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High energy asymptotics of scattering processes in QCD
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High energy scattering in the QCD parton model was recently shown to be a reaction-diffusion process
and, thus, to lie in the universality class of the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov
equation. We recall that the latter appears naturally in the context of the parton model. We provide a
thorough numerical analysis of the mean-field approximation, given in QCD by the Balitsky-Kovchegov
equation. In the framework of a simple stochastic toy model that captures the relevant features of QCD, we
discuss and illustrate the universal properties of such stochastic models. We investigate, in particular, the
validity of the mean-field approximation and how it is broken by fluctuations. We find that the mean-field
approximation is a good approximation in the initial stages of the evolution in rapidity.
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I. INTRODUCTION

The description of the rise of hadronic cross sections
with the center of mass energy

���
s
p

within quantum chro-
modynamics (QCD) has been a challenging issue. Old
experimental results, e.g. on proton scattering, do not yet
have a satisfactory theoretical explanation. So far, no real-
ization has been found for the Froissart bound, which is a
consequence of the unitarity of the S matrix and which is a
bound on the high energy behavior of the total cross
sections, � � �1=m2

��ln
2s.

A perturbative calculation of the evolution of scattering
amplitudes with energy, achieved by Balitsky, Fadin,
Kuraev, and Lipatov (BFKL) 30 years ago [1] and sub-
sequently improved to next-to-leading order [2], is appar-
ently successful in describing the rise of photon-proton
cross sections when the virtuality of the photon is high
enough. However, the BFKL equation, being linear, is not
compatible with the Froissart bound when it is extrapolated
to very high energies. Complying with the limits set by
unitarity requires the introduction of nonlinear terms in the
evolution equations. A first step in this direction was taken
by Gribov, Levin, and Ryskin (GLR) in 1981 [3] and by
Mueller and Qiu (MQ) in 1986 [4]. Subsequently, more
involved QCD evolution equations were derived within
different formalisms. Balitsky, Jalilian-Marian, Iancu,
McLerran, Weigert, Leonidov, and Kovner (B-JIMWLK)
[5,6] have developed a comprehensive approach to high
energy scattering from different but converging points of
view. Technically, they were able to write the high energy
evolution of QCD amplitudes in the form of a functional
integro-differential equation, which can also be expressed
as a Langevin equation or as an infinite hierarchy of
coupled differential equations. A much simpler equation
was obtained by Balitsky [5] and by Kovchegov [7] (BK)
in the particular physical context where the target is a large
nucleus. The latter turns out to be a specific limit of the
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former, and its structure is similar to the GLR-MQ
equation.

Meanwhile, on the phenomenological side, Golec-
Biernat and Wüsthoff showed [8] that unitarization effects,
which cannot be taken into account by a linear evolution
such as the BFKL equation, may have already be seen at
the DESY electron-proton collider HERA. Their observa-
tion gave a new impetus to the field and triggered many
phenomenological and theoretical studies. Furthermore,
the model they had proposed pointed towards a new scal-
ing, ‘‘geometric scaling,’’ which was subsequently found
in the HERA data [9].

Much insight and intuition has been gained from nu-
merical studies: Even before the B-JIMWLK formalism
had been developed, Salam performed numerical calcula-
tions of scattering amplitudes near the unitarity limits in
the framework of a Monte-Carlo implementation [10] of
Mueller’s color dipole model [11]. More recently, much
effort has been devoted to obtaining numerical solutions of
the BK and B-JIMWLK equations [12–16] and, in particu-
lar, to the understanding of geometric scaling. But no
analytical solution could be found.

Important progress was accomplished when the first
terms of the large rapidity asymptotic expansion of the
solutions to the Balitsky-Kovchegov equation were com-
puted by Mueller and Triantafyllopoulos [17]. This expan-
sion was subsequently systematized with the discovery
[18,19] that the BK equation lies in the universality class
of the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP)
equation [20,21] and that geometric scaling was equivalent
to the property that the latter admits traveling wave solu-
tions. The FKPP equation describes a vast class of physical
phenomena, actively studied by mathematicians and sta-
tistical physicists.

Meanwhile, Mueller and Shoshi [22] made a first step in
going beyond the BK approximation to high energy scat-
tering in QCD. Through a sophisticated analysis of the
-1 © 2005 The American Physical Society
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FIG. 1 (color online). The scattering of a probe (here, a virtual
photon characterized by the momentum scale k interacting
through its q �q Fock state) off a particular 4-gluon fluctuation
of the target dipole.
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unitarity and symmetry constraints on the QCD evolution,
they were able to propose a correction to the saturation
scale, induced by effects neglected in the BK evolution,
and realized that geometric scaling was asymptotically
broken.

The complete equivalence between high energy QCD
and statistical physics models of reaction-diffusion type,
first understood by one of us (S. M.) [23,24], provided a
new picture in which the nature of the effects neglected by
the BK equation became transparent. The universality class
of high energy QCD was identified as that of the stochastic
Fisher-Kolmogorov-Petrovsky-Piscounov (sFKPP) equa-
tion [25]. The latter applies to a very wide class of physical
phenomena, ranging from directed percolation to popula-
tion growth. It has many applications, e.g. to biology,
genetics, anthropology, and fluid mechanics. Roughly
speaking, most of the physical situations in which objects
evolve by multiplying and diffusing, up to a certain limit-
ing threshold, may be captured by an equation in the
universality class of the sFKPP equation.

The crucial point is that the QCD parton model has such
dynamics, when viewed in a particular way that we will
explain in this paper. Once this observation is made, all
mathematical results can be transposed to the physical
context of high energy QCD [24]. In particular, Mueller
and Shoshi’s results on the saturation scale are recovered.
The breaking of geometric scaling, which they had under-
stood qualitatively in their approach, is shown to be related
to the statistical dispersion in the occupation numbers of
partons in the hadronic Fock state. This new point of view
on high energy QCD not only confirmed and brought new
exact results on QCD scattering amplitudes, it also pro-
vided a physical understanding of the very nature and the
role of fluctuations contained in the QCD evolution equa-
tions. Moreover, it helped to understand how to set up a
systematics to go beyond the BK equation. It was recog-
nized that the B-JIMWLK formalism was not complete
[26,27], thus confirming what was expected [7,28,29]. The
form of the new terms can be written down, taking advan-
tage of the correspondence to statistical physics.

The goal of this paper is to provide numerical solutions
of the evolution equations of QCD, in order to study
accurately their universal properties. The outline goes as
follows: In Sec. II, we explain how the parton model is
related to a reaction-diffusion process. From physical but
rigorous arguments, we derive in a simple way the evolu-
tion of the parton densities with energy, reviewing and
expanding upon Refs. [23,24]. In particular, we show
how the sFKPP equation appears. In Sec. III, we study
numerically in detail a useful mean-field approximation to
the full evolution equations—that is, the BK equation—in
relation to the most recent analytical results. In the final
Sec. IV, we go beyond, investigating in a toy model the
full content of the sFKPP equation and its consequences
in QCD.
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II. UNITARY EVOLUTION OF AMPLITUDES IN
THE PARTON MODEL

In this first section, we recall the physical picture of high
energy scattering in the parton model (Sec. II A), insisting
on the manifest link to reaction-diffusion models. In a
second step (Sec. II B), following Ref. [24], we derive
the general evolution equations in QCD.

A. High energy scattering as a reaction-diffusion
process

Let us consider the scattering of a hadronic probe off a
given target, in the rest frame of the probe and at a fixed
impact parameter. In the parton model, the target interacts
through one of its quantum fluctuations (see Fig. 1). The
probe effectively ‘‘counts’’ the partons in the current Fock
state of the target whose transverse momenta k match the
one of the probe: The amplitude T�k� for the scattering off
this particular partonic configuration is proportional to the
number of partons n�k�.

In QCD, the wave function of a hadronic object is built
up from successive splittings of partons starting from the
valence structure. As one increases the rapidity Y by
boosting the target, the opening of the phase space for
parton splittings makes the probability for high occupation
numbers larger. In the initial stages of the evolution, the
parton density grows diffusively from these splittings.

On the other hand, the number of partons in each cell of
transverse phase space is effectively limited to a maximum
-2



1Strictly speaking, the case of the running coupling is not
captured by Eq. (3) since K would not be a proper diffusion
kernel. However, it is possible to treat the running coupling
through a generalization of the methods known to treat the
sFKPP equation, as was done in the mean-field case in Ref. [18].
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number N that depends on the strength of the interaction of
the probe with the partons, that is, on the relationship
between T and n. This property is necessary from unitarity,
which imposes an upper bound on the amplitude [e.g.
T�k� � 1 with standard normalizations] which, in turn,
results in an upper bound on n�k�. This is parton saturation
and is realized by a recombination process.

Viewed in this way, scattering in the parton model is a
reaction-diffusion process. The rapidity evolution of the
Fock states of the target hadron is like the time evolution of
a set of particles that diffuse in space, multiply, and re-
combine so that there are no more than N particles on each
site, on the average. We parametrize space by the variable
x: It will be related to k in QCD. The QCD amplitude T is
like the fractional occupation number u � n=N in the
reaction-diffusion model.

In the continuum limit, it is known on general grounds
[30] that, up to a change of variable, u obeys the evolution
equation

@tu�x; t� � D@2
xu�x; t� � �u�x; t� ��u

2�x; t�

�
1����
N
p

���������������
2u�x; t�

p
��x; t�; (1)

where � is a Gaussian white noise, that is, a random
function satisfying

h��x; t�i � 0 and h��x; t���y; t0�i � ��t� t0���x� y�:

(2)

Equation (1) is known as the ‘‘Reggeon field theory’’
equation. It is to be interpreted in the standard Itō way,
as the continuum limit of a discretized equation. It belongs
to the same universality class as the sFKPP equation
[which may be obtained by the replacement

���
u
p
!������������������

u�1� u�
p

in Eq. (1)]. D and � are parameters that char-
acterize the diffusive growth of the particles. The structure
of Eq. (1) is very transparent: The first two terms represent
the growing diffusion of the particles, characterized by the
parameters D and �; the third term implements the recom-
bination process and tames this growth when maximum
occupancy is approached. The last term results from the
stochastic dynamics, whose effect reflects the finiteness of
the number of particles. Note that this term gives rise to
fluctuations in u�x; t� and, consequently, in the particle
number n, that are proportional to �n /

���
n
p

. This is typical
of fluctuations of independent random numbers and re-
flects well the statistical origin of this term.

We do not mean that Eq. (1) fully represents parton
evolution. Indeed, in the parton model, we anticipate that
the rapidity evolution of parton densities be given, in the
linear regime, by the BFKL equation, which is more com-
plicated than a second-order differential operator. But what
we mean is that Eq. (1) describes exactly the critical
behavior of the QCD amplitude T ��u�, that is, its large
074021
rapidity (time) and large maximum occupancy number N
limit, up to the replacement of the relevant parameters.

All higher order operators beyond the ones appearing in
Eq. (1) are irrelevant in these limits. As for the linear part,
this is clear: The large time behavior stems from a saddle
point that selects the quadratic approximation to the grow-
ing diffusion kernel. As a matter of fact, any equation of the
form

@tu�x; t� � K � u�x; t� ��u2�x; t� �
1����
N
p

���������������
2u�x; t�

p
��x; t�;

(3)

where K is an appropriate differential or integral kernel
encoding the growing diffusion, is believed to belong to
that universality class and, hence, to exhibit the same
asymptotic solutions. By ‘‘appropriate’’ we mean in prac-
tice that the phase velocity

v��� �
K���
�

; with K��� � e�x�K � e��x� (4)

of a wave of wave number � propagated by the linear part
of Eq. (3), must be a function of � that has a minimum in its
domain of analyticity, but we should also stress that a
general mathematical definition of the universality class
of the Reggeon field equation is still not available [25].1 As
for the nonlinear part in Eqs. (1) and (3), terms of the form
uj for j > 2 would have no influence, because the region
u� 1 in which these terms show up is absorptive [21].
Furthermore, we will see that the time evolution is essen-
tially driven by the region where u is small. Thanks to this
property, we will not have to bother about the exact way
parton saturation actually occurs in QCD: It is enough to
know that there is an upper bound on the number of partons
by unit of transverse phase space.

So far, we have focused on the evolution of one (par-
tonic) realization, described by Eq. (3). In the QCD con-
text, u� T represents the scattering amplitude off one
particular Fock state. It is not a physical observable, be-
cause it is not possible to select a particular Fock state of
the target in a particle physics experiment. The physical
amplitude that is measured in an experiment is the average
over all accessible random (partonic) realizations. Only a
few moments of T may be measurable: its average, related
to total cross sections, and its variance, related to diffrac-
tive cross sections, namely:

�tot � hTi; �diff � hT2i � hTi2: (5)

The evolution of the moments of T (or of u) may be
computed directly from Eq. (1) [or Eq. (3)]. Taking the
-3
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average of Eq. (3), with the help of Eq. (2), it is straightfor-
ward to obtain the evolution of the latter

@thu�x; t�i � K � hu�x; t�i ��hu2�x; t�i: (6a)

However, this equation is not closed: It calls for an evolu-
tion equation for the correlator hu2�x; t�i, which can be
derived again from Eq. (3) with the help of Eq. (2):

@thu�x; t�u�y; t�i � �Kx � Ky� � hu�x; t�u�y; t�i

��hu2�x; t�u�y; t�i ��hu�x; t�u2�y; t�i

�
2

N
��x� y�hu�x; t�i; (6b)

and so on for the higher order correlators, leading even-
tually to an infinite hierarchy of coupled equations.

Note that the hierarchical form (6) was proposed by
Parisi and Zhang [31] to describe a growth process known
as the Eden model. In the same paper, they also obtained
the same hierarchy from the Reggeon action, which had
already been proved to be related to stochastic processes
[32]. Only the boundary terms [last term in the right-hand
side of Eq. (6b)] could not be obtained from the Reggeon
action through the Parisi-Zhang procedure: Indeed, they
refer explicitly to the way one counts the objects, as can be
seen from the fact that this term is proportional to 2=N, and
the knowledge of the evolution encoded in the bulk terms
of the action they had used is not enough.

Because of universality of the asymptotics of reaction-
diffusion processes, it is straightforward to take over
Eq. (3) or equivalently Eqs. (6) (and the higher equations
in this hierarchy), together with their exact asymptotic
solutions that will be exhibited in the following sections,
to describe high energy QCD. Basically, an elementary
analysis of the parton splitting process and how the partons
interact perturbatively with a probe will be enough. This
will enable us to identify the variables t and x, the kernel of
the linear evolution K, and the strength of the noise 1=N
that correspond to the QCD parton model. We will turn to
this analysis in the next section.

For Eq. (3), being both explicitly nonlinear and stochas-
tic, it proves a formidable task to find solutions. However,
there has been much progress recently in this direction
[25]. It was realized that, starting from a localized initial
condition, the large time solution is a traveling wave mov-
ing in the direction of larger x, up to some noise. The
position Xt of that wave may be defined in several ways.
For example, one can pick a constant � and define Xt in
such a way that

u�Xt; t� � �: (7)

An alternative definition, useful, in particular, in the case of
discrete models, could be

Xt �
Z 1

0
dxu�x; t�: (8)
074021
In the context of QCD, Xt is related to the saturation scale,
that is, the point at which parton saturation effects set in.

Outstanding results have been obtained on Xt and on the
profile of the wave front u�x; t� in the region 1=N 	 u	
1. An interesting point is that the analytical formulas
depend only on some local properties of the characteristic
function K��� of the linear diffusion kernel.

B. The evolution equations of the QCD parton model

In this section, we review the discussion of Ref. [24].
Our goal is to identify the relevant variables t, x, N, and the
evolution kernel K that correspond to the physical situation
of QCD.

We consider the scattering of a dipole of variable size r
(the probe) off a dipole of size r0 (the target). A natural
variable that will be used throughout is 	 � ln�r2

0=r
2�. We

go to the rest frame of the probe so that the target carries all
the available rapidity Y. The impact parameter b between
the dipoles is fixed.

At high energy, the quantum fluctuations of the target
that interact with the probe are dominated by gluons. It
proves useful to represent this set of partons by color
dipoles [11]. This is possible in the large-Nc limit, where
gluons are similar to zero-size q �q pairs and nonplanar
diagrams are suppressed. Subleading-Nc terms do not con-
tribute to the evolution of the scattering amplitudes when
they are small. However, the dipole approximation breaks
down when the amplitudes approach their unitarity limits
at the same time as nonlinearities set in, but as we will see,
that does not hamper getting the right asymptotics for the
physical quantities that we are going to compute.

We denote by T�r; Y� the scattering amplitude of the
probe off a given partonic realization j!i of the target,
obtained after a rapidity evolution Y (the dependence on b
is understood). It is a random variable, whose probability
distribution is related to the distribution of the different
Fock state realizations of the target. The values of T�r; Y�
range between 0 (weak interaction) and 1 (unitarity limit).
T�r; Y� will be an essential intermediate quantity in our
calculations, but as has been explained in Sec. II A, it is not
an observable. The physical dipole-dipole scattering am-
plitude A�r; Y� is the statistical average over all partonic
fluctuations of the target at rapidity Y, i.e.

A�r; Y� � hT�r; Y�i; (9)

see Eq. (5).
When T is small, the scattering amplitude off one par-

ticular Fock state !�Y� is the sum of all elementary am-
plitudes with each of the dipoles, i.e.

T�r; Y� �
X

i2!�Y�

Tel�r; ri�; (10)

where i labels the dipoles in the Fock state of the target at
the time of the interaction. Tel is the elementary dipole
interaction and is essentially local in impact parameter. Tel
-4
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behaves like

Tel�r; ri� � 

2
s
r2
<

r2
>
; with r< � min�jrj; jrij�;

r> � max�jrj; jrij�
(11)

when the dipoles overlap, and vanishes otherwise. We have
neglected O�1� factors and logarithms, but these approx-
imations do not affect the results that we shall obtain,
which are largely independent of the details.
Equation (11) shows that the amplitude T�r; Y� is simply
counting the number n�r; Y� of dipoles of size r within a
disk of radius r centered at the impact parameter of the
external dipole:

T�r; Y� � 
2
sn�r; Y�: (12)

Note that n�r; Y� can take only discrete values: Indeed, it
represents the number of quanta of a particular realization
of the field of the target. The unitarity bound on T implies
that n�r; Y� is also constrained by an upper bound N 

1=
2

s . Later on, we shall switch to momentum space by the
Fourier transformation r$ k. Of course, the relation-
ship (12) will also hold for the Fourier conjugates.
2The impact parameter dependence could be easily put back in
Eq. (13). We have omitted it for simplicity and since it is enough
for our purpose to assume locality of the evolution.

074021
We emphasize that the relationship (12) is valid only
within the framework of the above-mentioned approxima-
tions. A more accurate treatment of how the counting of the
partons is actually realized in QCD would eventually lead
to more complex equations; see Ref. [27]. We will not enter
these complications in this paper since we are interested
only in the study of the asymptotics that are common with
models from statistical physics, for which the counting rule
(12) is precise enough.

The rapidity evolution law for hT�r; Y�i is known, and
we refer the reader to earlier literature for its derivation
(e.g. [24]). It reads2

@YhT�r; Y�i �
�


2�

Z
d2z

r2

z2�r� z�2

� �hT�z; Y�i � hT�r� z; Y�i

� hT�r; Y�i � hT�z; Y�T�r� z; Y�i�: (13a)

Equation (13a) is not a closed equation for hTi: It depends
upon the correlator hT�z; Y�T�r� z; Y�i. An evolution
equation for hT�r1; Y�T�r2; Y�i may be derived in the
same way. One gets
@YhT�r1; Y�T�r2; Y�i �
�


2�

Z
d2z

r2
1

z2�r1 � z�
2 �hT�z; Y�T�r2; Y�i � hT�r1 � z; Y�T�r2; Y�i � hT�r1; Y�T�r2; Y�i

� hT�z; Y�T�r1 � z; Y�T�r2; Y�i� �
�


2�

Z
d2z

r2
2

z2�r2 � z�
2

� �hT�r1; Y�T�z; Y�i � hT�r1; Y�T�r2 � z; Y�i � hT�r1; Y�T�r2; Y�i

� hT�r1; Y�T�z; Y�T�r2 � z; Y�i�; (13b)
which again calls for equations for higher correlators.
Equations (13) turn out to be the first two parts of an
infinite hierarchy originally derived by Balitsky [5], re-
stricted to dipoles.

In order to make the correspondence with reaction-
diffusion models more concrete at the physical level, it is
useful at this point to discuss qualitatively the typical shape
of T�r; Y� from the evolution. (The reader may find the
complete derivation in Ref. [24].) As one takes a new step
in rapidity, each of the dipoles ri already present in the
wave function from the previous step and for which
T�ri; Y� 	 1 may split into two new dipoles. The most
probable splittings are those in which both child dipoles
have a size comparable to the size of the parent dipole:
They occur with probability one in each interval �Y �
1= �
. Thus, the main mechanism for the rise of T�ri; Y�
with Y is a growing diffusion around the size of the initial
dipole ri that is encoded in the linear part of Eqs. (13). The
nonlinear terms appearing therein tame this growth in order
to satisfy the unitarity limits on hTi.

In a typical partonic configuration as obtained after a
sufficiently large rapidity evolution, the dipoles appear to
be densely distributed around the size r0 [T�r; Y� is large],
but they become more rare with decreasing r (or increasing
	), and, for sufficiently large 	, one meets only rare
fluctuations which involve one (or few) dipoles and for
which T�r� ’ 
2

s . It is a wave front which, with increasing
Y, progresses towards larger values of 	. The position of
that front is characterized by a momentum scale Qs�Y�
called the saturation momentum. It is natural to define it
e.g. by the value of the inverse dipole size for which the
amplitude reaches some predefined number �, i.e. T�r �
1=Qs�Y�; Y� � �: This corresponds to prescription (7).

We now proceed to the identification of the QCD evo-
lution equation to the Reggeon field theory equation at the
technical level. Following Ref. [7], we perform the trans-
formation

T�k; Y� �
Z 1

0

dr
r
J0�kr�T�r; Y� (14)
-5
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to momentum space. The main positive outcome of such a transformation is to make the nonlinear terms in Eqs. (13) local
in k, while obviously the linear part stays an integral kernel. It leads to the formal simplification8>><>>:

@ �
YhT�k; Y�i � ���@L�hT�k; Y�i � hT2�k; Y�i

@ �
YhT�k1; Y�T�k2; Y�i � ����@L1
� � ���@L2

��hT�k1; Y�T�k2; Y�i � hT2�k1; Y�T�k2; Y�i � hT�k1; Y�T2�k2; Y�i

� � �

(15)
where L 
 ln�k2=�2� and ���� � 2 �1� �  ��� �  �1�
�� is the eigenvalue of the BFKL kernel. By ���@L�, we
mean the BFKL integro-differential operator that may be
defined with the help of the formal series expansion

���@L� � ���0�1� �
0��0���@L � �01�

� 1
2�
00��0���@L � �01�

2 � � � � (16)

for some given �0 between 0 and 1, i.e. for the principal
branch of the function �.

It is clear that, as it stands, the hierarchy (15) admits the
factorized ‘‘mean-field’’ solution [33]

hT�k1; Y� � � �T�kn; Y�i � �n�1hT�k1; Y�i � � � hT�kn; Y�i;

(17)

where � is any constant. However, this is not the physical
solution that corresponds to scattering in QCD. The set of
Eqs. (15) may be supplemented by boundary terms if one
wants to represent explicitly the elementary dipole inter-
action (i.e. the ‘‘counting rule’’), which is absent in
Eq. (15) [compare to Eq. (6b)]. By analogy with statistical
mechanics [see Eq. (6b)], this term should be [31]

2
2
s��L1 � L2�hT�k1; Y�i (18)

in the second equation. With this term, it is clear that (17)
does no longer solve the hierarchy. Our method of deriva-
tion does not allow one to find directly this boundary term,
exactly for the same reasons Parisi and Zhang did not get it
in their derivation of the hierarchy from the Reggeon
action [31]. Equation (18) is nonzero when the transverse
momenta of the two dipoles in the Fock space of the probe
are equal and, thus, may scatter off the same dipole in the
Fock space of the target: This was neglected in our deri-
vation and has to be reintroduced by hand.

The evolution equation for T may also be written in the
form of a stochastic differential equation, namely,

@ �
YT�k; Y� � ���@L�T�k; Y� � T2�k; Y�

� 
s
�����������������
2T�k; Y�

p
��k; Y� (19)

that gives back the hierarchy (15) for the correlators,
supplemented with boundary terms such as (18). Such a
form was proposed for the first time in Ref. [23] on
physical grounds: Indeed, this is the universal asymptotic
form of the evolution of any reaction-diffusion type pro-
cess [30]. Subsequently, it was shown on the technical level
how the B-JIMWLK formalism can be made consistent
with these physics [26,27] and how this term may describe
074021
Pomeron loops (see also Ref. [34]). The source term (18)
corresponds exactly to the one found there.

The identification with the Reggeon field theory equa-
tion is now straightforward:
x! L; t! �
Y; K ! ���@L�;

�! 1; N ! 1=
2
s :

(20)
Let us discuss the validity of Eq. (19), when applied to high
energy scattering, and the physical expectations. As stated
before, it is not expected to be exact, but we believe that it
captures the essential physics of the QCD parton model.
Since the linear part drives the front propagation at high
rapidity and since it is taken exactly into account here (to
leading order in �
sY), we expect that the solutions to this
equation match the asymptotics of full QCD as far as the
position of the front is concerned. This means that one
should be able to get the asymptotics of the moments of the
saturation scale Qs for Y large, 
s ! 0, and at a fixed
impact parameter by solving (19). The latter limitations are
necessary for the counting rule (12) to be valid. Similarly,
the shape of T in the region 1=N 	 T 	 1 is known to be
universal and, hence, should also be obtainable from
Eq. (19).

Of course, strictly speaking, these statements have the
status of a conjecture that will have to be confirmed by
accurate numerical calculations and, in the long term, by a
better mathematical understanding of the solutions of
equations of the form (19).

There is still some important difference between the
original Reggeon field theory equation (1) and the equation
that we have obtained for high energy QCD. Indeed,
T�k; Y� � 1 is not a fixed point of the QCD evolution,
unlike the case of the original Reggeon field theory equa-
tion, so the solutions cannot match in that region. Actually,
it is known that T�k; Y� � ln�Q2

s=k2� in the region T  1
[35]. But anyway, we would not solve Eq. (19) around T 
1 because, in the QCD case, the nonlinearity cannot be
reduced to a simple quadratic term as in (19), since also
color structures beyond dipoles are expected to play a role
there [29]. That does presumably not influence the asymp-
totic saturation scale, which is completely determined by
the linear part of the evolution equation, but it certainly
modifies the shape of T and of its correlators close to the
unitarity limits.
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III. THE MEAN-FIELD PICTURE

The mean-field approximation hT2�k; Y�i ’ hT�k; Y�i2 

A2�k; Y� casts Eq. (13) into a closed form, known as the
Balitsky-Kovchegov (BK) equation [5,7]:

@ �
YA�k; Y� � ���@L�A�k; Y� � A
2�k; Y�: (21)

A priori, the validity condition for such an approximation
is not clear. We will be able to assess it only by studying the
full problem including fluctuations. It is, nevertheless,
useful to start with such an approximation because it is
tractable both analytically and numerically and because the
full stochastic solution is nothing else than a perturbation
of the mean-field solution.

A. General properties of the BK equation

It has recently been understood [18] that the BK equa-
tion belongs to the universality class of the FKPP equation,
and, as such, it admits a family of traveling wave solutions
[36]. That is, there exists a function of the rapidity Qs�Y�
such that

A�k; Y� � A�L� lnQ2
s�Y�� (22)

is a solution to Eq. (21). For this family of solutions, A���
on the right-hand side is essentially a slowly varying
function of � 
 L� lnQ2

s�Y� (tending to a constant in
the case of the pure FKPP equation) for � < 0 and is
exponentially decreasing at large �

A��� � e���: (23)

Qs is the saturation scale introduced before, that is, the
transition point between the linear and the saturation re-
gime. Note that the general traveling wave property (22) is
equivalent to geometric scaling, a feature of the data for
��p scattering at high energy discovered a few years
ago [9].

The crucial point is that the properties of these traveling
waves are, to a large extent, determined by the large-k tail,
where the amplitude A is small and, thus, where Eq. (21)
may be linearized. This very important property is due to
the particular propagation mode of the front, which is said
to be ‘‘pulled’’ along by its tail.

The linear part of the BK equation (21) has the charac-
teristic function [see Eq. (4)]

v��� �
����
�

: (24)

v��� is the phase velocity of a wave of wave number �. It
has a minimum at �0 � 0:627.

Starting from a given initial condition A0 which behaves
asymptotically like e��, there are two relevant cases.
Either < �0, in which case the large-Y asymptotic solu-
tion conserves � � , or   �0, in which case the wave
front will converge asymptotically to the shape e��0�,
which moves at velocity d lnQ2

s=dY � �
v��0�. This prop-
074021
erty can be understood in a simple way. The wave packet
that corresponds to a physical initial condition, which has
at most a mild growth as �! �1 and that decreases like
e�� for �! �1, contains all waves of wave number �
ranging from�1 to . At large times, the slowest of these
waves will determine the velocity of the wave front. The
slowest wave is either  itself, if < �0, or �0 in the
opposite case.

The latter case is the physically relevant one for the BK
equation [19]: Indeed, color transparency implies that for
large momenta, i.e. large values of �, the QCD amplitudes
behave like e��. Thus,  � 1, which is larger than �0.

The transition from the initial condition at Y � 0 to the
asymptotic traveling wave induces corrections to the ve-
locity of the front (i.e. to Qs) and to its shape. The first few
orders in a Y expansion of lnQ2

s are completely determined
by Eq. (24):

d
dY

lnQ2
s�Y� � �


���0�

�0
�

3

2�0

1

Y
�

3

2�2
0

������������������
2�

�
�00��0�

s
1

Y3=2

�O�1=Y�: (25)

The first term on the right-hand side was first computed in
Ref. [3] in the context of the GLR equation. The second
term was found in Ref. [17], while the last one was derived
for QCD in Ref. [19].

The front itself has a rapidity expansion around its
asymptotic shape (23) which reads, to the same order of
approximation,

A�k; Y� �
�
k2

Q2
s�Y�

�
��0

�  �k; Y�; (26)

where the reduced front �k; Y�was computed in Ref. [19]:

 �k; Y� � C1e�z
2
�

�
�0 ln�k2=Q2

s�Y�� � C2

�

�
3� 2C2 �

�0�
�3���0�

�00��0�

�
z2

�

�
2

3

�0��3���0�

�00��0�
�

1

3 2F2

�
1; 1;

5

2
; 3; z2

��
z4

� 6
����
�
p

�
1� 1F1

�
�

1

2
;
3

2
; z2

��
z�O�1=

����
Y
p
�

�
:

(27)

z 
 ln�k2=Q2
s�Y��=

������������������������
2 �
�00��0�Y

p
is the so-called ‘‘leading

edge’’ variable [21].
The dominant term (first factor in the right-hand side) is

the exponential (23) corrected by a linear factor that rep-
resents absorption and by a Gaussian whose width in-
creases with rapidity, namely,
-7
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 LO�k; Y� � C1

�
�0 ln

�
k2

Q2
s�Y�

�
� C2

�

� exp
�
�

ln2�k2=Q2
s�Y��

2 �
�00��0�Y

�
: (28)

Having an explicit Y dependence, this factor clearly vio-
lates geometric scaling. One can estimate from Eq. (28)
how many steps in rapidity �Y are needed in order for the
exponential shape to set in within a ‘‘distance’’ lnk2 �
lnQ2

s from the bulk of the front: It corresponds to the point
where z approaches 1, i.e.

�
�Y �
ln2�k2=Q2

s�

2�00��0�
: (29)
3The code can be downloaded from http://www.isv.uu.se/
~enberg/BK/.
B. Numerical implementation and approximation
schemes

Numerical studies of the BK equation were pioneered in
Refs. [12–15]. These works anticipated qualitatively the
traveling wave behavior of the large rapidity solution. In
this paper, we will focus on the quantitative comparison
with the most recent analytical results.

For the purpose of numerical implementation, the fol-
lowing form of the BFKL kernel in Eq. (21) is well-suited:

���@L�T�L� �
Z �1
�1

dL0
�
T�L0� � eL�L

0
T�L�

j1� eL�L
0
j

�
eL�L

0
T�L��������������������������

4� e2�L�L0�
p

�
: (30)

There are several known approximations to this kernel.
In the so-called diffusive approximation, one keeps only

terms up to second order in the expansion (16), which
makes the BFKL kernel local:

���� ’ ���0� � �
0��0���� �0� �

1
2�
00��0���� �0�

2:

(31)

Within this approximation, the BK equation becomes a
partial differential equation, which is exactly equivalent
to the FKPP equation up to a trivial change of variables
[18]. Moreover, these terms are enough to yield the exact
asymptotics of Eqs. (25) and (27) to that order. For the
leading order correction, it is clear because the expansion
(31) is equivalent to a saddle point approximation. The
next-to-leading order depends only on �00��0�, but this is
probably an accident, since a priori one would expect
�000��0� to also play a role.

One can also take a different point of view and focus
instead on the pole structure of the BFKL kernel, by
starting from its meromorphic expansion. An accurate
representation of the principal branch of the � function
consists in keeping only the two poles at � � 0 and � � 1:
074021
���� ’
1

�
�

1

1� �
� 4�ln2� 1�; (32)

where the constant is adjusted in such a way that ��12�
coincides with its exact value. Within this scheme,
���@L� is an integral operator that admits the representa-
tion

���@L�T�L� ’
Z �1
L

dL0T�L0� �
Z L

�1
dL0eL

0�LT�L0�

� 4�ln2� 1�T�L�: (33)

We have solved numerically the BK equation with these
kernels using several different methods, which has allowed
cross-checking of the accuracy and reliability. The main
algorithm (also used in Ref. [37]) is based on Chebyshev
approximation of the integrand.3 The integrand is defined
on a grid in momentum space given by the extrema of the
Chebyshev polynomials. The integral is then computed by
using a discrete cosine transform, and the ensuing system
of ordinary differential equations is solved using a fourth-
order Runge-Kutta method. This makes the program very
efficient and makes it possible to discretize the system on
quite a small grid; for most of the results in this paper, a
grid size of 256 points was sufficient, with the L variable
ranging between Lmin � �20 and Lmax � 138.

We will now focus on the numerical results and their
physical interpretation.

C. Front formation and wave propagation

As an initial condition for the evolution, following
Ref. [38], we assume the McLerran-Venugopalan (MV)
model [39], defined in coordinate space by

T�r; Y � 0� � exp��1
4r

2Q2
s�Y � 0� ln�e� 1=�r2�2���;

(34)

with starting scale Q2
s�Y � 0� set to 1 GeV2 and � �

200 MeV. The coupling constant �
 is frozen at 0.2 for all
our calculations.

Figure 2 shows the BK evolution of the MV initial
condition for rapidities up to Y � 50, displaying a travel-
ing wave behavior. The first logarithmic plot clearly shows
the steep exponential falloff (23) at very large momenta,
while the second linear plot shows the mild ln�Q2

s=k2� rise
towards small momenta. We have checked that the same
traveling wave front pattern persists for rapidities up to
Y � 250.

To study more precisely the shape of the amplitude, we
plot the reduced front  �k; Y� defined in Eq. (26), which
enables us to monitor how the asymptotic traveling wave is
approached. We display the numerical results of BK evo-
lution for different values of the rapidity in Fig. 3. We
-8
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compare them to the analytical predictions at both leading
and next-to-leading order, Eqs. (27) and (28). Technically,
we start with Eq. (28), and we fit the two constants C1 and
C2 on the highest rapidity data (Y � 50): We get the values
C1 � 0:17 and C2 � 2:9. Then, using this determination of
the parameters, we compute the reduced front for the lower
rapidities, using both the leading order formula Eq. (28)
and the next-to-leading order prediction (27). It turns out
that the latter does not differ very much from the former.
The agreement is not perfect, even when we use the next-
to-leading order formula. This reflects the fact that rapid-
ities of the order of 50 are still too small for these formulas
to apply: The convergence of the asymptotic series that
gives the shape of the front is only algebraic and, hence,
very slow. Actually, a better agreement in this low rapidity
region could be obtained by using our freedom to shift the
rapidity Y ! Y � Y0 [19].

We now turn to the saturation scale. Here we define it as
the value of k for which the amplitude T�k; Y� reaches a
certain predefined value � [as defined in Eq. (7)]. In Fig. 4,
we show an example of amplitudes at several rapidities,
with the saturation scale marked as a point for each curve
for the choice � � 0:01.

Because the formation of the traveling wave front re-
quires a large rapidity interval, the determination of the
saturation scale depends on the chosen value of �. We
demonstrate this effect in Fig. 5, which shows the analyti-
cal expressions for the logarithmic derivative of the satu-
ration scale (the velocity of the front) including the first
two and three terms in the Y expansion together with the
numerical results for three different values of �. Note that
the smaller the � value, the longer it takes to reach the
asymptotic limit. The larger the �, the closer to the two-
term analytic result (which needs to be closer to the
asymptotic limit to be good), which at first sight looks
quite intriguing [40]. Expressed in another way, different
 0.01
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FIG. 4. Propagating front, with the saturation scale for � �
0:01 marked at each value of rapidity.

-9



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  10  100

dl
n 

Q
s2 (Y

) 
/ d

Y

Y

Numerical κ = 1.0
κ = 0.01

κ = 0.0001
Analytic 3 terms
Analytic 2 terms

Asymptotic velocity

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  10  20  30  40  50

dl
n 

Q
s2 (Y

) 
/ d

Y

Y

Numerical κ = 1.0
κ = 0.01

κ = 0.0001
Analytic 3 terms
Analytic 2 terms

FIG. 5. Logarithmic derivative of the saturation scale
@ lnQ2

s �Y�=@Y obtained from numerical simulations compared
to the analytical results including two and three terms in the Y
expansion of Eq. (25). The saturation scale was obtained by
tracking the amplitude at heights � � 1:0, 0:01, and 0:0001. The
results are shown for two different rapidity ranges, and on
the first plot we, in addition, mark the asymptotic velocity
�
s���c�=�c � 0:9767.

 0

 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100

F
(Y

)

Y

Numerical κ = 1.0
κ = 0.01

κ = 0.0001

FIG. 6. F�Y� [Eq. (35)] for � � 1:0, 0:01, and 0:0001.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  20  40  60  80  100

G
(Y

)

Y

Numerical κ = 1.0
κ = 0.01

κ = 0.0001

FIG. 7. G�Y� [Eq. (36)] for � � 1:0, 0:01, and 0:0001.

R. ENBERG, K. GOLEC-BIERNAT, AND S. MUNIER PHYSICAL REVIEW D 72, 074021 (2005)

074021
parts of the wave front travel with different velocities,
which become equal only in the asymptotic Y limit.

It is clear, however, that the analytical results agree very
well with the numerical results for large Y, where they tend
to the constant velocity �
s���0�=�0, corresponding to the
exponential increase of the saturation scale. For smaller
rapidities, we see clearly the effect of subasymptotic ef-
fects on the numerical calculation. In particular, the de-
pendence of the numerical results on the very definition of
the saturation scale is manifest.

In order to study the agreement of the numerical calcu-
lation with Eq. (25) at subleading level in more detail, we
define the two quantities
F�Y� � Y3=2 2�2
0

3

������������������
�
�00��0�

2�

s �
@ lnQ2

s�Y�
@Y

�
�
���0�

�0

�
3

2�0

1

Y

�
; (35)
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G�Y� � Y
2�0

3

�
@ lnQ2

s�Y�
@Y

�
�
���0�

�0

�
; (36)

which, according to the analytical formulas, asymptoti-
cally behave as F�Y� ! 1�O�1=

����
Y
p
� and G�Y� ! �1�

O�1=
����
Y
p
� [cf. the corresponding expression for the satura-

tion scale in Eq. (25)]. In the absence of a third term in
Eq. (25), F�Y� would instead be close to zero, while G�Y�
would be close to�1. These quantities, extracted from the
numerical determination of the saturation scale, are plotted
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in Figs. 6 and 7. These plots clearly indicate that the third
O�1=

����
Y
p
� term in the saturation scale is present until rather

large rapidities. Furthermore, its influence is smaller when
the saturation scale is determined ‘‘higher up’’ on the front,
where the evolution more quickly approaches asymptotics.

The saturation scale has a nonuniversal dependence on
the initial condition, which is Y-suppressed compared to
the three terms in expression (25). To study this depen-
dence, we determine the velocity of the evolution from
three different initial conditions: the MV model, a step
function ��L�, and a Gaussian centered at k � k0. The
result (see Fig. 8) shows that the three curves converge to
the same propagation velocity within a few units in rapid-
ity. The corresponding wave fronts are shown in Fig. 9.

Finally, we would also like to know to what extent the
two-pole approximation of the BFKL kernel, represented
in momentum space by Eq. (33), captures the essentials of
the evolution. Figure 10 shows a comparison between the
amplitudes obtained from the two kernels. Evidently, they
give very similar results. We also compare the velocities in
Fig. 11.
 1
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FIG. 11. Comparison of the logarithmic derivative of the satu-
ration scale @ lnQ2

s�Y�=@Y as obtained from evolution using full
BK and using the two-pole approximation of the kernel.
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A few comments are in order. There is an obvious
difference between the solutions of the FKPP equation,
which corresponds to the diffusive approximation (16), and
those of the BK equation. While the FKPP waves are
bounded by a constant for small k	 Qs, the BK amplitude
diverges like lnQ2

s=k2, as seen in Fig. 2. This stems from
the nonlocality of the full BFKL kernel and can most easily
be understood on the simplified form of that kernel in
Eq. (33). Indeed, T�L0� � constant does not diagonalize
the kernel in the region L! �1. Instead, one iteration of
the kernel generates a factor Ls � L � ln�Q2

s=k
2� from the

first term in Eq. (33). The same phenomenon occurs in the
large k region, in which the behavior e��0L gets enhanced
by powers of L. However, this does not influence the
properties of the traveling waves that we are studying
here. The reason is that these extra factors are subleading
with respect to the powers of k2 that determine the asymp-
totic behavior of the traveling wave. Our numerical study
shows an excellent quantitative agreement with the ana-
lytical solutions (25)–(27).

We note that it is also possible to extract the saturation
scale from the numerical results by fitting a functional form
ln�Q2

s=k2� to the numerical curves for small k [40].
So far, we have focused on a physical initial condition.

We considered the MV model, but any initial condition that
satisfies color transparency at large k2 would satisfy the
condition > �0, and, hence, the asymptotic saturation
scale would obey Eq. (25) and the asymptotic shape of the
front at large Y and large k would be T�k� � 1=k2�0 . We
wish, however, to test further the theoretical framework
outlined in Sec. III A by picking the nonphysical initial
condition T�k� � 1=k, in which case  � 1

2 <�0. In this
case, the asymptotic saturation scale should be
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[Eq. (34), solid line] and an initial condition which behaves
like 1=k for large k (dashed line). The plot shows the logarithmic
derivative of the saturation scale @ lnQ2

s�Y�=@Y in both cases.
The straight horizontal lines are the large rapidity asymptotics
[first term in Eqs. (25) and (37), respectively].
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lnQ2
s�Y�=dY � �
s���= ’ 1:1090 � � � (37)

and the shape of the front should be conserved. This is
precisely what is observed in the results of the numerical
calculation (see Figs. 12 and 13) in complete agreement
with the theoretical expectations in Sec. III A. We note,
however, that our results clearly disagree with the claims
made in Ref. [15], where it was found that the asymptotic
amplitude goes like T�k� � 1=k2�0 at large k in all cases,
> �0 and < �0.

IV. BEYOND THE MEAN FIELD: UNIVERSAL
FEATURES FROM A TOY MODEL

In Sec. II, we identified the universality class of high
energy QCD as that of a stochastic partial differential
equation, the sFKPP equation. We studied in detail its
mean-field approximation in Sec. III. We now aim at
investigating the effects induced by the stochastic terms
neglected in that approximation.

For this purpose, we will propose a simple toy model
that is inspired by the QCD dipole model and that belongs
to the same universality class. The advantage of studying a
toy model are numerous: First, all universal results can be
checked and illustrated in a simple and physical way,
leaving out the irrelevant complications of QCD. Second,
many qualitative features that also hold in the case of QCD
can be investigated. For example, we are going to study in
detail the relevance of the mean-field approximation that
was investigated in Sec. III.

A. General results on the sFKPP equation

Let us start by reviewing the most recent general results
that have been obtained regarding universal features of the
solutions of the sFKPP equation [or, equivalently, of the
-12
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Reggeon field theory equation (1)]. We will then formulate
our toy model in Sec. IV B and illustrate its universal
properties outlined here in a numerical solution in
Sec. IV C.

The mean shape of the front in the region where 1=N 	
u	 1 was found to be [41]

u�x; t� �
lnN
��0

sin
�
��0�x� Xt�

lnN

�
e��0�x�Xt�; (38)

where �0 minimizes the function v��� of Eq. (4). The large
time velocity of the wave front was shown to be

v � v��0� �
�2�2

0v
00��0�

2 ln2N
: (39)

This is expected to be the first terms of an asymptotic
expansion for large N. Terms of relative order 1= lnN are
neglected. The scaling of the second moment of the front
position is also known from numerical simulations of
different models [41]

�2 � hX2
t i � hXti2 /

t

ln3N
: (40)

From Eqs. (38) and (40), we obtain easily the scaling form
of the average of u, which corresponds to the physical
amplitude in the case of QCD [24]:

hu�x; t�i � u
�
x� hXti��������������
t=ln3N

p �
; (41)

up to O�1=
��
t
p
� corrections.

While these results rely mostly on conjectures written
down after a numerical study of discrete models [41], they
are believed to have a general validity. Indeed, they are
supported both by appealing physical arguments, which we
will develop below, and by accurate numerical calculations
within different specific models.
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In the following, we will propose a toy model that is very
similar to QCD and confront the numerical solutions with
the above-mentioned analytical predictions.

B. A simple toy model

We consider a set of particles on a one-dimensional
lattice, whose sites are labeled by the coordinate x and
separated by the distance �x. These particles may jump
from one position to the nearest one on the left or on the
right with probability pL and pR, respectively, and they can
multiply with probability �. These elementary processes
replace the linear diffusive growth of partons as described
by the BFKL evolution. In order to enforce a limit on the
number of particles on the different sites, we impose that
each of the n�x; t� particles piled up at site x at time t may
die with a probability �n�x; t�=N. This is a way of imple-
menting the equivalent of parton saturation. These rules
completely define the model.

This setup is typical of a ‘‘reaction-diffusion’’ process. It
could realistically represent, for example, bacterial growth,
but more generally it represents a wide universality class,
to which high energy QCD also belongs, as was explained
in Sec. II.

It is straightforward to convert the evolution laws stated
above in an equation for the number of particles n�x; t� on
site x. Between times t and t��t, there are nL�x� particles
which jump to the left, nR�x� particles which jump to the
right, n��x� which multiply, and n��x� which disappear.
Thus, the variation in the particle number reads

n�x; t� �t� � n�x; t� � �nL�x� � nR�x� � n��x�

� n��x� � nL�x� �x�

� nR�x��x�jt!t��t: (42)

From the rules edicted above, each configuration has a
multinomial distribution
P�fnL�x�; nR�x�; n��x�; n��x�g� �
�n�x; t��!

�nL�x��! �nR�x��! �n��x��! �n��x��! ��n�x; t��!

� pnLL p
nR
R �

n���n�x; t�=N�n��1� pL � pR � �� �n�x; t�=N��n�x;t�; (43)
where �n�x; t� � n�x; t� � nL�x� � nR�x� � n��x� �
n��x�.

To get a clearer picture of the evolution, one may
compute the mean change in the particle number in one
time step from Eqs. (42) and (43):

hn�x; t��t�jfn�x; t�gi � n�x; t��1� pL � pR

� �n�x; t�=N� � pLn�x� �x; t�

� pRn�x��x; t� � �n�x; t�:

(44)

Obviously, there are two fixed points of the mean evolu-
tion: n�x; t� � 0 and n�x; t� � N. The latter is the maxi-
mum number of particles allowed on each site, on the
average. Let us introduce the fractional occupation number
u�x; t� � n�x; t�=N. The mean evolution of u�x; t� in one
step in time reads

hu�x; t��t�jfu�x; t�gi � u�x; t� � pL�u�x� �x; t�

� u�x; t�� � pR�u�x��x; t�

� u�x; t�� � �u�x; t��1� u�x; t��:

(45)

Taking the average of both sides of this equation, one sees
-13
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that it is not a closed equation for hui. It gets closed only
after a mean-field approximation, obtained through the
replacement u! hui.

The phase velocity of a wave of wave number � may be
obtained from Eq. (45) by computing the mean evolution
of the plane wave e���x�vt� in one linear evolution step

v��� �
1

��t
ln�1� �� pL�e���x � 1� � pR�e��x � 1��:

(46)

This function is the equivalent of v��� in Eq. (4) in the
present context. It is enough to compute the corresponding
values of �0, v��0�, v00��0� and to replace them in Eqs. (38)
and (39) to get the predictions for the asymptotic shape and
velocity of the front.

For the purpose of our numerical study, we choose

�x � �t � 1; pL � pR � 0:1; � � 0:2; (47)

which lead to the following parameters:

�0 � 1:352 19; v��0� � 0:255 386;

v00��0� � 0:167 721:
(48)

We pick an initial condition that consists of N particles
sitting at x � 0 at time t � 0 [u�x � 0; t � 0� � 1]. The
position of the front Xt is chosen to be defined by the
prescription in Eq. (8).

We evolve that initial condition for different values ofN.
The result is shown in Fig. 14 for t � 1000. It is a front
with fluctuations around a mean steady shape. Recall that
these fluctuations are statistical fluctuations in the particle
numbers. We see that their magnitude is consistent with the
expectation

�u�
����������
u=N

p
: (49)

In view of these results, and in order to be able to go to
larger values of N, we choose to replace the stochastic
 0
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FIG. 14. Numerical integration of the toy model defined in
Eqs. (42) and (43) over 1000 units of time for different values
of N.
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evolution (42) by its mean-field approximation (44) in the
bins in which the number of particles is larger than, say,
104, together with an appropriate boundary condition on
the interface between the stochastic and deterministic cal-
culation. According to Eq. (49), this amounts to neglecting
effects of order 1% in the concerned bins, which we do not
consider here and which, empirically, have anyway no
sizable influence either on the form or on the position of
the front. Such a hybrid method has been considered before
for reaction-diffusion models [42].

We may even try to simplify more, keeping the stochas-
ticity only in the foremost bin, along the lines of Ref. [41].
At each new time step, the nonempty bins are updated
using a pure mean-field approximation. A new bin is filled
immediately on the right of the rightmost nonempty site,
with a number of particles given by a Poisson law of
parameter

� � N � hu�x; t� �t�jfu�x; t�gi; (50)

where hu�x; t� �t�jfu�x; t�gi is given in Eq. (45). We will
also use this simpler model to get a feeling on how much
the solutions depend on the details of the model. For our
purpose, it is important to have such indications, since
eventually we would like to draw conclusions for QCD
from our toy model.

C. Time dependence of the position of the front

Starting from our localized initial condition, the first
stages of the evolution consist in a diffusive spreading
and multiplication of the particles, with a gradual filling
of the nearby states. Indeed:

hu�x � 0;�t�i � 1 and hu�x � 1;�t�i � pR: (51)

As pR � O�1� the occupation number of all nonempty
sites is very large after this step, and the mean-field ap-
proximation u � hui is certainly justified. This argument
applies also for the few successive steps. Thus, as the mean
field is justified, we expect that an exponentially decaying
wave front be gradually built

u�x; t� � e��0�x�Xt�; (52)

see Eq. (23). In these early stages, all mean-field results can
be taken over from Sec. III, with the appropriate replace-
ments listed in Table I.

At this point, a comment is in order. The initial condition
that we have taken is similar to the McLerran-Venugopalan
model considered above, which is certainly a good repre-
sentation of a nucleus or nucleon at very low rapidities.
However, in the case of a purely perturbative target, such as
a single dipole, the equivalent relevant initial condition for
our toy model would rather be u�x � 0; t � 0� � 1=N.
Our argument above relies on the large occupation num-
bers and cannot apply here. However, in this case, the
initial stages of the evolution consist in building a dense
state around x � 0, with a steep tail in the direction of
-14
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FIG. 15. Instantaneous velocity of the front as a function of
time (solid fluctuating line) from a numerical solution of the
stochastic evolution equation (42) for N � 106 particles per site.
Large dashed curves: analytical mean-field solution, asymp-
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solution of the mean-field equation supplemented by a cutoff
[Eq. (57)] and analytical asymptotics [Eq. (39)] (straight dashed
line).

TABLE I. Dictionary between QCD and the toy model set-
tings.

QCD Toy model

�
Y t
v��� � ����=� v��� � Eq: (46)
L � lnk2=�2 x
Ls � lnQ2

s=�2 Xt
T�k; Y� u�x; t�

s 1=

����
N
p
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FIG. 16. The same, for N � 108 particles per site.
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x > 0, steeper than the critical front profile e��0x. This
process requires a time of order lnN. Subsequently, the
steep profile is converted into the critical one through a
mean-field evolution.

From Eq. (29) with the appropriate identifications listed
in Table I, it takes a time of order

t�
�x� Xt�

2

2�0v00��0�
(53)

for the profile (52) to diffuse within the distance x� Xt
from the bulk of the front. During that time, the front
velocity is given by

v�t� �
Xt � Xt��t

�t
� v��0� �

3

2�0t
; (54)

where we have kept only the leading correction in t from
Eq. (25). The deterministic construction of the front may
last until the exponential shape has reached the point where
u� 1=N, where it has to stop because of discreteness of
the number of particles: u�x; t� � 0; 1=N; 2=N � � � , and
these small discrete numbers can definitely not be interpo-
lated by an exponential of the form (52). From Eq. (53) and
from the shape of the asymptotic front Eq. (52), we see that
the latter process stops after the time

tdiff � c
�lnN=�0�

2

2�0v
00��0�

(55)

at which the velocity of the front is, from Eq. (54),

v�tdiff� � v��0� �
3�2

0v
00��0�

c ln2N
: (56)

If there were no fluctuations in the number of particles,
Eq. (56) would be the asymptotic velocity that takes into
account the discreteness of u.

Brunet and Derrida [41] conjectured and checked that,
within a specific numerical model, Eq. (56) is actually the
right answer to the stochastic problem. They replaced the
full stochastic evolution by a mean-field equation supple-
mented by a cutoff that simulates the discreteness in the
particle number and that may be implemented, for ex-
ample, as

u�x; t� �t� � hu�x; t� �t�jfu�x; t�gi��hu�x; t� �t�j

� fu�x; t�gi � 1=N�; (57)
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where hu�x; t��t�jfu�x; t�gi is given by Eq. (44). They
were able to compute the constant c � 6=�2 [41], which
turns Eq. (56) into Eq. (39), and found the profile of the
front (38). What Eq. (56) actually represents is the mean
velocity of the front when t� ln2N. The fluctuations that
have been neglected so far would lead to a random wander-
ing of the position of the front about its mean, but this gives
rise to subleading effects in t. Indeed, according to
Eq. (40), the fluctuations of Xt about its mean are propor-
tional to

��
t
p

, which is subleading with respect to the mean
displacement from (56), proportional instead to t.

In Figs. 15 and 16, we have followed the time evolution
of the front velocity of a given realization. The numerical
-15
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calculation is compared to the analytical result for the
mean-field evolution (54), and the numerical result for
the modified mean-field evolution (57). We picked two
different values of N for Figs. 15 and 16, respectively.
First of all, as anticipated, up to a time of order ln2N, the
stochastic evolution has very few fluctuations and follows
accurately the analytical prediction (54) and the numerical
solution of Eq. (57). The fact that the matching with the
leading order analytical prediction (54) is quantitatively so
good is not surprising: Indeed, the prescription that we
have chosen for the measurement of the front velocity,
Eq. (8), gives weight to the bulk of the front rather than
to the tip and, thus, would correspond to a value of � of
order 1 if the definition (7) were chosen. As demonstrated
in our study of the BK equation in Sec. III, for such values
of �, the leading order analytical velocity is an accurate
representation of the numerics. As soon as we approach
t� ln2N, the rise of the front velocity stops. The latter
assumes a steady mean, consistent with both the analytical
calculation (56) and the numerical solution for the modi-
fied mean-field equation (57). Note, however, that at this
point, the velocity starts to exhibit large short lived fluctu-
ations. In addition, sometimes a large fluctuation appears
that lives a time of order ln2N and that drives the velocity
well above its average value expected from mean-field
considerations.

The deterministic building of the front until the time
discreteness is felt can be viewed also on a picture of the
front at different stages of the evolution. This is shown in
Fig. 17. We choose N � 1010 and 2 different times: t1 �
100, which lies within the diffusion time, and t2 � 1000,
which is much larger. We plot the full front u�x; t� (inset) as
well as the reduced front e�0�x�Xt�u�x; t�. We see that,
before the diffusion time, the exponential decrease is
seen in a very limited x range, whereas once the diffusion
time is reached, it extends almost down to u� 1=N. The
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FIG. 17. Shape of the front after an evolution of the toy model
over t1 � 100 (dashed steps) and t2 � 1000 (solid steps) steps of
time. Inset: The front u�x; t� compared to e��0x.
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reduced front for t � 100 exhibits the typical Gaussian
shape that is expected from a mean-field evolution, as in
Eq. (28). We have also displayed the analytical expecta-
tion. The fact that the matching is not perfect in the large
x� Xt tail is consistent with our findings of Sec. III in the
BK case. Note that the fluctuations are small and exclu-
sively concentrated in the tail of very large x� Xt, well
ahead of the geometrical scaling zone. For t � 1000, the
profile has changed and looks more like an arc of sine as
predicted by Eq. (38). This time, there are large fluctua-
tions on the edge of the right part of the plot.

Finally, we check quantitatively the validity of the scal-
ing given by Eqs. (39) [or (56)] by computing numerically
v��0� � hvi. The result is displayed in Fig. 18. Technically,
we generate typically 1000 realizations of the evolution of
the initial condition over a time tf � 10� tdiff and com-
pute

hvi �
�v�tf� � v�tdiff�

tf � tdiff

	
; (58)

where the brackets on the right-hand side stand for an
average over the realizations. The result is displayed in
Fig. 18, together with the analytical expectation. We see
that, asymptotically, the numerical calculation approaches
slowly the analytical formula (56) obtained from the mean-
field equation with a cutoff [obtained through the Brunet-
Derrida procedure (57) and leading to Eqs. (39)]. Only for
very large values of N is the agreement actually good. For
the values of N of interest for QCD, typically N � 1=
2

s �
50–100, the analytical calculation is quite far from the
numerical calculation. However, as can be seen in the
figure, the discrepancy amounts essentially to a slowly
varying function of N. Note that the curve approaches
the asymptote from below, which means that the average
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FIG. 18. v0 � hvi from the numerical solution of the toy
model; see Eq. (58) (solid curve) compared to the analytical
prediction (39) (solid straight line). The result from the simpli-
fied toy model Eq. (50) is also displayed (dashed curve).
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FIG. 19. 1000 realizations of the evolution of the toy model
between time 0 and t1 � 2000 (left bunch of curves) and t2 �
8000 (right bunch of curves). Inset: the average front for these
2 times.
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FIG. 20. The variance of the front position divided by the time
evolution interval; see Eq. (59) (solid curve). Line: asymptotic
prediction (40) (the overall constant being adjusted). The result
from the simplified toy model Eq. (50) is also displayed (dashed
curve).
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velocity is always larger than the result from the mean-
field calculation with a cutoff. This can be understood from
our previous discussion and from Figs. 15 and 16: The
fluctuations neglected in the Brunet-Derrida procedure pull
the front ahead of its mean position, and the discrepancy
seen in Fig. 18 may be traced to the large fluctuations in the
instantaneous velocity. No more quantitative understand-
ing of these deviations has been achieved up to now. We
have also plotted in the same figure the result of a calcu-
lation in which the evolution equation is mean field every-
where, except for the foremost bin, as explained in the
introduction to this section. We see an almost perfect
matching with the fully stochastic model, except for very
small values of N: This confirms the observation in
Ref. [41] that, essentially, only the stochasticity in the
rightmost bin plays a role. However, the discrepancy at
small N indicates a breaking of universality: The details of
the model clearly start to enter.

D. Variance of the position of the front

So far, we have followed the evolution of one single
realization. Each such realization undergoes a stochastic
evolution given by Eqs. (42) and (43). At each time t,
u�x; t� has the universal shape (38), up to fluctuations
concentrated in its tail u�x; t� � 1=N; see Fig. 17. As has
been checked in Sec. IV C, the average hvi exhibits the t
dependence given by Eq. (56). However, since the actual
evolution is stochastic, the front position Xt undergoes a
random walk about its mean hXti, and Xt gets a variance
�2.

This fact may be understood qualitatively in the follow-
ing way. Most of the time, the front moves forward in x
through a deterministic time evolution of its bulk, which
has width lnN=�0. But it may happen stochastically that
several bins get successively filled by particles much ahead
of the front. Those particles will then diffuse and multiply
and, eventually, form a new front that will be ahead of the
old ‘‘deterministic’’ one. The net effect is a jump in the
front velocity, one of those that can be seen in Figs. 15 and
16. This phenomenon is of diffusive nature; thus, we
eventually expect the dispersion �2 of the positions of
the front to be proportional to t, as in Eq. (40).

We generate 1000 realizations of the stochastic evolu-
tion of our initial condition over the time intervals up to
t1 � 2000 and t2 � 8000, respectively. The dispersion of
the front positions is illustrated in Fig. 19. We see that there
is roughly a factor of

����������
t2=t1

p
� 2 in the dispersions be-

tween the two considered times, in agreement with
Eq. (40). Each of these realizations exhibits a universal
exponential shape (52) in the leading edge region, up to
small fluctuations concentrated essentially in the tip.
However, when taking the average, the curves for different
times do not superimpose anymore, as seen in the inset in
Fig. 19. Of course, this is due to the dispersion in the
position of the front (40).
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Now we may compute numerically the quantity

�2

tf � tdiff
�

��Xtf � Xtdiff
� hXtf � Xtdiff

i�2

tf � tdiff

	
(59)

to check the scaling form (40) and (41). The result is
displayed in Fig. 20. We see again a good agreement
with the expectations for large values of N. Note that,
again, the 1=ln3N prediction overestimates the numerical
calculation for smaller N. We have displayed in the same
plot the result of the numerical calculation in the simplified
model where stochastic effects are concentrated in the
rightmost bin. We see again that this model gives the
same result as the complete one. The discrepancies at large
-17
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N are statistical fluctuations, due to the fact that the plotted
curve results from an average over a finite number of
realizations (about 1000 here). The higher moments are
more and more sensitive to such fluctuations. They should
disappear when the averaging is done with more
realizations.

E. Consequences for QCD

So far in this section, we have discussed exclusively the
toy model. Let us come back to the case of QCD. The
analytical results (38)–(41) illustrated on the toy model
studied in the previous section are readily taken over to
QCD using Table I. We list them here for completeness.

The scattering amplitude off a single partonic realiza-
tion, which is not the physical observable but is, never-
theless, an important intermediate quantity, reads

T�k; Y� �
ln�1=
2

s�

��0
sin
�
��0 lnk2=Q2

s

ln�1=
2
s�

��
k2

Q2
s

�
��0

(60)

up to fluctuations. Note that this formula is valid only in the
window 1	 lnk2=Q2

s 	 ln1=
2
s . The mean dependence

of the saturation scale on rapidity reads, asymptotically for
large rapidities,

d
dY
hlnQ2

si � �

���0�

�0
� �


�2�0�00��0�

2 ln2�1=
2
s�
; (61)

and its variance��
d
dY

lnQ2
s

�
2
	
�

�
d
dY

lnQ2
s

	
2
/

�
Y

ln3�1=
2
s�
; (62)

which, together with Eq. (60), yields the asymptotic scal-
ing form

A�k; Y� � hT�k; Y�i � A
�

lnk2 � hlnQ2
si������������������������������

�
Y=ln3�1=
2
s�

p �
: (63)

This last formula quantifies the magnitude of the violations
of geometric scaling. Note that Eq. (61) was first obtained
in Ref. [22]. A violation of geometric scaling was also
found there, but the square root was missing in the de-
nominator of the argument of A in Eq. (63).

The formulas above are valid as long as �
Y �
ln2�1=
2

s� and asymptotically for 
s 	 1. For �
Y 	
ln2�1=
2

s� instead, we have shown that fluctuations do not
play a role, and the mean-field discussion of Sec. III ap-
plies. This point is particularly clear in Fig. 15–17. The
kinematical regime �
Y 	 ln2�1=
2

s� is a window where
geometric scaling should be at work.

The results obtained here are exact results of QCD. They
are valid for very small values of 
s, where perturbation
theory is justified. So the weak noise limit N � 1 or 
s 	
1 that we have considered here is the consistent expansion.
Actually, as the front of the amplitude travels towards
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larger values of the momenta, one should take into account
the running of the coupling, but this is just a (substantial)
technical complication which does not change qualita-
tively the picture.

Let us discuss now the validity of our results for real
world QCD. As can be seen in Figs. 18 and 20, the
numerical calculations get relatively close to the asymp-
totics, at least up to a constant of order 1, for, say, N > 104,
which corresponds to 
s < 10�2. Realistic attainable val-
ues of 
s in physics experiments are 
s > 10�1. This
situation would rather correspond to a strong noise limit
N � 1 for which, unfortunately, no predictive theory has
yet been found.
V. CONCLUSION

In this paper, we focused on the statistical approach to
high energy QCD that we have developed and illustrated.
We have shown that it provides a very simple picture for
high energy scattering, relying directly on the QCD parton
model. It allows a derivation from first principles of the
most sophisticated analytic results that have been obtained
so far for scattering amplitudes at fixed impact parameter.
The simplicity of this approach is the consequence of a
deep physical connection between the parton model and
reaction-diffusion processes. Its main interest is to gain a
simple physical understanding of the fluctuations present
in the extended B-JIMWLK equations and to enable a clear
derivation of the universal asymptotics of the scattering
amplitudes at high energy.

We have also solved numerically the QCD evolution
equations in the context of a mean-field approximation
that leads to the BK equation. We have confirmed that
the BK equation admits traveling waves and studied their
formation starting with different physical initial condi-
tions, with different definitions of the saturation scale.
The numerical results have been compared to the most
recent analytical predictions, and good agreement has
been found at all levels, for large enough values of the
rapidity. We have also emphasized the role of the different
parts of the kernel.

To go beyond the mean-field approximation to high
energy scattering, we have proposed and solved a toy
model that captures the essential features of the full QCD
evolution. The advantages of studying a toy model are
numerous: In particular, it is simple enough to allow for
light and flexible numerical simulations. Consequently, the
universal properties of the solution can be quite easily
studied. We have investigated some of these properties,
confirming former numerical studies on different models in
the same universality class. We have investigated how the
asymptotics set in. One of the important conclusions of this
paper is that, in the initial stages of the evolution, the mean-
field solution applies.

We believe that many features would still deserve to be
investigated within such simplified models: For example,
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the effect of the running coupling would be crucial both for
phenomenology and for full consistency of the approach,
which relies on a small-
s asymptotic expansion. This case
would correspond to reaction-diffusion in an inhomoge-
neous medium, which, in particular, allows for a variable
maximum of particles per site.

Obviously, going beyond the leading orders in rapidity
and in 
s will start to be model dependent (i.e. nonuniver-
sal) at some order, and the complications and specificities
of QCD (color, 2-dimensional impact parameter space)
will show up in the evolution equations. The same is true
if one wants to give up the coarse-graining in impact
parameter [27]. The solutions to the more refined equa-
tions, that is, the further terms in the asymptotic expansions
we have considered, will probably be difficult to obtain
from the analogy with statistical mechanics that we have
extensively used in this paper.
074021
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While this work was being completed, the paper [43]
appeared, which also deals with numerical solutions of
QCD at high energies including fluctuations. The numeri-
cal results obtained are complementary to ours, since the
attitude of the author is to focus on values of N realistic in
the context of QCD rather than emphasizing the connec-
tion to the analytical results obtained with equations in the
universality class of the sFKPP equation.
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