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The removal of unphysical singularities in the perturbatively calculable part of the pion form factor—a
classic example of a three-point function in QCD—is discussed. Different analytization procedures in the
sense of Shirkov and Solovtsov are examined in comparison with standard QCD perturbation theory. We
show that demanding the analyticity of the partonic amplitude as a whole, as proposed before by
Karanikas and Stefanis, one can make infrared finite not only the strong running coupling and its powers,
but also cure potentially large logarithms (that first appear at next-to-leading order) containing the
factorization scale and modifying the discontinuity across the cut along the negative real axis. The scheme
used here generalizes the analytic perturbation theory of Shirkov and Solovtsov to noninteger powers of
the strong coupling and diminishes the dependence of QCD hadronic quantities on all perturbative scheme
and scale-setting parameters, including the factorization scale.
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I. INTRODUCTION

The phenomenology of QCD exclusive processes de-
pends in a crucial way on the analytic properties of had-
ronic (hard) scattering amplitudes as functions of the
strong running coupling. A perturbatively calculable
short-distance part of the reaction amplitude at the parton
level is isolated either by subtraction or by factorization. To
get a quantitative interpretation of such quantities in prac-
tice and compare them with experimental data, one has to
get rid of the artificial Landau singularity at Q2 � �2

QCD

(�QCD � � in the following), where Q2 is the large mass
scale in the process. A proposal to solve this problem (in
the spacelike region) without introducing exogenous infra-
red (IR) regulators, like an effective, or a dynamically
generated, gluon mass [1] (see, for instance, [2–10] for
such applications), was made by Shirkov and Solovtsov
(SS) [11–13], based on general principles of local quantum
field theory. This theoretical framework—termed analytic
perturbation theory (APT)—was further expanded beyond
the one-loop level of two-point functions to define an
analytic1 coupling and its powers in the timelike region
[14–21], embracing previous attempts [22–27] in this
direction.2
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‘‘analyticity’’ is used here as a synonym for
and ‘‘causality’’ [12].
at different approach was reviewed recently in
[29].
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However, first applications [30,31] of this sort of ap-
proach to three-point functions, beyond the leading order
of QCD perturbation theory, have made it clear that, ulti-
mately, there must be an extension of this formalism from
the level of the running coupling and its powers to the level
of amplitudes. The reason is that in three-point functions at
the next-to-leading order (NLO) level, and beyond, loga-
rithms of a distinct scale (serving as the factorization or
evolution scale) appear that though they do not change the
nature of the Landau pole, they affect the discontinuity
across the cut along the negative real axis �1<Q2 < 0.
On account of factorization, we expect that this effect
should be small, of the order of a few percent, because
any change caused by the variation of the factorization
scale should be of the next higher order. However, to
achieve a high-precision theoretical prediction, one should
reduce this uncertainty, lifting the limitations imposed by
the lack of knowledge about uncalculated higher-order
corrections. To encompass such logarithmic terms in the
‘‘analytization’’ procedure, one should demand the analy-
ticity of the partonic amplitude as a whole [32,33] and
calculate the dispersive image of the coupling (or of its
powers) in conjunction with these logarithms. This
Karanikas–Stefanis (KS) analytization scheme effectively
amounts to the generalization of APT to noninteger powers
of the running coupling: fractional APT (FAPT), as we
shall show below.

In this work we expand the Shirkov–Solovtsov analyti-
zation approach to include the dispersive images of such
terms, using as a case study the pion form factor at NLO in
the MS scheme with various renormalization-scale settings
and also in the �V scheme [34]. To this end, we contrast the
-1 © 2005 The American Physical Society
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KS analytization with the naive [30,31] and the maximal
[35] analytization procedures and work out their key mu-
tual differences as they first appear in NLO, while a fully
fledged analysis of FAPT is given in an accompanying
paper [36]. We argue that augmenting the MS scheme
with the KS analytization prescription provides an opti-
mized method to calculate perturbatively higher-order cor-
rections to partonic ‘‘observables’’ in QCD because it
practically eliminates all scheme and scale-setting ambi-
guities owing to the renormalization and factorization
scales. It is worth emphasizing at this point that the focus
of Ref. [32] was on the calculation of power corrections to
the pion’s electromagnetic form factor. Such contributions
are outside the scope of the present investigation.

The plan of this paper is as follows. In Sec. II we review
the convolution formalism for the calculation of the short-
distance part of the pion form factor within perturbative
QCD at NLO. In Sec. III we discuss the Shirkov-Solovtsov
type analytization procedures [11,30–33,35] and work out
their mutual differences, focusing on the KS analytization
and its properties. This discussion extends and generalizes
the original KS analysis that covered only the LO of the
perturbative expansion of the pion form factor and ignoring
evolution. Section 4 contains the results for the factorized
pion form factor in different schemes and with different
scale settings, employing the KS analytization in compari-
son with those based on APT and also standard QCD
perturbation theory in NLO. Our conclusions with a sum-
mary of our main results are presented in Sec. V. Some
important technical details are collected in three
appendixes.

II. FACTORIZABLE PART OF THE PION FORM
FACTOR AT NLO IN STANDARD QCD

PERTURBATION THEORY

The leading-twist factorizable part of the electromag-
netic pion form factor can be expressed as a convolution in
the form [37,38]

FFact
� �Q2;�2

R� � ����x;�2
F� �x TH�x; y;Q2;�2

F; �
2
R�

� �y���y;�
2
F�; (2.1)

where � denotes the usual convolution symbol (A�z� �
z

B�z� �
R

1
0 dzA�z�B�z�) over the longitudinal momentum

fraction variable x (y) and �F represents the factorization
scale at which the separation between the long- (small
transverse momentum) and short-distance (large transverse
momentum) dynamics takes place, with �R labelling the
renormalization (coupling constant) scale. The nonpertur-
bative input is encoded in the pion distribution amplitude
(DA) ���y;�

2
F�, whereas the short-distance interactions

are represented by the hard-scattering amplitude
TH�x; y;Q

2;�2
F; �

2
R�. This is the amplitude for a collinear

valence quark-antiquark pair with total momentum P
struck by a virtual photon with momentum q, satisfying
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q2 � �Q2, to end up again in a configuration of a parallel
valence quark-antiquark pair with momentum P0 � P	 q.
It can be calculated perturbatively in the form of a power-
series expansion in the QCD coupling, the latter to be
evaluated at the reference scale of renormalization �2

R:

TNLO
H �x; y;Q2;�2

F; �
2
R� � �s��

2
R�T

�0�
H �x; y;Q

2�

	
�2
s��2

R�

4�
T�1�H �x; y;Q

2;�2
F; �

2
R�:

(2.2)

The leading-order (LO) contribution to TH�x; y;Q2;�2
F�

reads

T�0�H �x; y;Q
2� �

NT

Q2

1

x y
�

1

Q2 t
�0�
H �x; y�; (2.3)

where

NT �
2�CF

CA
�

8�
9
; (2.4)

CF � �N2
c � 1�=2Nc � 4=3, CA � Nc � 3 are the color

factors of SU�3�c, and the notation �z � 1� z has been
used. The usual color decomposition of the NLO correc-
tion [39]—marked by self-explainable labels—is given by
(omitting the variables x and y)

Q2T�1�H �Q
2;�2

F; �
2
R� � CFt

�1;F�
H

�
�2

F

Q2

�
	 b0t

�1;��
H

�
�2

R

Q2

�

	 CGt
�1;G�
H ; (2.5)

where CG � �CF � CA=2� and b0 is the first coefficient of
the � function, see Appendix A, Eq. (A1). Here we ex-
plicitly factorized out a trivial 1=Q2 dependence and used
for the coefficients in front of each factor the notation tH
with appropriate superscripts.

With reference to the application of the Brodsky-
Lepage-Mackenzie (BLM) [40] scale setting in fixing the
renormalization point later on, we single out the
b0-proportional (i.e., the Nf-dependent) term, given by

t�1;��H

�
x; y;

�2
R

Q2

�
� t�1;��H;1 �x; y� 	 t

�1;��
H;2

�
x; y;

�2
R

Q2

�
; (2.6a)

with

t�1;��H;1 �x; y� � t�0�H �x; y�
�

5

3
� ln�x y�

�
; (2.6b)

t�1;��H;2

�
x; y;

�2
R

Q2

�
� t�0�H �x; y� ln

�2
R

Q2 ; (2.6c)

and present the color singlet part of tH in the form

t�1;F�H

�
x; y;

�2
F

Q2

�
� t�1;F�H;1 �x; y� 	 t

�1;F�
H;2

�
x; y;

�2
F

Q2

�
; (2.7a)

t�1;F�H;2

�
x; y;

�2
F

Q2

�
� t�0�H �x; y�

�
2�3	 ln�x y�� ln

Q2

�2
F

�
: (2.7b)
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Explicit expressions for t�1;F�H;1 �x; y� and for the color non-

singlet part, t�1;G�H �x; y�, cf. Eq. (2.5), are supplied in
Appendix B [see Eqs. (B1) and (B2)].

The scaled hard-scattering amplitude, Eq. (2.2), trun-
cated at the NLO and evaluated at the renormalization
scale �2

R � �RQ
2, reads

Q2TNLO
H �x;y;Q2;�2

F;�RQ2���s��RQ2�t�0�H �x;y�

	
�2
s��RQ

2�

4�
CFt

�1;F�
H;2

�
x;y;

�2
F

Q2

�

	
�2
s��RQ2�

4�
fb0t

�1;��
H �x;y;�R�

	t�FG�
H �x;y�g; (2.8)

where we have introduced the shorthand notation

t�FG�
H �x; y� � CFt

�1;F�
H;1 �x; y� 	 CGt

�1;G�
H �x; y�: (2.9)

To calculate the factorizable part of the pion form factor,
one has to convolute this expression with the pion DA for
each hadron in the initial and final state. In leading-twist 2,
the pion DA at the normalization scale �2

0 
 1 GeV2 is
given by

’��x;�
2
0� � 6x�1� x��1	 a2��

2
0�C

3=2
2 �2x� 1�

	 a4��
2
0�C

3=2
4 �2x� 1� 	 . . .�; (2.10)

with all nonperturbative information being encapsulated in
the Gegenbauer coefficients an. In this analysis we use
those coefficients determined before by Bakulev,
Mikhailov, and Stefanis (BMS) in [41] with the aid of
QCD sum rules with nonlocal condensates:

aBMS
2 � 0:20; aBMS

4 � �0:14; aBMS
n � 0; n > 4;

(2.11)

where the vacuum quark virtuality �2
q � 0:4 GeV2 has

been used. This set of values was found [42,43] to be
consistent at the 1� level with the high-precision CLEO
data [44] on the pion-photon transition form factor, with all
other model DAs being outside—at least—the 2� error
ellipse (see [45] for the latest compilation of models in
comparison with the CLEO and CELLO [46] data). Notice
that the particular parametrization (shape) of the pion DA
chosen is irrelevant for the considerations to follow.

III. ANALYTICITY OF PARTONIC AMPLITUDES
BEYOND LO

A. Analytic running coupling in QCD

The main stumbling block in applying fixed-order per-
turbation theory at low momenta Q2 is the nonphysical
Landau singularity of the running strong coupling at Q2 �
�2, which entails the appearance of IR renormalons in the
perturbative expansion. To ensure the analyticity of the
coupling in the infrared, one can follow different strategies
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[11,25,27,47–51] all based on the basic assumption that
the physical coupling should stay IR finite and analytic in
the whole momentum range, though its precise value at
Q2 � 0 is still a matter of debate [11,21,28,52,53].
Imposing the analyticity of the coupling in the sense of
Shirkov and Solovtsov [11], we replace the strong running
coupling and its powers by their analytic versions:

���n�s �Q2�m�an �A�n�
m �Q2� with

�f�Q2��an �
1

�

Z 1
0

Im�f�����
�	Q2 � i�

d�; (3.1)

where the loop order is explicitly indicated by the super-
script n in parenthesis and

A �1�
1 �Q

2� �
4�
b0

�
1

ln�Q2=�2�
	

�2

�2 �Q2

�
� ��s�Q

2�;

(3.2)

with the last step connecting to the SS notation [11], and
�s�0� � 4�=b0. The two-loop running coupling in stan-
dard QCD perturbation theory can be expressed [19] in
terms of the Lambert function W�1 to read

��2�s �Q2� � �
4�
b0c1

�
1	W�1

�
�

1

c1e

�
�2

Q2

�
1=c1

��
�1
:

(3.3)

For some more explanations we refer the interested reader
to [42], Appendix C, Eqs. (C15) and (C20). Then, the
analytic image of the kth power of the coupling [14] is
obtained from the dispersion relation

A �2�
k �Q

2� �
1

�

Z 1
0
d�

��2�k ���

�	Q2 � i�
(3.4)

with the spectral density

��2�k �t� �
�

4�
b0c1

�
k
Im

�
�

1

1	W1�z�t��

�
k
: (3.5)

In the numerical calculations below, we use an approxi-
mate form suggested in [35]:

A �2;fit�
1 �Q2� �

4�
b0

�
1

‘�ln�Q2=�2
21�; c

fit
21�

	
1

1� exp�‘�ln�Q2=�2
21�; c

fit
21��

�
; (3.6)

A �2;fit�
2 �Q2� �

�
4�
b0

�
2
�

1

‘�ln�Q2=�2
22�; c

fit
22�

2

�
exp�‘�ln�Q2=�2

22�; c
fit
22��

�1� exp�‘�ln�Q2=�2
22�; c

fit
22���

2

�
;

(3.7)

where the values of the fit parameters are listed in Table I
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TABLE I. Parameters entering Eqs. (3.6) and (3.7) for the
value �

Nf�3
QCD � 400 MeV.

Parameters cfit
21 �21 cfit

22 �22

Values �1:015 67 MeV �1:544 34:5 MeV
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and

‘�L; c� � L	 c ln
��������������������
L2 	 4�2

p
: (3.8)
B. Analytization procedures

Let us now see how analyticity can be implemented on
the parton-level pion form factor in NLO accuracy of
perturbative QCD. We discuss three analytization proce-
dures3:
(i) N
3One
analytiz
�f�Q2��a
aive analytization [30,31,35]

�Q2TH�x; y;Q2;�2
F; �RQ2��naive-an

SS

�A�2�
1 ��RQ2�t�0�H �x; y� 	

�A�2�
1 ��RQ

2��2

4�

�

�
b0t
�1;��
H �x; y;�R� 	 t

�FG�
H �x; y�

	 CFt
�1;F�
H;2

�
x; y;

�2
F

Q2

��
: (3.9)
(ii) M
aximal analytization [35]

�Q2TH�x; y;Q
2;�2

F; �RQ
2��max -an

SS

�A�2�
1 ��RQ2�t�0�H �x; y� 	

A�2�
2 ��RQ

2�

4�

�

�
b0t
�1;��
H �x; y;�R� 	 t

�FG�
H �x; y�

	 CFt
�1;F�
H;2

�
x; y;

�2
F

Q2

��
: (3.10)
(iii) A
mplitude analytization proposed by Karanikas
and Stefanis in [32,33].
The first method replaces �s and its powers by the Shirkov-
Solovtsov analytic coupling [11] and its powers, whereas
the second one uses for the powers of �s their own analytic
images, transforming this way the power-series expansion
in ��s�Q2��n in a functional expansion in terms of the
functions An�Q2� [13,16]. Imposing analyticity in the
sense of Karanikas-Stefanis [32], differs from the previous
two approaches in that it demands the whole partonic
amplitude has the correct analytical behavior as a function
should not worry about the factor 1=Q2 because under
ation it reproduces itself, i.e., ��f�Q2��an=Q2�an �
n=Q2.
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of Q2. This entails the analytization of terms of the form
���n�s �Q2��m ln�Q2=�2

F�, which appear in exclusive ampli-
tudes at NLO of QCD perturbation theory and contain an
additional scale, �2

F. There are, in principle, two possibil-
ities how to proceed any further. One option is provided by
setting�2

F ’ Q
2 and then face the problem of analytization

of terms like ��s�Q2�=�s��
2
0��

	, where 	 � 
�0�n =�2b0� is a
fractional number, as discussed in [36]. Another possibility
is to fix the factorization scale�2

F at some value and then to
redefine the original Shirkov-Solovtsov analytization pro-
cedure in order to take the dispersive image of the coupling
(or of its powers) together with these logarithmic terms.
This second route is followed in the present work. It is
important to note that the KS analytization procedure
reduces in LO of fixed-order perturbation theory to the
maximal one, as shown in [32], provided evolution effects
of the pion distribution amplitudes are ignored.

Applying now this generalized analytization concept,
we get
�Q2TH�x; y;Q2;�2
F; �RQ2��an

KS

�A�2�
1 ��RQ

2�t�0�H �x; y� 	
A�2�

2 ��RQ2�

4�

�b0t
�1;��
H �x; y;�R� 	 t

�FG�
H �x; y��

	

�
���2�s ��RQ2��2

4�
CFt

�0�
H �x; y��6	 2 ln�x y��

� ln
Q2

�2
F

�
an

KS
: (3.11)
In order to have the same scale argument in the logarithmic
term as in the running coupling, we substitute
ln�Q2=�2

F� � ln��RQ2=�2� � ln��R�2
F=�2� to obtain
�Q2TH�x;y;Q
2;�2

F;�RQ
2��an

KS

�A�2�
1 ��RQ

2�t�0�H �x;y�	
A�2�

2 ��RQ2�

4�

�

�
b0t
�1;��
H �x;y;�R�	 t

�FG�
H �x;y�

�CFt
�0�
H �x;y��6	2ln�xy��ln

�R�2
F

�2

�

	

�
���2�s ��RQ2��2

4�
CFt

�0�
H �x;y��6	2ln�xy�� ln

�RQ2

�2

�
an

KS
:

(3.12)
Finally, we arrive at
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�Q2TH�x; y;Q
2;�2

F; �RQ
2��an

KS

�A�2�
1 ��RQ2�t�0�H �x; y� 	

A�2�
2 ��RQ

2�

4�

� �b0t
�1;��
H �x; y;�R� 	 t

�FG�
H �x; y�

	 CFt
�1;F�
H;2

�
x; y;

�2
F

Q2

��
	

��2�2 ��RQ
2�

4�

� �CFt
�0�
H �x; y��6	 2 ln� �x �y���; (3.13)

where the deviation from Eq. (3.10) is encoded in the term

��2�2 �Q
2� � L�2�2 �Q

2� �A�2�
2 �Q

2� ln�Q2=�2� (3.14)

with

L �2�
2 �Q

2� �

�
���2�s �Q2��2 ln

�
Q2

�2

��
an

KS

�
4�
b0

�
���2�s �Q2��2

��1�s �Q2�

�
an

KS
: (3.15)

It is important to distinguish between the two contributions
in Eq. (3.14). The first amounts to the analytization of the
product of the coupling with a logarithm, or equivalently of
fractional powers of the coupling, as shown in [36]. The
second bears an additional logarithmic dependence on the
momentum scale Q2 relative to the expression obtained
with the maximal analytization procedure. The subscript
KS in the last equation signifies that this expression should
be analyticized according to the KS prescription. To obtain
a clearer idea of its meaning and demonstrate its essence,
the analytization is performed in three incremental steps.
First, a simplified version of this expression is considered,
which results by provisionally replacing the two-loop cou-
pling in the numerator by its one-loop counterpart. Then,
the ratio of the couplings after analytization reduces to
0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5 L(2)
2 (Q2)

Q2 [GeV2]

(a)

0

0

0

0

0

FIG. 1 (color online). (a) Results for the analyticized logarithmic t
one-loop approximate KS ‘‘analytization,’’ L�1�approx

2 �Q2� (red das
L�2�approx

2 �Q2� (green dashed line), and the exact two-loop BMKS a
show here the corresponding maximal analytization curve (dotted l
contributions ��2�2 �Q

2�, using the same three analytization procedure
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[dash-dotted line in Fig. 1(a)]

L �1�approx
2 �Q2� �

4�
b0

A�1�
1 �Q

2�: (3.16)

Second, we discuss an analogous situation, in which the
one-loop coupling in the denominator is (inconsistently)
traded for its two-loop counterpart. In this case, the ratio of
the couplings after analytization becomes [dashed line in
Fig. 1(a)]

L �2�approx
2 �Q2� �

4�
b0

A�2�
1 �Q

2�: (3.17)

Finally, we provide the exact result for the KS analytization
of expression (3.15) [solid line in Fig. 1(a)], with the
derivation presented in Appendix C, while more general
expressions are given in [36]:

L �2�
2 �Q

2� �
4�
b0

�
A�2�

1 �Q
2� 	 c1

4�
b0
fL�Q2�

�
; (3.18)

where

fL�Q
2� �

X
n0

�
 �2����n� 1� �

d���n� 1�

dn

�

�
�� ln�Q2=�2��n

��n	 1�
(3.19)

and ��z� is the Riemann zeta function. Equation (3.14) is
illustrated in Fig. 1(b) for the different expressions of
L2�Q2� given by Eqs. (3.16), (3.17), and (3.18) using the
same line designations as in Fig. 1(a). Let us close this
discussion by commenting that in the region where there
are experimental data available [54,55] (i.e., well below
10 GeV2), Eq. (3.14) is governed by L�2�2 �Q

2�, which en-
tails a small enhancement of the hard-scattering amplitude
for Q2 � 7:25 GeV2.
0 10 20 30 40 50

0

.1

.2

.3

.4

.5
∆

(2)
2 (Q2)

Q2 [GeV2]

(b)

erm, L�2�2 �Q
2�, using three different analytization procedures: the

h-dotted line), the two-loop approximate KS ‘‘analytization,’’
nalytization L�2�2 �Q

2� (blue solid line). For comparison, we also
ine). (b): Results are shown for the corresponding analyticized
s for L�2�2 �Q

2� as in panel (a).
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IV. FACTORIZED PION FORM FACTOR AT NLO—
STANDARD AND ANALYTICIZED

The calculation of the factorized pion form factor pro-
ceeds in terms of Eq. (2.1) and involves the convolution of
expression (3.10) for the maximal analytization case, or
expression (3.13) for the KS analytization case with the
pion DA for which we employ in both cases the BMS
parametrization [41], as discussed in Sec. II. On that basis,
we can obtain the scaled, factorized part of the pion form
factor, Q2FFact

� �Q2;�2
R � �RQ2�, using Eq. (2.8) and the

following set of substitutions4:

t�0�H �x; y� ! 8�f2
��1	 a2 	 a4�

2; (4.1)

�t�0�H �x; y� lnx y! 8�f2
��1	 a2 	 a4��3	 �43=6�a2

	 �136=15�a4�; (4.2)

t�FG�
H �x; y� ! 8�f2

���15:67� a2�21:52� 6:22a2�

� a4�7:37� 37:40a2 � 33:61a4��: (4.3)

Notice that evolving the BMS pion DA from the initial
scale �2

0 to the scale �2
F at the NLO level will generate

higher Gegenbauer harmonics of the form xxC3=2
2n �2x� 1�

with n  3. However, we have shown in [35] (see also
[56]) that for the calculation of the pion form factor it is
actually sufficient to restrict ourselves to the LO evolution
and neglect NLO evolution effects. Hence, for our pur-
poses in the present analysis, we set

a2n��
2
F� � a2n��

2
0�

�
�s��2

F�

�s��2
0�

�

�0�n =�2b0�

: (4.4)

The lowest-order anomalous dimensions can be repre-
sented in closed form by


�0�n � 2CF

�
4S1�n	 1� � 3�

2

�n	 1��n	 2�

�
(4.5)

with S1�n	 1� �
Pn	1
i�1 1=i �  �n	 2� �  �1�, while the

function  �z� is defined as  �z� � d ln��z�=dz.
Following the master plan for ‘‘analytization,’’ exposed

in the previous section, we obtain the following expres-
sions for the factorized pion form factor:
(i) N
4Here
a4 � aB

4

aive analytization [30,31,35]:

�FFact
� �Q

2;�RQ
2��NaivAn �A�2�

1 ��RQ
2�F LO

� �Q
2�

	
1

�
�A�2�

1 ��RQ2��2

�F NLO
� �Q2; �2

F;�R�:

(4.6)
, we write for the sake of brevity a2 � aBMS
2 ��2

F� and
MS��2

F� and use the values given in Eq. (2.11).
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(ii) M
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aximal analytization [35]:

�FFact
� �Q

2;�RQ
2��MaxAn �A�2�

1 ��RQ
2�F LO

� �Q
2�

	
1

�
A�2�

2 ��RQ2�

�F NLO
� �Q2; �2

F;�R�:

(4.7)
(iii) K
S amplitude analytization (this work)—cf.
Eqs. (3.13), (3.14), and (3.15):

�FFact
� �Q2;�RQ2��KS�A�2�

1 ��RQ2�F LO
� �Q2�

	
1

�
A�2�

2 ��RQ
2�

�F NLO
� �Q2;�2

F;�R�

	
��2�2 ��RQ

2�

�
�FF

NLO
� �Q2�:

(4.8)
Here we use the following notations:

F LO
� �Q2� �

8�f2
�

Q2 �1	 a2 	 a4�
2; (4.9)

F NLO
� �Q2; �2

F;�R� �
2�f2

�

Q2 �b0�1	 a2 	 a4�
2�ln�R

� ln�BLM�a2; a4�� � 15:67

� a2�21:52� 6:22a2� � a4�7:37

� 37:40a2 � 33:61a4��

	�FF
NLO
� �Q2� ln

Q2

�2
F

(4.10)

and we explicitly display the contribution due to
t�1;F�H;2 �x; y;�2

F=Q
2�, see Eq. (2.7b):

�FF
NLO
� �Q2� � �

2�f2
�

Q2 CF�1	 a2 	 a4���25=3�a2

	 �182=15�a4�: (4.11)

In order to make our formulas more compact, we imple-
ment the BLM scale:

�BLM�a2; a4� � exp
�
�

5

3
�

3	 �43=6�a2 	 �136=15�a4

1	 a2 	 a4

�
:

(4.12)

The analytization augmented perturbation theory works
very well. This is illustrated by the results in Figs. 2–4. The
first of these figures compares the specific issues of the KS
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FIG. 2 (color online). Results for the ratio of the factorized pion form factors, using two different analytization procedures: KS
analytization and ‘‘maximal analytization,’’ FKS

� �Q
2�=FMax-an

� �Q2�. The designations are: red dash-dotted line—one-loop approxi-
mation of the KS logarithmic term (L�1�approx

2 �Q2�); green dashed line—two-loop approximation (L�2�approx
2 �Q2�); blue solid line—

exact two-loop KS analytization (L�2�2 �Q
2�). Left panel: default scale setting (� � 1); middle panel: BLM scale setting; right panel: �V

scheme. The factorization scale �2
F is set equal to 5:76 GeV2 [57].
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analytization procedure relative to those of the maximal
one for the ratio of the corresponding factorized form
factors. A few words are in order here. One sees that using
the default MS scheme, the KS analytization procedure
yields a result almost coincident with that provided by the
maximal one. On the other hand, in the BLM scheme and
also in the �V scheme, the KS prediction is smaller by a
few percent. Moreover, one observes by comparison with
Fig. 1(a), right panel in Ref. [35] that the BLM prediction,
which in the maximal procedure was the largest one,
becomes in the case of the KS prescription comparable
with the prediction of the default scheme. As a result, the
inherent theoretical uncertainties due to the involved per-
turbative parameters, defining a renormalization scheme
and scale setting, are further reduced. A second important
feature of the KS procedure is that the dependence of
FFact
� �Q

2� on the factorization scale is almost diminished,
as indicated in Fig. 3. Indeed, varying the factorization
scale from 1 to 10 GeV2, the form factor changes by a
mere 1:5%. Even setting the factorization scale to the
theoretical value of 50 GeV2, the induced variation in the
form-factor magnitude reaches just the level of about 2:5%.
2.5 5 7.5 10 12.5 15 17.5 20
0.15

0.175
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0.225

0.25
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0.3

Q2FFact
π (Q2)
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F = 1 GeV2
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Q2FFact
π (Q2

Q2 [G

FIG. 3 (color online). Results for the factorized pion form factors
(blue solid line) and ‘‘maximal analytization’’ (red dotted line) for d
1 GeV2, in the middle one—�2

F � 1 GeV2, and in the right one—�
setting.
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In the case of the maximal analytization procedure, the
dependence on the factorization scale is also a mild one,
but the corresponding variation is, in round terms, 2 times
larger.

The fourth figure demonstrates the impact of analytiza-
tion on the factorized pion’s electromagnetic form factor,
using various analytization prescriptions. The dashed line
denotes the prediction obtained with standard QCD per-
turbation theory in the MS scheme and applying the default
scale setting �2

R � Q2. The naive analytization prediction
is represented by the dash-dotted line and the analogous
one for the maximal analytization by the solid line below it.
The result of the calculation according to the KS analyti-
zation practically coincides with that of the maximal one.
This behavior is also reflected in Fig. 2, where we see that
the differences among the three analytization procedures
are of the order of a few percent in the whole Q2 range
considered.

Note that as regards the whole pion form factor, i.e.,
taking into account also the soft part, the differences would
be further reduced. For full details the reader is referred to
[35].
12.5 15 17.5 20

)

eV2]

µ2
F = 6 GeV2

2.5 5 7.5 10 12.5 15 17.5 20
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0.175

0.2
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0.275

0.3

Q2FFact
π (Q2)

Q2 [GeV2]

µ2
F = 10 GeV2

, using two different analytization procedures: KS analytization
ifferent values of the factorization scale: in the left panel �2

F �
2
F � 10 GeV2. For all panels we show results for the BLM scale
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FIG. 4 (color online). Results for the factorized pion form
factor, scaled with Q2, and assuming the default scale setting
(�2

R � Q2) in standard perturbation theory and APT. The latter
is implemented in terms of two different analytization proce-
dures: naive analytization and maximal ‘‘analytization.’’ The
designations are: blue dashed line—standard perturbation the-
ory; green dash-dotted line—naive APT; red solid line—maxi-
mal APT. The prediction obtained with the KS analytization is
too close to that found with the maximal one to differentiate
these curves graphically. The factorization scale �2

F is set equal
to 5:76 GeV2.
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V. SUMMARY AND CONCLUSIONS

We have discussed different analytization procedures to
ensure the analyticity of the factorized electromagnetic
pion form factor at NLO of QCD perturbation theory.
The main features and relative merits of each analytization
concept following from the presented analysis are the
following:
(i) T
he naive ‘‘analytization [30,31] retains the power-
series expansion of perturbative QCD, but replaces
���n�s �Q2��m by �A�n�

1 �Q
2��m. As it was shown in

[30,31], this reduces the value of the NLO correc-
tion, though the sensitivity to the renormalization
scheme adopted and the renormalization-scale set-
ting chosen is still substantial, resulting into a
rather strong variation of the form-factor predic-
tions [35]. Moreover, this procedure does not re-
spect nonlinear relations of the coupling because
these correspond to different dispersive images.
(ii) T
he maximal analytization [35] trades the power-
series expansion for a functional nonpower-series
expansion in terms of A�n�

m �Q2� [11,16,17], mini-
mizing the variation of the form-factor predictions
owing to the renormalization scheme and scale set-
ting. It is, however, insufficient to cure logarithms
of the momentum scale multiplying the running
coupling. Such terms modify the spectral density,
i.e., the discontinuity across the cut along the nega-
tive real axis and have therefore to be taken into
account.
074015
(iii) A
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pplying the analytization procedure at the level of
the partonic amplitude itself [32,33], bears all ad-
vantages of the maximal analytization plus a further
reduced dependence on the perturbative scales—
especially the dependence on the factorization
scale. This has been verified by explicit calculation.
We have employed the MS scheme with various
scale settings and also the �V scheme. In addition,
we have varied the factorization scale in the range
1–10 GeV2. While the predictions for the factor-
ized pion form factor, calculated with the maximal
procedure, were affected by this variation on the
level of 3%, their counterparts, derived with the KS
prescription, were influenced by less than 1%.
Though the KS method does not really ‘‘gain up’’
relative to the maximal analytization procedure
with respect to the factorized pion form factor, as
one observes from Fig. 4, it is able to further
improve the perturbative treatment because it ex-
tends the notion of analyticity to noninteger powers
of the strong running coupling—FAPT. Such
powers become relevant when one has to calculate
the analytic image of powers of the strong coupling
in combination with logarithms, the latter first ap-
pearing at NLO of fixed-order perturbation theory,
or in terms of evolution factors [36]. Hence, the KS
analytization requirement treats all logarithms that
have a nonzero spectral density, and hence modify
the discontinuity across the cut along the negative
real axis, on the same footing and irrespective of
their source being it the running coupling (and its
powers), or logarithms entailed by ERBL or
DGLAP evolution.
In conclusion, the KS analytization enables the variation
of the factorization scale and the choice of various renor-
malization schemes and scale settings, including the BLM
one, with undiminished quality of the theoretical predic-
tions from scheme (scale) to scheme (scale), virtually
eliminating the dependence on such parameters and up-
grading the MS scheme to an optimized factorization and
renormalization scheme. From a broader perspective one
may interpret these findings as indicating that the analy-
ticity of the partonic three-point function is as important
and fundamental as the underlying symmetries of the
theory and should be preserved together with them in the
maximal possible way.
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APPENDIX A: QCD � FUNCTION AT NLO

The first coefficients of the � function are

b0 �
11

3
CA �

4

3
TRNf;

b1 �
34

3
C2

A �

�
4CF 	

20

3
CA

�
TRNf:

(A1)

Here, TR � 1=2 and Nf denotes the number of flavors,
whereas the expansion of the � function in the NLO
approximation is given by

���s��
2�� � ��s��

2�

�
b0

�
�s��2�

4�

�
	 b1

�
�s��2�

4�

�
2
�
:

(A2)
APPENDIX B: NLO CORRECTION TO THE PION
FORM FACTOR

Here we present the detailed expressions for the color
decomposition of the NLO correction to the hard ampli-
tude TH, which describe the factorized part of the pion form
factor [35,39] (see Eqs. (2.5), (2.6a)–(2.6c), (2.7a), and
(2.7b):

t�1;F�H;1 �x; y� �
NT

x y

�
�

28

3
	

�
6�

1

x

�
lnx	

�
6�

1

y

�
lny

	 ln2�x y�
�

; (B1)
t�1;G�H �x; y� �
2NT

x y

�
�

10

3
	 ln

�
x
x

�
ln
�
y
y

�
� 4

�
lnx
x
	

lny
y

�

� ~H�x; y� � R�x; y�
�
: (B2)

The functions ~H�x; y� and R�x; y� are defined by

~H�x; y� �
�

Li2

�
y
x

�
	Li2

�
x
y

�
	Li2

�
xy
x y

�
�Li2

�
x
y

�

�Li2

�
y
x

�
�Li2

�
x y
xy

��
(B3)
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and

R�x; y� �
1

�x� y�2

�
�2xy� x� y��lnx	 lny�

� �yy2 	 xx2��1� x� y� ~H�x; y� � 2�xy2 	 y2

� 5xy	 y	 2x2�
lny
y
� 2�yx2 	 x2 � 5xy	 x

	 2y2�
lnx
x

�
: (B4)
APPENDIX C: ANALYTIZATION OF POWERS OF
THE COUPLING MULTIPLIED BY LOGARITHMS

We present here the derivation of L�2�2 �Q
2�, done in

collaboration with Mikhailov. To this end, let us first
introduce

as�Q2� �
b0

4�
�s�Q2�: (C1)

For this quantity we can write a renormalization group
solution in the form

�a�2�s �Q2��2 ln
�
Q2

�2

�
� a�2�s �Q2�

	 �a�2�s �Q2��2c1 ln
�

a�2�s �Q2�

1	 c1a
�2�
s �Q2�

�
:

(C2)

Expanding the expression ln�1	 c1a
�2�
s �Q2�� and retaining

terms up to order a2
s , we find

�a�2�s �Q2��2 ln
�
Q2

�2

�
� a�2�s �Q2�

	 �a�2�s �Q2��2c1 ln�a�2�s �Q2��: (C3)

To get rid of the logarithm, we use the following trick

�a�2�s �Q2��2 ln
�
Q2

�2

�
� a�2�s �Q2� 	 c1

d
d"
�a�2�s �Q2��2	"j"�0

(C4)

and return to the original coupling to obtain

���2�s �Q2��2 ln
�
Q2

�2

�
�

4�
b0
��2�s �Q2� 	 c1

4�
b0

d
d"

����2�s �Q2��2	"j"�0: (C5)

Now we can proceed with the ‘‘analytization ’’ of the term
���2�s �Q2��2 ln�Q2�, giving rise to analytic expressions for
noninteger powers of the coupling, i.e.,
-9
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��
��2�s �Q2�

�
2
ln
�
Q2

�2

��
an
�

4�
b0

A�2�
1 �Q

2�

	c1

�
d
d"

A�2�
2	"�Q

2�

�
"�0

: (C6)

Using the representation [36]�
b0

4�

�
2
A�2�

� �Q2� �
�1

����

X
n0

��1� �� n�
�� ln�Q2=�2��n

��n	 1�

(C7)
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and performing the differentiation, we finally obtain
�
���2�s �Q2��2 ln

�
Q2

�2

��
an
�

4�
b0

�
A�2�

1 �Q
2�

	 c1
4�
b0
fL�Q

2�

�
; (C8)
with fL�Q2� being defined in Eq. (3.19).
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