcsj k ~a
c
S�K0K0K0�

k�
����������������������������������������������
�8=3���B! KSKSKS�

q
; (20)

jV�ubVudj k ~b
u
S�f� k&

���������������������
��B! f�

q
: (21)
-3
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The inequality in Eq. (21) comes from the fact that we consider the symmetrized state, rather then a generic state, for which
jV�ubVudj k ~b

u
f k�

���������������������
��B! f�

p
. Combining Eqs. (19)–(21), we get

j�j &

��������VusVud

��������X
f

jXfj

����������������������������������������������
��B! f�

�8=3���B! KSKSKS�

s
: (22)

We now proceed without making the assumptions of ~acf- and ~buf-dominance which led to Eqs. (20) and (21) [9]. Instead

of j ��j, we constrain a new parameter, j �̂�j, defined by

j �̂�j2 �
��������VusVud

��������2 kV�cbVcd ~a
c
S�K0K0 �K0�

	V�ubVud ~a
u
S�K0K0 �K0�

k2	kVcbV�cd ~a
c
S�K0K0 �K0�

	VubV�ud ~a
u
S�K0K0 �K0�

k2

kV�cbVcs ~a
c
S�K0K0 �K0�

	V�ubVus ~a
u
S�K0K0 �K0�

k2	kVcbV�cs ~ac
S�K0K0 �K0�

	VubV�us ~au
S�K0K0 �K0�

k2 : (23)

The numerator and denominator of j �̂�j2 are related to charge-averaged rates:

k V�cbVcd ~a
c
S�K0K0 �K0�

	 V�ubVud ~a
u
S�K0K0 �K0�

k2 	 k VcbV�cd ~a
c
S�K0K0 �K0�

	 VubV�ud ~a
u
S�K0K0 �K0�

k2� 2

 X
f

jXfj
���������������������
��B! f�

q !
2

;

(24)

k V�cbVcs ~a
c
S�K0K0 �K0�

	 V�ubVus ~a
u
S�K0K0 �K0�

k2 	 k VcbV
�
cs ~a

c
S�K0K0 �K0�

	 VubV
�
us ~a

u
S�K0K0 �K0�

k2� �16=3���B! KSKSKS�: (25)
Using the measured charge-averaged rates, a constraint on
j �̂�j2 is obtained without any further assumptions.

The j �̂�j and j ��j parameters are related as follows:

j �̂�j2 �
j VusVcdVcsVud

j2 	 j ��j2 	 2 cos�Re�VusVcdVcsVud
��

1	 j ��j2 	 2 cos�Re���
: (26)

The relation (26) is a generalization of the relation in [9],

Eq. (14).1 It has the important property that for �2 & j �̂�j �
1 we get a constraint on j ��j, for any � (of course, within the
allowed range, j�j � j ��j, see Eq. (11)). Since we do not
know the value of �, we should consider the weakest
constraint, which corresponds to Re��� � j�j (the
�VusVcd�=�VcsVud� term is experimentally known to be
real to a good approximation). We show in Fig. 1 the

relation between the upper bound on j �̂�j and the resulting
upper bound on j ��j, for three ranges of the weak phase �.
The weakest bound, which corresponds to Re��� � j ��j

and � � 0, is the curve j �̂�j � �j ��j � �2�=�1	 j ��j�. Note

that the translation from j �̂�j to j ��j is nonlinear, a point
which was not stressed in [9], although it is true there as
well.

IV. SU�3� RELATIONS FOR KSKSKS

The simplest way to find SU�3� relations is to express
the decay amplitudes using invariant SU�3� reduced matrix
elements. While the number of SU�3� independent reduced
1Reference [9] uses the rates ��B0 ! f� to define j�̂j, while we
use the charge-averaged rates ��B! f�. If we leave � uncon-
strained, the resulting upper bound on j ��j is the same, but for
� � 0, our expression gives a stronger bound, as can be seen in
Fig. 1.
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matrix elements in three-body decays is quite large, a
significant simplification is obtained by the fact that we
only consider completely symmetric final states. In par-
ticular, for generic f’s we have 40 independent reduced
matrix elements, while for S�f�’s there are only 7.

By scanning over all possible contractions of the rele-
vant SU�3� tensors, we are able to obtain all matrix element
relations in a systematic way, avoiding the need to discuss
SU�3� properties of tensor products. We give more details
on the calculation in App. B.

The main results of our work are summarized in Table I
where we list the dependence of the symmetrized three-
body decay amplitudes on SU�3� reduced matrix elements.
We give here only B0 and B	 decays, but it is straightfor-
ward to add Bs decays in a similar way. We stress that,
since this table includes only totally symmetric states, it is
only applicable to constrain the totally symmetric final
states such as KSKSKS.

A simple examination of Table I reveals that all the
relations of the form of Eq. (18) involve at least one �s �
0 decay into a final state with an �8 meson. In the exact
SU�3� limit, this corresponds to a state with a final �
meson. We would like to emphasize two points in this
regard:
(1) T
-4
he use of SU�3� relations involving amplitudes
with final �8 and/or �1 mesons was recently
criticized in Ref. [15], on the basis that SU�3� break-
ing effects in this system are large. The phenome-
nological value of the octet-singlet mixing angle is
sin	 � 0:27 [16]. SU�3� breaking in the decay con-
stants is parametrized by 2�fs � fq�=�fs 	 fq� �
0:22 [16]. The breaking effects are thus consistent
with our estimated accuracy of O�0:3�, and are not
O�1�, as suggested in Ref. [15].



TABLE I. SU�3� decomposition of AS�f�. The different blocks
refer to different degrees of symmetrization needed for each
state.

S�f� A1 A2 A3 A4 A5 A6 A7

S�K0 �K0K0� 1 0 0 0 0 0 0
S�K	K��0� 0 1 0 0 0 0 0
S�K0 �K0�0� 0 0 1 0 0 0 0
S��	���0� 0 0 0 1 0 0 0
S�K	�� �K0� 0 0 0 0 1 0 0
S�K��	K0� 0 0 0 0 0 1 0
S�K	K��	� 0 0 0 0 0 0 1
S�K	 �K0�0� 0 �1 0 1 1��

2
p 0 0

S�K0 �K0�	� 0 0 �
���
2
p ���

2
p

0 �1 1
S�K0 �K0�8�

1��
3
p 0 1��

3
p 0 0 0 0

S�K	K��8�
1��
3
p 1��

3
p 2��

3
p � 2��

3
p 0 0 0

S��	���8�
1��
3
p 0 2��

3
p � 1��

3
p

��
2
3

q ��
2
3

q
0

S�K	 �K0�8� 0 � 1��
3
p 0 1��

3
p 1��

6
p 0 0

S��	�0�8� 0 �
��
2
3

q ��
2
3

q
0 1��

3
p 1��

3
p 0

S��	�	��� 0 0 0 0 0 0
���
2
p

S��	�0�0� 0 0 0 0 0 0 1��
2
p

S��0�0�8�
1��
6
p

��
2
3

q
0 � 1��

6
p 0 0 0

S��0�8�8� 0 2
��
2
p

3
2
��
2
p

3 � 5
3
��
2
p 0 0 0

S��	�8�8� 0 �2
3

�2
3

4
3

��
2
p

3 �
��
2
p

3
1��
2
p

S��0�0�0� 0 0 0
��
3
2

q
0 0 0

S��8�8�8�
1��
2
p

��
2
p

3
2
��
2
p

3 � 1��
2
p 0 0 0
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(2) I
f the relevant decays into final states involving �0

are found to be enhanced compared to the corre-
sponding states involving �, then the effects of the
octet-singlet mixing on our results may be signifi-
cant. These effects can, however, be taken into
account by using both � and �0 data, in a way
similar to Ref. [9].
We now present several interesting specific relations.
Note that, since we do not know the values of the strong
phases, in deriving our bounds we must add the various
�s � 0 amplitudes constructively, see Eq. (19). This con-
servative procedure may weaken the bound considerably.
Therefore, relations involving a smaller number of �s � 0
amplitudes are more likely to give strong bounds.

A. A Single �s � 0 Amplitude

There is no amplitude relation of the form of Eq. (18)
that involves only a single �s � 0 decay amplitude of B0

or B	. Such relations would have had the potential to lead
to a tight constraint. Note that, in general, we would still

get an upper bound on, rather than an estimate of, j �̂�j.
The reason is that we consider the symmetrized final state
while experiments measure nonsymmetrized final states.
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However, there exists such a relation involving Bs decays:

~a q
Bd!S�K0K0 �K0�

� ~bq
Bs!S� �K0 �K0K0�

: (27)

This relation is, in fact, due to the U-spin subgroup of
SU�3� and it holds for the nonsymmetrized states as well.
Since in Bs decays the jKSKSKSi state can only come from
jS� �K0 �K0K0�i, in a way similar to Eq. (7), Eq. (27)
implies relations between the Bd ! KSKSKS and Bs !
KSKSKS decay amplitudes, VcsV�cd ~a

q
Bd!KSKSKS

�

V�csVcd ~b
q
Bs!KSKSKS

, leading to

j �̂�j �
��������VusVud

��������
��������������������������������������
��Bs ! KSKSKS�
��Bd ! KSKSKS�

s
: (28)

B. Two �s � 0 Amplitudes

We find a single amplitude relation involving only two
�s � 0 amplitudes:

~a q
S�K0K0 �K0�

�
���
3
p

~bq
S�K0 �K0�8�

� ~bq
S�K0 �K0�0�

: (29)

The fact that we are interested only in symmetrized states
is helpful here in yet another way. Let us write

hS�K0 �K0X�jS�KSKSX�i � �hS�K0 �K0X�jS�KLKLX�i

�
1���
2
p : (30)

(X here can be any meson except K0, �K0, KS or KL.) Since
in B decays the jS�KSKSX�i and jS�KLKLX�i states can
only come from an jS�K0 �K0X�i state, we can write, simi-
larly to Eq. (7),

~A S�KSKSX� � �
~AS�KLKLX� �

1���
2
p ~AS�K0 �K0X�: (31)

Consequently, the relation (29) leads to the following
relation, which is more practical from the experimental
point of view:

~a q
S�K0K0K0�

�
���
6
p

~bqS�KSKS�8�
�

���
2
p

~bq
S�KSKS�0�

: (32)

(KSKS can be replaced by KLKL.) There is yet no mea-
surement of the modes in Eq. (32).

C. Three �s � 0 Amplitudes

We find several amplitude relations which involve three
�s � 0 amplitudes, for example,

~a q
S�K0K0 �K0�

�
���
6
p

~bq
S��0�0�8�

� 2 ~bq
S�K	K��0�

	 ~bq
S��	���0�

:

(33)

At present, the branching ratio B��0�0�� is not yet con-
strained, while B�K	K��0� and B��	���0� have rather
weak upper bounds. For the relation (33) to become useful,
the branching ratio of the first mode must be constrained,
and the bounds on the latter two must be improved.
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D. Measured �s � 0 Amplitudes

There are relations which involve only modes which
have been measured. Given the experimental data in
App. C, the strongest bound is obtained by using the
following relation:

~a q
S�K0K0K0�

� �
���
2
p

~bq
S�K	��K0�

	
���
3
p

~bq
S��	���8�

� ~bq
S��	���0�

�
���
2
p

~bq
S�K	K��	�

	
���
2
p

~bq
S�K0K0�	�

: (34)

Using the definition (23), we get

j �̂�j � 0:22

���
3

8

s � ������������������������������
2B�K	K0���
B�KSKSKS�

s
	

����������������������������
3B��	����
B�KSKSKS�

s

	

���������������������������
B��	���0�

B�KSKSKS�

s
	

�������������������������������
2B�K	K��	�
B�KSKSKS�

s

	

�����������������������������
4B�KSKS�

	�

B�KSKSKS�

s �
� 1:28: (35)

As explained above, we take here the SU�3� limit in
replacing �8 with �. We also use B�S�K0 �K0�	�� �
2B�S�KSKS�	��.

We see that the strongest bound we can currently put on

j �̂�j is too weak to bound j ��j and the CP asymmetries. It is
possible, however, that an improvement in experimental
data, as well as measurements of additional modes, will
eventually lead to a significant bound.

E. Dynamical Assumptions

One can use simplifying dynamical assumptions and
neglect the effect of small contributions from exchange,
annihilation, and penguin annihilation diagrams [17].
Practically, this means that all reduced matrix elements
in which the spectator (the B triplet) is contracted with a
Hamiltonian operator are put to zero. More details are
given in App. B.

Such a simplification does lead to new relations. Most
notably, there is now an amplitude relation involving a
single �s � 0 mode:

~a q
S�K0K0 �K0�

�
���
2
p

~bq
S�K0 �K0�	�

: (36)

This relation leads to the following upper bound:

j �̂�j � 0:22

���
3

2

s ��������������������������
B�KSKS�

	�

B�KSKSKS�

s
� 0:20 ���! j�j � 0:31:

(37)

The observed CP asymmetries are well within this bound.
We conclude that to uncover a signal of new physics with
our methods will require improved experimental data.
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V. CONCLUSIONS

We use the approximate SU�3� flavour symmetry to
constrain the SM pollution and the CP asymmetries in
three-body decays. This is an extension of previous works
that considered two body final states. One important dif-
ference is that two body final states are entirely defined by
the identity of the final mesons, while in three-body decays
additional quantum numbers (such as momenta or angular
momenta) are required to characterize the final state. In the
absence of an experimental spatial analysis, the measured
quantities are always a sum over all possible final states.
On the other hand, the SU�3� relations hold for each final
state separately. The application of SU�3� relations to
three-body final states should therefore be done with care.

The case of B! KSKSKS decay is special since the final
state is symmetric under the exchange of any two mesons.
We showed how this leads to a significant simplification in
the SU�3� analysis, allowing us to consider only final states
with the same symmetry and considerably reducing the
number of independent SU�3� reduced matrix elements.

Still, decomposing the decay amplitudes for three-body
final states into reduced matrix elements with well defined
SU�3� transformation properties is a difficult task in terms
of group theoretical calculation. Since, however, we are
eventually interested only in relations between physical
decay amplitudes, we were able to scan systematically
over all possible reduced matrix elements and find an
independent subset of them. Using this method, our re-
duced matrix elements bear no clean SU�3� interpretation,
but their guaranteed independence is all that matters for the
task of finding amplitude relations. The same method can
be used to simplify other SU�3� calculations where the goal
is obtaining physical amplitude relations.

Whether a numerical upper bound is achieved (and
whether this bound is strong enough to be in conflict
with a measured CP asymmetry) depends on the available
experimental data. Currently, no such bound can be ob-
tained with no additional assumptions, and the bound
which is obtained when additional dynamical assumptions
are used is not strong enough to be in conflict with the
measured CP asymmetry. However, our work shows
which new measurements have the potential to lead to a
constraint.

The hope is that, given more and better experimental
data, three-body decays and SU�3� relations will provide
us with an additional unambiguous test of the SM mecha-
nism of CP violation.
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APPENDIX A: THE � DEPENDENCE OF SKSKSKS
AND CKSKSKS

In order to derive the dependence of CP asymmetries in
B! KSKSKS on �, we work in the basis of states with
definite angular momentum between two of the three final
KS mesons. While it is difficult to write SU�3� relations in
this basis, the advantage of using it is that any basis-state is
manifestly CP even [4]. (In other bases, final states which
are related by CP would have related decay amplitudes
such that only the combinations which correspond to CP
even final states have a nonzero amplitude. The discussion,
however, is much simpler in the basis we choose.)

We denote the various components of the vector ~AKSKSKS
in this basis by A� where � is some collective index which
runs over all possible final states. We define for every final
state the parameter

�� � e�i
B

�A�
A�
; (A1)

where 
B is the phase of the B0 � �B0 mixing amplitude
(see the review on CP violation in [18] and, in particular,
Eq. (58)).

Currently, the experimental time dependent CP asym-
metry is measured with no distinction between various
final KSKSKS states. The expression for the measured
CP asymmetry involves therefore a sum over all final
KSKSKS states:

A KSKSKS�t� �

P
�

�� �B0�t� ! �� �
P
�

��B0�t� ! ��P
�

�� �B0�t� ! �� 	
P
�

��B0�t� ! ��
:

(A2)

Writing

A KSKSKS�t� � SKSKSKS sin��mt� � CKSKSKS cos��mt�;

(A3)

we use the definition (A1) to get

SKSKSKS �

P
�
jA�j

22Im��P
�
jA�j2�1	 j��j2�

; (A4)

CKSKSKS �

P
�
jA�j2�1� j��j2�P

�
jA�j

2�1	 j��j
2�
: (A5)

We can make the CKM dependence of each amplitude
explicit:
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A� � �V
�
cbVcsa

c
� 	 V

�
ubVusa

u
��
�V

�
csVcd�=jV

�
csVcdj�

� Ac��1	 ��ei��; (A6)

where � is the weak phase between V�cbVcs and V�ubVus, and
�� therefore contains only strong phases and is defined by

�� �
��������V

�
ubVus
V�cbVcs

��������a
u
�

ac�
: (A7)

Assuming that j��j is small for every � (we justify this
assumption below), we expand (A4) and (A5) to first order
in j��j:

SKSKSKS � sin2�

P
�
jAc�j2��P
�
jAc�j

2

	 2 cos2� sin�

P
�
jAc�j2��Re����P

�
jAc�j

2 ; (A8)

CKSKSKS � �2 sin�

P
�
jAc�j2Im����P

�
jAc�j

2 : (A9)

At this point, the fact that all final states are CP even plays
an important role as it dictates that �� � 1 for all �.
Switching now to vector notation we haveX

�

jAc�j2 � jV�cbVcsj
2 k ~ac k2; (A10)

X
�

jAc�j2Re���� � jV�cbVcsV
�
ubVusjRe� ~ac  ~au�; (A11)

X
�

jAc�j
2Im���� � jV

�
cbVcsV

�
ubVusjIm� ~a

c  ~au�: (A12)

Using the definition (9) we therefore get Eqs. (13) and (14)
to first order in �.

We still need to justify the expansions (A8) and (A9). In
making it, we assumed that for every � we have j��j< 1.
Unlike in two body decay, the mere smallness of j ��j is not
enough to validate this assumption for every �.
Nevertheless, we show next that the smallness of j ��j does
guarantee that the branching ratio of final states in which
j��j � 1 is constrained by O�j ��j2�. The terms that are
omitted in writing Eqs. (A8) and (A9) are therefore of
O�j ��j2�.

Our starting point is the definition of j ��j, Eq. (10),
leading to

j ��j2 �
jV�ubVusj

2

jV�cbVcsj
2

k ~au k2

k ~ac k2

�
jV�ubVusj

2 k ~au k2

k V�cbVcs ~a
c 	 V�ubVus ~a

u k2 	O�j ��j3�: (A13)
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We divide the index � into two groups: The group S in which j��j are small and the expansions (A8) and (A9) are justified,
and the group S in which j��j � 1 and the expansions are not justified. We are interested in the sum over S only. We have

P
�2 �S

jV�ubVusj
2jau�j2

k V�cbVcs ~a
c 	 V�ubVus ~a

u k2
�

P
�2S

jV�ubVusj
2jau�j2 	

P
�2S
jV�ubVusj

2jau�j2

k V�cbVcs ~a
c 	 V�ubVus ~a

u k2 � j ��j2 	O�j ��j3�: (A14)
However, in the group �S, where jV�cbVcsa
c
�j � jV

�
ubVusa

u
�j,

the full amplitude jA�j2 can be at most 4jV�ubVusa
u
�j

2. We
therefore find that
P
�2 �S

jA�j
2

P
�
jA�j

2
�

4
P
�2 �S

jV�ubVusj
2jau�j

2

k V�cbVcs ~a
c 	 V�ubVus ~a

u k2

� 4j ��j2 	O�j ��j3�: (A15)
One can easily see that omitting these small jA�2Sj
2 terms

from the sums in the expressions (A4) and (A5) corre-
sponds to omitting terms of O�j ��j2� in the expansions (A8)
and (A9).
075013
APPENDIX B: THE SU�3� ANALYSIS

Finding SU�3� amplitude relations can be done system-
atically using tensor methods. We write down the ��;K;��
meson octet as

�P8�
i
j �

1��
2
p �0 	 1��

6
p �8 �	 K	

�� � 1��
2
p �0 	 1��

6
p �8 K0

K� �K0 �
��
2
3

q
�8

0BBB@
1CCCA;

(B1)

and the B meson triplet as

�B3�i � B	 Bd Bs
� �

: (B2)

We combine the �s � 0 and �s � �1 Hamiltonian op-
erators into three rank 3 tensors [17,19]:
��H3�
i�
j
k � �

0 0 0
0 0 0
0 0 0

0@ 1A; �dq 0 0
0 �dq 0
0 0 �dq

0B@
1CA; �sq 0 0

0 �sq 0
0 0 �sq

0B@
1CA�; (B3)

��H�6�
i�
j
k � �

0 0 0
�dq 0 0
�sq 0 0

0B@
1CA; ��

d
q 0 0

0 0 0
0 ��sq �dq

0B@
1CA; ��

s
q 0 0

0 �sq ��dq
0 0 0

0@ 1A�; (B4)

��H15�
i�
j
k � �

0 0 0
3�dq 0 0
3�sq 0 0

0B@
1CA; 3�dq 0 0

0 �2�dq 0
0 ��sq ��dq

0B@
1CA; 3�sq 0 0

0 ��sq ��dq
0 0 �2�sq

0B@
1CA�; (B5)

where �q
0

q � V�qbVqq0 .
Usually, one proceeds by combining all mesons into irreducible representations of SU�3� and contracting the

Hamiltonian operators in all possible ways. This would require a large amount of multiplications of irreducible
representations. Instead, we obtain a set of independent reduced matrix elements by summing systematically over all
possible permutations:X

Permutations p

 X3

i1;i2;i3;i4;i5�1


Ap
3 �P8�

i1
ip1
�P8�

i2
ip2
�P8�

i3
ip3
�B3�ip4

�H3�
i4i5
ip5
	 Ap

�6
�P8�

i1
ip1
�P8�

i2
ip2
�P8�

i3
ip3
�B3�ip4

�H�6�
i4i5
ip5

	 Ap
15�P8�

i1
ip1
�P8�

i2
ip2
�P8�

i3
ip3
�B3�ip4

�H15�
i4i5
ip5
�

!
: (B6)
We remind the reader that the order of the final states
mesons is important as it corresponds to different momen-
tum configurations.

All together there are 120 permutations and therefore
360 parameters (Ap

3 ; A
p
�6
; Ap

15). However, these 360 free
parameters appear in only a small number of combinations
which correspond to independent reduced matrix elements.
Automating the calculation, it is straightforward to obtain
the set of such independent combinations. Using Young
diagrams, we verify that we obtain the correct number
of independent reduced matrix elements. We get 40 inde-
pendent reduced matrix elements: 10 for H3 in the
-8
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Hamiltonian (in other words, there are 10 reduced matrix
elements Ari

3 where ri stands for the 10 different represen-
tations in 8� 8� 8 which have nonzero reduced matrix
elements involving H3), 12 for H�6, and 18 for H15. The
predictive power of the SU�3� symmetry is manifest when
one realizes that there are 95 �s � 0 decays of B	 and B0

decays to which we can relate the 3 �s � �1 modes of
interest (B0 ! K0K0 �K0, K0 �K0K0 and �K0K0K0).

In this work, only totally symmetric final states play a
role. This situation can be used to simplify the analysis. We
replace the combination �P8�

i1
ip1
�P8�

i2
ip2
�P8�

i3
ip3

in Eq. (B6)

with the symmetrized combination:

�P8�
i1
ip1
�P8�

i2
ip2
�P8�

i3
ip3
	 �P8�

i2
ip2
�P8�

i3
ip3
�P8�

i1
ip1

	 �P8�
i3
ip3
�P8�

i1
ip1
�P8�

i2
ip2
	 �P8�

i2
ip2
�P8�

i1
ip1
�P8�

i3
ip3

	 �P8�
i1
ip1
�P8�

i3
ip3
�P8�

i2
ip2
	 �P8�

i3
ip3
�P8�

i2
ip2
�P8�

i1
ip1
: (B7)

Then the number of independent matrix elements is re-
duced to 7. The predictive power is maintained, since there
are 20 symmetrized �s � 0 modes to which we relate the
single B0 ! S�K0K0 �K0� decay amplitude. Note, however,
that the symmetric states are not properly normalized and
so their normalization needs to be introduced by hand (see
Eq. (5)).

Table I lists the independent reduced matrix elements.
The names of the matrix elements (A1, A2 etc.) bear no
significance. The different blocks are divided according to
the form of the symmetrized final state. The symmetrized
states in the table are all normalized.

In this work we also consider a simplifying dynamical
assumption by which we neglect the effect of exchange,
annihilation and penguin annihilation diagram [17]. The
implementation of this assumption is straightforward in
our calculation. One should just drop all permutations in
which the B-meson triplet is contracted with the
Hamiltonian operator. In other words, one takes Eq. (B6)
and drops from the sum all permutations in which p4 � 4
or p4 � 5. When this procedure is applied to the symme-
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trized combination (B7), there are only 5 independent
reduced matrix elements.
APPENDIX C: EXPERIMENTAL DATA

We quote experimental data relevant to three pseudo-
scalar final states. Measurements where resonant contribu-
tions are removed from the sample are denoted by (NR).
The currently measured �s � �1 modes are [3]:

B�KSKSKS� � �5:8� 1:0� � 10�6;

B�K	�	��� � �53:5� 3:5� � 10�6;

B�NR��K	�	��� � �4:9� 1:5� � 10�6;

B�K	K�K	� � �30:1� 1:9� � 10�6;

B�K	KSKS� � �11:5� 1:3� � 10�6;

B��K	��� � �33:4	4:1
�3:8� � 10�6;

B�K0�	��� � �44:9� 4:0� � 10�6;

B�K	���0� � �35:6	3:4
�3:3� � 10�6;

B�K	K�K0� � �24:7� 2:3� � 10�6:

(C1)

The currently measured or constrained �s � 0 modes are
[2,3,18,21]:

B��	���	� � �16:2� 2:5� � 10�6;

B��	���� � �16:6	3:8
�3:4� � 10�6;

B�K	K��	�< 6:3� 10�6;

B�KSKS�	�< 3:2� 10�6;

B�K	 �K0�0�< 24� 10�6;

B�K0K��	�< 21:0� 10�6;

B�K	K��0�< 19� 10�6;

B�K	 �K0���< 18� 10�6;

B�NR���	���0�< 7:3� 10�6:

(C2)
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