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Spin 3=2 pentaquarks in anisotropic lattice QCD
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High-precision mass measurements of a pentaquark (5Q) �� in the JP � 3=2� channels are performed
in anisotropic quenched lattice QCD. A large number of gauge configurations (Nconf � 1000) are prepared
for the standard Wilson gauge action at � � 5:75 and the O�a� improved Wilson (clover) quark action is
employed for � � 0:1210�0:0010�0:1240 on a 123 � 96 lattice with the renormalized anisotropy as
as=at � 4. The Rarita-Schwinger formalism is adopted for interpolating fields. We examine several
interpolating fields with isospin I � 0, such as (a) the NK�-type, (b) the color-twisted NK�-type, and
(c) the diquark-type operators. After chiral extrapolation, we obtain massive states, m5Q ’ 2:1–2:2 GeV in
JP � 3=2�, and m5Q � 2:4–2:6 GeV in JP � 3=2�. Analyses using the hybrid boundary condition
method are performed to determine whether these states are compact 5Q resonances or two-hadron
scattering states. No compact 5Q resonance state is found below 2.1 GeV.

DOI: 10.1103/PhysRevD.72.074503 PACS numbers: 12.38.Gc, 12.39.Mk, 14.20.2c, 14.20.Jn
I. INTRODUCTION

The recent discovery of a manifestly exotic baryon
���1540� by the LEPS group at SPring-8 has made a great
impact on the exotic hadron physics [1]. Apart from the
other pentaquark baryon candidates, ����1862� [2] and
�c�3099� [3], several exotic hadrons have also been dis-
covered, such as X�3872�, Ds�2317�, S0�3115�, X�3940�,
and Y�3840� [4].

���1540� is supposed to have a baryon number B � 1,
a chargeQ � �1, and a strangeness S � �1. Since uudd �s
is the minimal quark content to implement these quantum
numbers, ���1540� is a manifestly exotic pentaquark (5Q)
state. Such a pentaquark had been examined theoretically
several times before the experimental discovery [5–9]. In
particular, Ref. [5] provides a direct motivation for the
experimental search [1]. The discovered peak in the nK�

invariant mass is centered at 1:54� 0:01 GeV with a width
smaller than 25 MeV. At the present stage, some groups
have confirmed the LEPS discovery[10–13], while others
have reported null results [14]. It will hence take a while to
establish the existence or nonexistence of ���1540� ex-
perimentally [15]. Reference [12] indeed claims that ��

must have I � 0, since no ��� is observed in the pK�

invariant mass spectrum.
Enormous theoretical efforts have been devoted to the

study of 5Q baryons [5–9,16–54]. One of the most chal-
lenging problems in understanding its structure is its ex-
tremely narrow decay width, which is reported to be
� & 1 MeV [55]. Various physical ideas have been pro-
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posed: (1) the I � 2 possibility [51], (2) the Jaffe-
Wilczek’s diquark picture [22], (3) the �KN heptaquark
picture [29,56], (4) the string picture [40,41], and (5) the
JP � 3=2� possibility [21,28]. Although each of them
provides a mechanism to explain the narrow decay width,
none of them can describe all the known properties of
���1540� simultaneously.

In this paper, we concentrate on the J � 3=2 possibility,
in particular, we consider JP � 3=2�. Note that the spin of
���1540� has not yet been determined experimentally. In
the constituent quark picture, the narrow decay width of
JP � 3=2� pentaquark is easily understood [21,28]. In that
case, we expect the natural ground-state configuration to be
�0s�5, where all five quarks are in their orbit of lowest
energy. While two spin states, JP � 1=2� and 3=2�, are
available, the JP � 3=2� state can decay only to the
d-wave NK scattering state, which has no overlap with
the �0s�5 configuration. Thus the decay is allowed only
through its subdominant d-wave configuration, and the
decay width is suppressed. Note that it is further sup-
pressed by the d-wave centrifugal barrier, leading to a
significantly narrow decay width of JP � 3=2� penta-
quarks. A possible disadvantage of the JP � 3=2� assign-
ment is that such a state tends to be massive due to the
color-magnetic interaction in the constituent quark models,
which seems to be the reason why so few effective model
studies for spin 3=2 pentaquarks have been available
[28,43–51,53,54]. However, it is not clear whether these
conventional frameworks are applicable to a new exotic 5Q
system as ���1540� without involving any modifications.
Indeed, a model was proposed where a part of the role of
the color-magnetic interaction can be played by the flavor-
spin interaction, which makes the mass splitting between
the 1=2� and the 3=2� states smaller [45].

There have been several lattice QCD calculations of 5Q
states by now [57–67]. However, all these studies are
-1 © 2005 The American Physical Society
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restricted to the JP � 1=2� channels except for the one in
Ref. [67]. Enormous efforts are being devoted to more
accurate studies of JP � 1=2� states, using the variational
technique to extract multiple excited states, among which a
compact resonance state is sought for. Indeed, quite large
scale calculations are planned [68] attempting to elucidate
some of the mysterious natures of ���1540� such as its
diquark structure and/or nonlocalities in interpolating
fields. Here, we emphasize again that these studies are
aiming at JP � 1=2� states, not at 3=2� states.

In this paper, we present anisotropic lattice QCD results
on 5Q states in the JP � 3=2� channels using a large
number of gauge configurations as Nconf � 1000. We
adopt the standard Wilson gauge action at � � 5:75 on
the 123 � 96 lattice with the renormalized anisotropy
as=at � 4. The anisotropic lattice is known to be a power-
ful tool for high-precision measurements of temporal
correlators [69–72]. The large number of gauge configu-
rations Nconf � 1000 plays a key role in our calculation,
because 5Q correlators in the JP � 3=2� channels are
found to be quite noisy. For quark action, we adopt the
O�a�-improved Wilson (clover) action with four values of
the hopping parameter, � � 0:1210�0:0010�0:1240. One of
the aims of our calculation is to examine how the results
depend on the choice of interpolating field operators. We
employ three types of interpolating fields: (a) the
NK� type, (b) the (color-)twisted NK� type, and (c) a
diquark type, and adopt a smeared source to enhance the
low-lying spectra.

In the JP � 3=2� channel, we obtain a massive state at
m5Q ’ 2:1–2:2 GeV except for the case of the diquark-type
interpolating field. The latter involves considerable statis-
tical error. In the JP � 3=2� channel, we obtain a state at
m5Q ’ 2:4–2:6 GeV. None of these 5Q states appear below
the NK threshold on the current lattice, which is raised by
about 200–250 MeV due to the finite extent of the spatial
lattice as L ’ 2:15 fm. To clarify whether or not the ob-
served 5Q states are compact resonance, we perform analy-
ses with the hybrid boundary condition (HBC) method,
which was recently proposed in Ref. [61]. HBC analyses
indicate that there is no compact 5Q resonance in either of
the JP � 3=2� channels.

The paper is organized as follows. In Sec. II, we discuss
the general formalism. We begin by introducing several
types of interpolating fields, determining their parity trans-
formation properties. We next consider the temporal cor-
relator and its spectral decomposition. We finally discuss
the two-particle scattering states which appear in 5Q spec-
tra, and introduce the HBC to examine whether or not a
state we are interested in is a compact resonance state.
Section III is devoted to the description of the lattice action
and parameters. In Sec. IV, we present the numerical
results for the JP � 3=2� channels in the standard periodic
boundary condition (PBC). We present the 5Q correlators
of various interpolating fields, i.e., the NK� type, the
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(color-)twisted NK� type, and the diquark type. In
Sec. V, we attempt to determine whether these 5Q states
are compact 5Q resonance states or two-particle scattering
states by using the HBC. In Sec. VI, a summary and
conclusions are given.
II. GENERAL FORMALISMS

A. Interpolating fields

We consider an isoscalar interpolating field of NK� type
in the Rarita-Schwinger form [73–75] given by

 � 	 �abc�u
T
aC�5db�uc 
 � �sd��dd�

� �abc�u
T
aC�5db�dc 
 ��sd��ud�; (1)

where � denotes the Lorentz index, a� d refers to the
color indices, and C � �4�2 denotes the charge conjuga-
tion matrix. Unless otherwise indicated, the gamma matri-
ces are represented in the Euclidean form given in
Ref. [76].

We study also the (color-)twistedNK� type interpolating
field given by

 � 	 �abc�uTaC�5db�ud 
 � �sd��dc�

� �abc�uTaC�5db�dd 
 ��sd��uc�; (2)

which is analogous to the one originally proposed in
Ref. [57] to study JP � 1=2P 5Q states. It has a slightly
more elaborate color structure than Eq. (1), suggesting
somewhat stronger coupling to a genuine 5Q state, if it
exists.

We also consider diquark-type interpolating fields pro-
posed in Ref. [36]. For instance, we may choose the
following interpolating field [58]:

 � 	 �abc�def�cfg�u
T
aC�5db��u

T
dC�5��de�C�5 �sg: (3)

The first factor corresponds to a scalar diquark (color �3,
I � 0, JP � 0�), which may play important roles in had-
ron physics [77]. The second factor corresponds to a vector
diquark (color �3, I � 0, JP � 1�). Note that the axial-
vector diquark (color �3, I � 1, JP � 1�) is not suitable
because of its isovector nature. Unless otherwise indicated,
we refer to Eq. (3) as the diquark-type interpolating field.
We may also consider another interpolating field of diquark
type:

 � 	 �abc�def�cfg�uTaCdb��uTdC�5��de�C�sg; (4)

which consists of a pseudoscalar diquark (color �3, I � 0,
JP � 0�) and a vector diquark. However, actual lattice
QCD calculations show that the correlator of Eq. (4) is
afflicted with huge statistical errors. A possible reason for
this is that neither of the two diquark factors of Eq. (4), the
pseudoscalar diquark and the vector diquark, survive in the
nonrelativistic limit while, in Eq. (3), the scalar diquark is
allowed in the nonrelativistic limit. Hence, we do not
consider Eq. (4) in this paper.
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Under the spatial reflection, the quark field is trans-
formed as

q��; ~x� ! �4q��;� ~x�; (5)

and the spatial components of the interpolating fields
Eqs. (1)–(3) as

 i��; ~x� ! ��4 i��;� ~x�; (6)

for i � 1; 2; 3.

B. 5Q correlators and parity projection

We consider the Euclidean temporal correlator

G����� 	
X
~x

h ���; ~x� � ��0; ~0�i; (7)

where
P

~x projects the total 5Q momentum to zero. Since
the spin 3=2 contribution from the temporal component of
the Rarita-Schwinger spinor vanishes in the rest frame, we
can restrict ourselves to the spatial parts, i.e., �� � 1, 2,
and 3. Now, Eq. (7) is decomposed in the following way:

Gij��� � P�3=2�
ij G�3=2���� � P�1=2�

ij G�1=2����; (8)

where i; j ( � 1; 2; and 3) denote the spatial part of the
Lorentz indices, P�3=2� and P�1=2� denote the projection
matrices onto the spin 3=2 and 1=2 subspaces defined by

P �3=2�
ij 	 	ij � �1=3��i�j; P�1=2�

ij 	 �1=3��i�j: (9)

They satisfy the following relations as

P �3=2�
ij P�3=2�

jk � P�3=2�
ik ; P�1=2�

ij P�1=2�
jk � P�1=2�

ik ;

P�1=2�
ij � P�3=2�

ij � 	ij; P�1=2�
ij P�3=2�

jk � P�3=2�
ij P�1=2�

jk � 0;

(10)

where summations over repeated indices are understood.
G�3=2���� and G�1=2���� in Eq. (7) denote the spin 3=2 and
1=2 contributions to G���, respectively, which can be
derived by applying the operators P�3=2� and P�1=2� on
G���, respectively. [In our practical lattice QCD calcula-
tion, we construct the Rarita-Schwinger correlator Gij���
for i � 1; 2, and 3 and j � 3 (fixed), and multiply P�3=2�

from the left to obtain G�3=2����.]
In the asymptotic region (0� �� Nt), contaminations

of excited states are suppressed. Considering the parity
transformation property Eq. (6), G�3=2���� and G�1=2����
are expressed in this region as

G�3=2���� �P�fj
3=2�j
2e��m3=2� � j
3=2�j

2e��Nt���m3=2� g

�P�fj
3=2�j
2e��m3=2� � j
3=2�j

2e��Nt���m3=2� g;

G�1=2���� �P�fj
1=2�j
2e��m1=2� � j
1=2�j

2e��Nt���m1=2� g

�P�fj
1=2�j
2e��m1=2� � j
1=2�j

2e��Nt���m1=2� g;

(11)
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where P� 	 �1� �4�=2 denote the projection matrices
onto the ‘‘upper’’ and ‘‘lower’’ Dirac subspaces, respec-
tively. Here m3=2� and m1=2� denote the lowest-lying
masses in the JP � 3=2� and 1=2� channels, respectively,
while 
3=2� and 
1=2� represent couplings of the interpo-
lating field to the lowest JP � 3=2� and 1=2� states,
respectively. In Eq. (11), we adopt the antiperiodic bound-
ary condition along the temporal direction. A brief deriva-
tion of Eqs. (8) and (11) is presented in the Appendix. The
forward propagation is dominant in the region 0< � &

Nt=2, while the backward propagation is dominant in the
region Nt=2 & � < Nt. To separate the negative (positive)
parity contribution, we restrict ourselves to the region
0< � & Nt=2, and examine the upper (lower) Dirac
component.

C. Scattering states involved in 5Q spectrum

We consider baryon-meson scattering states which ap-
pear in the present 5Q spectrum. For JP � 3=2� isoscalar
pentaquarks, NK and NK� scattering states play important
roles. (�K states do not couple to the isoscalar channel.)
These states are expressed as

jN� ~p; s�K�� ~p�i; jN� ~p; s�K��� ~p; i�i; (12)

where s and i denote the spin of the nucleon and K�, and ~p
denotes the spatial momentum allowed for a particular
choice of the spatial boundary conditions. For instance, if
these hadrons are subject to spatially periodic boundary
conditions, their momenta are quantized as

pi � 2ni�=L; ni 2 Z; (13)

where L denotes the spatial extent of the lattice. In contrast
with this situation, if they are subject to spatially antiperi-
odic boundary conditions, their momenta are quantized as

pi � �2ni � 1��=L; ni 2 Z: (14)

We first perform the parity projections. The positive (‘‘�’’)
and the negative (‘‘�’’) parity projections of Eq. (12) are
obtained in the following way:

jNK���i � jN� ~p; s�K�� ~p�i � jN�� ~p; s�K� ~p�i; (15)

jNK����i � jN� ~p; s�K��� ~p; i�i � jN�� ~p; s�K�� ~p; i�i:

(16)

Assuming that the interactions between N and K and
between N and K� are weak, their energies are approxi-
mated by

ENK ’
�������������������
m2
N � ~p2

q
�

�������������������
m2
K � ~p2

q
(17)

and
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EN�K ’
�������������������
m2
N � ~p2

q
�

��������������������
m2
K� � ~p2

q
; (18)

respectively. The scattering states which couple to JP �
3=2� pentaquarks are obtained by the spin 3=2 projections
of Eqs. (15) and (16). The d-wave NK states and the
s-wave NK� states can couple to the JP � 3=2� penta-
quark, while the p-wave NK states and NK� states may
couple to the JP � 3=2� pentaquark.

The scattering states with vanishing spatial momentum
~p � ~0 are exceptional in the following sense. On the one
hand, the positive parity states vanish, because the first
terms coincide with the second terms in Eqs. (15) and (16)
on the right-hand side. On the other hand, the negative
parity states are constructed only from the spin degrees of
freedom, i.e., the spin degrees of freedom of the nucleon in
Eq. (15), and the spin degrees of freedoms of the nucleon
and K� in Eq. (16). By counting the degeneracy of the
resulting states, it is straightforward to see that no d-wave
states are contained, i.e., Eq. (15) only gives s-wave NK
states in the JP � 1=2� channel, and Eq. (16) only gives
s-wave NK� states in the JP � 1=2� and 3=2� channels.

D. Hybrid boundary condition

In order to determine whether the observed state is a
compact 5Q resonance state or a scattering state of two
particles, we use a novel technique recently proposed in
Ref. [61]. We employ two distinct spatial boundary con-
ditions (BC), i.e., the (standard) periodic BC and the hybrid
BC, and compare the results. In the PBC, one imposes a
spatially periodic BC on u, d, and s quarks. As a result, all
the hadrons are subject to periodic BC. In this case, due to
Eq. (13), all hadrons can take zero momentum, and the
smallest nonvanishing momentum ~pmin is of the form

��2�=L; 0; 0�; �0;�2�=L; 0�; �0; 0;�2�=L�; (19)

which gives

j ~pPBC
min j � 2�=L: (20)

On the other hand, with HBC, we impose the spatially
antiperiodic BC on u and d quarks, whereas the spatially
periodic BC is imposed on the s quark. Since N�uud; udd�,
K�u �s; d �s�, and K��u �s; d �s� contain odd numbers of u and d
quarks, they are subject to antiperiodic BC. Therefore, due
to Eq. (14), N, K, and K� cannot have a vanishing momen-
tum with HBC. The smallest possible momentum ~pmin is of
the form,

���=L;��=L;��=L�; (21)

hence,

j ~pHBC
min j �

���
3
p
�=L: (22)

In contrast, �� (uudd �s) is subject to spatially periodic
BC, since it contains an even number of u and d quarks.
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Therefore, a compact �� can have a vanishing
momentum.

Switching from PBC, HBC affects the low-lying two-
particle scattering spectrum. A drastic change is expected
in the s-wave NK� channel. With PBC, the energy of the
lowest NK� state is given as

EPBC
min �NK

��s wave�� ’ mN �mK� ; (23)

while, with HBC, since both N and K� are required to have
nonvanishing momenta j ~pminj �

���
3
p
�=L, the energy of the

lowest NK� state is raised to

EHBC
min �NK

��s wave�� ’
������������������������������
m2
N � 3�2=L2

q

�
�������������������������������
m2
K� � 3�2=L2

q
: (24)

Note that the shift is typically of a few hundred MeV for
L 2 fm.

HBC affects NK (d wave), NK (p wave), and NK� (p
wave) as well. However, these changes are not as drastic as
that in NK� (s wave), because they are induced by the
minor change in the minimum momentum from j ~pminj �

2�=L to
���
3
p
�=L. With PBC, the energies of the lowest

two-particle states are expressed as

EPBC
min �NK�p=d wave�� ’

������������������������������
m2
N � 4�2=L2

q

�
������������������������������
m2
K � 4�2=L2

q
;

EPBC
min �NK

��p wave�� ’
������������������������������
m2
N � 4�2=L2

q

�
�������������������������������
m2
K� � 4�2=L2

q
:

(25)

In HBC, they are lowered to

EHBC
min �NK�p=d wave�� ’

������������������������������
m2
N � 3�2=L2

q

�
������������������������������
m2
K � 3�2=L2

q
;

EHBC
min �NK

��p wave�� ’
������������������������������
m2
N � 3�2=L2

q

�
�������������������������������
m2
K� � 3�2=L2

q
:

(26)

Table I shows how the threshold energies are affected by
the boundary conditions at each hopping parameter for a
spatial lattice of size L ’ 2:15 fm.

In contrast to the scattering states, HBC is not expected
to affect a compact 5Q resonance �� as much. Since
���uudd �s� can have vanishing momentum also with
HBC, the shift of the pentaquark mass m5Q originates
only from the change in its intrinsic structure. In this
case, the shift is expected to be less significant than the
shift induced by the kinematic reason as it is the case in N,
K, and K�. We will now look for a compact 5Q resonance
state by studying which states remain unaffected by HBC.
-4



TABLE I. Numerical values of NK [Eq. (17)] and NK�

[Eq. (18)] thresholds for each hopping parameter � in the
physical unit GeV for the spatial lattice size L ’ 2:15 fm under
PBC and HBC. The rightmost column labeled as ‘‘Emp.’’ shows
the threshold energies for the physical values of the masses of N,
K, and K�: mN ’ 0:94 GeV, mK ’ 0:5 GeV, mK� ’ 0:89 GeV.
The scale unit is determined using the static quark potential with
the Sommer scale r�1

0 � 395 MeV (see Sec. III for details).

� 0.1210 0.1220 0.1230 0.1240 Emp.

NK� (s wave) PBC 2.996 2.815 2.633 2.445 1.830
NK� (p wave) PBC 3.222 3.052 2.883 2.710 2.163
NK (p=d wave) PBC 2.987 2.806 2.624 2.438 1.865
NK� (s=p wave) HBC 3.167 2.995 2.823 2.647 2.084
NK (p=d wave) HBC 2.924 2.739 2.553 2.363 1.770
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III. LATTICE ACTIONS AND PARAMETERS

To generate gauge field configurations, we use the stan-
dard plaquette action on the anisotropic lattice of the size
123 � 96 as

SG �
�
Nc

1

�G

X
x;i<j�3

Re Trf1� Pij�x�g

�
�
Nc
�G

X
x;i�3

Re Trf1� Pi4�x�g; (27)

where P���x� 2 SU�3� denotes the plaquette operator in
the �-� plane. The lattice parameter and the bare anisot-
ropy parameter are fixed as� 	 2Nc=g

2 � 5:75 and �G �
3:2552, respectively. These values are determined to re-
produce the renormalized anisotropy as � 	 as=at � 4
[69]. Adopting the pseudo-heat-bath algorithm, we pick
up gauge field configurations every 500 sweeps after skip-
ping 10 000 sweeps for the thermalization. We use a total
of 1000 gauge field configurations to construct the tempo-
ral correlators. Note that the high statistics ofNconf � 1000
is quite essential for our study, because the 5Q correlators
for spin 3=2 states are found to be rather noisy. In fact, a
preliminary analysis with less statistics Nconf ’ 500 leads
to a spurious resonancelike state. (Such a tendency was
reported at the Japan-U.S. Workshop on ‘‘Electromagnetic
Meson Production and Chiral Dynamics,’’ Osaka, Japan,
2005 [78].) The lattice spacing is determined from the
static quark potential adopting the Sommer scale r�1

0 �
395 MeV (r0  0:5 fm) as a�1

s � 1:100�6� GeV (as ’
0:18 fm). Note that the lattice size 123 � 96 corresponds
to �2:15 fm�3 � �4:30 fm� in the physical unit.

We adopt the O�a�-improved Wilson (clover) action on
the anisotropic lattice for quark fields  and � as [70]

SF 	
X
x;y

� �x�K�x; y� �y�; (28)
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K�x; y� 	 	x;y � �tf�1� �4�U4�x�	x�4̂;y

� �1� �4�U
y
4 �x� 4̂�	x�4̂;yg

� �s
X
i

f�r� �i�Ui�x�	x�î;y

� �r� �i�U
y
i �x� î�	x�î;yg

� �scE
X
i

�i4Fi4	x;y � r�scB
X
i<j

�ijFij	x;y;

where �s and �t denote the hopping parameters for the
spatial and the temporal directions, respectively. The field
strength F�� is defined through the standard clover-leaf-
type construction. r denotes the Wilson parameter. cE and
cB denote the clover coefficients. To achieve the tadpole
improvement, the link variables are rescaled as Ui�x� !
Ui�x�=us and U4�x� ! U4�x�=ut, where us and ut denote
the mean-field values of the spatial and temporal link
variables, respectively [70,71]. This is equivalent to the
redefinition of the hopping parameters as the tadpole-
improved ones (with tilde), i.e., �s � ~�s=us and �t �
~�t=ut. The anisotropy parameter is defined as �F 	
~�t=~�s, which coincides with the renormalized anisotropy
� � as=at for sufficiently small quark mass at the tadpole-
improved level [70]. For given �s, the four parameters r,
cE, cB, and �s=�t should be, in principle, tuned so that the
‘‘Lorentz symmetry’’ is respected up to discretization er-
rors of O�a2�. Here, r, cE, and cB are fixed by adopting the
tadpole-improved tree-level values as

r �
1

�
; cE �

1

usu
2
t
; cB �

1

u3
s
: (29)

Only the value of �t=�s�� �F 
 �us=ut�� is tuned nonper-
turbatively by using the meson dispersion relation [70]. It
is convenient to define � as

1

�
	

1

~�s
� 2��F � 3r� 4�: (30)

Then the bare quark mass is expressed asm0 �
1
2 �1=�� 8�

in the spatial lattice unit in the continuum limit. This �
plays the role of the hopping parameter ‘‘�’’ in the iso-
tropic formulation; for details, see Refs. [70,71], where we
take the lattice parameters. The values of the lattice pa-
rameters are summarized in Table II.

We choose four values of the hopping parameter as � �
0:1210, 0.1220, 0.1230, and 0.1240, which correspond to
m�=m � 0:81, 0.78, 0.73, and 0.66, respectively. These
values roughly cover the region ms & m & 2ms. For the
temporal direction, we impose antiperiodic boundary con-
ditions on all the quark fields. For spatial directions, we
impose periodic boundary conditions on all the quarks,
unless otherwise indicated. We refer to this boundary
condition as ‘‘PBC.’’

By keeping �s � 0:1240 fixed for the s quark, and by
changing � � 0:1210–0:1240 for u and d quarks, we per-
-5



TABLE II. Parameters of the lattice simulation. The spatial lattice spacing as is determined by fixing the Sommer scale, r�1
0 �

395 MeV. The mean-field values of link variables (us and ut) are defined in the Landau gauge. �c denotes the critical value of �.

� �G as=at a�1
s (GeV) Size Nconf us ut �F �c Values of �

5.75 3.2552 4 1.100(6) 123 � 96 1000 0.7620(2) 0.9871(0) 3.909 0.12640(5) 0.1240, 0.1230, 0.1220, 0.1210
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form the chiral extrapolation to the physical quark mass
region. In the following part of the paper, we will use

��s; �� � �0:1240; 0:1220�; (31)

as a typical set of hopping parameters in presenting corre-
lators and effective mass plots. For convenience, we show
the obtained masses of�, ,K,K�,N, and N� (JP � 1=2�

baryon) for each hopping parameter � together with their
values at the physical quark mass in Table III. Here, the
chiral extrapolations of masses of these particles are per-
formed by a linear function in m2

�. Unless otherwise in-
dicated, we adopt the jackknife prescription to estimate the
statistical errors.

We use a smeared source to enhance the low-lying
spectra. To implement it, we employ a Gaussian smeared
source after the Coulomb gauge fixing. The smearing
technique after the Coulomb gauge fixing is an established
method, which has been widely used in many papers
[61,66,70,71,79–81]. As a smearing function, Refs. [79–
81] have employed an exponential function, while
Refs. [61,66,70,71] have employed a Gaussian function.
We first perform the Coulomb gauge fixing of gauge
configurations, and obtain quark propagators with a spa-
tially extended source with the Gaussian size  ’ 0:4 fm
according to

qsmear��; ~x� 	N
X
~y

exp
�
�
j ~x� ~yj2

22

�
q��; ~y�; (32)

where N is an appropriate normalization factor. By using
these smeared quark propagators, we construct the penta-
quark correlators with smeared source and point sink. In
the actual calculation, we modify Eq. (32) so that the
smearing is consistent with the finite lattice size and the
particular boundary condition.
TABLE III. Masses of �, , K, K�, N, and N� for each
hopping parameter � in the physical unit GeV. �phys: ’ 0:1261
denotes the value of � which achieves m� ’ 0:14 GeV.

� 0.1210 0.1220 0.1230 0.1240 �phys:

m� 1.007(2) 0.897(1) 0.785(2) 0.658(2) 0.140
m 1.240(4) 1.157(5) 1.074(7) 0.991(11) 0.823(13)
mK 0.846(2) 0.785(1) 0.722(2) 0.658(2) 0.476(2)
mK� 1.119(6) 1.076(7) 1.033(9) 0.991(11) 0.902(15)
mN 1.877(4) 1.739(3) 1.600(4) 1.454(5) 1.164(8)
mN� 2.325(18) 2.194(21) 2.059(28) 1.918(43) 1.648(53)
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IV. NUMERICAL RESULTS ON 5Q SPECTRUM

In this section, we present our lattice QCD results on 5Q
spectrum in the standard PBC.

A. JP � 3=2� 5Q spectrum with PBC

We consider the spectrum of JP � 3=2� pentaquarks. In
Fig. 1, we show the effective mass plots for three interpo-
lating fields, i.e., (a) the NK� type, (b) the twisted
NK� type, and (c) a diquark type. The dotted lines indicate
the s-wave NK� and the d-wave NK thresholds, which
happen to coincide in Fig. 1 for the spatial lattice size L ’
2:15 fm.

We define the effective mass as a function of � by

meff��� 	 log
�

G�3=2����

G�3=2���� 1�

�
; (33)

where G�3=2���� denotes the temporal correlator. At suffi-
ciently large �, the correlator is dominated by the lowest-
lying state with energy m as G�3=2����  Ae�m�. Then
Eq. (33) gives a constant as meff��� ’ m. Thus a plateau
in meff��� indicates that the correlator is saturated by a
single state. In such cases, we can perform a single-
exponential fit in the plateau region.

Figure 1(a) shows the effective mass plot for the
NK�-type interpolating field. In the region 0 � � � 24,
the contamination of the higher spectral contributions is
gradually reduced, which is indicated by the decrease in
meff���. There is a plateau in the interval 25 & � & 35,
where a single state is expected to dominate the 5Q corre-
lator. Beyond � 36, the statistical errors become large. In
addition, the effect of the backward propagation becomes
significant as we approach � 48. Hence, we simply
neglect the data for � * 36, and perform a single-
exponential fit in the region 25 � � � 35. We obtain
m5Q � 2:90�2� GeV, which is denoted by the solid line.
One sees that the 5Q states appears above the s-wave NK�

and the d-wave NK thresholds.
Figure 1(b) shows the effective mass plot for the twisted

NK�-type interpolating field. There is a plateau in the
interval 24 & � & 35, where the single-exponential fit
leads to m5Q � 2:89�1� GeV. The 5Q state is again above
the s-wave NK� and the d-wave NK thresholds.

Figure 1(c) shows the effective mass plot for the
diquark-type interpolating field. We see that statistical
errors are too large to identify a plateau unambiguously.
Hence, we do not perform the fit. Note that this plot is
obtained by using Nconf � 1000 gauge configurations. A
-6
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FIG. 1. The 5Q effective mass plots in the JP � 3=2�

channel in the standard PBC for three types of interpolating
fields, i.e., (a) the NK� type, (b) the twisted NK� type, and
(c) the diquark type. Equation (31) is adopted as a typical
set of hopping parameters. The statistical error is estimated
with the jackknife prescription. The dotted lines indicate the
s-wave NK� and the d-wave NK threshold in the spatial
lattice size L ’ 2:15 fm. Note that they accidentally coincide
with each other. The solid lines denote the results of the single-
exponential fit performed in each plateau region.
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FIG. 2. m5Q in the JP � 3=2� channel against m2
� for the two

interpolating fields, i.e., (circle) the NK� type, (square) the
twisted NK� type. Open symbols denote the direct lattice
QCD data, while the closed symbols and the solid lines represent
the results of the chiral extrapolations to the physical quark mass
region.

SPIN 3=2 PENTAQUARKS IN ANISOTROPIC LATTICE QCD PHYSICAL REVIEW D 72, 074503 (2005)

074503
possible reason for such large noises is that the interpolat-
ing field Eq. (3) does not survive in the nonrelativistic limit
due to its vector diquark component.

Now, we perform the chiral extrapolation. As mentioned
before, we keep � � 0:1240 fixed for the s quark, and vary
� � 0:1210–0:1240 for the u and d quarks. Figure 2 shows
the 5Q masses in the JP � 3=2� channel against m2

�.
Circles and squares denote the data obtained from the
NK�-type and the twisted NK�-type 5Q correlators, re-
spectively. Note that they agree with each other within the
statistical error. The open symbols refer to the direct lattice
QCD data. Since these data behave almost linearly in m2

�,
we adopt the linear chiral extrapolation in m2

� to obtain
m5Q in the physical quark mass region. Note that the
ordinary nonpseudoscalar mesons and baryons show simi-
lar linearity in m2

� [71]. The closed symbols denote the
results of the chiral extrapolation. We see that all the 5Q
states appear above the s-wave NK� and the d-wave NK
TABLE IV. m5Q for each value of � in the physical unit GeV.
The second column labeled by ‘‘I.F.’’ indicates the interpolating
field used, i.e., (a) the NK� type, (b) the twisted NK� type, and
(c) the diquark type. �phys: ’ 0:1261 denotes the value of �
which achieves m� ’ 0:14 GeV. ‘‘
 
 
’’ indicates that the fitting
is not performed due to the large statistical error.

JP I.F. � � 0:1210 0.1220 0.1230 0.1240 �phys:

3=2� (a) 3.08(1) 2.90(2) 2.72(2) 2.54(3) 2.17(4)
3=2� (b) 3.08(1) 2.89(1) 2.70(2) 2.49(3) 2.11(4)
3=2� (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


3=2� (a) 3.52(2) 3.34(3) 3.17(11) 3.00(5) 2.64(7)
3=2� (b) 3.27(3) 3.11(4) 2.95(5) 2.83(9) 2.48(10)
3=2� (c) 3.34(2) 3.16(2) 2.98(3) 2.78(5) 2.42(6)
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FIG. 3. The 5Q effective mass plots in the JP � 3=2� channel
with PBC for three types of interpolating fields, i.e., (a) the
NK� type, (b) the twisted NK� type, and (c) the diquark type.
Equation (31) is adopted as a typical set of hopping parameters.
The dotted lines indicate the s-wave N�K�, the p-wave NK�, and
the p-wave NK thresholds in the spatial lattice size L ’ 2:15 fm.
The solid lines denote the results of the single-exponential fit
performed in each plateau region.
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thresholds. As a result of the chiral extrapolation, we
obtain only massive 5Q states as m5Q � 2:17�4�,
2.11(4) GeV from the NK�-type and the twisted
NK�-type correlators, respectively, which is too heavy to
be identified with the ���1540� observed experimentally.
Numerical values of m5Q at each hopping parameter to-
gether with their chirally extrapolated values are summa-
rized in Table IV. To obtain a low-lying state at
m5Q ’ 1540 MeV, a 5Q state should appear below these
thresholds at least in the light quark mass region. In this
case, a significantly large chiral effect is required. This
point may be clarified in the future by an explicit lattice
QCD calculation with chiral fermions.

B. JP � 3=2� 5Q spectrum with PBC

We consider the spectrum of JP � 3=2� pentaquarks.
JP � 3=2� is an interesting quantum number from the
viewpoint of the diquark picture of Jaffe and Wilczek
[22]. In this picture, the pair of diquarks has an angular
momentum of 1, which is combined with the spin 1=2 of
the �s quark. Hence, there are two possibilities as JP �
1=2� and 3=2�, i.e., the diquark picture can support the
JP � 3=2� possibility as well. The mass splitting between
the JP � 1=2� and JP � 3=2� states depends on proper-
ties of the LS interaction. If the JP � 3=2� state is mas-
sive, it is expected to have a large decay width. If it is light
enough, its exotic structure may give an explanation to its
narrow decay width as for the JP � 1=2� case.

In Fig. 3, we show the 5Q effective mass plots with
PBC employing three types of interpolating fields, i.e.,
(a) the NK� type, (b) the twisted NK� type, and (c) the
diquark type. The dotted lines indicate the s-wave N�K�,
the p-wave NK�, and the p-wave NK thresholds in the
spatial lattice of size L ’ 2:15 fm, respectively.

Figure 3(a) shows the 5Q effective mass plot employing
the NK�-type interpolating field. In the region, 0 � � &

17, the contaminations of higher spectral contributions are
gradually reduced. There is a flat region 18 & � � 30,
which is still afflicted with slightly large statistical errors.
The single-exponential fit in this region gives m5Q �

3:34�3� GeV. Note that this value agrees with the s-wave
N�K� threshold Eth ’ 3:27 GeV (see Table III for mN�).

Figure 3(b) shows the 5Q effective mass plot corre-
sponding to the twisted NK�-type interpolating field. We
have a rather stable plateau in the interval 21 � � � 27,
where the single-exponential fit is performed. We obtain
m5Q � 3:11�4� GeV. The result is denoted by the solid
line.

Figure 3(c) shows the 5Q effective mass plot for the
diquark-type interpolating field. We find a plateau in the
interval 19 � � � 29. A single-exponential fit gives
m5Q � 3:16�2� GeV.

Now, we perform the chiral extrapolation. In Fig. 4,m5Q

is plotted againstm2
�. Circles, squares, and triangles denote

the data obtained from the NK�-type, the twisted
074503-8
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FIG. 4. m5Q in the JP � 3=2� channel against m2
� for the three

interpolating fields, i.e., (circle) the NK� type, (square) the
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Open symbols denote the direct lattice QCD data, while the
closed symbols and the solid lines represent the results of the
chiral extrapolations to the physical quark mass region.
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NK�-type, and the diquark-type 5Q correlators, respec-
tively. Note that the latter two agree with each other within
the statistical errors.

As a result of the chiral extrapolation, we obtain m5Q �

2:64�7� GeV from the NK�-type correlator, m5Q �

2:48�10� GeV from the twisted NK�-type correlator, and
m5Q � 2:42�6� GeV from the diquark-type correlator.
Numerical values of m5Q in the JP � 3=2� channel at
each hopping parameter together with their chirally ex-
trapolated values are also summarized in Table IV. The
data from the twisted NK�-type and the diquark-type cor-
relators are considered to be consistent with the p-wave
NK� threshold, while the data from the NK�-type correla-
tor seem to correspond to a more massive state, which is
likely to be consistent with the N�K� (s-wave) threshold.
We see again that all of our data of m5Q appear above the
NK� threshold (p wave), which is located above the arti-
ficially raised NK threshold (p wave) due to the finiteness
of the spatial lattice as L ’ 2:15 fm. As a result, we are left
only with massive 5Q states.

Now, several comments are in order. (1) Reference [67]
reported the existence of a low-lying 5Q state in the JP �
3=2� channel using the NK�-type interpolating field.
However, we have not observed such a low-lying 5Q state
in our calculation. There are a number of differences in the
lattice QCD setup between the current studies and
Ref. [67], such as the gauge and the quark actions, and
the implementation of the smeared source. However, we
consider that, rather than being a consequence of these
differences, the discrepancy mainly comes from the low
statistics adopted in Ref. [67]. We emphasize again that
spin 3=2 pentaquark correlators are quite noisy, and there-
fore require better statistics. (2) Recall that, except for a
074503
single calculation [59], lattice QCD calculations indicate
that the JP � 1=2� state is heavy [57,58,60–66], for in-
stance m5Q ’ 2:25 GeV in Ref. [61]. From the viewpoint
of the diquark picture, it could be natural to obtain such
massive 5Q states in the JP � 3=2� channel. If there were
a low-lying 5Q state in the JP � 3=2� channel, then the
diquark picture could suggest also a low-lying 5Q state in
the JP � 1=2� channel nearby.

V. ANALYSIS WITH HBC

In the previous section, we have observed only massive
5Q states, which are obtained by using the linear chiral
extrapolation in m2

�. However, the chiral behavior may
deviate from a simple linear one in the light quark mass
region, which could lead to somewhat less massive states.
Considering this, it is worthwhile at this stage to analyze
whether our 5Q states are compact 5Q resonances or not.
This is done by switching the spatial periodic BC to the
hybrid BC introduced in Sec. II.

A. JP � 3=2� 5Q spectrum with HBC

Figure 5 shows the 5Q effective mass plots with HBC
employing the three types of interpolating fields, i.e., (a)
theNK� type, (b) the twisted NK� type, and (c) the diquark
type. These figures should be compared with their PBC
counterparts in Fig. 1. The dotted lines denote the s-wave
NK� and the d-wave NK thresholds. For the typical set of
hopping parameters, i.e., Eq. (31), the s-wave NK� thresh-
old (the thick dotted line) is raised by 180 MeV, and the
d-wave NK threshold (the thin dotted line) is lowered by
70 MeV due to HBC in the finite spatial extent as L ’
2:15 fm (see Table I).

Figure 5(a) shows the 5Q effective mass plot for the
NK�-type interpolating field with HBC. We find a plateau
in the interval 23 � � � 35, where the single-exponential
fit is performed leading to m5Q � 2:98�1� GeV, which is
denoted by the solid line. We see that m5Q is raised by
80 MeV due to HBC. The value of m5Q is consistent with
the s-wave NK� threshold within the statistical error.
Therefore, we regard this state as an NK� scattering state.

Figure 5(b) shows the 5Q effective mass plot for the
twisted NK�-type interpolating field. We find a plateau in
the interval 24 � � � 35, where the single-exponential fit
is performed leading to m5Q � 2:98�1� GeV, which is
denoted by the solid line. The situation is similar to the
NK�-interpolating field case. We see that m5Q is raised by
90 MeV due to HBC. Since the value is consistent with the
s-wave NK� threshold within the statistical error, we re-
gard it as an NK� scattering state.

Figure 5(c) shows the 5Q effective mass plot for the
diquark-type interpolating field. We see that it is afflicted
with a considerable size of statistical errors as before, due
to which the best fit is not performed.
-9
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FIG. 5. The 5Q effective mass plots in the JP � 3=2� channel
with HBC for three types of interpolating fields, i.e., (a) the
NK� type, (b) the twisted NK� type, and (c) the diquark type.
The meanings of the dotted lines and the solid lines are the same
as in Fig. 1.
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In this way, all of our 5Q states in the JP � 3=2�

channel turn out to be NK� scattering states. More pre-
cisely, we do not observe any compact 5Q resonance states
in the JP � 3=2� channel below the raised s-wave NK�

threshold,
074503
E &
�����������������������
m2
N � ~p2

min

q
�

������������������������
m2
K� � ~p2

min

q
; (34)

with j ~pminj ’ 499 MeV.

B. JP � 3=2� 5Q spectrum with HBC

Figure 6 shows the 5Q effective mass plots with HBC
employing the three types of interpolating fields, i.e., (a)
theNK� type, (b) the twisted NK� type, and (c) the diquark
type. These figures should be compared with their PBC
counterparts in Fig. 3. The meaning of the dotted and the
solid lines is the same as in Fig. 3.

HBC may not be useful for the JP � 3=2� channel,
since it induces only minor changes in the two-particle
spectra. For the typical set of hopping parameters, i.e.,
Eq. (31), the p-wave NK� threshold is lowered only by
60 MeV, and the p-wave NK threshold is lowered only
by 70 MeV. We see that these shifts are rather small.
This is because they are induced by the changes in the
minimum nonvanishing momentum, i.e., j ~pminj � 2�=L ’
576 MeV to

���
3
p
�=L ’ 499 MeV as mentioned before. In

the JP � 3=2� channel, N�K� (s-wave) threshold shows
the most drastic change, i.e., the upper shift by 170 MeV,
which however plays a less significant role, since its loca-
tion is at rather high energy.

Figure 6(a) shows the 5Q effective mass plot employing
the NK�-type interpolating field. There is a flat region
16 � � & 25, which is still afflicted with slightly large
statistical errors. The single-exponential fit in this region
leads to m5Q � 3:38�2� GeV. We see that m5Q is raised by
40 MeV. Although the shift of 40 MeV is rather small, m5Q

is again almost consistent with the s-wave N�K� threshold.
Considering its rather large statistical error, this 5Q state is
likely to be an s-wave N�K� scattering state. To draw a
more solid conclusion on this state, it is necessary to
improve the statistics.

Figure 6(b) shows the 5Q effective mass plot employing
the twisted NK�-type interpolating field. There is a plateau
in the interval 23 � � � 31, where we perform the single-
exponential fit. The result m5Q � 3:02�3� GeV is denoted
by the solid line. We see that m5Q is lowered by 90 MeV,
which is considered to be consistent with the shift of the
NK� (p-wave) threshold. Therefore, this state is likely to
be an NK� (p-wave) scattering state.

Figure 6(c) shows the 5Q effective mass plot employing
the diquark-type interpolating field. Although the data are
slightly noisy, there is a plateau in the interval 23 � � �
28. A single-exponential fit in this plateau region leads to
m5Q � 3:08�4� GeV. m5Q is lowered by 80 MeV due to
HBC. The situation is similar to Fig. 6(b). This state is
likely to be an NK� (p-wave) scattering state.

In this way, all of our 5Q states are likely to be either
N�K� (s-wave) or NK� (p-wave) states rather than com-
pact 5Q resonance states. Of course, because HBC induces
only minor changes in the 5Q spectrum in the JP � 3=2�

channel, and also because 5Q correlators still involve a
-10
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FIG. 6. 5Q effective mass plots in the JP � 3=2� channel with
HBC for three types of interpolating fields: (a) the NK� type, (b)
the twisted NK� type, and (c) the diquark type. The meanings of
the dotted lines and the solid lines are the same as in Fig. 3.
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considerable size of statistical error, more statistics is
desirable to draw a solid conclusion on the real nature of
these 5Q states. Here, we can at least state that these 5Q
states are all massive, which locate above the NK�

(p-wave) threshold.
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VI. SUMMARY AND CONCLUSION

High-precision measurements of the masses of the JP �
3=2� 5Q baryons have been performed in anisotropic
lattice QCD at the quenched level with a large number of
gauge field configurations as Nconf � 1000. We emphasize
that the spin of ���1540� has not yet been determined
experimentally, and that the JP � 3=2� assignment pro-
vides us with one of the possible solutions to the puzzle of
the narrow decay width of ���1540� [43]. We have em-
ployed the standard Wilson gauge action on the anisotropic
lattice of the size 123 � 96 with the renormalized anisot-
ropy as=at � 4 at � � 5:75, which corresponds to as ’
0:18 fm and at ’ 0:045 fm. We have found that correlators
of JP � 3=2� pentaquark baryons are rather noisy. Hence,
the large statistics as Nconf � 1000 has played a key role to
get a solid result in our calculation. For the quark part,
we have employed O�a�-improved Wilson (clover) action
with four values of the hopping parameters as � �
0:1210�0:0010�0:1240, which roughly cover the region of
ms & m & 2ms for the u-d quark masses. To avoid con-
taminations of excited states, we have employed the spa-
tially extended smeared source.

We have examined three types of the 5Q interpolating
fields: (a) the NK� type, (b) the (color-)twisted NK� type,
and (c) the diquark type. In the JP � 3=2� channel, we
have observed plateaus in the effective mass plots for the
NK�-type and the twisted NK�-type interpolating fields,
whereas no plateau has been identified in the ones for the
diquark-type interpolating field due to significantly large
statistical error. The former two give almost identical
results. We have employed the linear chiral extrapolations
in m2

�, which have led to m5Q ’ 2:17 and 2.11 GeV for the
NK�-type and the twisted NK�-type 5Q correlators, re-
spectively. In the JP � 3=2� channel, we have observed
plateaus in all three effective mass plots. However, the
plateau for the NK�-type interpolating field is located at
a somewhat higher energy than the other two. Chiral ex-
trapolations have led to m5Q ’ 2:64 GeV for the NK�-type
correlator, m5Q ’ 2:48 GeV for the twisted NK�-type cor-
relator, and m5Q ’ 2:42 GeV for the diquark-type correla-
tor. In this way, our data do not support low-lying 5Q states
in both the JP � 3=2� channels. All the observed 5Q states
appear above the d=p-wave NK thresholds, which are
higher than the s-wave threshold by a few hundred MeV
due to the finiteness of the spatial lattice as L ’ 2:15 fm.
Note that a low-lying 5Q state with JP � 3=2� appears
below such NK threshold (p=d wave) at least in the light
quark mass region.

In order to clarify whether or not the observed states are
compact 5Q resonances, we have performed an analysis
using the HBC method, which was recently proposed by
Ref. [61]. In the JP � 3=2� channel, the observed 5Q
states in the NK�-type and the twisted NK�-type correla-
tors have turned out to be s-wave NK� scattering states. In
the JP � 3=2� channel, for the twisted NK�-type and the
-11
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diquark-type correlators, the observed 5Q states are most
likely to be NK� (p-wave) scattering states. For the other
one, i.e., the NK�-type interpolating field, although more
statistics is needed to draw a definite conclusion, it is most
likely to be an s-wave N�K� scattering state. Note that,
since HBC does not affect the two-particle spectra so much
in the JP � 3=2� channel, it is not easy to elucidate the
nature of the 5Q states only with HBC. At any rate, what-
ever the real nature of these 5Q states may be, they result in
considerably massive states at the physical quark mass, and
therefore cannot be identified as ���1540� without involv-
ing a significantly large chiral contribution.

In conclusion, we have not obtained any relevant signals
for low-lying compact 5Q resonance states in the JP �
3=2� channels below 2.1 GeV in the present study. In order
to make this conclusion established, further systematic
studies with various quantum numbers in lattice QCD
will be helpful. For instance, it is desirable to use (1)
unquenched full lattice QCD, (2) finer and larger volume
lattice, (3) chiral fermion with small mass, (4) more so-
phisticated interpolating field corresponding to the diquark
picture, and so on. In any case, the mysterious exotic
pentaquark is to be clarified in future studies of lattice
QCD as well as in future experiments.
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APPENDIX: SPECTRAL REPRESENTATION

Considering the importance of the parity determination
of ��, we present a brief derivation of the spectral repre-
sentation of Rarita-Schwinger correlators, i.e., Eq. (8),
with Eq. (11). In this section, the gamma matrices are
represented in the Minkowskian form (see Ref. [82]). To
avoid unnecessary complexities, we derive formulas only
for JP � 3=2�. The JP � 1=2� counterparts can be ob-
tained by a slight modification.

We first consider the coupling of our interpolating fields
 � to a JP � 3=2� (anti-)baryon state. Because of Eq. (6),
our interpolating fields, i.e., Eqs. (1)–(3) have a negative
intrinsic parity. Hence, their couplings to JP � 3=2�

(anti-)baryons are parametrized in the following way:
074503
h0j ��0�jB3=2��k; ��i � 
3=2�u��m3=2� ; k; ��;

h0j � ��0�j �B3=2��k; ��i � 
�3=2� �v��m3=2� ; k; ��;
(A1)

where jB3=2��k; ��i [j �B3=2��k; ��i] denotes a JP � 3=2�

(anti-)baryon state with momentum k, helicity �, and mass
m3=2� (m3=2�). u��m; k; �� and v��m; k; �� denote the
Rarita-Schwinger spinors for J � 3=2 particles [73–75].
Equations (1)–(3) couple to JP � 3=2� states as well. In
that case, their couplings involve �5 in the following way:

h0j ��0�jB3=2��k; ��i � 
3=2��5u��m3=2� ; k; ��;

h0j � ��0�j �B3=2��k; ��i � �

�
3=2�

�v��m3=2� ; k; ���5:
(A2)

The negative sign for the antibaryon originates from the
anticommutativity of �0 and �5.

To derive the spectral representation, the best way would
be to express it in the operator representation in the follow-
ing way:

G����; ~x� � Z�1 Tr�e��HT�� ���; ~x� � ��0���; (A3)

where � denotes the temporal extent of the lattice, H 	
HQCD denotes the QCD Hamiltonian, Z 	 Tr�e��H� de-
notes the partition function, and T���� represents the time-
ordered product along the imaginary time direction. The
interpolating fields are represented in the Heisenberg pic-
ture in imaginary time, i.e.,  ���; ~x� � e�H ��0; ~x�e��H

and � ���; ~x� � e�H � ��0; ~x�e
��H. By restricting ourselves

to the interval 0 � � < �, Eq. (A3) reduces to

G����; ~x� � Tr
�
e��H

Z
 ���; ~x� � ��0�

�
: (A4)

Note that it can be equivalently expressed as

G����; ~x� � Tr
�
 ���� �; ~x�

e��H

Z
� ��0�

�
: (A5)

In the large � limit, we have e��H=Z ’ j0ih0j, which is
inserted into Eqs. (A4) and (A5). Note that the resulting
two expressions serve as independent contributions to the
original ‘‘Tr,’’ i.e., Eq. (A4) [or Eq. (A5)]. Hence, we keep
these two contributions to obtain

G����; ~x� ’ h0j ���; ~x� � ��0�j0i

� h0j � ��0� ���� �; ~x�j0i: (A6)

Note that the 1st term corresponds to the forward propa-
gation, whereas the 2nd term to the backward propagation.
By inserting single-(anti-)baryon intermediate states, and
by using Eqs. (A1) and (A2), we are left with
-12
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G����; ~x� �
X4

��1

Z d3k

�2��3
m3=2�

k0
e��k0h0j �� ~x�jB3=2��k; ��ihB3=2��k; ��j � ��0�j0i � 
 
 


� j
3=2�j
2
Z d3k

�2��3
m3=2�

k0
��1�P�3=2�

�� �k�
�
e��k0ei ~k
 ~x

�
m3=2� � k6

2m3=2�

�
� e������k0e�i ~k
 ~x

�
m3=2� � k6

2m3=2�

��

� j
3=2�j
2
Z d3k

�2��3
m3=2�

k0
��1�P�3=2�

�� �k�
�
e��k0ei ~k
 ~x

�m3=2� � k6

2m3=2�

�
� e������k0e�i ~k
 ~x

�m3=2� � k6

2m3=2�

��
; (A7)

�����������������������q

where k0 	 m2

3=2� �
~k2 for JP � 3=2�, k0 	�����������������������

m2
3=2�
� ~k2

q
for JP � 3=2�, and the following identities

are used:

X4

��1

u��m; k; �� �u��m; k; �� � �
m� k6

2m
P�3=2�
�� �k�;

X4

��1

v��m; k; �� �v��m; k; �� �
m� k6

2m
P�3=2�
�� �k�;

(A8)

where P�3=2�
�� �k� is the spin 3=2 projection operator defined

as

P�3=2�
�� �k� 	 g�� �

1

3
���� �

1

3k2 �k6 ��k� � k���k6 �:

(A9)

By performing the integration over ~x in order to make zero-
momentum projection, and by replacing the Minkowskian
gamma matrices by their Euclidean counterparts, we fi-
nally arrive at the spectral representation Eq. (8) with
Eq. (11).

Derivation of the spin 1=2 parts is similarly done by
using the following parametrizations instead of Eqs. (A1)
074503
and (A2),

h0j ��0�jB1=2��k; ��i � �
1=2��� � 
01=2�k��

� u�m1=2� ; k; ��;

h0j � ��0�j �B1=2��k; ��i � �v�m1=2� ; k; ��

� �
�1=2��� � 

0�
1=2�k��;

h0j ��0�jB1=2��k; ��i � �
1=2��� � 

0
1=2�k��

� �5u�m1=2� ; k; ��;

h0j � ��0�j �B1=2��k; ��i � � �v�m1=2� ; k; ��

� �5�

�
1=2��� � 


0�
1=2�k��;

(A10)

where jB1=2��k; ��i and j �B1=2��k; ��i denote the JP �
1=2� (anti-)baryon states with momentum k, helicity �,
and massm1=2� . u�m; k; �� and v�m; k; �� denote the Dirac
bispinors for spin 1=2 particles with massm, momentum k,
and helicity �. 
1=2� and 
01=2� represent the couplings to
JP � 1=2� (anti-)baryons.
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