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Advanced predictions for moments of the �B! Xs� photon spectrum
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Based on a new, exact QCD factorization formula for the partial �B! Xs� decay rate with a restriction
on large photon energy, improved predictions are presented for the partial moments hE�i and hE2

�i � hE�i
2

of the photon spectrum defined with a cut E� � E0. In the region where � � mb � 2E0 is large compared
with �QCD, a theoretical description without recourse to shape functions can be obtained. However, for
�� mb it is important to separate short-distance contributions arising from different scales. The leading
terms in the heavy-quark expansion of the moments receive contributions from the scales � and

����������
mb�

p
only, but not from the hard scale mb. For these terms, a complete scale separation is achieved at next-to-
next-to-leading order in renormalization-group improved perturbation theory, including two-loop match-
ing contributions and three-loop running. The results presented here can be used to extract the b-quark
mass and the quantity �2

� with excellent theoretical precision. A fit to experimental data reported by the
Belle Collaboration yields mSF

b � �4:62� 0:10exp � 0:03th� GeV and �2;SF
� � �0:11� 0:19exp �

0:08th� GeV2 in the shape-function scheme at a scale �f � 1:5 GeV, while mkin
b � �4:54� 0:11exp �

0:04th� GeV and �2;kin
� � �0:49� 0:18exp � 0:09th� GeV2 in the kinetic scheme at a scale �f � 1 GeV.
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I. INTRODUCTION

Experimental studies and theoretical analyses of inclu-
sive decays of Bmesons have steadily been refined over the
past decade. The rates for semileptonic �B! Xl� �� decays
provide access to the elements jVcbj and jVubj of the quark
mixing matrix. The rate for the radiative decay �B! Xs�
serves as a probe for new flavor- or CP-violating interac-
tions. Shape variables, such as moments of inclusive spec-
tra in different kinematic variables, can be used as a tool to
probe nonperturbative QCD dynamics in a regime where it
is controllable using systematic heavy-quark expansions.
Global fits to moments of the charged-lepton energy spec-
trum and of the invariant hadronic-mass distribution in
�B! Xcl� �� decay not only give the currently most precise

determination of jVcbj, but also of the b-quark mass and of
other hadronic parameters characterizing bound-state ef-
fects in the Bmeson, such as the quantity �2

� related to the
b-quark kinetic energy [1,2].

Moments of the photon-energy spectrum in �B! Xs�
decay are another source of information about such had-
ronic parameters. In particular, while in �B! Xcl� �� decay
one is primarily sensitive to the quark-mass difference
�mb �mc�, a measurement of the average photon energy
in �B! Xs� decay comes close to a direct measurement of
mb. Existing predictions for these moments rely on a
conventional heavy-quark expansion in powers of �s�mb�
and �QCD=mb. The usefulness of the photon-energy mo-
ments for the determination of mb and �2

� was first noted
by Kapustin and Ligeti [3], who computed the terms of
order �s and 1=m2

b in the heavy-quark expansion. These
authors showed that moments of the photon spectrum are
in many aspects simpler than the spectrum itself.
Perturbative corrections to the moments of order �0�2

s
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were calculated (in part numerically) in [4], and 1=m3
b

corrections were studied in [5]. Recently, an all-order
resummation of the �n�1

0 �ns terms was performed in [6].
In this paper, the authors stress the importance of shape-
function effects in the region where E0 is larger than about
1.85 GeV. As emphasized in [7], theoretical ‘‘biases’’ are
introduced when moments measured in this region are
compared with theoretical predictions obtained by ignor-
ing these effects. The proposal of Benson et al. [6] is to
correct for these biases in a model-dependent way by fitting
a two-parameter shape-function model to the �B! Xs�
data, and then use the fitted spectrum to compute the
differences between the true moments and the moments
predicted using the conventional heavy-quark expansion
(without shape functions). It is clear that in this way one
obtains an accurate description of the cutoff dependence of
the moments. However, the sensitivity of the moments to
the parameters mb and �2

� now enters via the model ansatz
used for the shape function. This introduces uncontrolled
theoretical uncertainties, which in our opinion are under-
estimated in [6]. The conclusion of these authors that the
naive heavy-quark expansion can be trusted for values
E0 < 1:85 GeV rests on the model-dependent assumption
that shape-function tails and other low-scale effects are
irrelevant in that case.

Here we follow a different strategy. It is well known that
in the endpoint region, where mb � 2E� ��QCD, the �B!
Xs� photon spectrum obeys a QCD factorization formula
of the type d�=dE� �H 	 J 
 S [8,9], where H accounts
for hard gluon corrections associated with the scalemb, the
function J describes the properties of the final-state had-

ronic jet Xs with invariant mass of order
������������������
mb�QCD

q
, and the

shape function S accounts for hadronic effects inside the B
-1 © 2005 The American Physical Society
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meson [10,11]. It has been argued that such a formula (with
functions Hi, Ji, Si) holds not only at leading power, but at
every order in the 1=mb expansion [12–14]. The question
about the precise nature of the transition from the shape-
function regime mb � 2E� ��QCD to the kinematic re-
gion where mb � 2E� � �QCD has recently been clarified
in [15]. A key result is that integrals over the shape
function weighted by arbitrary smooth functions can be
expanded in terms of local-operator matrix elements as
soon as the integration domain becomes sufficiently large
[16,17]. The shape function can be related to the disconti-
nuity of the forward B-meson matrix element of the non-
local heavy-quark effective theory (HQET) operator
�hv�!� in 	D� i��

�1hv, where v is the B-meson veloc-
ity, and n is a lightlike vector satisfying n2 � 0 and v 	 n �
1. This matrix element has a branch cut along the real axis
in the complex !-plane, extending from � �� 
 !<1,
where �� � �mB �mb�mb!1

is the familiar HQET parame-
ter defined in the heavy-quark limit. It follows that inte-
grals of the type

Z �

� ��
d!S�!;��f�!�

/
I
j!j��

d!f�!�h �B�v�j �hv
1

!� in 	D� i�
hvj �B�v�i

(1)

can be written as contour integrals along a circle of radius
� in the complex !-plane, as long as the weight function
f�!� is analytic inside this circle (which is always the case
in practical applications) and �> ��. In the case of the
partial �B! Xs� decay rate, phase space is such that the
upper limit on the integral over ! is set by the parameter
� � mb � 2E0, where E0 denotes the lower cut on the
photon energy. For ���QCD the relation above is not of
much use. However, for �� �QCD the right-hand side of
(1) admits an expansion in terms of B-meson matrix ele-
ments of local HQET operators. This is an expansion in
powers of ��QCD=��n, i.e., not a conventional heavy-quark
expansion. The corresponding Wilson coefficients have a
perturbative expansion in powers of�s���, which is free of
large logarithms provided that the renormalization scale
used in the definition of the renormalized shape function is
chosen such that �� �. The scale dependence of the
leading-order shape function S�!;�� can be controlled
precisely, because an exact analytic solution to its evolu-
tion equation exists in momentum space [15,16,18].

In previous work, we have applied this technology to
derive a renormalization-group (RG) improved prediction
for the partial �B! Xs� decay rate as a function of the
photon cut for values of E0 outside the shape-function
region (typically E0 < 2 GeV, such that �> 0:7 GeV)
[15]. In that paper we have already presented a formula
for the first moment of the photon spectrum. An important
finding was that the first two terms in the 1=mb expansion
074025
of the average photon energy do not receive any contribu-
tions from the hard scale mb. Here we extend this analysis
to the second moment. Most importantly, we include the
complete set of two-loop matching corrections and three-
loop anomalous-dimension effects so as to obtain predic-
tions that are exact at next-to-next-to-leading order
(NNLO) in RG-improved perturbation theory. We confirm
that, in general, moments of the photon spectrum probe
low-scale dynamics sensitive to the scales �0 �� and
�i �

����������
mb�

p
. To a very good approximation, they are in-

sensitive to physics at the scale mb. As long as �� mb
(� � 1 GeV for present experiments), it is thus not appro-
priate to compute the moments using a conventional
heavy-quark expansion in powers of �s�mb� and
�QCD=mb. Compared with [15] we also include additional
small corrections arising at higher orders in the 1=mb
expansion, and we comment on the effects of the photon-
energy cut on the Lorentz boost between the B-meson rest
frame and the ��4S� rest frame, which must be corrected
for in the experimental analyses [19–21].
II. FACTORIZATION FORMULA FOR THE DECAY
RATE

A. Partial decay rate and moment relations

We begin by collecting some useful relations for mo-
ments of the partial �B! Xs� decay rate, defined with a cut
E� � E0 on the photon energy measured in the B-meson
rest frame. It is convenient to define a variable p� � mb �

2E�, where for the time being mb denotes the pole mass of
the heavy b quark. The requirement E� � E0 translates
into p� 
 � � mb � 2E0. As long as � is not too small,
the partial rate can be calculated using an operator product
expansion (OPE). From (1) it follows that the correct
criterion for the validity of the OPE is �� �QCD. We
define

�OPE��� �
Z �

0
dp�

d�OPE

dp�
; (2)

taking into account that in the OPE the phase space is such
that 0 
 p� 
 mb. It follows from this expression that
partial moments in the variable p�, defined as

hpn�i �

R
�
0 dp�p

n
�
d�OPE

dp�R
�
0 dp�

d�OPE

dp�

� �nMn���; (3)

can be written in terms of integrals over the function
�OPE���, namely

Mn��� � 1�
n

�OPE���

Z 1

0
dy yn�1�OPE�y��: (4)

Given a theoretical formula for the partial rate �OPE���, it
is thus possible to derive arbitrary moments without going
back to the differential spectrum itself. Note that for the
application of this relation it is irrelevant that the variable
-2
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y� is not always large compared with �QCD. As in (2),
what matters is only the upper limit of the integration
domain, because this sets the radius of the corresponding
contour integral.

Moments of the photon-energy spectrum can immedi-
ately be related to the functions Mn���. In particular,
central moments defined with respect to the cutoff, i.e.
h�E� � E0�

ni, are linear combinations of the Mn���. For
the average photon energy and the variance �2

E � hE
2
�i �

hE�i2 of the photon spectrum, we then obtain

hE�i � E0 �
�

2
�1�M1����;

�2
E �

�2

4
�1� 2M1��� �M2���� � �hE�i � E0�

2:

(5)

The main goal of this work is to derive accurate theoretical
expressions for these moments in a region where the cutoff
E0 is such that �QCD � �� mb. The first inequality
(�QCD � �) ensures that theoretical predictions can be
obtained without recourse to nonperturbative shape (or
bias) functions. The second inequality (�� mb) implies
that the theory used to derive these predictions cannot be a
conventional heavy-quark expansion in powers of �s�mb�
and �QCD=mb. Instead, one should disentangle the physics

associated with the different short-distance scales ������������
mb�

p
� mb. For the partial rate �OPE���, this has been

achieved (at leading power in 1=mb) in [15].
Already at this stage it is instructive to ask what preci-

sion we might expect to achieve in the calculation of hE�i
and �2

E. We will see below that the moments Mn��� have
an expansion in powers of �s, �QCD=�, and �=mb. Since
the leading terms in the expansion are known at two-loop
order, it is reasonable to expect a precision on Mn��� of
about 3%. With � � 1 GeV, it follows that 	hE�i �
0:015 GeV and 	�2

E � 0:08 GeV2. At tree level, the theo-
retical expressions for the moments are hE�i � mb=2� . . .
and �2

E � �2
�=12� . . . , so that we may expect to extract

the heavy-quark parameters with precision 	mb �
30 MeV and 	�2

� � 0:1 GeV2. These estimates will be
confirmed by the more elaborate study in Section V. While
the projected accuracy for the b-quark mass determination
is exquisite, the extraction of �2

� suffers to some extent
from the fact that the hadronic contribution �2

�=12 to the
variance �2

E competes with a large perturbative ‘‘back-
ground’’ of order �s�2.

B. A wonderful formula

At leading power in 1=mb and next-to-leading order
(NLO) in the expansion in powers of �QCD=�, it is pos-
sible to write an expression for the partial rate �OPE��� that
is valid to all orders in perturbation theory, and in which
nevertheless the dependence on the variable � enters in a
very transparent way. Starting point is the factorization
074025
formula [15]1

���� �
G2
F�

32�4 jVtbV
�
tsj

2m3
bm

2
b��h�jH���h�j

2U1��h;�i�

�U2��i;�0�
e��E


��1� 
�

� 

Z �

� ��
dp�

Z p�

� ��
d!mbJ�mb�p� �!�; �i�

�
Z !

� ��
d!0

S�!0; �0�

�

0 �!�!

0�1�

� . . . ; (6)

where the ellipses represent power corrections in 1=mb.
Here mb is the b-quark pole mass, and mb��� denotes the
running mass defined in the MS scheme. The function H�

contains hard quantum fluctuations associated with the
weak-interaction vertices in the effective weak
Hamiltonian. The jet function J describes the physics of
the hadronic final state Xs. The shape function S governs
the soft physics associated with bound-state effects inside
the B meson. The matching scales �h �mb, �i �

����������
mb�

p
,

and �0 �� serve to separate the hard, hard-collinear, and
soft components in the factorization theorem, and the RG
functions U1 and U2 resum logarithmic corrections arising
from evolution between these scales. The precise form of
these objects, which can be found in [15], is irrelevant to
our discussion. Finally, the variable


 � 2
Z �i

�0

d�
�

�cusp��s���� (7)

is given in terms of an integral over the universal cusp
anomalous dimension of Wilson loops with lightlike seg-
ments [22]. The perturbative expansion of this quantity is
discussed in Appendix A1. The result (6) is formally
independent of the choices of the matching scales. In
practice, a residual scale dependence remains because
one is forced to truncate the perturbative expansions of
the various objects in the factorization formula.

Introducing the integral

j
�
ln
Q2

�2 ; �
�
�
Z Q2

0
dk2J�k2; �� (8)

over the jet function, and changing the order of the inte-
grations over p� and !, the terms in the last two lines in
(6) can be rewritten in the form

j
�
ln
mb�0

�2
i

� @
;�i

�Z �

� ��
d!S�!;�0�

�
��!
�0

�


; (9)

where we have defined

j �L;�� � 

Z 1

0

dz

z1�
 j�L� ln�1� z�; ��: (10)
-3
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When L contains a derivative operator @
, it is understood
that this operator acts only to the right.

The remaining shape-function integral is of the type
shown in (1), and for �� �QCD it can be expanded in
matrix elements of local HQET operators. To this end, we
replace the true shape function by the corresponding func-
tion obtained in the parton model with on-shell external
quark states, which has support for ! � �n 	 k instead of
! � � ��, where k � pb �mbv with v 	 k � 0 is the re-
sidual momentum of the on-shell heavy quark. We then
evaluate the integral, expand the result in powers of n 	 k,
and match the answer onto HQET matrix elements [16]. It
is convenient to use an integration by parts and introduce
the integral

s
�
ln

�k

�
;�
�
�
Z �

�n	k
d!Sparton�!;��; (11)

which is analogous to the function j in (8).
Reparametrization invariance [23,24] ensures that the re-
sult only depends on the sum �k � �� n 	 k. Introducing
a related function

s �L;�� � 

Z 1

0

dz

z1�
 s�L� ln�1� z�; �� (12)

in analogy with (10), we find that

Z �

� ��
d!Sparton�!;�0�

�
��!
�0

�



�


�0

Z �

�n	k
d!

�
��!
�0

�

�1

s
�
ln
!� n 	 k

�0
; �0

�

� s�@
;�0�

�
�� n 	 k

�0

�


: (13)

We now expand this result to second order in n 	 k and
replace n 	 k! 0, �n 	 k�2 ! �2

�=3, which accomplishes
the matching onto local HQET matrix elements to first
nontrivial order. This yields to the following result for
the terms in the last two lines of the factorization formula
(6):

j
�

ln
mb�0

�2
i

� @
;�i

�
s�@
;�0�

�
�

�0

�



�

�
1�


�1� 
�
6

�2
�

�2 � . . .
�
:

(14)

It remains to derive the explicit form of the functions j
and s. This can be accomplished by noting that at any order
in perturbation theory the objects j�L;�� and s�L;�� are
polynomials in L (see Section II C below), so that it suffi-
ces to compute the integrals
074025


Z 1

0

dz

z1�
 �L� @
 � ln�1� z��n

� @n�
Z 1

0
dz
 z
�1��1� z�eL�@
��

����������0

� @n�
��1� 
���1� ��

��1� 
� ��
e��L�@
�

����������0

�
��1� 
�
e��E


In�L� @
�
e��E


��1� 
�
; (15)

where

In�x� � @n��e��x��E���1� �����0

� @n� exp
�
�x�

X1
k�2

��1�k

k
�k�k

�
��0

(16)

are polynomials of degree n. For our purposes we need the
first four of them, which are

I1�x� � x; I2�x� � x2 �
�2

6
;

I3�x� � x3 �
�2

2
x� 2�3;

I4�x� � x4 � �2x� 8�3x�
3�4

20
:

(17)

We now define functions es and ej by the following replace-
ment rules: ej�L;�� � j�L;��jLn!In�L�;es�L;�� � s�L;��jLn!In�L�:

(18)

It follows that

j �L� @
;�� �
��1� 
�
e��E


ej�L� @
;�� e��E


��1� 
�
; (19)

and similarly for the soft function. The exact result for the
leading-power contribution to the partial decay rate in the
OPE can now be written in the remarkable form

�OPE����
G2
F�

32�4 jVtbV
�
tsj

2m3
bm

2
b��h�jH���h�j

2U1��h;�i�

�U2��i;�0��

�ej�ln
mb�0

�2
i

�@
;�i

�es�@
;�0�

�
e��E


��1�
�

�
�

�0

�


�

1�

�1�
�

6

�2
�

�2 � . . .
�

�O

�
�

mb

��
: (20)

This result implies that for mb � 2E� � �QCD the photon
spectrum exhibits a radiation tail, d�=dE� / 1=�mb �

2E��1�
 modulo small logarithmic corrections, which falls
off slowly with energy. The presence of this tail and its
phenomenological implications have been discussed in
[15]. Note that even at leading power in 1=mb there exist
nonperturbative corrections of the form ��QCD=��n with
n � 2. We have included the leading such term, which is
-4
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proportional to the kinetic-energy parameter �2
�. For ��

1 GeV the numerical impact of these power corrections is
rather small, so it seems safe to truncate the series at this
point.

It is worth emphasizing that expression (20) is exact to
all orders in perturbation theory, and it is valid for any
values of the matching scales �h, �i, and �0. In the limit
where all three matching scales are set equal to a common
scale �, the result smoothly reduces to conventional fixed-
order perturbation theory. While the resummed, factorized
expression is superior to a fixed-order result whenever
there are widely separated scales in the problem (i.e., for
074025
�� mb), it remains valid in the limit where the different
scales become of the same order (��mb).2 In other
words, there is never a region where fixed-order perturba-
tion theory would be more appropriate to use than the
above factorization formula.

C. Evolution equations and two-loop results

The functions j�L;�� and s�L;�� obey integro-
differential RG equations, which can be derived starting
from the evolution equations for the jet and shape functions
discussed in [15,16]. We find
d
d ln�

j�L;�� � �2��cusp��s�L� �J��s��j�L;�� � 2�cusp��s�
Z 1

0

dz
z
�j�L� ln�1� z�; �� � j�L;���;

d
d ln�

s�L;�� � 2��cusp��s�L� ���s��s�L;�� � 2�cusp��s�
Z 1

0

dz
z
�s�L� ln�1� z�; �� � s�L;���;

(21)

where �s � �s���. We encounter again the cusp anomalous dimension �cusp, and in addition anomalous dimensions � and
�J governing the single-logarithmic evolution of the shape and jet functions, respectively. (Recall that for j we have L �
ln�Q2=�2�, while for s we have instead L � ln��k=��.) These equations can be solved order by order in perturbation
theory with a double-logarithmic expansion of the form

j�L;�� � 1�
X1
n�1

�
�s���

4�

�
n
�b�n�0 � b

�n�
1 L� . . .� b�n�2n�1L

2n�1 � b�n�2n L
2n�;

s�L;�� � 1�
X1
n�1

�
�s���

4�

�
n
�c�n�0 � c

�n�
1 L� . . .� c�n�2n�1L

2n�1 � c�n�2n L
2n�:

(22)

The evolution Eqs. (21) allow us to express all coefficients of logarithms in terms of the perturbative expansion coefficients
of the anomalous dimensions and � function. At two-loop order, we obtain

j�L;�� � 1�
�s���

4�

�
b�1�0 � �

J
0L�

1

2
�0L2

�
�

�
�s���

4�

�
2
�
b�2�0 �

�
b�1�0 ��

J
0 � �0� � �

J
1 �

�2

6
�0�

J
0 � �3�2

0

�
L

�
1

2

�
�J0��

J
0 � �0� � b

�1�
0 �0 � �1 �

�2

6
�2

0

�
L2 �

�
1

6
�0 �

1

2
�J0

�
�0L3 �

1

8
�2

0L
4

�
;

s�L;�� � 1�
�s���

4�
�c�1�0 � 2�0L� �0L

2� �

�
�s���

4�

�
2
�
c�2�0 �

�
2c�1�0 ��0 � �0� � 2�1 �

2�2

3
�0�0 � 4�3�2

0

�
L

�

�
2�0��0 � �0� � c

�1�
0 �0 � �1 �

�2

3
�2

0

�
L2 �

�
2

3
�0 � 2�0

�
�0L

3 �
1

2
�2

0L
4

�
;

(23)
2In this case, of course, power corrections of order �=mb
would become important.
where [16,17]

b�1�0 � �7� �
2�CF; c�1�0 � �

�2

6
CF; (24)

and the coefficients b�2�0 and c�2�0 are unknown. The relevant
expansion coefficients of the anomalous dimensions and �
functions are listed in Appendices A1 and A2.

III. INGREDIENTS OF THE MOMENT
CALCULATION

A. Results at leading power in 1=mb
While the result (20) is of considerable complexity when

expanded beyond the leading order in RG-improved per-
turbation theory, it is well suited for computing the mo-
ments Mn��� using relation (4). The reason is that, before
the derivatives with respect to 
 are carried out, the de-
pendence on � is of power type. According to (4) the
moments Mn��� are obtained from ratios of expressions
linear in the decay rate, and hence any �-independent
factors cancel out. It follows that the entire first line in
(20), and, in particular, all reference to the hard scale �h,
cancels in the formulae for the moments. (A very weak
dependence on the hard scale enters through the 1=mb
-5
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corrections, see below.) Also, after the integral over y in (4)
has been carried out, the product �e��E
=��1� 
���
��=�0�


 can be pulled through the differential operatorses and ej using that

@

e��E


��1� 
�

�
�

�0

�


f�
� �

e��E


��1� 
�

�
�

�0

�



�

�
ln

�

�0
� h�
� � @


�
f�
�;

(25)

where h�
� �  �1� 
� � �E. It is then immediate to
obtain the following, exact form for the moments at leading
power in 1=mb, indicated with a superscript ‘‘(0)’’:

M�0�n ��� � 1�
D�r
��

n
n�
�

n
n�
�2


�1�
�
6

�2
�

�2 � . . .�

D�r
��1�

�1�
�

6
�2
�

�2 � . . .�
:

(26)

The object

D�r
� � ej�ln
mb�

�2
i

�r


� es�ln
�

�0
�r


�
;

r
 �
d
d

� h�
� (27)

is a differential operator defined in terms of the functions ej
074025
and es, which are determined in terms of the matching
corrections at the hard-collinear and soft scales, �i and
�0, respectively. A careful analysis of the equations that
led to (20) shows that the result for the �2

� term in the
numerator of (26) is correct for any positive integer n, even
though the integral over y in (4) appears to diverge for n <
2. At two-loop order D�r
� is a fourth-order polynomial
inr
. It is understood that the derivatives with respect to 

in an expression of the form D�r
�f�
� act on both f�
�
and the function h�
� in the definition of r
, e.g.
r2

f�
��f

00�
��2h�
�f0�
��h0�
�f�
��h2�
�f�
�.
Note the important fact that the unknown two-loop coef-
ficients b�2�0 and c�2�0 in (23) cancel in the ratio (26). This
means that we have all the ingredients in place to obtain
predictions for the moments Mn that are valid at NNLO in
RG-improved perturbation theory. At this order, exact two-
loop matching conditions at the scales �i and �0 are
combined with three-loop running effects incorporated in
the calculation of the parameter 
, which resums loga-
rithms of the ratio ��i=�0�

2 �mb=�.
Equations (20) and (26) are the main results of this work.

It is straightforward to work out the leading-power contri-
butions to the moments M1��� and M2��� by carrying out
the derivatives with respect to 
 in (26) and expanding the
resulting expression consistently in powers of �s��i�,
�s��0� and to first order in �2

�=�2. At NLO in RG-
improved perturbation theory, we find
M�0�1 ��� �
1

�1� 
�2

��
1�

�2
�

3�2

��

�1� 
� �

CF�s��i�

�

�
ln
mb�

�2
i

� h�
� �
3

4
�

1

1� 


�

�
CF�s��0�

�

�
�2 ln

�

�0
� 2h�
� � 1�

2

1� 


��
�
�2
�

3�2 �1� 2
�
�
CF�s��0�

�
�
CF�s��i�

2�

��
;

M�0�2 ��� �
2

�2� 
�2

��
1�

�2
�

�2

��

�2� 
�

2
�
CF�s��i�

�

�
ln
mb�

�2
i

� h�
� �
3

4
�

1

2� 


�

�
CF�s��0�

�

�
�2 ln

�

�0
� 2h�
� � 1�

2

2� 


��
�
�2
�

3�2 �1� 2
�
�
CF�s��0�

�
�
CF�s��i�

2�

��
�
�2
�

3�2 :

(28)
The corresponding expressions valid at NNLO are far
more complicated. We do not list them explicitly, as it
is easiest to generate them directly from (26). In the
resulting formulae one should expand the quantity 

consistently to the required order in RG-improved pertur-
bation theory, using the results compiled in Appendix A1.
(Using instead the NNLO expression for 
 everywhere
makes a negligible difference in our numerical results.)
Also, before applying these results to the analysis of
experimental data, the pole-scheme parameters mb
and �2

� should be eliminated in favor of correspond-
ing parameters defined in a physical renormalization
scheme.

The scale separation achieved using RG techniques,
which allows us to disentangle the physics at the hard,
hard-collinear, and soft scales (mb,
����������
mb�

p
, and �), is one

of the most important ingredients of our approach. This,
combined with the fact that for the first time we include the
complete two-loop perturbative corrections, distinguishes
our calculation from all previous analyses of the �B! Xs�
moments. The physical insight that the shape variables
probe low-scale dynamics, while at leading power in
1=mb they are insensitive to physics at the hard scale mb,
makes it apparent that a precise control over low-scale
perturbative corrections is crucial to obtain reliable pre-
dictions for the moments.

In order to compare our RG-improved results with those
of the conventional heavy-quark approach, it is useful to
expand expression (26) to two-loop order in fixed-order
perturbation theory. We obtain
-6
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M�0�1 ��� �
�
1�

�2
�

3�2

�
CF�s���

�

�
� ln

�

mb
�

3

4
�
�s���
�

k1���
�
�
�2
�

3�2

CF�s���
�

�
1

2
�
�s���
�

k2���
�
;

M�0�2 ��� �
�
1�

�2
�

�2

�
CF�s���

�

�
�

1

2
ln

�

mb
�

5

8
�
�s���
�

k3���
�
�
�2
�

3�2

�
1�

CF�s���
4�

� CF

�
�s���
�

�
2
k4���

�
;

(29)

where the two-loop coefficients are given by

k1��� �
�
3�0

8
� CF

�
ln2 �

mb
�

��
1

2
ln
mb

�
�

23

48
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�0 �

�
1

2
�
�2
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�
CF �

�
1

3
�
�2

12

�
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mb
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3

8
ln
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32
�
�2

24

�
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32
�
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CF �

�
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16
�
�3
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�
CA;
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ln
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mb
�

�
1

4
ln
mb

�
�

59

96

�
�0 �

�
1�

�2
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�
CF �

�
1

6
�
�2

24

�
CA;

k3��� �
�
3�0

16
�
CF
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�
ln2 �

mb
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��
1

4
ln
mb
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�

5

96
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�
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2
�
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12
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�
1

6
�
�2

24
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48
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CF �
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13

96
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48
�
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3CF
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�
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16

�
ln
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mb
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�
1

8
ln
mb
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�
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�
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�
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8
�
�2

24

�
CF �

�
1

12
�
�2

48

�
CA:

(30)
The terms of order �s and �0�
2
s in these expressions agree

with those obtained in [4]. However, above we include the
complete set of two-loop corrections. Very recently, the
dominant part of the �B! Xs� photon spectrum has been
calculated at O��2

s� [25]. Using the results of that paper to
calculate the moments M�0�n ���, we find complete agree-
ment with our expressions for the functions k1 and k3. We
stress that both of these coefficients contain a contribution
proportional to the combination (2�1 � �

J
1) of the two-

loop anomalous dimensions of the shape and jet functions.
The agreement with [25] therefore serves as a test of the
expressions for the anomalous dimensions collected in
Appendix A2.

Our expressions for the �2
�=�2 power corrections to the

moments are new, except for the tree-level contribution to
M�0�2 ���, which agrees with [3]. Prior to this work, power
corrections proportional to the HQET parameter �2

� have
never been computed beyond the tree approximation. Here,
we have calculated the Wilson coefficients of these terms
at two-loop order.

B. Power corrections in 1=mb
The power-suppressed corrections to the moments

Mn��� can be separated into two classes: ‘‘kinematic’’
corrections of order ��=mb�

k, and ‘‘hadronic’’ corrections
involving nonperturbative heavy-quark parameters. The
kinematic corrections are known to O��s� in fixed-order
perturbation theory, without scale separation and RG im-
provement. The Wilson coefficients of the operators con-
tributing to the hadronic power corrections are known at
tree level up to and including terms of order �3

QCD in the
heavy-quark expansion. The corresponding contributions
074025
to the moments are so small that radiative corrections to
these Wilson coefficients are unlikely to have any signifi-
cant impact. The two types of corrections are linked to
each other and should be combined consistently order by
order in the 1=mb expansion. When we will introduce
heavy-quark parameters defined in physical renormaliza-
tion schemes in Section III C, a reshuffling of terms be-
tween the kinematic and hadronic corrections will take
place.

We begin with a review of the kinematic power correc-
tions. In fixed-order perturbation theory, they are due to
contributions from real-gluon emission graphs (b! s�g
at the parton level) that are phase-space suppressed in the
endpoint region. The corresponding contributions to the
partial decay rate can be included by adding the term

CF�s���
4�

X
i
j

Re
C�i ��h�Cj��h�

jC7��h�j
2 3fij�	� (31)

inside the curly brackets in (20). Here 	 � �=mb, and i, j
take the values 1, 7, 8, corresponding to different operators
in the effective weak Hamiltonian for �B! Xs� decay. The
coefficients C7 � Ceff

7� and C8 � Ceff
8g are the ‘‘effective’’

Wilson coefficients of the electromagnetic and chromo-
magnetic dipole operators, whileC1 is the coefficient of the
current-current operator ��sc�V�A� �cb�V�A. Operators other
than these three can be safely neglected. The coefficients
Ci are evaluated at a hard scale �h �mb. This will be
implicitly understood in the equations below. On the other
hand, given that the emitted gluon is part of the final-state
hadronic jet Xs, an appropriate choice for the scale� in the
coupling constant in (31) is more likely to be one of the low
scales �i or �0. In our numerical analysis in Section V we
-7
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set � � �i but vary both scales independently to be
conservative.

In the standard model the Wilson coefficients are real,
and we will thus drop the ‘‘Re’’ symbol below. Explicit
expressions for the kinematic functions fij�	� can be found
in [7]. To first order in �s, the moments Mn��� receive an
additive contribution from the kinematic power corrections
given by

Mn���jkin �
CF�s���

�

X
i
j

CiCj
C2

7

3

4

�
fij�	�

� n
Z 1

0
dyyn�1fij�y	�

�
; (32)

where Ci � Ci��h�. For the case n � 1 the expressions in
brackets were called �dij�	�=	 in [7], where explicit
forms for these functions can be found. For our purposes
it will be sufficient to expand the results in powers of 	.
The dominant contribution comes from the case where i �
j � 7, corresponding to weak decay mediated by the elec-
tromagnetic dipole operator in the effective weak
Hamiltonian. For this term, we also include the two-loop
perturbative corrections, which can be extracted from the
formulae given in [25]. Two-loop corrections involving
other Wilson coefficients are presently unknown, but their
effects on the moments are bound to be negligible.

Nonperturbative hadronic corrections of leading and
subleading order were calculated in [3,5], respectively.
These authors find

M1���jhadr �
�1 � 3�2

2mb�
�

5
1 � 21
2

6m2
b�

�
T 1 � 3T 2 �T 3 � 3T 4

2m2
b�

� . . . ;

M2���jhadr � �
�1

3�2 �
2
1 � 3
2

3mb�2 �
T 1 � 3T 2

3mb�2 � . . . ;

(33)
074025
where �i [26], 
i [27], and T i [28] are hadronic matrix
elements defined in HQET. Note that the leading term in
the expression for the second moment is not power sup-
pressed in 1=mb. It is already included in the leading-order
prediction for that moment in (28). In theoretical expres-
sions for inclusive decay distributions, the parameters T i
always appear in the same combinations with �1 and �2,
and it is thus convenient to absorb them into a redefinition
of these parameters, such that

�̂ 1 � �1 �
T 1 � 3T 2

mb
; �̂2 � �2 �

T 3 � 3T 4

3mb
:

(34)

Then the only place where the T i parameters appear is in
spectroscopy. For instance, at tree level the spin splitting
between the ground-state heavy mesons is given by [28]

mB� �mB �
2�̂2

mb
�

2 �T 2 �

2
3T 3 �T 4

m2
b

� . . . ; (35)

which in essence means that there is an uncertainty of
relative order �QCD=mb in the determination of the pa-
rameter �̂2. For the purposes of the present work we adopt
the conventions introduced in [29], which are such that

�2
� � ��̂1; �2

G � 3�̂2;


3
D � 
1; 
3

LS � 3
2:
(36)

For the time being all definitions still refer to the pole
scheme.

Combining the contributions from kinematic and had-
ronic power corrections, we find that the first-order correc-
tions to the moments are
M�1�1 ��� �
�

mb

�
�2
G ��

2
�

2�2 �
CF�s���

�

�
1�

1

2
ln

�
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�
�s���
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1

C2
7

g2�z� �
5
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C8

C7
�
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�
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�
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2
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3
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2
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���
;

(37)
where we have ordered the various contributions in magnitude. The combined result for the second-order power correction
to the first moment reads
-8
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M�2�1 ��� �
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In these expressions,

g1�z� �
Z 1

0
dxxRe

�
z
x
G
�
x
z

�
�

1

2

�
;

g2�z� �
Z 1

0
dx�1� x�

��������zxG
�
x
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�
�

1

2

��������2
;
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�
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�
1

z

�
�

1

2

�
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(39)

ADVANCED PREDICTIONS FOR MOMENTS OF THE �B! X
074025
with
G�t� �

8><>:
�2arctan2

�������������������
t=�4� t�

p
; t < 4;

2
�
ln��

��
t
p
�

�����������
t� 4
p

�=2� � i�
2

�
2
; t � 4;

(40)
are functions of the mass ratio z � �mc=mb�
2, which arise

from charm-penguin loop diagrams. The logarithms of the
quark-mass ratio mb=ms arise due to a collinear singularity
in the process b! sg mediated by the operator Q8g,
followed by photon emission off the strange quark. This
contribution is so small that a more careful treatment of
these logarithms is not necessary. The O��2

s� corrections to
the electromagnetic dipole contributions in (37) and (38)
are encoded in the coefficients
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This completes our compilation of theoretical formulae
for the moments in the pole scheme. The first moment,
M1���, and with it the average photon energy hE�i, can be
calculated including first- and second-order power correc-
tions in the 1=mb expansion. For the second moment,
M2���, and hence for the variance �2

E, only first-order
power corrections are available at present.

C. Elimination of pole-scheme parameters

It is well known that heavy-quark parameters defined in
the pole scheme suffer from infrared renormalon ambigu-
ities [30–33]. As a result, the perturbative expansion for
the moments presented in the previous section would not
be well behaved. It is necessary to replace the pole massmb
and other HQET parameters such as �2

� in favor of some
physical, short-distance quantities. For our purposes, the
‘‘shape-function scheme’’ proposed in [16] provides for a
particularly suitable definition of the heavy-quark mass
and kinetic energy. In this scheme, low-scale subtracted
HQET parameters are defined via the moments of the
renormalized shape function, regularized with a hard
Wilsonian cutoff �f � �QCD. In addition to their depen-
dence on the cutoff, the HQET parameters depend on the
scale � at which the shape function is renormalized. For
simplicity, we adopt the ‘‘diagonal’’ scale choice � � �f.
The conventional choice for the subtraction scale is �f �

1:5 GeV.
At two-loop order, the heavy-quark parameters mb��f�

and �2
���f� defined in the shape-function scheme are

related to the pole-scheme parameters by [34,35]
-9
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(42)
The analogous replacement rule for the parameter � �
mb � 2E0 follows from its definition. When these expres-
sions are substituted for the pole-scheme parameters in the
formulae for the moments, the results must be reexpanded
consistently to the desired order in �s and 1=mb. In the
process, one finds that for the spectral moments in (5), the
1=mb-suppressed term in the replacement rule for the pole
mass cancels against the contribution proportional to
(�2

G ��
2
�) from M�1�1 in (37). In the shape-function

scheme, the predictions for hE�i and �2
E are therefore

independent of the parameter �2
G.

The arbitrary renormalization point � of the running
coupling �s��� in the relations (42) will be set equal to
the matching scale �0 in all factorized, leading-power
contributions. For the power corrections, where no scale
separation is available, � will be identified with the com-
mon renormalization scale in (37) and (38). The subtrac-
tion scale �f of the shape-function scheme is set by the
upper limit on! in shape-function integrals of the type (1).
For the case of the �B! Xs� moments this yields �f �

���0. Note that this implies a reshuffling between per-
turbative and nonperturbative terms at any given order
in the 1=mb expansion. For instance, eliminating the
pole-scheme kinetic-energy parameter from the �2

�=�2

power corrections in (26) adds terms of order ��s��0��
2

to the leading-power contributions. As mentioned above,
we will adopt the conventional choice �f � 1:5 GeV
in our numerical analysis, which is slightly larger than
(but of the same magnitude as) the actual value � �
1 GeV.

While it is natural to use the shape-function scheme for
analyses of inclusive B decays, this is by no means man-
datory. In Appendix A3, we present the corresponding
replacement rules for the kinetic scheme introduced in
[36]. We do not explore alternative short-distance defini-
tions of the b-quark mass, such as the ‘‘1S mass’’ [37] or
the ‘‘potential-subtracted mass’’ [38]. The reason is that no
physical definition of the kinetic-energy parameter �2

� has
been provided in these schemes, so they remove the re-
normalon problem only partially.
074025
IV. BOOST TO THE ��4S� REST FRAME

Theoretical calculations of B-meson decay distributions
are easiest to perform in the rest frame of the heavy meson.
In all our results so far, E� denotes the photon energy
measured in that frame. Existing experimental studies of
the decay �B! Xs� [19–21], however, measure the photon
energy in a different frame. At an e�e� B-factory, pairs of
B �Bmesons are produced on the ��4S� resonance peak. For
CLEO, the ��4S� rest frame coincides with the laboratory
system, whereas for BaBar and Belle the ��4S� rest frame
can be constructed knowing the (asymmetric) energies of
the electron and positron beams. In either case, the photon
energy is measured in the ��4S� rest frame, in which the B
mesons have a small velocity

� �

����������������������
1�

4m2
B

m2
��4S�

vuut � 0:064: (43)

Below, we work out in detail how the properties of the
photon spectrum and its moments are affected by boosting
from the B-meson rest frame to the rest frame of the ��4S�
resonance, following [7]. While this would be straightfor-
ward for moments of the entire spectrum, the presence of
the cut leads to nontrivial complications. Note that future
measurements of �B! Xs� decay spectra relying on the
full-reconstruction technique could reconstruct the
B-meson rest frame and thus directly measure the spectrum
in that reference system.

We denote quantities in the ��4S� rest frame with a
prime. Let k� � E��1;n� be the 4-vector of the photon
in the B-meson rest frame. In the ��4S� system the B
meson moves with velocity �, and the photon energy is
Doppler-shifted by an amount

E0� � E�
1� � 	 n���������������

1� �2
p � E�

1� � cos����������������
1� �2

p ; (44)

where we have assumed without loss of generality that �
points in the z-direction. The photon spectrum dN=dE0� in
the ��4S� rest frame can be obtained in terms of the
spectrum dN=dE� in the B-meson rest frame by evaluating
-10
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dN
dE0�

�
Z d�d cos�

4�

Z
dE�

dN
dE�

	
�
E0� � E�

1� � cos����������������
1� �2

p �

�
1

�� � ��

Z min���E0�;Emax
� �

��E0�
dE�

1

E�

dN
dE�

; (45)
TABLE I. Predictions for the average photon energy and the
variance of the photon spectrum in the B-meson and ��4S� rest
frames, for different values of the cutoff E0. In each case, the first
line refers to shape-function model 1, the second line to model 2.
See text for explanation.

hE�i [GeV] �2
E [10�2 GeV2]

E0 [GeV] B frame ��4S� frame B frame ��4S� frame

1.8 2.311 2.317 3.10 3.76
2.286 2.292 3.73 4.35

1.9 2.325 2.331 2.54 3.17
2.305 2.313 3.01 3.59

2.0 2.341 2.350 1.99 2.59
2.329 2.338 2.31 2.87

074025
where ���
���������������������������������
�1���=�1���

p
. This reproduces Eq. (B.1)

in [7].
It is now straightforward to compute the effect of the

boost on moments of the photon spectrum. We obtain
Z E0max
�

E0

dE0��E0��n
dN
dE0�

�
�n�1
� � �n�1

�

�n� 1���� � ���

Z Emax
�

E0

dE��E��n
dN
dE�

�
1

�n� 1���� � ���

�

�Z E0

��E0

dE�
1

E�

dN
dE�
����E��n�1 � �E0�

n�1� � ��� $ ���
�
; (46)
where E0max
� � ��E

max
� , and the same value of the cutoff

E0 must be used on both sides of the equation. In order to
illustrate the effect of the boost on the moments, we use the
theoretical description of the �B! Xs� photon spectrum at
NLO presented in [35] to generate the distribution dN=dE�
in the B-meson rest frame. We adopt the default choices for
all parameters and use two models of the shape function,
corresponding to heavy-quark parameters mb��f� �
4:61 GeV, �2

���f� � 0:2 GeV2 (model 1), and mb��f� �
4:55 GeV, �2

���f� � 0:3 GeV2 (model 2) at �f �
1:5 GeV. In Table I, we compare the results for the average
photon energy and the variance of the spectrum in the
B-meson and ��4S� rest frames. Numerically, it turns out
that the terms containing the cutoff E0 in (46) have a small
effect. Keeping only the first contribution on the right-hand
side of that equation (corresponding to the limit where
E0 � 0) yields the simple relations

hE0�i � hE�i �
�

1���������������
1� �2

p � 1
�
hE�i � 0:005 GeV;

�2
E0 � �

2
E �

�2

3�1� �2�
�hE�i2 � 4�2

E� � 0:007 GeV2:

(47)

This explains to a large extent the shifts seen in the table.

V. NUMERICAL ANALYSIS

The theoretical expressions for the spectral moments
depend on several input parameters, whose values are
summarized in Table II. The relevant hadronic parameters
are �2
�, 
3

D, 
3
LS, and �2

G if the kinetic scheme is used
instead of the shape-function scheme. As mentioned ear-
lier, at tree level the results for the spectral moments are
hE�i � mb=2� . . . and �2

E � �2
�=12� . . . , and our goal

will be to determine the parameters (mb, �2
�) from a fit to

experimental data. The sensitivity of the moments to other
hadronic parameters is very weak (see below), so it is safe
to use them as fixed inputs in the fit. Following [39], we
define the quantities 
3

D and 
3
LS in the pole scheme, which

is justified given the smallness of their contributions to the
moments. We use as inputs the values 
3

D � �0:195�
0:029� GeV3 and 
3

LS � ��0:085� 0:082� GeV3 ex-
tracted from a global fit to �B! Xcl

� �� moments in the
kinetic scheme [1] and convert them to the pole scheme by
subtracting �2CF�s�2�f�=3���3

f � 0:09 GeV3 (at �f �

1 GeV) from 
3
D [36]. We inflate the error on 
3

D from 0.03
to 0:05 GeV3 to be conservative. The resulting values are
consistent with, but more accurate than, the theoretical
estimates 
3

D � �0:1� 0:1� GeV3 and 
3
LS � ��0:15�

0:10� GeV3 given in [36,40]. The value for 
3
D is also in

agreement with early estimates using the vacuum-insertion
approximation, which gave 
3

D � �2��s=9�f2
BmB �

0:1 GeV3 [11,41]. The value of �2
G quoted in the table is

derived using (35) and assigning an error for possible 1=mb
corrections [40]. The formulae for the power corrections to
the moments involve numerically small terms depending
on the quark-mass ratios z � �mc=mb�

2 and ms=mb, for
which we adopt values consistent with [15]. Throughout,
we use the three-loop running coupling constant, matched
to a four-flavor theory at � � mb�mb� � 4:25 GeV.

Because of the truncation of perturbation theory, our
results are sensitive to the choice of the various factoriza-
tion scales. This sensitivity can be taken as an estimator of
TABLE II. Compilation of input parameters.

Parameter Value


3
D �0:11� 0:05� GeV3


3
LS ��0:09� 0:08� GeV3

�2
G �0:35� 0:07� GeV2

mc=mb 0:222� 0:030
ms=mb 0.02
�s�mZ� 0.1187
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the residual perturbative uncertainty. In the resummed
expressions obtained in RG-improved perturbation theory,
we vary the three matching scales by a factor between
1=

���
2
p

and
���
2
p

about their default values�def
h � mb,�def

i �����������
mb�

p
, and �def

0 � �, using mb � 4:65 GeV as a refer-
ence value. The scale � in the expressions for the power
corrections is set equal to �i but varied independently.
Thus, for E0 � 1:8 GeV we vary �h 2 �3:29; 6:58� GeV,
�i;� 2 �1:56; 3:12� GeV, and �0 2 �0:74; 1:48� GeV.
Together this covers a conservative range of scales.
When quoting results in fixed-order perturbation theory
(in which all scales are set equal to �), we vary � between
1 and 5 GeV.

A. Predictions for the moments of the photon spectrum

We begin by presenting predictions for the average
photon energy and the variance of the photon spectrum,
including a detailed account of theoretical uncertainties.
We define the heavy-quark parameters mb and �2

� in the
shape-function scheme at a subtraction point �f �

1:5 GeV. For reference, we recall that the values for these
parameters extracted from a global fit to �B! Xcl

� �� mo-
ments are mb � �4:61� 0:08� GeV and �2

� �
�0:15� 0:07� GeV2 [34], where we account for the small
1=mb corrections in the relation for the pole mass in (42),
which were not included in that paper. For the purpose of
illustration, we use the central values of these parameters
for the following discussion.

The predictions for the average photon energy and vari-
ance are obtained using the relations in (5). In calculating
hE�i, we include both first- and second-order power cor-
rections to the moment M1, as given in Section III. When
calculating the variance, we use the second relation in (5)
and compute, for consistency, all quantities (M1, M2, and
hE�i) including first-order power corrections. Table III
shows our results for the case E0 � 1:8 GeV, correspond-
ing to the lowest value of the cutoff that has so far been
achieved experimentally [20]. As expected, the perturba-
tive uncertainties are larger the smaller the relevant match-
ing scales are, but they remain under good control even for
the lowest scale �0. The sensitivity to other input parame-
ters, and, in particular, to the hadronic quantities 
3

D and

3
LS, is very small. The convergence of the heavy-quark
TABLE III. Predictions and error analysis for the first two
moments of the photon spectrum, defined with a cutoff E0 �
1:8 GeV. The parameters mb � 4:61 GeV and�2

� � 0:15 GeV2

are kept fixed. In each column, the upper (lower) error indicates
the variation obtained by increasing (decreasing) a given input
parameter.

Moment Value �0 �i �h � mc=mb 
3
D 
3

LS

hE�i [10�3 GeV] 2287 �1
�22

�11
�7 �1 �5

�7
�2
�1 �1 �2

�2
E [10�4 GeV2] 334 �15

�84
�26
�47 �2 �11

�12
�4
�3 �18 �14

074025
expansion is good for both moments. The first-order power
correction to the average photon energy lowers the value of
hE�i by about 54 MeV, corresponding to an 11% reduction
of the difference �hE�i � E0�, which is the relevant quan-
tity to compare with. The impact of the second-order power
correction is negligible (� 2 MeV, corresponding to a
0.4% increase). The first-order power correction to the
second moment is larger and constitutes about 27% of
the total value. The main effect is due to the first-order
correction to hE�i, which enters via the second term in the
relation for the variance in (5).

Next, we study the behavior of the perturbative expan-
sions of the moments and explore to what extent it is
improved by using scale separation and RG improvement,
which is one of the main new features of our approach.
Figure 1 shows our predictions for the average photon
energy and variance, using both RG-improved and fixed-
order perturbation theory. In each plot the solid, dashed,
and dotted curves correspond to the NNLO (� �2

s), NLO
(� �s), and LO (� �0

s) approximations, respectively. In
the factorized expressions, the four relevant scales (�n �
�h;�i; �0; �) are varied simultaneously (and in a corre-
lated way) about their default values (�def

n ). We observe an
excellent stability of the RG-improved results under scale
variation, both at NLO and NNLO. In the case of fixed-
order perturbation theory, on the other hand, the results
obtained at NNLO are less stable than those obtained at
NLO (the tree-level LO results are trivially scale indepen-
dent in fixed-order calculations). While the absolute varia-
tions are still modest for the average photon energy, they
are quite large for the case of the variance. We conclude
that a proper scale separation is important for obtaining
reliable perturbative predictions for the moments.

In order to obtain a more conservative estimate of the
remaining perturbative uncertainty, one should vary the
different scales entering the RG-improved expressions in-
dependently. This is done in Fig. 2, where we explore the
sensitivity to variations of the individual matching scales
on an expanded scale. The underlaid gray bands indicate
the total perturbative errors we assign. They are obtained
by combining the various variations in quadrature, ignoring
however very low values of the soft scale�0, where�s��0�
is so large that perturbation theory deteriorates. Combining
also the parametric uncertainties in quadrature, and allow-
ing for small variations of mb and �2

� about their default
values, we obtain for E0 � 1:8 GeV

hE�i � �2:287� 0:013pert � 0:003pars� GeV� 0:44	mb

� 0:010 GeV�1	�2
�;

�2
E � �0:0334� 0:0051pert � 0:0023pars� GeV2

� 0:020 GeV	mb � 0:073	�2
�:

(48)

The central values are in excellent agreement with the
results found by the Belle Collaboration [20] and collected
in Table IV. This indicates that the values for mb and �2

�
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FIG. 1. Scale dependence of the predictions for the first two moments of the photon spectrum, defined with a cut at E0 � 1:8 GeV in
the B-meson rest frame, in RG-improved perturbation theory (RGPT, top) and fixed-order perturbation theory (FOPT, bottom). Solid,
dashed, and dotted lines refer to the NNLO, NLO, and LO approximations. All parameters are set to their default values.
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shaded areas show the estimated perturbative uncertainties.
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extracted from �B! Xcl
� �� moment fits are compatible

with those favored by the �B! Xs� photon spectrum,
which by itself is a nontrivial test of the heavy-quark
expansion. Note that the theoretical error estimates are in
agreement with the naive estimates presented at the end of
Section II A. It follows from the first relation that the
b-quark mass can be extracted with exquisitely small
theoretical uncertainties of only ��29pert � 6pars� MeV
TABLE IV. Experimental results for the first tw
defined with a cut E� � E0. All results refer to t

E0 [GeV] hE�i [GeV]

1.8 2:292� 0:027� 0:033
1.9 2:321� 0:038�0:017

�0:038

2.0 2:346� 0:032� 0:011

074025
form the average photon energy. From the second moment,
the combination �2

� � 0:27 GeVmb can be extracted with
errors of ��0:07pert � 0:03pars� GeV2. Given the precision
achieved on mb, these errors essentially determine the
precision on the extraction of the parameter �2

�.
The precision achieved for the mass determination prof-

its greatly from the availability of a complete NNLO
prediction for the first moment. If we used instead only
o moments of the �B! Xs� photon spectrum,
he B-meson rest frame.

�2
E [10�2 GeV2] Reference

3:05� 0:79� 0:99 Belle [20]
2:53� 1:01�0:41

�0:28 BaBar [21]
2:26� 0:66� 0:20 CLEO [19]
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the NLO approximation, the combined perturbative error
on hE�i would increase from �13 MeV to �40 MeV,
yielding a theory error of about �100 MeV (from pertur-
bation theory) on the extracted value for mb, in agreement
with the findings of [15].

The above analysis can be repeated for other values of
the cutoff E0, however only within certain limits. The
default value for the soft scale, �0 � � � mb � 2E0, is
0.85 GeV for E0 � 1:9 GeV (as used in the BaBar analysis
in [21]), and 0.65 GeV for E0 � 2:0 GeV (as employed in
the CLEO analysis in [19]). In the latter case a short-
distance treatment cannot reasonably be expected to
work, and one should resort to a description in terms of
shape functions, such as [7,35]. For E0 � 1:9 GeV the
applicability of our approach is marginal, and indeed plots
analogous to Fig. 2 exhibit a more pronounced sensitivity
to variations of the low scale �0 in this case. Accounting
for this by a 50% increase of the perturbative error, we find

hE�i � �2:305� 0:020pert � 0:003pars� GeV� 0:43	mb

� 0:016 GeV�1	�2
�;

�2
E � �0:0302� 0:0077pert � 0:0023pars� GeV2

� 0:012 GeV	mb � 0:071	�2
�:

(49)

These theoretical results are in good agreement with the
moment measurements reported by the BaBar
Collaboration [21].

B. Combined moment fits

We are now ready to perform a combined analysis of the
experimental data for the first two moments of the �B!
Xs� photon spectrum with the goal to extract the values of
the heavy-quark parameters mb and �2

�. To this end, we
define

�2�mb;�2
�� �

X
i;j�1;2

�Xexp
i � Xth

i ��V
�1�ij�X

exp
j � Xth

j �;

(50)

where X1 � hE�i and X2 � �2
E are the two observables,

and V is the covariance matrix containing information
about the errors and correlations in the measurements of
these two quantities [20,21]. In the theoretical calculation
of Xth

i we keep all theory parameters other than mb and �2
�

fixed to their default values. Throughout, we use expres-
sions in RG-improved perturbation theory. For a given set
of measurements, the point where �2 � 0 determines the
best fit values. Figure 3 shows contours of �2 � 1 and
�2 � 2:69 in the mb-�2

� plane obtained by fitting the data
of the Belle and BaBar Collaborations. We show results for
the shape-function scheme considered so far, as well as for
the kinetic scheme (see Appendix A3), which has been
used, e.g., in the �B! Xcl� �� moment analysis in [1]. The
solid contours refer to the NNLO formulae derived in the
present work, while the dashed contours correspond to the
074025
NLO approximation. The NLO results are consistent with
those obtained at NNLO when one takes into account
theoretical uncertainties, which are much larger at NLO.

Adding the theoretical uncertainties as determined in the
previous section (errors for the kinetic scheme are deter-
mined in an analogous way), we find

mSF
b � �4:622� 0:099exp � 0:030th� GeV;

�2;SF
� � �0:108� 0:186exp � 0:077th� GeV2;

mkin
b � �4:543� 0:114exp � 0:041th� GeV;

�2;kin
� � �0:495� 0:176exp � 0:085th� GeV2;

(51)

from the fit to the Belle data [20], and

mSF
b � �4:648� 0:111exp � 0:047th� GeV;

�2;SF
� � �0:076� 0:161exp � 0:113th� GeV2;

mkin
b � �4:556� 0:117exp � 0:060th� GeV;

�2;kin
� � �0:522� 0:143exp � 0:122th� GeV2;

(52)

from the fit to the BaBar data [21]. The fits to the two data
sets are consistent with each other, but the theoretical
errors are smaller in the first case due to the lower value
of E0 used in the Belle analysis. In the shape-function
scheme mb and �2

� are defined at �f � 1:5 GeV, while
in the kinetic scheme we adopt the conventional choice
�f � 1 GeV. In all cases there is a strong anticorrelation
of the two quantities, as can be seen from the figure.

The values for the heavy-quark parameters determined
from the fit to the �B! Xs� moments are in excellent
agreement with those derived from moments in �B!
Xcl� �� decays, which are mSF

b � �4:61� 0:08� GeV and
�2;SF
� � �0:15� 0:07� GeV2 in the shape-function scheme

[34], and mkin
b � �4:611� 0:068� GeV and �2;kin

� �
�0:447� 0:053� GeV2 in kinetic scheme [1]. These refer-
ence values are shown as data points in Fig. 3 for compari-
son. The combined average values obtained from (51) and
(52) are mSF

b � �4:63� 0:08� GeV and �2;SF
� �

�0:09� 0:14� GeV2, and mkin
b � �4:55� 0:09� GeV and

�2;kin
� � �0:51� 0:14� GeV2. However, given that the

BaBar data are still preliminary and that they employ a
higher value of E0, we consider the fit to the Belle data as
our most reliable result. Combining the values in (51) with
the ones extracted from the �B! Xcl� �� moment fit yields

mSF
b � �4:61� 0:06� GeV;

�2;SF
� � �0:15� 0:07� GeV2;

mkin
b � �4:59� 0:06� GeV;

�2;kin
� � �0:45� 0:05� GeV2:

(53)
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FIG. 3 (color online). Fits to the Belle and BaBar data for the moments of the photon spectrum. We show contours where �2 � 1 and
2.69, so that projections onto the axes yield parameter ranges at 68% and 90% confidence level. The fits are performed using the shape-
function scheme (left) and the kinetic scheme (right). The solid (dashed) contour lines refer to the NNLO (NLO) approximation. The
points with error bars indicate the results obtained from the �B! Xcl

� �� moment analysis.
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VI. CONCLUSIONS

Moments of the photon-energy spectrum in the inclusive
radiative decay �B! Xs� are sensitive probes of low-scale
hadronic dynamics. They can be used to extract accurate
values for the b-quark mass and the kinetic-energy parame-
ter �2

� of heavy-quark effective theory. Starting from an
exact QCD factorization formula for the partial �B! Xs�
decay rate, we have derived improved predictions for the
first two moments, hE�i and hE2

�i � hE�i
2, defined with a

cut E� � E0 on the photon energy. In the region where
� � mb � 2E0 is large compared with �QCD, a theoretical
description without recourse to shape (or bias) functions
has been achieved.

The leading terms in the 1=mb expansion of the mo-
ments receive contributions from the low and intermediate
scales � and

����������
mb�

p
, but not from the hard scale mb.

For these terms, a complete scale separation is
achieved at next-to-next-to-leading order (NNLO) in
renormalization-group improved perturbation theory, in-
cluding two-loop matching contributions and three-loop
running. Given that � � 1 GeV is a rather low scale, it
074025
is not surprising that the NNLO perturbative corrections
are numerically significant. They lead to significant shifts
in the central values of the heavy-quark parameters mb and
�2
� extracted from a fit to experimental data for the first

two moments. When the different scales are properly sepa-
rated using renormalization-group techniques, the inclu-
sion of the NNLO corrections helps reducing the residual
scale uncertainties in the theoretical predictions. This al-
lows us to extract the heavy-quark parameters with excel-
lent theoretical accuracy, namely 	mb � 30 MeV and
	�2

� � 0:08 GeV2. The extracted values are in very
good agreement with those derived from moments of in-
clusive �B! Xcl� �� decay distributions. This agreement is
gratifying given the different nature of the theoretical
framework used to analyze these two classes of decays: a
conventional operator product expansion in the case of
�B! Xcl� �� decay, and QCD factorization in the case of
�B! Xs�.

As the data on the �B! Xs� photon spectrum will
become more accurate in the near future, the tools devel-
oped in this work will enable us to determine the b-quark
mass with unprecedented precision. This, in turn, will help
-15
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to reduce the theoretical uncertainties in the determination
of jVubj using, e.g., the approach of [35].
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APPENDIX

1. Perturbative expansion of �

The expansion of the parameter 
 defined in (7) in RG-
improved perturbation theory can be derived using the
perturbative expansions of the cusp anomalous dimension
and � function, which we write as

�cusp��s� �
X1
n�0

�n

�
�s
4�

�
n�1

;

���s� �
d�s
d ln�

� �2�s
X1
n�0

�n

�
�s
4�

�
n�1

:

(A1)

At NNLO, we obtain


�
�0

�0

�
ln
�s��0�

�s��i�
�

�
�1

�0
�
�1

�0

�
�s��0���s��i�

4�

�

�
�2

�0
�
�2

�0
�
�1

�0

�
�1

�0
�
�1

�0

��
�2
s��0���2

s��i�

32�2 � . . .
�
:

(A2)

The expansion coefficients of the � function to three-loop
order in the MS scheme are [42]

�0 �
11

3
CA �

2

3
nf;

�1 �
34

3
C2
A �

10

3
CAnf � 2CFnf;

�2 �
2857

54
C3
A �

�
C2
F �

205

18
CFCA �

1415

54
C2
A

�
nf

�

�
11

9
CF �

79

54
CA

�
n2
f:

(A3)

The three-loop expression for the cusp anomalous dimen-
sion has recently been obtained in [43]. The expansion
074025
coefficients are

�0 � 4CF; �1 � CF

��
268

9
�

4�2

3

�
CA �

40

9
nf

�
;

�2 � 16CF

��
245

24
�

67�2

54
�

11�4

180
�

11

6
�3

�
C2
A �

�
209

108

�
5�2

27
�

7

3
�3

�
CAnf �

�
55

24
� 2�3

�
CFnf �

n2
f

27

�
:

(A4)
2. Perturbative expansions of the jet and soft functions

The two-loop matching conditions at the hard-collinear
and soft scales are encoded in the functions j and s defined
in (8) and (11), respectively. At two-loop order, explicit
expressions for these quantities have been given in (23).
Besides the expansion coefficients of the � function and
cusp anomalous dimension, the results involve the one- and
two-loop coefficients of anomalous dimensions � and �J,
which we define as

��J���s� �
X1
n�0

��J�n

�
�s
4�

�
n�1

: (A5)

The two-loop coefficient of the anomalous dimension �
entering the shape-function evolution kernel has been cal-
culated long ago in [44], and some errors in this calculation
have now been corrected [15,45] (see also the Erratum to
[44]). The result is

�0 � �2CF;

�1 � CF

��
110

27
�
�2

18
� 18�3

�
CA �

�
4

27
�
�2

9

�
nf

�
:

(A6)

The two-loop anomalous dimension �J of the jet function
in soft-collinear effective theory (SCET) has not yet been
computed directly. A calculation is in progress and has
already led to a prediction for the terms of order CFnf [46].
The remaining terms can be deduced by noting that the
SCET jet function is related to the familiar jet function
from deep-inelastic scattering. The result is [15]

�J0 � �3CF;

�J1 � CF

�
�

�
3

2
� 2�2 � 24�3

�
CF �

�
1769

54
�

11�2

9

� 40�3

�
CA �

�
121

27
�

2�2

9

�
nf

�
:

(A7)
3. Heavy-quark parameters in the kinetic scheme

The defining relations for the b-quark mass and kinetic-
energy parameter in the kinetic scheme are [36]
-16
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mbjpole � mb��f� �
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(A8)
The conventional choice for the subtraction scale is �f � 1 GeV.
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