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Multigauge-boson vertices and chiral Lagrangian parameters in Higgsless models
with ideal fermion delocalization
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Higgsless models with fermions whose SU�2� properties are ‘‘ideally delocalized,’’ such that the
fermion’s probability distribution is appropriately related to the W boson wave function, have been shown
to minimize deviations in precision electroweak parameters. As contributions to the S parameter vanish to
leading order, current constraints on these models arise from limits on deviations in multi-gauge-boson
vertices. We compute the form of the triple and quartic gauge-boson vertices in these models and show
that these constraints provide lower bounds only of the order of a few hundred GeV on the masses of the
lightest KK resonances. Higgsless models with ideal fermion delocalization provide an example of
extended electroweak gauge interactions with suppressed couplings of fermions to extra gauge bosons,
and these are the only models for which triple-gauge-vertex measurements provide meaningful con-
straints. We relate the multigauge couplings to parameters of the electroweak chiral Lagrangian, and the
parameters obtained in these SU�2� � SU�2� models apply equally to the corresponding five-dimensional
gauge theory models of QCD. We also discuss the collider phenomenology of the KK resonances in
models with ideal delocalization. These resonances are found to be fermiophobic, therefore traditional
direct collider searches are not sensitive to them and measurements of gauge-boson scattering will be
needed to find them.
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I. INTRODUCTION

Higgsless models [1] do just what their name suggests:
they provide electroweak symmetry breaking, including
unitarization of the scattering of longitudinal W and Z
bosons, without employing a scalar Higgs [2] boson. In a
class of well-studied models [3,4] based on a five-
dimensional SU�2� � SU�2� �U�1� gauge theory in a
slice of anti-de Sitter space, electroweak symmetry break-
ing is encoded in the boundary conditions of the gauge
fields. In addition to a massless photon and near-standard
W and Z bosons, the spectrum includes an infinite tower of
additional massive vector bosons (the higher Kaluza-Klein
or KK excitations), whose exchange is responsible for
unitarizing longitudinal W and Z boson scattering [5–8].
The electroweak properties and collider phenomenology of
many such models have been discussed in the literature [9–
16].
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An alternative approach to analyzing the properties of
Higgsless models [17–24] is to use deconstruction [25,26]
and to compute the electroweak parameters �S and �T
[27–29] in a related linear moose model [30]. We have
shown [24] how to compute all four of the leading zero-
momentum electroweak parameters defined by Barbieri et
al. [15] in a very general class of linear moose models.
Using these techniques, we showed [24] that a Higgsless
model whose fermions are localized (i.e., derive their
electroweak properties from a single site on the decon-
structed lattice) cannot simultaneously satisfy unitarity
bounds and precision electroweak constraints unless the
model includes extra light vector bosons with masses
comparable to those of the W or Z.

It has recently been proposed [31–33] that the size of
corrections to electroweak processes may be reduced by
including delocalized fermions. In deconstruction, a delo-
calized fermion is realized as a fermion whose SU�2�
properties arise from several sites on the deconstructed
lattice [34,35]. We examined the case of a fermion whose
SU�2� properties arise from two adjacent sites [34], and
confirmed that (even in that simple case) it is possible to
minimize the electroweak parameter �S by choosing a
suitable amount of fermion delocalization. In subsequent
work [36], we studied the properties of deconstructed
-1 © 2005 The American Physical Society
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2Another interesting example is given in [51].
3The weakened coupling of fermions to KK modes in the case
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Higgsless models with fermions whose SU�2� properties
arise from delocalization over many sites of the decon-
structed lattice. In an arbitrary Higgsless model we showed
that if the probability distribution of the delocalized fer-
mions is related to the W wave function (a condition we
call ‘‘ideal’’ delocalization), in flat space and AdS5 for
example (assuming the absence of brane kinetic energy
terms for the gauge fields)

j �z�idealj
2 /

1

g2
5

�W�z�; �flat space�

j �z�idealj
2 /

1

zg2
5

�W�z�; �AdS5�

then deviations in precision electroweak parameters are
minimized.1 In particular, three (Ŝ, T̂, W) of the four
leading zero-momentum precision electroweak parameters
defined by Barbieri et al. [15] vanish at tree level.

This paper extends our analysis of ideal fermion deloc-
alization in several ways. We compute the form of the
triple and quartic gauge-boson vertices in these models
and relate them to the parameters of the electroweak chiral
Lagrangian. As the symmetry structure of the models
discussed is SU�2� � SU�2�, the chiral Lagrangian pa-
rameters obtained apply equally to the corresponding
five-dimensional gauge theory models of QCD [18,37–
43]. It is also notable that Higgsless models with ideal
delocalization provide an example of a theory in which the
chiral parameters �2 (or L9R) and�3 (or L9L) are not equal.
We discuss the collider phenomenology of the KK reso-
nances in models with ideal delocalization in order to
determine how experiments can constrain them in the
absence of bounds from precision electroweak
measurements.

To begin, we provide additional details of the flat-space
and warped-space SU�2�A � SU�2�B models with brane
kinetic terms that we will study. We then discuss the
wave functions, masses, and couplings of the �, W, and
Z gauge bosons in the model; we also lay the groundwork
for comparing the behavior of brane-localized and ideally
delocalized fermions. We note that the KK resonances
lying above the W and Z bosons are fermiophobic.

In Secs. IV and V we discuss the three-point and four-
point gauge-boson vertices which are crucial to the phe-
nomenology of models with ideal fermion delocalization.
We first calculate the Hagiwara-Peccei-Zeppenfeld-Hikasa
parameters [44] to facilitate comparison with experiment.
We then cast our results into the language of the electro-
weak chiral Lagrangian and find the values of the
Longhitano parameters [45–49], and the corresponding
parameters as defined by Gasser and Leutwyler [50]. We
also provide results for models based on a bulk SU�2�
1The vanishing of �S to leading order for a ‘‘flat’’ fermion
wave function in AdS5, which is approximately related to the W
wave function in that model, was noted also in [3,31].
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gauge theory, and discuss how these are related to those
for an SU�2�A � SU�2�B theory.

We then apply our results to analyze the unusual phe-
nomenology of models with ideally delocalized fermions.
We show that current measurements of triple-gauge-boson
vertices allow the lightest KK resonances above the ob-
served W and Z bosons to have masses of only a few
hundred GeV. Higgsless models with ideal fermion deloc-
alization provide an example of extended electroweak
gauge interactions with suppressed couplings of fermions
to extra gauge bosons, and these are the only models for
which triple-gauge-vertex measurements provide mean-
ingful constraints.2 Moreover, triple-gauge-vertex mea-
surements are the only current source of constraints on
Higgsless models with ideal fermion delocalization—as
mentioned earlier, these models are not constrained by
precision electroweak tests. Nor do existing direct searches
for W0 and Z0 states constrain our models: such searches
assume that the W0 and Z0 are produced and/or decay
through their couplings to fermions—but the KK reso-
nances in models with ideal delocalization are fermiopho-
bic.3 Studies of gauge-boson rescattering [52] will be
needed in order to probe the KK resonances of these
models in more detail. Our conclusions are summarized
in Sec. VII.

II. SU�2�A � SU�2�B HIGGSLESS MODELS

In this section we describe the five-dimensional
SU�2�A � SU�2�B gauge theories, both in flat and warped
spacetime, which give rise to the Higgsless models dis-
cussed in this paper. The moose diagram [30] for the
deconstruction corresponding to these models is shown in
Fig. 1. The fermions derive their SU�2�W properties from a
linear combination4 of all of the SU�2� groups—in a
manner related to the W boson profile as required for ideal
delocalization [36]. For the purposes of the analyses pre-
sented here, we will take the U�1� properties of the fermi-
ons to arise from the single U�1� group. As drawn, this
model does not have an interpretation as a local higher-
dimensional gauge theory; however, the results of this
model agree (up to corrections suppressed by M4

W=M
4
W1

)
with a consistent higher-dimensional theory based on an
SU�2� � SU�2� �U�1� gauge group in the bulk [53].

A. Flat

We begin by considering a five-dimensional SU�2�A �
SU�2�B gauge theory in flat space, in which the fifth
of a flat fermion wave function in AdS5 is noted in [31].
4More precisely, we associate each ordinary fermion with the

lightest (chiral) mode of a corresponding five-dimensional fer-
mion field. Fermion delocalization corresponds to a wave func-
tion of the lightest mode which extends into the bulk.
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FIG. 1. Moose diagram [30] for the deconstruction corre-
sponding to the SU�2�A � SU�2�B models analyzed in this paper.
SU�2� gauge groups are shown as open circles; U�1� gauge group
is shown as a shaded circle. The brane kinetic energy terms are
indicated by the thick circles. The fermions couple to a linear
combination of all of the SU�2� groups, as well as to the single
U�1� group. As drawn, this model does not have an interpretation
as a local higher-dimensional gauge theory; however, the results
of this model agree (up to corrections suppressed by M4

W=M
4
W1

)
with a consistent higher-dimensional theory based on an
SU�2� � SU�2� �U�1� gauge group in the bulk [53].
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dimension (denoted by the coordinate z) is compactified on
an interval of length �R. The action of the gauge theory is
given by

S5D �
Z �R

0
dz
Z
d4x

�
1

g2
5A

�
�

1

4
WAa
��W

Aa
���

�����

�
1

2
WAa
�zWAa

�z ���
�
�

1

g2
5B

�
�

1

4
WBa
��WBa

���
�����

�
1

2
WBa
�zWBa

�z ���
��
; (1)

where a � 1; 2; 3. The boundary conditions for WAa
� and

WBa
� are taken as

@zW
Aa
� �x; z�jz�0 � 0; WB1;2

� �x; z�jz�0 � 0;

@zWB3
� �x; z�jz�0 � 0;

(2)

@z

�
1

g2
5A

WAa
� �x; z� �

1

g2
5B

WBa
� �x; z�

���������z��R
� 0;

�WAa
� �x; z� �WBa

� �x; z��jz��R � 0:
(3)

The boundary conditions at z � 0 explicitly break
SU�2�A � SU�2�B down to SU�2�W �U�1�Y , where we
identify SU�2�W with SU�2�A and hypercharge with the
T3 component of SU�2�B. The boundary conditions at z �
�R break SU�2�A � SU�2�B to their diagonal subgroup;
collectively the boundary conditions leave only electro-
magnetism unbroken. We further introduce SU�2�A and
U�1�Y kinetic terms on the z � 0 brane:

Sz�0�
Z �R

0
dz
Z
d4x

�
�	�z�
�

1

4g2
0

WAa
��WAa

���
�����

�	�z�
�
1

4g2
Y

WB3
��W

B3
���

�����
�
�
!0��: (4)

As the only U�1� gauge symmetry exists on the z � 0
brane, the hypercharge of the fermions arises from cou-
075012
plings localized at this brane (for a discussion of a con-
sistent higher-dimensional gauge theory allowing for ideal
fermion delocalization, see [53]).

The 5D fields WAa
� �x; z� and WBa

� �x; z� can be decom-
posed into KK-modes,

WA1;2
� �x; z� �

X
n

W�n�1;2� �x��AW�n� �z�;

WB1;2
� �x; z� �

X
n

W�n�1;2� �x��BW�n� �z�;

WA3
� �x; z� � ���x��A��z� �

X
n

Z�n�� �x��AZ�n� �z�;

WB3
� �x; z� � ���x��

B
��z� �

X
n

Z�n�� �x��BZ�n� �z�:

(5)

Here ���x� is the photon, and W�n�1;2� �x� and Z�n�� �x� are the
KK towers of the massive W and Z bosons, the lowest of
which correspond to the observed W and Z bosons. The
mode functions �A;BW�n� �z�, �

A;B
Z�n�
�z�, and �A;B� �z� obey the

differential equations

d2

dz2
�A;BW�n� �M

2
W�n��

A;B
W�n�
� 0; (6)

d2

dz2
�A;BZ�n� �M

2
Z�n��

A;B
Z�n�
� 0; (7)

d2

dz2
�A;B� � 0; (8)

and the boundary conditions

�BW�n� �z�jz�0 � @z�
B
��z�jz�0 � @z�

A
��z�jz�0 � 0;

@z�AW�n� �z�jz�0 � �
g2

5A

g2
0

M2
W�n��

A
W�n�
�0�;

@z�AZ�n� �z�jz�0 � �
g2

5A

g2
0

M2
Z�n��

A
Z�n�
�0�;

@z�
B
Z�n�
�z�jz�0 � �

g2
5B

g2
Y

M2
Z�n��

B
Z�n�
�0�;

(9)

and

@z

�
1

g2
5A

�AW�n� �z� �
1

g2
5B

�BW�n� �z�
���������z��R

� 0;

��AW�n� �z� � �
B
W�n�
�z��jz��R � 0;

@z

�
1

g2
5A

�AZ�n� �z� �
1

g2
5B

�BZ�n� �z�
���������z��R

� 0;

��AZ�n� �z� � �
B
Z�n�
�z��jz��R � 0;

@z

�
1

g2
5A

�A��z� �
1

g2
5B

�B��z�
���������z��R

� 0;

��A��z� � �
B
��z��jz��R � 0:

(10)
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Note that the boundary conditions at z � 0 reflect the
presence of the SU�2�A �U�1�Y brane kinetic term Eq. (4).

Substituting Eq. (5) into S5D � Sz�0 and requiring that
the 4D fields W�n�� �x�, Z

�n�
� �x�, ���x� possess canonically

normalized kinetic terms, we see the mode functions are
normalized as

1 �
Z �R

0
dz
�

1

g2
5A

j�AW�n� �z�j
2 �

1

g2
5B

j�BW�n� �z�j
2

�

�
1

g2
0

j�AW�n� �0�j
2; (11)

1 �
Z �R

0
dz
�

1

g2
5A

j�A��z�j
2 �

1

g2
5B

j�B��z�j
2

�
�

1

g2
0

j�A��0�j
2

�
1

g2
Y

j�B��0�j
2; (12)

1 �
Z �R

0
dz
�

1

g2
5A

j�AZ�n� �z�j
2 �

1

g2
5B

j�BZ�n� �z�j
2

�

�
1

g2
0

j�AZ�n� �0�j
2 �

1

g2
Y

j�BZ�n� �0�j
2: (13)

Since the lightest massive KK-modes �n � 0� are identi-
fied as the observed W and Z bosons, we will write

M2
W � M2

W�0�
; M2

Z � M2
Z�0�
; (14)

and

�A;BW � �A;BW�0� ; �A;BZ � �A;BZ�0� : (15)
B. Warped

We will also consider a related model based on
SU�2�A � SU�2�B in a truncated anti-de Sitter space. We
adopt the conformally flat metric

ds2 �

�
R
z

�
2
����dx

�dx� � dz2�; (16)

for the AdS5 space, and require that the coordinate z be
restricted to the interval

R�� e�b=2R0� 	 z 	 R0: (17)

The end point z � R is known as the ‘‘Planck’’ brane,
while z � R0 is referred as the ‘‘TeV’’ brane. We will
assume a large hierarchy between R and R0 (b
 1).

The 5D action of an SU�2� � SU�2� gauge theory in this
warped space is
075012
S5D �
Z R0

R
dz
R
z

Z
d4x

�
1

g2
5A

�
�

1

4
WAa
��WAa

���
�����

�
1

2
WAa
�zWAa

�z ���
�
�

1

g2
5B

�
�

1

4
WBa
��WBa

���
�����

�
1

2
WBa
�zWBa

�z ���
��
; (18)

where a � 1; 2; 3. In order to arrange for nontrivial weak
mixing angle, we further introduce a U�1�Y kinetic term on
the Planck brane (z � R),

SPlanck�
Z R0

R
dz	�z�R�
�

�
Z
d4x

1

g2
Y

�
�

1

4
WB3
��W

B3
���

�����
�
�
!0��:

(19)

As before, the U�1�Y gauge symmetry exists only on the
left-hand (Planck) brane, and the hypercharge couplings of
the fermions therefore arise from couplings localized to
that brane.

The 5D fields WAa
� �x; z� and WBa

� �x; z� can be decom-
posed into KK-modes, exactly as before [see Eqs. (5)].
However, the mode functions �A;BW�n� �z�, �

A;B
Z�n�
�z�, and �A;B� �z�

now obey modified differential equations:

0 � z@z

�
1

z
@z�

A;B
W�n�

�
�M2

W�n��
A;B
W�n�
; (20)

0 � z@z

�
1

z
@z�

A;B
Z�n�

�
�M2

Z�n��
A;B
Z�n�
; (21)

0 � z@z

�
1

z
@z�

A;B
�

�
: (22)

The form of the boundary conditions at the TeV brane, z �
R0, is the same as the form of those at z � �R in the flat
case [Eqs. (10)]. The boundary conditions at the Planck
brane, z � R, are modified from those at z � 0 in the flat
case:

@z�AW�n� �z�jz�R � @z�AZ�n� �z�jz�R � @z�A��z�jz�R � 0;

�BW�n� �z�jz�R � @z�B��z�jz�R � 0;

@z�
B
Z�n�
�z�jz�R � �

g2
5B

g2
Y

M2
Z�n��

B
Z�n�
�R�:

(23)

Note that the boundary condition at z � R reflects the
presence of the U�1�Y brane kinetic term Eq. (19).

Substituting Eq. (5) into S5D � SPlanck and requiring that
the 4D fields W�n�� �x�, Z

�n�
� �x�, and ���x� possess canoni-

cally normalized kinetic terms, we see the mode functions
are normalized as

1 �
Z R0

R
dz
�
R
z

��
1

g2
5A

j�AW�n� �z�j
2 �

1

g2
5B

j�BW�n� �z�j
2

�
; (24)
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1 �
Z R0

R
dz
�
R
z

��
1

g2
5A

j�A��z�j2 �
1

g2
5B

j�B��z�j2
�

�
1

g2
Y

j�B��z � R�j2; (25)

1 �
Z R0

R
dz
�
R
z

��
1

g2
5A

j�AZ�n� �z�j
2 �

1

g2
5B

j�BZ�n� �z�j
2

�

�
1

g2
Y

j�BZ�n� �z � R�j2: (26)

The lightest massive KK-modes �n � 0� are, again, iden-
tified as the observed W and Z bosons.

MULTIGAUGE-BOSON VERTICES AND CHIRAL . . .
III. COUPLINGS, MASSES, AND WAVE
FUNCTIONS

In this section we derive expressions for the couplings,
masses, and wave functions of the photon,W and Z-bosons
for the Higgsless models described above.

A. The photon and the bare weak angles

Let us start with the zero-mode �A;B� , which is identified
as the photon. The solution of the differential equation
Eq. (8) obeying boundary conditions Eqs. (9) and (10) in
the flat case is

�A��z� � �B��z� � constant: (27)

The identical result is obtained in the warped case.
From the normalization conditions in Eqs. (12) and (25),

we find

�A��z���
B
��z��

�
�R

�
1

g2
5A

�
1

g2
5B

��
1

g2
0

�
1

g2
Y

�
��1=2�

�flat�;

(28)

�A��z���B��z��
�
bR
2

�
1

g2
5A

�
1

g2
5B

�
�

1

g2
Y

�
��1=2�

�AdS5�:

(29)

Since �A;B� �z� is the mode function of the photon, these
expressions yield the electromagnetic coupling e:

1

e2
� �R

�
1

g2
5A

�
1

g2
5B

�
�

1

g2
0

�
1

g2
Y

�flat�; (30)

1

e2
�
bR
2

�
1

g2
5A

�
1

g2
5B

�
�

1

g2
Y

�AdS5�: (31)

We can immediately identify quantities c0, s0 that satisfy
the relation

s2
0 � c

2
0 � 1; (32)

and may be interpreted as the cosine and sine of the bare
weak mixing angle:
075012
c2
0 �

g2
0

g2
0 � g

2
Y

; s2
0 �

g2
Y

g2
0 � g

2
Y

�flat�; (33)

c2
0

e2
�

�
bR
2

�
1

g2
5B

�
1

g2
Y

;
s2

0

e2 �

�
bR
2

�
1

g2
5A

�AdS5�:

(34)

The ratio of the left-handed and right-handed squared
couplings will be useful in our later analysis

� �
g2

5B

g2
5A

; (35)

of both the flat and warped cases. For the flat-space model,
we will also find it convenient to define the dimensionless
quantities:

~g 2
5A �

g2
5A

�R
; ~g2

5B �
g2

5B

�R
; (36)

~MW � �RMW; ~MZ � �RMZ; ~z �
z
�R

; (37)

and the ratio of couplings:

� �
g2

0

~g2
5A � ~g2

5B

: (38)
B. The W and Z

From the differential equations (6) and (7), boundary
conditions (9) and (10), and normalization conditions (11)
and (13), we can determine the masses and wave functions
of the W and Z bosons in the flat-space model:

~M 2
W � ��

�
1� 3�

3

�
�2 �O��3�; (39)

�AW�z� � CW

�
1�

1

�1� ��
~z� ~M2

W

�
1

3

�
1� 3�
1� �

�
~z�

1

2
~z2

�
1

6�1� ��
~z3

�
�O� ~M4

W�

�
; (40)

�BW�z� � CW

�
�

1� �

��
~z� ~M2

W

�
2

3
~z�

1

6
~z3

�
�O� ~M4

W�

�
;

(41)

CW � g0

�
1�

1� 3�
6

~M2
W �O� ~M4

W�

�
; (42)

~M2
Z �

�

c2
0

�

�
�

c2

�
2 s4�3� �� � 4s2c2�� c4��� 3�2�

3�

�O��3�; (43)
-5
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�AZ�z� � CZ

�
1�

1

c2
0�1� ��

~z� ~M2
Z

�
s4�3� �� � 4s2c2�� c4��� 3�2�

3c2��1� ��
~z�

1

2
~z2 �

1

6c2�1� ��
~z3

�
�O� ~M4

Z�

�
; (44)

�BZ�z� � �CZ
s2

0

c2
0

�
1� ~M2

Z
s4�1� �� � s2c2�1� �2� � c4��� �2�

�

�

�

�
1�

�

s2
0�1� ��

~z� ~M2
Z

�
s4�3� �� � 4s2c2�� c4��� 3�2�

3s2�1� ��
~z�

1

2
~z2 �

�

6s2�1� ��
~z3

�
�O� ~M4

Z�

�
; (45)

CZ � g0c0

�
1� ~M2

Z
s4�3� 5�� � s2c2�2�� 6�2� � c4��� 3�2�

6�
�O� ~M4

Z�

�
: (46)
Employing the analogous equations (20)–(26) for the
warped-space model yields

�MWR0�2 �
�

4

b

�
1

�1� ��

�
1�

3

2b
1

�1� ��

�
�O

�
1

b3

�
;

(47)

�AW�z� �
e
s0

�
1�

3

8

1

�1� ��

�
2

b

���
1�

1

2

�
ln
z
R
�

1

2

�
�MWz�2

�
1

16

�
ln
z
R
�

5

4

�
�MWz�

4 � � � �

�
;

(48)

�BW�z� �
e
s0
�
�
1�

3

8

1

�1� ��

�
2

b

���
1

2
�MWz�2

�
b
2

�

�
1

16
�MWz�4

�
b
2

�
� � � �

�
; (49)

�MZR0�2 �
1

c2
0

�
4

b

�
1

�1� ��

�
1�

3

2b
1

c2
0

1

�1� ��

�
�O

�
1

b3

�
;

(50)

�AZ�z� � e
c0

s0

�
1�

3

8c2
0

1

�1� ��

�
2

b

���
1�

1

2

�
ln
z
R
�

1

2

�

� �MZz�2 �
1

16

�
ln
z
R
�

5

4

�
�MZz�4 � � � �

�
; (51)

�BZ�z� � e
s0

c0

�
1�

3

8c2
0

1

�1� ��

�
2

b

���
�1�

1

2

�
ln
z
R
�

1

2

�
e2

s2
0

�

g2
Y

�
b
2

��
�MZz�2 �

1

16

�
ln
z
R
�

5

4
�
e2

s2
0

�

g2
Y

�

�
b
2

��
�MZz�

4 � � � �

�
: (52)

C. Fermion profiles

It will also be necessary to introduce the wave function
assumed for the left-handed components of the ordinary
fermions (the right-handed components are assumed to be
localized on the same brane as the localized hypercharge
075012
kinetic energy term). We explore two possibilities, brane-
localized fermions (which are phenomenologically disfa-
vored [24] because this predicts sizeable precision electro-
weak corrections) and ideally delocalized fermions as
defined in [36] (which are favored because they yield small
electroweak corrections).

The profile of the brane-localized fermion is expressed
as (note that we include any relevant metric factors in our
definition of j j2 —see Appendix A)

j Alocalized�z�j
2 � 	�z� �flat�; (53)

j Alocalized�z�j
2 � 	�z� R� �AdS5�; (54)

j Blocalized�z�j
2 � 0 �flat� or �AdS5�: (55)

In contrast, the wave function of an ideally delocalized
fermion is specifically related to the W wave function. For
a flat-space model, the relationship is

j Aideal�z�j
2 � Cideal

�
1

g2
0

	�z� �
1

g2
5A

�
�AW�z�; (56)

j Bideal�z�j
2 � Cideal

1

g2
5B

�BW�z�; (57)

while in an AdS5 model, it is

j Aideal�z�j
2 � Cideal

�
R
z

�
1

g2
5A

�AW�z�; (58)

j Bideal�z�j
2 � Cideal

�
R
z

�
1

g2
5B

�BW�z�: (59)

The constant, Cideal is determined from the fermion nor-
malization condition (see Appendix A)

Z b

a
dzfj Aideal�z�j

2 � j Bideal�z�j
2g � 1; (60)

where the limits of integration �a; b are �0; �R for flat-
space models and �R;R0 for warped-space models, to be
-6
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Cideal � g0

�
1�

�
6
�5� 3��

�
�flat�; (61)

Cideal �
e
s0

�
1�

3

8

1

�1� ��

�
2

b

��
�AdS5�: (62)
D. GF, s2
z, and c2

z

The coupling between the W boson and fermion  is
measured by the overlap integral

gW �
Z b

a
dzfj A�z�j2�AW�z� � j 

B�z�j2�BW�z�g; (63)

where the limits of integration �a; b are �0; �R for flat-
space models and �R;R0 for warped-space models. Given
the forms of the fermion and W-boson wave functions
above, one finds directly that the couplings are as follows:

gW � �AW�z � a� �brane localized�; (64)

gW � Cideal �ideal�; (65)

where a is the z-coordinate of the brane on which the
fermion is localized (0 for flat space; R for AdS5) and
Cideal is the fermion normalization constant from Sec. III C.

The contributions to GF arising from the exchange of
higher-mass KK modes are suppressed in these models
(the KK wave functions are suppressed precisely where the
fermion wave functions are concentrated), and therefore
we can express the Fermi constant to this order as

4
���
2
p

GF �
g2
W

M2
W

: (66)

Drawing on the values of gW and MW from our earlier
discussion, we deduce that

4
���
2
p

GF �
g2

0

�
��R�2f1�O��2�g

�flat; brane localized�;
(67)

4
���
2
p

GF �
g2

0

�
��R�2

�
1�

4

3
�
�

�flat; ideal�; (68)

4
���
2
p

GF �
e2

s2
0

�R0�2
b
4
�1� ��

�
1�O

�
1

b2

��
�AdS5; brane localized�;

(69)

4
���
2
p

GF �
e2

s2
0

�R0�2
b
4
�1� ��

�
1�

3

2

1

�1� ��

�
2

b

��
�AdS5; ideal�:

(70)

Note that in the expressions for brane-localized fermions,
the leading order correction vanishes; this is the �1 term for
075012
the flat-space model and the b�1 term for the warped-space
model.

The standard definition of the weak mixing angle is
given by

s2
Zc

2
Z �

e2

4
���
2
p

GFM
2
Z

: (71)

The deviation of s2
Z from its bare value s2

0 is parametrized
by

s2
Z � s2

0 ��; c2
Z � c2

0 ��: (72)

Since we already have calculated MZ and GF, we are able
to evaluate � for each model directly:

� �
�
3

�
s2

c2 � s2

��
3c2�c2 � s2��� �c4 � 10c2s2 � s4�

� 3�c2 � s2�s2 1

�

�
�flat; brane localized�; (73)

� �
�
3

�
s2

c2 � s2

��
3c2�c2 � s2��� �5c4 � 6c2s2 � s4�

� 3�c2 � s2�s2 1

�

�
�flat; ideal�: (74)

� � �
3

4

s2
0

c2
0 � s

2
0

1

�1� ��

�
2

b

�
�AdS5; brane localized�;

(75)

� �
3

4
s2

0

1

�1� ��

�
2

b

�
�AdS5; ideal�: (76)
E. �S

Ideal fermion delocalization takes its name from the fact
that it is constructed in such a way as to minimize the size
of precision electroweak corrections, as discussed in [36].
For example, the S parameter can be calculated from the
T3-Y correlation function [22,24] arising from Z-exchange,
and we therefore find

1�
�S

4s2
Zc

2
Z

� �
1

e2 �
B
Z�z � a�

Z b

a
dzfj A�z�j2�AZ�z�

� j B�z�j2�BZ�z�g; (77)

where the limits of integration �a; b are �0; �R for flat
space and �R;R0 for warped space. Using the forms of the
wave functions from Secs. III B and III C, we calculate

�S �
8

3
�s2 �flat; brane localized�; (78)

�S � 0�O��2� �flat; ideal�; (79)
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�S � 3s2 1

�1� ��

�
2

b

�
�AdS5; brane localized�;

(80)

�S � 0�O
�

1

b2

�
�AdS5; ideal�: (81)

Note that for ideal delocalization, �S vanishes to leading
order.
IV. MULTI-GAUGE-BOSON VERTICES

A. Triple-gauge-boson interactions: Notation

To leading order, in the absence of CP violation, the
triple-gauge-boson vertices may be written in the
Hagiwara-Peccei-Zeppenfeld-Hikasa triple-gauge-vertex
notation [44]:

LTGV � �ie
cZ
sZ
�1� ��ZW

�
�W

�
� Z

��

� ie�1����W
�
�W

�
� A

�� � ie
cZ
sZ
�1� �gZ1 

� �W���W�� �W
���W�� �Z�

� ie�W���W�� �W
���W�� �A�; (82)

where the two-index tensors denote the Lorentz field-
strength tensor of the corresponding field. In the standard
model, ��Z � ��� � �gZ1 � 0.

In any vector-resonance model, such as the Higgsless
models considered here, the interactions (82) come from
reexpressing the non-Abelian couplings in the kinetic en-
ergy terms in the original Lagrangian [e.g., Eqs. (1) and (4)
or (18) and (19)] in terms of the mass-eigenstate fields. In
this case, one obtains equal contributions to the deviations
of the first and third terms, and the second and fourth terms
in Eq. (82). In addition the coefficient of the fourth term is
fixed by electromagnetic gauge invariance, and therefore in
these models we find

��� � 0 ��Z � �gZ1 : (83)
B. Triple-gauge-boson vertices

We are now ready to calculate the triple-gauge-boson
vertices. In the flat-space case, the relevant integral (using
V to stand for either � or Z) is

gVWW �
Z �R

0
dz
�

1

g2
5A

�AV�z�j�
A
W�z�j

2 �
1

g2
5B

�BV�z�j�
B
W�z�j

2

�

�
1

g2
0

�AV�0�j�
A
W�0�j

2 (84)
075012
while in the warped-space case, one writes instead

gVWW �
Z R0

R
dz
�
R
z

��
1

g2
5A

�AV�z�j�
A
W�z�j

2

�
1

g2
5B

�BV�z�j�
B
W�z�j

2

�
: (85)

By inserting the forms of the gauge-boson wave func-
tions from Secs. III A and III B, we verify that

g�WW � e (86)

in all cases, and find that the ZWW coupling has the forms

gZWW � e
c0

s0

�
1� �

2� 5�� �2 � 2c2�1� ��3

4c2��1� ��

�
�flat�

(87)

gZWW � e
c0

s0

�
1�

5

24

1

c2
0

�1� ��

�1� ��2

�
2

b

��
�AdS5�:

(88)

We use the values of � from Sec. III D to rewrite these
expressions in terms of the weak mixing angle sZ rather
than the bare angle s0:

gZWW � e
cZ
sZ

�
1� �

�7� �� � 6c2�1� ��

12c2�c2 � s2��1� ��

�
�flat; brane localized�;

(89)

gZWW � e
cZ
sZ

�
1�

�

12c2

7� �
1� �

�
�flat; ideal�; (90)

gZWW � e
cZ
sZ

�
1�

1

24

1

c2�c2 � s2�

�
�10c2 � 14� � ��10c2 � 4�

�1� ��2

�
2

b

��
�AdS5; brane localized�;

(91)

gZWW�e
cZ
sZ

�
1�

1

12c2

7�2�

�1���2

�
2

b

��
�AdS5; ideal�:

(92)

The more compact notation c or s is used in an expression
where the difference between employing the bare and
corrected weak angles would cause only higher-order
corrections.

Comparing these results with the form of Eq. (82) in
Sec. IVA, we see immediately that

�gZ1 � ��Z � �
�

12c2

1

�c2 � s2�

�7� �� � 6c2�1� ��
�1� ��

�flat; brane localized�; (93)
-8
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�gZ1 � ��Z �
�

12c2

7� �
1� �

�flat; ideal�; (94)

�gZ1 ���Z�
1

24

1

c2�c2�s2�

�10c2�14����10c2�4�

�1���2

�
2

b

�
�AdS5; brane localized�; (95)

�gZ1 ���Z�
1

12c2

7�2�

�1���2

�
2

b

�
�AdS5; ideal�: (96)

We will relate these results to the values of chiral
Lagrangian parameters in Sec. V and will comment on
the implications of experimental limits on �gZ1 and ��Z
in Sec. VI.

C. Quartic gauge-boson vertices

The quartic W-boson coupling gWWWW is evaluated in
flat space by the overlap integral

gWWWW �
Z �R

0
dz
�

1

g2
5A

j�AW�z�j
4 �

1

g2
5B

j�BW�z�j
4

�

�
1

g2
0

j�AW�0�j
4 (97)

MULTIGAUGE-BOSON VERTICES AND CHIRAL . . .
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and in warped space using

gWWWW �
Z R0

R
dz
�
R
z

��
1

g2
5A

j�AW�z�j
4 �

1

g2
5B

j�BW�z�j
4

�
:

(98)

By inserting the appropriate forms of the W boson wave
functions from Sec. III B, we find

gWWWW �
e2

s2
0

�
1� �

�
s2 �1� ��

2

�

�
7� 38�� 52�2 � 15�3

15�1� ��2

��
�flat� (99)

gWWWW�
e2

s2
0

�
1�

1

24

��9�3�20��11�

�1���4

�
2

b

��
�AdS5�:

(100)

We use the values of � from Sec. III D to rewrite these
expressions in terms of the weak mixing angle sZ rather
than the bare angle s0:
gWWWW �
e2

s2
Z

�
1� �

��18� 16c2� � ��27� 14c2��� �3� 14c2��2

15�c2 � s2��1� ��2

�
�flat; brane localized�; (101)
5In our models, weak isospin violation arises only through
hypercharge and vanishes as gY ! 0. Hence, the coefficients �1
and �6...11 of the chiral Lagrangian operators that include weak
isospin violation which persists in the limit gY ! 0 must vanish
at tree level.

6SU�2�W � SU�2�L and U�1�Y is identified with the T3 part of
SU�2�R.
gWWWW �
e2

s2
Z

�
1�

�
5

6� 9�� �2

�1� ��2

�
�flat; ideal�

(102)

gWWWW �
e2

s2
Z

�
1�

3

4

1

�1� ��
1

c2 � s2

�
2

b

�

�
1

24

��9�3 � 20�� 11�

�1� ��4

�
2

b

��
�AdS5; brane localized�; (103)

gWWWW �
e2

s2
Z

�
1�

3

4

1

�1� ��

�
2

b

�

�
1

24

��9�3 � 20�� 11�

�1� ��4

�
2

b

��
;

�AdS5; ideal�: (104)

We will relate these results to the values of chiral
Lagrangian parameters in Sec. V and will comment on
the phenomenological implications forW-boson scattering
in Sec. VI.

V. CHIRAL LAGRANGIAN PARAMETERS

In studying the phenomenology of our models, it is
useful to make contact with the parametrization afforded
by the effective electroweak chiral Lagrangian. Of the
complete set of 12 CP-conserving operators written
down by Longhitano [45–48,54,55] and Appelquist and
Wu [49], those which apply to our Higgsless models5 are
the following:

L 1 �
1

2
�1gWgYB��Tr�TW��� (105)

L 2 �
1

2
i�2gYB��Tr�T�V�; V�� (106)

L 3 � i�3gWTr�W���V�; V�� (107)

L 4 � �4�Tr�V�V��2 (108)

L 5 � �5�Tr�V�V��2: (109)

HereW��, B��, T � U3Uy, and V� � �D�U�Uy, withU
being the nonlinear sigma-model field6 arising from
-9



TABLE II. Longhitano’s parameters in SU�2� � SU�2� warped
Higgsless models for the cases of the brane-localized fermions
and the ideally delocalized fermions.

AdS5 SU�2� � SU�2�
Longhitano parameters Brane localized Ideally delocalized

e2�1 � 3s2

4
1

�1��� �
2
b� 0

e2�2 � s2

12
7�2�
�1���2

�2b� � s2

12
7�2�
�1���2

�2b�

e2�3 � s2

12
2�7�
�1���2

�2b�
s2

12
7�2�
�1���2

�2b�

e2�4
s2

24
1�9���2

�1���3
�2b�

s2

24
1�9���2

�1���3
�2b�

e2�5 � s2

24
1�9���2

�1���3
�2b� � s2

24
1�9���2

�1���3
�2b�
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SU�2�L � SU�2�R ! SU�2�V , are the SU�2�W-covariant
and U�1�Y-invariant building blocks of the expansion. An
alternative parametrization by Gasser and Leutwyler [50]
gives a different set of names to the coefficients of these
operators:

�1 � L10; �2 � �
1

2
L9R; �3 � �

1

2
L9L; (110)

�4 � L2; �5 � L1: (111)

The chiral Lagrangian coefficients are related to �S and
the Hagiwara-Peccei-Zeppenfeld-Hikasa [44] triple-
gauge-vertex parameters and the quartic W boson vertex
as follows:

�S � �16����1�; (112)

�gZ1 �
1

c2�c2 � s2�
e2�1 �

1

s2c2 e
2�3; (113)

��Z �
2

c2 � s2 e
2�1 �

1

c2 e
2�2 �

1

s2 e
2�3; (114)

��� �
1

s2 ��e
2�1 � e

2�2 � e
2�3�; (115)

gWWWW �
e2

s2
Z

�
1�

2

c2 � s2 e
2�1 �

2

s2 e
2�3 �

1

s2 e
2�4

�
:

(116)

Again, in any vector-resonance model all multigauge ver-
tices arise from reexpressing the non-Abelian couplings in
the kinetic energy terms in the original Lagrangian in terms
of the mass-eigenstate fields. In this case, we find that
�4 � ��5. The leading corrections toWW andWZ elastic
scattering arise from �4;5 [56].

Using these relationships and the values previously de-
rived for �S, �gZ1 , ��Z, ���, and gWWWW , we arrive at
values for the �i in each of the SU�2�A � SU�2�B
Higgsless models we have been considering. The values
are given in Tables I and II. These values are consistent
TABLE I. Longhitano’s parameters in SU�2� � SU�2� flat
Higgsless models for the cases of brane-localized fermions and
ideally delocalized fermions.

Flat SU�2� � SU�2�
Longhitano parameters Brane localized Ideally delocalized

e2�1 � 2
3�s

2 0

e2�2 � 1
12 �

7��
1����s

2 � 1
12 �

7��
1����s

2

e2�3 � 1
12 �

1�7�
1�� ��s

2 1
12 �

7��
1����s

2

e2�4
1
30
�1�14���2�
�1���2 �s2 1

30
�1�14���2�
�1���2 �s2

e2�5 � 1
30
�1�14���2�
�1���2

�s2 � 1
30
�1�14���2�
�1���2

�s2

075012
with several symmetry considerations. First, �2 �
�L9R=2 is the coefficient of an operator that is not related
to the SU�2�W properties of the model; as such, this coef-
ficient should be unaffected by the degree of delocalization
of the SU�2�W properties of the fermions. Indeed, we see
that �2 is the same for both the brane-localized and ideal
fermions. Conversely, we expect the values of �1 and �3 to
be sensitive to the SU�2�W properties of the fermions and
this is observed in our results, yielding examples of theo-
ries in which �2 � �3 (or L9R � L9L). Third, in the limit
where �! 1, the models with brane-localized fermions
should display an A$ B parity; this is consistent with the
fact that �2 � �3 for � � 1. Finally, since ��� � 0, we
find �2 � ��3 for the case of ideal delocalization, in
which �1 � 0.

We have also evaluated the chiral Lagrangian parame-
ters for SU�2� Higgsless models. A flat-space SU�2�model
defined on the interval 0 	 z 	 2�R is simply the � � 1
limit of the SU�2�A � SU�2�B model considered here; the
values of the �i may be read fairly easily from Table I. The
�i for a warped-space SU�2� model are given in Table III.
The points where the derivation of results for the warped-
space SU�2� model differs from the analysis of SU�2�A �
SU�2�B are covered in Appendix B.
TABLE III. Longhitano’s parameters in SU�2� warped
Higgsless models for the cases of brane-localized fermions and
ideally delocalized fermions.

AdS5 SU�2�
Longhitano parameters Brane localized Ideally delocalized

e2�1 � s2

4 �
2
b� 0

e2�2 � s2

12 �
2
b� � s2

12 �
2
b�

e2�3 � s2

6 �
2
b�

s2

12 �
2
b�

e2�4
s2

24 �
2
b�

s2

24 �
2
b�

e2�5 � s2

24 �
2
b� � s2

24 �
2
b�
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VI. COLLIDER PHENOMENOLOGY

A. Triple-gauge vertices

For a model with brane-localized fermions, the nonzero
value of �S provides a strong constraint on the mass of the
lightest KK resonance [24]. However, in models with
ideally delocalized fermions, �S � 0. In these models,
experimental constraints from measurements of the
triple-gauge-boson vertices can provide valuable bounds
on the KK masses.

Currently, the strongest bounds on �gZ1 and ��Z come
from LEP II. The 95% C.L. upper limit (recalling that �gZ1
is positive in our models) is �gZ1 	 0:028 [57]. We can
estimate the degree to which this constrains Higgsless
models with ideal delocalization by considering how
�gZ1 is related to the mass of the lightest KK resonance.

For an SU�2�A � SU�2�B flat-space model, the form of
�gZ1 is shown in Eq. (94) to depend on �. From Eqs. (37)
and (39), we see that � � ��RMW�

2; furthermore, the mass
of the lightest KK resonance is MW1 � 1=2R, indepen-
dent7 of �, so we find that

�gZ1 �
�2

12c2

�
MW

MW1

�
2
�

1

4
�

7� �
1� �

�
(117)

where the factor in square brackets equals 1 for � � 1. In
an SU�2�A � SU�2�B model in AdS5 space, Eq. (96) shows
that �gZ1 depends on b. In this model, 1=b � 1

4 �1� ���
�MWR0�2 and R0 � x1=MW1

(again, independent7 of �)
where x1 � 2:4 is the first zero of the Bessel function J0.
Putting this all together, we have

�gZ1 �
3x2

1

16c2

�
MW

MW1

�
2
�

2

9
�

7� 2�
1� �

�
(118)

where the factor in square brackets equals 1 for � � 1.
Inserting numerical values for MW , c, and x1 and denot-

ing the 95% C.L. experimental upper bound on �gZ1 as
�gmax, we find the bound

MW1
�

��������������������������������������
6900

�gmax

�
1

4
�

7� �
1� �

�s
GeV �flat�; (119)

MW1
�

�����������������������������������������
9100

�gmax

�
2

9
�

7� 2�
1� �

�s
GeV �AdS5�: (120)

The LEP II data therefore implies a 95% C.L. lower bound
of 500 GeV (570 GeV) on the first KK resonance in flat
(warped) space models for � � 1 and lower bounds of
250–650 GeV (380–700 GeV) as � varies from 1 to 0.
7In the limit where g0 � 0 it is straightforward to see that there
are two ways for a KK resonance profile to satisfy the boundary
conditions at z � �R (flat) or z � R0 (warped). Either the profile
can vanish at the boundary, or its z-derivative can vanish there. In
neither case does the mass of the resonance depend on �.

075012
Future experiments will improve the limits on �gZ1 and
��Z significantly. An analysis of WZ production at the
LHC by Dobbs [58] including both systematic and statis-
tical effects finds that with 30 fb�1 of integrated luminosity
it should possible to set a 95% C.L. bound of �0:0086<
�gZ1 < 0:011. The limit on ��Z is expected to be signifi-
cantly looser, as are likely limits from single electroweak
gauge-boson production at LHC [59]. It therefore appears
that LHC would be sensitive to KK resonances up to
790 GeV for a flat-space model and 960 GeV for an
AdS5 space model for � � 1. Reference [60] finds that a
linear electron-positron collider with polarized beams
should be sensitive to both �gZ1 and ��Z. The anticipated
2� upper bounds on �gZ1 are 0.0048 (0.0027) for a
500 GeV (800 GeV) collider; for ��Z the anticipated limit
is 0.000 98 (0.000 42) for a 500 GeV (800 GeV) collider.
Thus, a 500 GeV (800 GeV) linear collider would be
sensitive to a KK resonance of mass up to 2.6 TeV
(4 TeV) in a flat-space model and up to 3.2 TeV
(4.9 TeV) in a warped-space model for � � 1.

A similar analysis reveals that neither the LHC nor a
linear collider [61] will be able to probe the quartic gauge-
boson vertices per se because the masses of the KK reso-
nances required to yield visible values of �4 � ��5 are
similar in magnitude to the relevant subprocess scattering
energies. Rather, one would look directly for resonances in
elastic WW or WZ scattering (as discussed briefly below).

B. Direct searches

It is interesting to note Higgsless models with ideally
delocalized fermions cannot be constrained by direct col-
lider searches for new gauge bosons that rely on the
bosons’ couplings to fermions. As we have seen, the higher
KK resonances are fermiophobic to leading order (their
coupling to fermions is suppressed by M2

W=M
2
W�n�

).
Existing searches for W0 bosons [62] assume that the W0

bosons couple to ordinary quarks and leptons (generally
with SM strength). All assume that the W0 is produced via
these couplings; all but one also assume that the W0 decays
only to fermions and that the W0 ! WZ decay channel is
unavailable. However, by construction, the ideally delocal-
ized fermions in our Higgsless models have no coupling to
the KK resonances W�n�1�. Hence, none of the current
searches apply. Proposed future searches via the Drell-
Yan process at the LHC, or via e�e� ! � ��� [63] and
e�! �q� X [64] at a linear collider, also rely on W0

couplings to fermions and will not apply either.
Likewise, existing direct searches for Z0 bosons [62] rely

on Z0f �f couplings and assume that the decay channel Z0 !
W�W� is not available; as such, they do not constrain the
Z�n�1� of our Higgsless models with ideally delocalized
fermions. Proposed future searches at LHC and the linear
collider that rely on fermionic couplings for production or
decay of the Z0 will not apply either.
-11
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The only way to perform a direct search for the W�n�1�

and Z�n�1� states will be to study WW or WZ elastic
scattering. If no resonances are seen, these processes will
also afford the opportunity to constrain the values of the
chiral Lagrangian parameters �4 and �5. We will comment
further on vector boson scattering in Higgsless models in
future work [56].

VII. CONCLUSIONS

In this paper we have extended the analysis of Higgsless
models with ideal delocalization in several ways. We have
computed the form of the triple and quartic gauge-boson
vertices in these models and related them to the parameters
of the electroweak chiral Lagrangian. As contributions to
the S parameter vanish to leading order, current constraints
on these models arise from limits on deviations in multi-
gauge-boson vertices and these constraints were shown to
provide lower bounds of the order of a few hundred GeVon
the masses of the lightest KK resonances above the W and
Z bosons. We also studied the collider phenomenology of
the KK resonances in models with ideal delocalization. We
showed that these resonances are fermiophobic—therefore
traditional direct collider searches are not sensitive to them
and measurements of gauge-boson scattering will be
needed to find them.
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APPENDIX A: NORMALIZATION OF FERMION
WAVE FUNCTION

The 5D action of the @��� portion of the fermionic
kinetic term takes the following form [65]:

i
Z
d4xdzN �z� ���x; z���@���x; z�; (A1)

whereN �z� is the factor which is determined from
���
g
p

and
the ‘‘fünfbein’’ in the specific metric. [N �z� � �Rz�

4 for the
case of warped metric.]

Gauge invariance requires that the coupling of fermionic
current to the gauge boson W��x; z� takes the form ofZ

d4xdzN �z� ���x; z���W��x; z���x; z�: (A2)

The KK-decomposition of W��x; z� and ��x; z� are ex-
075012
pressed as follows:

W��x; z� �
X
n

W�n�� �x��W�n� �z�; (A3)

��x; z� �
X
n

 �n��x�� �n� �z�: (A4)

If we require the 4D fermion kinetic term be canonically
normalized, � �n� �z� must be normalized by the following
condition: Z

dzN �z�j� �n� �z�j
2 � 1: (A5)

In this case, couplings of the fermion zero-mode  �0��x� to
W�n�� bosons are expressed as follows:

gW�n� �
Z
dzN �z�j� �0� �z�j

2�W�n� : (A6)

Since weight function N �z� appears in both Eqs. (A5) and
(A6), it is convenient to include N �z� in the definition of
fermion wave function:

j �z�j2 � N �z�j� �0� �z�j
2: (A7)

Then, the normalization condition and couplings are ex-
pressed as follows: Z

dzj �z�j2 � 1; (A8)

gW�n� �
Z
dzj �z�j2�W�n� : (A9)

The orthonormal conditions for �W�n� are given byZ
dzNW�z��W�n��W�m� � 	n;m; (A10)

therefore the profile of ideally delocalized fermion is ex-
pressed as

j ideal�z�j
2 / NW�z��W�0� �z�; (A11)

where the overall normalization constant is determined
from Eq. (A8).
APPENDIX B: SU�2� MODEL IN AdS5

This appendix sketches the analysis of the SU�2�
Higgsless modes in warped space, focusing on where it
differs from that of the SU�2� � SU�2�models discussed in
the text. We start from the 5D action of an SU�2� gauge
theory, using the AdS5 metric of Eq. (16)

S5D �
Z R0

R
dz

R

zg2
5

Z
d4x

�
�

1

4
������Wa

��W
a
��

�
1

2
���Wa

�zWa
�z

�
: (B1)
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The boundary conditions are taken as

@zW1;2;3
� �x; z�jz�R � 0; W1;2

� �x; z�jz�R0 � 0;

@zW
3
��x; z�jz�R0 � 0;

(B2)

in order to make the theory consistent with the standard
model symmetry breaking structure SU�2� �U�1� !
U�1�. To ensure a nontrivial weak mixing angle, we further
introduce a brane kinetic term at z � R0,

STeV �
Z R0

R
dz

1

g2
Y

	�z� R0 � 
�

�
Z
d4x

�
�

1

4
������W3

��W
3
��

�
; �
! 0��:

(B3)

We also assume that the U�1�Y fermion coupling is local-
ized at the z � R0 brane.

The 5D field W��x; z� can be decomposed into
KK-modes, whose mode functions � obey differential
equations and z � R boundary conditions identical to
those of �AW in the SU�2� � SU�2� model. The z � R0

boundary conditions,

0 � �W�n��z�jz�R0 ; 0 � @z���z�jz�R0 ;

0 � @z�Z�n��z� �
R0

R
g2

5

g2
Y

M2
Z�n��Z�n��z�

��������z�R0
;

(B4)

reflect the hypercharge brane kinetic term.
The expressions for e, ��, and s0 are obtained just as in

the main text, and differ only in the absence of terms
involving g2

5B.
The W boson mass is found to be

�MWR
0�2 �

4

b

�
1�

3

2b

�
�O

�
1

b3

�
(B5)

and the profile is

�W�z� �
e
s0

�
1�

3

8

2

b

��
1�

1

2

�
ln
z
R
�

1

2

�
�MWz�

2

�
1

16

�
ln
z
R

�
�MWz�4

�
: (B6)

Note that, as one would expect, this mass and profile agree
with those of WA in the SU�2� � SU�2� model when one
sets � � 0. The mass and profile of the Z boson can like-
wise be obtained:

�MZR0�2 �
4

b
1

c2
0

�
1�

1

2b

�
3�

s2
0

c2
0

��
�O

�
1

b3

�
; (B7)

�Z�z� � e
c0

s0

�
1�

3

8c2
0

2

b

��
1�

1

2

�
ln
z
R
�

1

2

�
�MZz�2

�
1

16

�
ln
z
R

�
�MZz�4

�
: (B8)
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These reflect the influence of a hypercharge brane kinetic
term at z � R0 rather than at z � R0.

The calculations of the fermion profiles, gW and GF,
follow the route laid out in the main text. For brane-
localized fermions, these quantities depend only on �AW
in the SU�2� � SU�2� model and taking the � � 0 limit
yields their values in the SU�2� model. For ideally delo-
calized fermions, we find

Cideal � gW � �4
���
2
p

GFM
2
W

1=2 �
e
s0

�
1�

1

8

2

b

�
: (B9)

The value of � relating s0 to sZ is

� � �
s2

4

3c2 � s2

c2 � s2

2

b
�brane localized�; (B10)
� � �
s2

4

2

b
�ideal�: (B11)

Performing the appropriate integrals yields the multi-
gauge-boson vertex couplings

g2
�WW � e2; (B12)
g2
ZWW �

c2
0

s2
0

e2

�
1�

5

12c2

2

b

�
; (B13)
gWWWW �
e2

s2
0

�
1�

11

24

2

b

�
; (B14)

and, after applying Eq. (B10) and (B11), the Hagiwara-
Peccei-Zeppenfeld-Hikasa parameters emerge:

��� � 0; �gZ1 � ��Z � �
1� c2

12c2�c2 � s2�

2

b

�brane localized�;

(B15)
��� � 0; �gZ1 � ��Z �
1

12c2

2

b
�ideal�:

(B16)

From these, the values of the �i listed in Table III are
readily derived. Note that �4 � ��5 matches the � � 0
value for the warped SU�2� � SU�2� model because
gWWWW depends only on �AW in the SU�2� � SU�2� model
at � � 0.
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