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The possible discovery of the �� pentaquark has motivated a number of studies of its nature using
lattice QCD. While all the analyses thus far have focused on spin- 1

2 states, here we report the results of the
first exploratory study in quenched lattice QCD of pentaquarks with spin 3

2 . For the spin- 3
2 interpolating

field we use a product of the standard N and K� operators. We do not find any evidence for the standard
lattice resonance signature of attraction (i.e., binding at quark masses near the physical regime) in the
JP � 3

2
� channel. Some evidence of binding is inferred in the isoscalar 3

2
� channel at several quark

masses, in accord with the standard lattice resonance signature. This suggests that this is a good candidate
for the further study of pentaquarks on the lattice.

DOI: 10.1103/PhysRevD.72.074507 PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw
I. INTRODUCTION

The recent reported observations of the strangeness �1
pentaquark, ��, having minimal quark content uudd �s,
have led to a tremendous effort aimed at understanding
its properties both experimentally and theoretically. Many
model studies and phenomenological analyses have ex-
plored various aspects of its structure and production
mechanisms, and have at the same time have revealed a
number of challenges for its interpretation as an exotic
resonance with a particularly narrow width (for recent
experimental reviews see Refs. [1–4]).

To tackle this problem from first principles in QCD, a
number of lattice studies have recently been undertaken
[5–16]. These have used various local spin- 1

2 interpolating
fields (either NK-type or diquark-diquark- �s type), and, in
the case of Ref. [15], also nonlocal fields. Several of these
studies have interpreted their results as indicating the
presence of a resonance, while others report signals which
are consistent with NK scattering states.

A major challenge in the lattice studies has been the
identification of a resonance state from the NK scattering
states. Several groups have sought to distinguish the reso-
nance and scattering states by comparing the masses at
different volumes [8,11,12,14,15]. The volume depen-
dence of the residue of the lowest lying state has also
been proposed as a way to identify the nature of the state
[8,14]. Alternatively, hybrid boundary conditions have
been used in Refs. [9,10] to differentiate the resonance in
the negative parity channel from the S-wave NK scattering
state.

In Ref. [5] we employed a complimentary approach to
investigate spin- 1

2 pentaquark resonances by searching for
evidence of sufficient attraction between the constituents
of the pentaquark state such that the resonance mass be-
comes lower than the sum of the free decay channel
05=72(7)=074507(10)$23.00 074507
masses. We labeled this pattern as ‘‘the standard lattice
resonance signature’’ because this signature is observed for
conventional baryon resonances studied on the lattice [17–
21]. By comparing the masses of the spin- 1

2 five-quark
states to the mass of the decay channel we found no
binding at any quark mass and hence no evidence for
such attraction. The absence of binding cannot be used to
exclude the possibility of a resonance, as the attractive
forces simply may not be strong enough to provide bind-
ing. On the other hand, the presence of binding would
provide a compelling resonance signature warranting fur-
ther study.

One of the major puzzles in pentaquark phenomenology
has been the anomalously small width ( & 1 MeV) ob-
served in the experiments which have produced a positive
signal. A possible explanation for this may be that if the
pentaquark has JP � 3

2
�, its decay to N � K must be via a

D-wave, which would consequently be suppressed. In this
paper we therefore extend the analysis of Ref. [5] to spin- 3

2

pentaquarks. We examine both the positive and negative
parity states, in both the isoscalar and isovector channels.
In Sec. II we describe the interpolating field and outline the
lattice techniques employed in this analysis. The results are
presented in Sec. III, where we discuss in detail the mass
splittings between the pentaquark and two-particle scatter-
ing states. Finally, conclusions and suggestions for future
work are summarized in Sec. IV.
II. LATTICE DETAILS

A. Interpolating fields

The simplest NK-type interpolating field used in lattice
simulations, referred to in Ref. [5] as the ‘‘ color-singlet’’
NK field, has the form:
-1 © 2005 The American Physical Society
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�NK �
1���
2
p �abc�uTaC�5db�fuc� �sei�5de� � �u$ d�g; (1)

where the � and � corresponds to the isospin I � 0 and 1
channels, respectively. This field has spin 1

2 , and transforms
negatively under the parity transformation q! �0q.

One can access spin- 3
2 states by replacing the spin-0

K-meson part of �NK with a spin-1 K� vector meson
operator,

��NK� �
1���
2
p �abc�uTaC�5db�fuc��sei��de� � �u$ d�g;

(2)

where again the � and � corresponds to the isospin I � 0
and 1 channels, respectively. The field ��NK� transforms as a
vector under the parity transformation, and has overlap
with both spin- 1

2 and spin- 3
2 pentaquark states. States of

definite spin can be projected from ��NK� by applying
appropriate projectors, as discussed in the next section.

B. Lattice techniques

The masses of the spin- 1
2 and spin- 3

2 pentaquark states
are obtained from the two-point correlation function

G ���t; ~p� �
X
~x

exp��i ~p � ~x�h0jT���x� ����0�j0i: (3)

To project states of definite spin from the correlation
function G���t; ~p� we apply the spin projection operators
[19]

P3=2
�� �p��g���

1

3
�����

1

3p2 �� �p��p��p���� �p�;

P1=2
�� �p��g���P

3=2
�� �p�; (4)

for spin- 3
2 and 1

2 , respectively.
The spin-projected correlation function receives contri-

butions from both positive and negative parity states. The
use of fixed boundary conditions in the time direction
enables states of definite parity to be projected using the
matrix [18,22]

�� �
1

2

�
1	

MB	

EB	
�4

�
; (5)

for negative and positive parities, respectively. We note
that this differs from that of Ref. [19], where interpolating
fields transforming as pseudovectors, in accord with the
Rarita-Schwinger spinor-vectors, were used. Masses of
states with definite spin and parity can then be obtained
from the spinor trace of the spin and parity projected
correlation functions,
074507
G�t; ~p� � trsp
�G���t; ~p�P
���p��

�
X
B

�B ��B exp��EBt�

�
t!1

�0 ��0 exp��m0t�:

(6)

This function is a sum over all states, B, with energy EB,
and ��B and �B are the couplings of the state B to the
interpolating fields at the source and sink, respectively.
Note that as in Ref. [19], we consider the case � � 3 to
reduce the computational cost of the calculation.

Since the contributions to the two-point function are
exponentially suppressed at a rate proportional to the en-
ergy of the state, at zero momentum the mass of the lightest
state, m0, is obtained by fitting a constant to the effective
mass,

Meff�t� � ln
�

G�t; ~0�

G�t� 1; ~0�

�

�
t!1

m0:

(7)

Following our previous work [5], we search for evidence
that the resonance mass has become smaller than the sum
of the free decay channel mass for pentaquark states cre-
ated by the interpolating field ��NK� . For this purpose it is
useful to define an effective mass splitting. For example, in
an S-wave decay channel,

�Meff�t� � Meff
5q �t� � �M

eff
B �t� �M

eff
M �t��

�
t!1

m5q � �mB �mM�;
(8)

where Meff
B �t� and Meff

M �t� are the appropriate baryon and
meson effective masses for a specific channel. For a
P-wave decay channel, the effective masses are combined
with the minimum nontrivial momentum on the lattice,
2�=L, to create the effective energy, Eeff�t� ���������������������������������������������
�Meff�t��2 � �2�=L�2

p
, for each decay particle, where L

is the lattice spatial extent. The advantage of this technique
is that it measures a correlated mass difference, thereby
suppressing the sensitivity to systematic uncertainties
(such as using different fitting ranges). Moreover, correla-
tions in the effective masses can cancel, leading to a more
accurate determination of the mass splitting.

As an example of a lattice signature of a resonance, we
consider the mass splitting between the JP � 3=2� �
baryon and the energy of the P-wave N � � decay chan-
nel. In Fig. 1 the typical resonance signature is clearly seen,
where the � is bound on the lattice at heavier than physical
quark masses, because of its lower energy compared with
the free decay channel.

For a pentaquark resonance we shall apply the same
criteria, and consider the mass splittings between the pen-
taquark state and the corresponding baryon and meson free
two-particle scattering states. The signal we are searching
for is evidence of a pentaquark bound state at quark masses
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TABLE I. Lowest energy decay channels for each pentaquark
state on the lattice, where the � baryon is bound.

I�JP� Decay channel

0; 1�12
�� S-wave N � K

0; 1�12
�� P-wave N � K

0�32
�� S-wave N � K�

0�32
�� P-wave N � K

1�32
�� S-wave �� K

1�32
�� P-wave N � K

FIG. 1 (color online). Mass difference between the I�JP� �
3
2 �

3
2
�� ��1232� and the P-wave N � � decay channel.
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near the physical regime. In Table I we summarize the
lowest energy decay channels for the various isospin, spin
and parity quantum numbers considered in this analysis.

In the case of the � baryon, the binding is seen to
become stronger at larger quark masses. Indeed, from their
minimal quark content in the heavy quark limit, one ex-
pects to recover a � to N�mass ratio of 3=5. In the case of
a pentaquark resonance, the analogous mass ratio will be 1
in the heavy quark limit and the mass splitting will vanish
relative to the hadronic mass scale in the heavy quark limit.
Hence a lattice resonance signature for a pentaquark state
is binding (a negative mass splitting) at intermediate quark
masses, above the physical regime, with a general trend of
binding as a fraction of hadron mass towards zero as the
heavy quark limit is approached.

C. Lattice simulation formalism

This analysis is based on the ensemble of 290, 203 
40 SU�3� gauge-field configurations considered in [5].
Using the mean-field O�a2�-improved Luscher-Weisz pla-
quette plus rectangle action [23], the gauge configurations
are generated via the Cabibbo-Marinari pseudoheat-bath
algorithm with three diagonal SU(2) subgroups looped
over twice. The simulations are performed using a parallel
algorithm with appropriate link partitioning, as described
in Ref. [24]. The lattice spacing is 0.128(2) fm, determined
using the Sommer scale r0 � 0:49 fm.

For the fermion propagators, we use the FLIC fermion
action [25], an O�a�-improved fermion action with excel-
lent scaling properties providing near continuum results at
finite lattice spacing [26].

A fixed boundary condition in the time direction is
implemented by setting Ut� ~x; Nt� � 08 ~x in the hopping
terms of the fermion action. Periodic boundary conditions
are imposed in the spatial directions. To explore the effects
of the fixed boundary condition we have examined the
effective mass of the pion correlation function and the
074507
associated �2
dof obtained in various fits. The pion is selected

as it has the longest correlation length and will be a worst
case scenario for the boundary effects. We find that the
fixed boundary effects are completely negligible prior to
time slice 30, which is the limit of signal in the pentaquark
correlation functions presented below.

Gauge-invariant Gaussian smearing [27] in the spatial
dimensions is applied at the fermion source at t � 8 to
increase the overlap of the interpolating operators with the
ground states. Six quark masses are used in the calcula-
tions, with � � f0:12780; 0:12830; 0:12885; 0:12940;
0:12990; 0:13025g providing am� � f0:540; 0:500;
0:453; 0:400; 0:345; 0:300g [28]. The strange quark mass
is taken to be the third largest (� � 0:12885) quark mass.
This � provides a pseudoscalar mass of 697 MeV which
compares well with the experimental value of������������������������

2M2
K �M

2
�

q
� 693 MeV motivated by leading order chi-

ral perturbation theory. The error analysis is performed by
a second-order, single-elimination jackknife, with the �2

per degree of freedom obtained via covariance-matrix fits.
Further details of the fermion action and simulation pa-
rameters are provided in Refs. [5,25,26] respectively.

III. RESULTS

In this section we present our results for the masses of
spin- 3

2 pentaquarks for both negative and positive parity, in
both the isoscalar and isovector channels.

A. Negative parity isoscalar channel

We begin the discussion of our results with the isoscalar,
negative parity channel. The effect of the spin projection
on the correlation function is highlighted in Fig. 2. This
figure shows the effective mass plot of the G33 �

trspf�
�G33g component of the correlation function, which

contains a superposition of spin- 1
2 and spin- 3

2 contributions.
Upon spin projection, as described by Eq. (6), two distinct
states are identified.

The effective masses of the spin- 1
2 and spin- 3

2 states are
presented in Figs. 3 and 4, respectively. To extract the
masses of the lowest energy states from these effective
masses, we fit over the time slices 20–30 for the spin- 1

2 and
-3



FIG. 4 (color online). As in Fig. 3, but for the I�JP� � 0�32
��

state.

FIG. 2 (color online). Effective masses of the negative parity
projected, isoscalar correlation functions calculated with the
NK� pentaquark interpolator, ��NK� . The mass corresponding
to the unprojected G33 correlation function (squares) is com-
pared with that of the spin- 1

2 (triangles) and spin- 3
2 (circles)

projected correlation functions. The data corresponds to our
heaviest quark mass.
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18–21 for the spin- 3
2 states, respectively, where these

intervals have been selected so as to obtain acceptable
values of the covariance-matrix based �2 per degree of
freedom (�2

dof), which we restrict to �2
dof < 1:5. The result-

ing masses are presented in Fig. 5, together with the mass
of the I�JP� � 0�12

�� state extracted with the standard NK
pentaquark operator [5] of Eq. (1), and the relevant (non-
interacting) two-particle states. We obtain the expected
result that the masses of the I�JP� � 0�12

�� state extracted
with the NK and NK� interpolators are in excellent agree-
ment. The mass of the I�JP� � 0�32

�� state is also similar to
that of the N � K� two-particle state, but lies consistently
FIG. 3 (color online). Effective mass of the I�JP� � 0�12
��

pentaquark calculated with the NK� pentaquark interpolator.
The data correspond to m� ’ 830 MeV (squares), 700 MeV
(circles), and 530 MeV (triangles).

074507
above the latter, suggesting the presence of some repulsion
in this channel. Therefore we cannot conclude any evi-
dence of a bound state in this channel.

B. Positive-parity isoscalar channel

Next we consider the isoscalar state in the positive-
parity channel. Contrary to the negative parity signal, the
spin projection shown in Fig. 6 has a less pronounced effect
on the effective masses. The effective masses of the spin- 1

2
and 3

2 states are presented in Figs. 7 and 8, respectively. The
quality of the signal in the positive-parity sector is signifi-
cantly reduced relative to the negative parity channel, as in
the spin- 1

2 analysis in Ref. [5].
FIG. 5 (color online). Masses of the I�JP� � 0�12
�� and 0�32

��
states extracted with the NK� interpolating field as a function of
m2
�. For comparison, we also show the mass of the I�JP� � 0�12

��

state extracted from the NK pentaquark interpolator [5], and the
masses of the S-wave N � K and N � K� two-particle states.
Some of the points have been horizontally offset for clarity.
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FIG. 8 (color online). As in Fig. 7, but for the I�JP� � 0�32
��

state.
FIG. 6 (color online). As in Fig. 2, but for the isoscalar
positive-parity channel.
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The effective mass of the spin- 1
2 state is fit at time slices

18–20 and the spin- 3
2 state at time slices 19–24. The poor

quality of the signal limits the analysis to the four largest
quark masses considered. In Fig. 9 we show the fitted
masses of the two spin states extracted with the NK�

interpolator. For comparison, we display the mass of the
spin- 1

2 state extracted with the NK interpolator, and the
energies of the relevant two-particle states. Once again, we
see excellent agreement between the masses of the spin- 1

2
states extracted with the NK and NK� interpolators.

Interestingly, the mass of the spin- 3
2 state becomes

smaller than the noninteracting two-particle energy of the
P-wave N � K state for intermediate quark masses, i.e.,
we observe binding. As discussed in the previous section
and in Ref. [5], the transition of a resonance to a state
which lies below the free particle decay channel at quark
FIG. 7 (color online). Effective mass of the I�JP� � 0�12
��

pentaquark obtained from the NK� interpolating field. The
data correspond to m� ’ 830 MeV (squares), 700 MeV (circles),
and 530 MeV (triangles).

074507
masses near the physical quark masses is the standard
resonance signature in lattice QCD.

Moreover the approach to the heavy quark limit is in
accord with expectations. Recall that in the case of the ��,
which has a ‘‘fall-apart’’ decay mechanism, quark counting
indicates the �� to N � K mass ratio will approach 1 as
the heavy quark limit is approached.

At intermediate quark masses, however, one expects the
resonance signature analogous to the � baryon in Fig. 1,
and at the two smallest quark masses shown the pentaquark
lies below the scattering state, which is the necessary
condition for the presence of binding. As this result
presents the possible existence of a pentaquark resonance
FIG. 9 (color online). Masses of the I�JP� � 0�12
�� and 0�32

��
states determined from the NK� interpolating field as a function
of m2

�. For comparison, we also show the mass of the I�JP� �
0�12
�� state extracted with the NK pentaquark interpolator [5],

and the masses of the P-wave N � K and N � K� and S-wave
N� � K two-particle states. Some of the points have been offset
horizontally for clarity.
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FIG. 10 (color online). Effective mass splitting between the
I�JP� � 0�32

�� state extracted with the NK� interpolator and the
energy of the P-wave N � K two-particle state for the lightest
quark mass shown in Fig. 9.
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in the physical quark mass regime, it is essential to con-
sider a mass splitting analysis of the effective masses.

As an indicative example, we review the analysis of the
lightest quark mass presented in Fig. 9. In Fig. 10 we
present the effective mass splitting between the five-quark
state and the lightest noninteracting two-particle state hav-
ing the same quantum numbers.

At first sight it might be tempting to consider fits early in
the Euclidean time evolution where the errors are small and
a possible plateau catches the eye. However, it is easy to
demonstrate that such a fit does not describe the lowest
lying state in this correlation function. For example, Fig. 11
reports the �2

dof for a selection of fits to the effective mass
shown in Fig. 10, where the lower bound of the fit window
is fixed at t � 12 (four time steps from the source at t � 8),
and the upper bound of the fit window is plotted on the
FIG. 11 (color online). The �2
dof for a series of possible fits

with a lower bound fixed at time slice 12 and an upper bound
shown on the horizontal axis.

074507
horizontal axis. As soon as time slice 19 is included in the
fit the �2

dof becomes very large and continues to increase
with the inclusion of time slices 20 and 21. One must
therefore conclude that the results for time slices 19
through 21 are signal rather than noise, reflecting the true
ground state of the correlator. The effective mass splitting
with a ‘‘double plateau’’ as in Fig. 10 can occur when the
interpolating fields couple strongly to a more massive state
and relatively weakly to the ground state. The former
dominates at early Euclidean times and the latter at later
times.

To determine an appropriate lower bound for the fit, we
begin by returning to Fig. 10. The fluctuation at t � 25
suggests that there is valid data up to time slice 24, after
which noise begins to hide the signal. Indeed, the �2

dof is
approximately invariant for fits of t � 19 through 24 and
beyond. Therefore, time slice 24 is selected for the upper
bound of the fit window.

The lower bound of the fit interval must be selected with
regard to the systematic time dependence of the effective
mass and the �2

dof of the fit. Figure 12 reports the latter
criteria, illustrating the �2

dof for a selection of fits to the
effective mass shown in Fig. 10, where the lower bound of
the fit window is shown on the horizontal axis and the
upper bound of the fit window is fixed at time slice 24. The
mass splittings extracted for these fits are shown in Fig. 13.
Again, the lower bound of the fit window is shown on the
horizontal axis and the upper bound of the fit window is
fixed at time slice 24. The most statistically precise esti-
mate of the mass splitting is obtained for tmin � 19, and
this result agrees with all other determinations at the 1	
level, with the exception of tmin � 16.

Having determined that there is genuine signal in the
effective mass splitting at time slice 19, and given the
systematic drift in the results approaching time slice 19
FIG. 12 (color online). The �2
dof for a series of possible fits

with an upper bound fixed at time slice 24 and a lower bound
shown on the horizontal axis.
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FIG. 15 (color online). Mass splitting between I�JP� � 0�32
��

state extracted with the NK� pentaquark interpolator and the
two-particle S-wave N � K mass threshold.

FIG. 13 (color online). Mass splitting extracted from a series
of possible fits with an upper bound fixed at time slice 24 and a
lower bound shown on the horizontal axis.
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as illustrated in both Figs. 10 and 13, one has to conclude
that nontrivial contributions from more massive excited
states are still present at time slice 16. The more conserva-
tive evaluation is to delay the fit to later Euclidean times
where the �2

dof & 1.
These �2

dof analyses have been repeated for all six quark
masses considered with similar results. Figure 14 shows
the mass splitting between the isoscalar spin- 3

2 state ex-
tracted with the NK� interpolator and the P-wave N � K
energy, where we fit at time slices 19–24 as concluded
above. Here we are able to show the mass splitting at all of
our six quark masses. The reason that we are able to
recover a mass splitting for an additional two lighter quark
masses is because, as discussed in the introductory section,
correlated errors in the correlation functions are suppressed
in constructing the effective mass splitting. The state ex-
tracted with the pentaquark operator indicates the possi-
bility of binding for the four smallest quark masses shown.
FIG. 14 (color online). Mass splitting between the I�JP� �
0�32
�� state extracted with the NK� pentaquark interpolator and

the mass of the P-wave N � K energy.

074507
In the infinite-volume limit, the lowest energy two-
particle state, the P-wave N � K, approaches the energy
of the S-wave N � K state. As a genuine single-particle
state is expected to have a small volume dependence on our
lattice, we also show in Fig. 15 the mass splitting with the
N � K two-particle threshold. In this figure, the mass
difference is also negative, as is necessary for the presence
of a bound state, suggesting that the presence of binding
may prevail on larger lattices. Finally, we emphasize the
possibility that the mass splitting may decrease as the light
quark mass regime is approached, allowing the transition
to a resonance at physical quark masses. High statistics
studies at lighter quark masses would obviously be of
considerable interest.

C. Negative parity isovector channel

For completeness we also include an analysis of the
isovector channel. First we present the results for the
isovector, negative parity channel. In Fig. 16 we see that
the effects of the spin projection for the largest quark mass
are small. This may be understood by the presence of the
S-wave �� K� and N � K� two-particle states, which
both the spin- 1

2 and spin- 3
2 projected correlation functions

should couple to. We fit the effective masses extracted from
the spin- 1

2 and spin- 3
2 projected correlation functions,

shown in Figs. 17 and 18, at time slices 20–30 and 18–
21, respectively.

The masses are presented in Fig. 19, along with the
corresponding mass extracted from the NK interpolator
and the relevant two-particle states. The mass extracted
from the spin- 3

2 projected correlation function is in good
agreement with the mass of the N � K� two-particle state.
Although this correlation function must have a contribu-
tion from both the �� K and N � K� two-particle states,
we are probably accessing an admixture of these states. A
correlation-matrix analysis is required to separate this
-7



FIG. 18 (color online). As in Fig. 17, but for the I�JP� � 1�32
��

state.
FIG. 16 (color online). As in Fig. 2, but for the isovector
negative parity channel.
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admixture. The mass extracted from the spin- 1
2 projected

correlation function is consistently more massive in this
channel than the mass extracted with the NK interpolator.
However, in Ref. [5] we used a correlation matrix to extract
the mass from the NK interpolator. This process removes
excited state contamination and renders the ground state
mass consistently smaller. In addition, by considering the
two-point functions calculated with the NK and NK�

interpolators at the quark level, one would naively expect
the NK� interpolator to couple much more strongly to the
N � K� two-particle state than theNK interpolator. In fact,
the weak coupling of the spin- 3

2 interpolators to the lowest
lying spin- 1

2 states is reflected in the relatively large statis-
tical uncertainties for the NK� interpolator results.

In summary, as in the case of the negative parity iso-
scalar channel, there is no indication of the lattice reso-
nance signature.
FIG. 17 (color online). Effective mass of the I�JP� � 1�12
��

pentaquark obtained for the NK� interpolator, �NK� . The data
correspond to m� ’ 830 MeV (squares), 700 MeV (circles), and
530 MeV (triangles).

074507
D. Positive-parity isovector channel

Finally we complete our discussion with the positive-
parity isovector channel. In Fig. 20 we see that the spin
projection suggests the presence of two distinct states but
the errors overlap. The effective masses corresponding to
these correlation functions are presented in Figs. 21 and 22.
We fit the effective masses calculated from the spin- 1

2 and
spin- 3

2 projected correlation functions at time slices 19–22
and 15–20, respectively. Because of the poor signal, results
for only the three largest quark masses are shown. The
masses of these states are presented in Fig. 23 along with
the mass extracted with the NK interpolator and energies
of the relevant two-particle states. Neither state extracted
FIG. 19 (color online). Masses of the I�JP� � 1�12
�� and 1�32

��
states extracted with the NK� interpolating field as a function of
m2
�. For comparison, we also show the mass of the I�JP� � 1�12

��

state extracted with the NK pentaquark interpolator in a
correlation-matrix analysis [5], and the masses of the S-wave
N � K, N � K� and �� K two-particle states. Some of the
points have been offset horizontally for clarity.
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FIG. 22 (color online). As in Fig. 21, but for the I�JP� � 1�32
��

state.

FIG. 20 (color online). As in Fig. 2, but for the isovector
positive-parity channel.

SPIN- 3
2 PENTAQUARK RESONANCE SIGNATURE IN . . . PHYSICAL REVIEW D 72, 074507 (2005)
with the NK� interpolator lies below the lowest energy
scattering states, which is necessary for binding. Therefore
the analogous lattice resonance signature is also absent in
this channel.

IV. CONCLUSIONS

We have completed a comprehensive analysis of the
isospin and parity states of the spin- 3

2 pentaquark.
Following our previous work [5], we search for the stan-
dard signature of a resonance in lattice QCD, where the
presence of attraction renders the resonance mass lower
than the sum of the free decay channel masses at quark
masses near the physical regime. This standard lattice
resonance signature has been observed for every conven-
tional baryon resonance ever calculated on the lattice [17–
21].

In the case of a pentaquark resonance, the relative mass
splitting is expected to vanish in the heavy quark limit.
FIG. 21 (color online). Effective mass of the I�JP� � 1�12
��

pentaquark obtained from the NK� interpolator. The data corre-
spond to m� ’ 830 MeV (squares), 700 MeV circles), and
530 MeV (triangles).

074507
Therefore the analogous lattice resonance signature for a
pentaquark state will exhibit a negative mass splitting at
intermediate quark masses, with a general trend towards
zero as the heavy quark limit is approached.

In our examination of spin- 3
2 pentaquark states we have

discovered evidence of the standard lattice resonance sig-
nature, in the spin- 3

2 positive-parity isoscalar channel. At
intermediate quark masses, the presence of attraction be-
tween the constituents of the pentaquark baryon is suffi-
cient to render the mass of the pentaquark state lower than
the N � K two-particle threshold. The mass splitting ap-
proaches zero as the light quark masses become very large,
in accord with expectations. Moreover, Fig. 15 suggests
FIG. 23 (color online). Masses of the I�JP� � 1�12
�� and 1�32

��
states extracted with the NK� interpolating field as a function of
m2
�. For comparison, we also show the mass of the I�JP� � 1�12

��

state extracted with the NK pentaquark interpolator [5], and the
masses of the P-wave N � K, N � K� and the S-wave N� � K
two-particle states. Some of the points have been offset horizon-
tally for clarity.
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that the resonance signature might prevail on larger latti-
ces, and provides a hint that the mass splitting will decrease
as the light quark mass regime is approached, allowing the
transition to a resonance at physical quark masses.

Future work must explore the volume dependence of the
binding observed in the spin- 3

2 positive-parity isoscalar
channel. Otherwise, one cannot completely rule out the
possibility that the observed binding is a pure finite-volume
effect, reflecting a nontrivial scattering phase shift [29] in
the I�JP� � 0�32

�� NK scattering channel at momentum
p � 2�=L. If this is the case, the mass splitting will go
to zero as the volume of the lattice is increased. On the
other hand, a genuine single-particle state is expected to
have a small volume dependence such that the negative
mass splitting is preserved in the infinite-volume limit. As
Fig. 15 illustrates, the observed mass splitting with theN �
K two-particle threshold is sufficient to maintain the lattice
resonance signature in the event that the volume depen-
dence of the spin- 3

2 positive-parity isoscalar state is indeed
small.

The I�JP� � 0�32
�� channel is therefore an interesting

pentaquark resonance candidate for further study. Chiral
fermions such as the overlap fermion action [30] allowing
access to the lightest quark masses [31,32] should be
brought to bear on this particular channel. High statistics
074507
studies will be vital in rendering a conclusive result.
Alternative resonance signatures such as the volume de-
pendence of the residue [8,14] or invariance under hybrid
boundary conditions [9,10] should also be brought to bear
on this most promising channel. Ultimately, it will be
important to investigate the nature of this state in full
QCD, where the dynamical generation of quark-antiquark
pairs is accounted for in the construction of the gauge-field
ensemble.
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