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QCD analytic perturbation theory: From integer powers to any power of the running coupling
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We propose a new generalized version of the QCD analytic perturbation theory of Shirkov and
Solovtsov for the computation of higher-order corrections in inclusive and exclusive processes. We
construct nonpower series expansions for the analytic images of the running coupling and its powers for
any fractional (real) power and complete the linear space of these solutions by constructing the index
derivative. Using the Laplace transformation in conjunction with dispersion relations, we are able to
derive at the one-loop order closed-form expressions for the analytic images in terms of the Lerch
function. At the two-loop order we provide approximate analytic images of products of powers of the
running coupling and logarithms—typical in higher-order perturbative calculations and when including
evolution effects. Moreover, we supply explicit expressions for the two-loop analytic coupling and the
analytic images of its powers in terms of one-loop quantities that can strongly simplify two-loop
calculations. We also show how to resum powers of the running coupling while maintaining analyticity,
a procedure that captures the generic features of Sudakov resummation. The algorithmic rules to obtain
analytic-coupling expressions within the proposed fractional analytic perturbation theory from the
standard QCD power-series expansion are supplied ready for phenomenological applications and
numerical comparisons are given for illustration.
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I. INTRODUCTION

A fundamental goal of perturbative QCD is to provide a
microscopic description of hadronic short-distance phe-
nomena that yields reliable predictions to be compared
with experimental data of increasing precision. While sin-
gularities on the timelike axis in the complex Q2 plane of
hadronic observables are related to physical particles (or
resonances), the appearance of singularities on the space-
like axis are unphysical and may violate causality. On the
other hand, the expansion of hadronic quantities at large
momentum transferQ2 can be safely calculated in terms of
a power-series expansion in the running strong coupling
�s�Q

2� by virtue of asymptotic freedom. But the one-loop
running coupling contains at Q2 � �2

QCD (�QCD � � in
the following) a ghost singularity—the Landau pole—that
spoils its analyticity structure. To restore analyticity and
ensure causality in the whole Q2 plane, this pole has to be
removed. With most available experimental data on several
exclusive processes being at rather low Q2 values, the
Landau-singularity problem is not only of academic inter-
est, but affects significantly perturbative predictions in the
low-to-medium Q2 domain. The reason is that—lacking
all-order perturbative expressions—one has to resort to a
renormalization-scheme choice that makes the uncalcu-
lated higher-order corrections negligible and adopt a re-
normalization scale that reflects the typical parton virtual-
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ities in the considered process. The latter procedure, how-
ever, may result into a scale in the region of only a few �,
where the application of perturbation theory for the
conventional running coupling without infrared (IR)
protection against the Landau pole becomes inappli-
cable—a prominent example being the Brodsky–
Lepage–Mackenzie scale-setting procedure [1]. Different
strategies have been suggested over the years as how to
minimize the dependence on the renormalization scheme
and scale setting—unavoidable in any perturbative calcu-
lation beyond the leading order—and obtain reliable and
stable results in the low-momentum regime (see, for ex-
ample, Ref. [2] for a recent extensive discussion of these
issues in terms of the electromagnetic pion form factor and
references cited therein).

In a series of papers during the last few years Shirkov
and Solovtsov (SS) [3–7] have developed an approach
which enables the removal of the Landau singularity with-
out introducing extraneous IR regulators, like an effective
gluon mass [8–12]. The analyticity of the coupling in the
spacelike region is achieved by a nonperturbative, power-
behaved term that contains no other scale than � and
leaves the ultraviolet (UV) behavior of the running cou-
pling unchanged. At zero-momentum transfer the Shirkov-
Solovtsov APT coupling assumes a universal value that
depends solely on renormalization-group constants. Using
dispersion relations, this scheme was both generalized (in
approximate form) to higher-loop orders and also extended
to the timelike regime [6,7,13–23], encompassing pre-
vious incomplete attempts [24,25] in this direction, and
amounting to the theoretical framework of analytic pertur-
-1 © 2005 The American Physical Society
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1In the following, a calligraphic notation is used to denote
analytic images.
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bation theory (APT). There have been a number of parallel
developments by various authors during the past several
years to avoid the Landau pole using different ‘‘analytiza-
tion’’ techniques, prime examples being Refs. [17–19,24–
35].

Two other major challenges, connected with—first—
the implementation of the Shirkov-Solovtsov APT analy-
tization to three-point functions beyond the leading order
of perturbation theory and—second—the extension to
noninteger powers of the coupling, remained open, or at
least partially open. Indeed, in the first case, extensive
analyses [2,36,37] have shown that the analytization prin-
ciple has to be generalized to accommodate a second scale,
serving as a factorization scale, or in order to include
evolution effects comprising typical logarithms to some
fractional power. Technically speaking, this means to ex-
tend the assertion of analyticity from the level of the
coupling (and its powers) to the level of the whole reaction
amplitude. This requirement was formalized by Karanikas
and Stefanis (KS) in [38,39] in an attempt to calculate
power corrections to the pion form factor and the Drell–
Yan process. The systematic development of a perturbative
expansion in terms of fractional powers of the coupling—
the second major challenge—is the goal of the present
investigation, the main focus being placed on the method-
ology towards improving perturbative higher-order calcu-
lations in QCD. This goal has been accomplished and will
be described in this paper. A specific application of the KS
analytization principle to the pion’s electromagnetic form
factor at NLO accuracy is given in fully worked out detail
in [40]. Other applications will follow in future publica-
tions in conjunction with the inclusion of heavy-flavor
thresholds and the extension to the timelike regime.

The paper is organized as follows. In Sec. II we first
review the key features of the original analytic perturbation
theory of Shirkov and Solovtsov, highlighting those prop-
erties pertaining to the generalization of the approach to
fractional powers of the coupling. The actual extension of
the approach to fractional—in fact, real—powers of the
coupling is performed in Sec. III. This section describes in
three subsections the new analytization technique, based
on the Laplace transform, the verification of the analytic
properties of the obtained results, and the way to include
products of powers of the coupling with powers of loga-
rithms. Moreover, we provide here approximate expres-
sions for two-loop quantities in terms of one-loop analytic-
coupling images and their index derivatives that can be
extremely useful in practical calculations. Section IV is
devoted to the validation of the developed theoretical
framework of the fractional analytic perturbation theory
(FAPT) and includes a table where we collect the algorith-
mic rules to connect the new analytic framework to the
standard QCD perturbative power-series expansion. Our
conclusions are drawn in Sec. V, while important technical
details are presented in three appendices.
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II. ORIGINAL ANALYTIC PERTURBATION
THEORY

In the analytic perturbation-theory approach of Shirkov
and Solovtsov, the power-series expansion in the running
coupling is given up in favor of a nonpower series (func-
tional) expansion. This can be written generically in terms
of numerical coefficients dm in the following way [4,41]:X

m

dmam�l��Q
2� )

X
m

dmA
�l�
m �Q2�; (2.1)

where the ‘‘normalized’’ coupling a � b0�s=�4�� (b0 is
the first coefficient of the QCD �-function—see
Appendix B) has been introduced instead of �s in order
to simplify intermediate calculations and because then the
analytic-coupling A1 is bounded from above by unity [4].
In the above expression, the superscript m on am�l� appears
on the left-hand side as a power, whereas on the right-hand
side (rhs) the subscript m on A�l�

m denotes the index of the
functional expansion1; �l� denotes the loop order. For the
sake of simplicity, we will avoid to indicate the loop-order
index explicitly because we mostly work in the one-loop
approximation; deviations, if needed, will be labeled by
appropriate superscripts or subscripts in parentheses, as in
Eq. (2.1). The conversion to analytic images of the cou-
pling is achieved in terms of the functions

A �l�
m �Q2� � �am

�l��Q
2��an (2.2)

according to the general prescription

�f�Q2��an �
1

�

Z 1
0

Im�f�����
��Q2 � i�

d�: (2.3)

For the one-loop running coupling

a �
1

ln�Q2=�2�
; (2.4)

we have

A 1�Q
2� � �a�Q2��an �

1

ln�Q2=�2�
�

1

Q2=�2 � 1
(2.5)

and A�1�
1 �0� � 1. Employing the variable L � ln�Q2=�2�,

which naturally appears in perturbative QCD (pQCD)
calculations, we can recast a and A in terms of L to obtain

a1�L� �
1

L
; A1�L� �

1

L
�

1

eL � 1
: (2.6)

In this context, amplitudes (depending on a single scale
Q2) perturbatively expanded in terms of the powers of the
running coupling map on a nonpower series expansion
[4,41]:
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2Indeed a partial result for a few fractional � values has
already been obtained [47].
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F�a� �
X
n

fna
n�L� ) F �L� �

X
n

fnAn�L�; (2.7)

where fn are numbers in minimal subtraction renormaliza-
tion schemes. By construction, the set fAng constitutes a
linear space, which, however, is not equipped with the
multiplication operation of its elements. Therefore, the
product An 	Am has no rigorous meaning here. The
standard algebra is recovered only for the main asymptotic
contribution [cf. Eq. (2.6)] at L! 1, when fAng ! fang
[3–5].

Let us now turn to the properties of this map and of the
space fAng. There are several points to note about them.

(1) The map should have the property of isomorphism,
i.e., it should conserve the linear structure of the
original space:

a0 )A0 � 1: (2.8)

(2) Renormalization-group summation leads to contri-
butions like

f�a� � a�; where � is real; (2.9)

necessitating the introduction of the analytic images
of f�a�: �f�a��an � �a��an. These are exactly those
terms needed to supply the original linear space
fAng with the completeness property as regards
the differential operator with respect to the real
index �.

(3) Motivated by the typical logarithmic contributions,
appearing in loop calculations in standard pQCD,
we consider the analytization of terms of the sort

f�a� �
�
a� ln�a�;
a�Lm;m � 1; 2;

(2.10)

giving rise to the corresponding analytic images

L ��a� � �a
� ln�a��an; L�;m�L� � �a

�Lm�an:

(2.11)

Expression (2.9) is universal and allows one to apply
any one-loop renormalization-group results to APT. In
fact, the corresponding renormalization factor Z, associ-
ated with the renormalizable quantity B, B�Q2� �
B��2�Z�Q2�=Z��2�, reduces in the one-loop approxima-
tion to

Z
 a��L�j���0��0=�2b0�
;

where �0 is the coefficient of the one-loop anomalous
dimension. Therefore, we have

�B�Q2��an 
 �a��L��an �A��L�: (2.12)

The next two functions L��a� and L�;m�L� appear in
NLO of pQCD and also in light-cone sum rules [42,43] and
reflect the specific features of these calculations. An ex-
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ample of the first kind in connection with a NLO calcu-
lation of the electromagnetic pion form factor is treated in
[40], while the investigation of such terms in the context of
light-cone sum rules will be considered in a future publi-
cation. To be more specific, we will consider below terms
of the form �a�2���L and �a�2���L2 —rather than deal with
the series containing the constant coefficients fn, given in
Eq. (2.7).

One possible way in generalizing the presented original
APT formalism to noninteger (fractional) values of the
index � is to construct the spectral density

	���� �
1

�
Im�a������ (2.13)

for � 2 R. Indeed, substituting

a���� �
1

L��� � i�
; L��� � ln��=�2�; (2.14)

for the one-loop running coupling into Eq. (2.13), we can
obtain by a straightforward calculation a closed-form ex-
pression for the spectral density in the form

	���� �
1

�
sin��’�

��2 � L2�����=2
;

’ � arccos

 
L����������������������������

L2��� � �2
p

!
:

(2.15)

A result similar to that has been derived in the context of
Electrodynamics in the early article of Ref. [44]. It was
later reinvented in QCD by Oehme [45] and used by
Magradze in [20]. To get now the desired analytic coupling
for some fractional index, one has to insert this expression
back into Eq. (2.3) and perform the integral numerically,
loosing, alas, this way the possibility to reveal the mathe-
matical properties of this function. Let us emphasize at this
point that the extension of this procedure to the two-loop
order for the first integer values of � has been done in
Refs. [4,5,20], while the inclusion of still higher-loops [46]
seems feasible.2 However, this approach, based on the
spectral density (2.13), is restricted to the specific structure
of the Shirkov-Solovtsov APT.
III. FRACTIONAL ANALYTIC PERTURBATION
THEORY

A. A new generalization technique to include fractional
indices

In this subsection, we formulate and outline another
procedure to continue the integer index of the analytic
coupling to fractional values. First, to generate higher
indices at the one-loop level of the analytic images within
APT, or, equivalently, higher powers of the standard run-
-3



3The transcendental Lerch function ��z; s; 1� is included in the
widespread programs ‘‘MATHEMATICA 5’’ and ‘‘MAPLE 7’’.
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ning coupling within conventional pQCD, we follow [4]
and write�

An�L�
an�L�

�
�

1

�n� 1�!

�
�

d
dL

�
n�1

�
A1�L�
a1�L�

�
: (3.1)

Second, to facilitate the transition to fractional index val-
ues, it is instrumental to employ the Laplace representation
of both types of couplings—the analytic, A1�L�, and the
conventional one, a�L� (both at the one-loop order)—and
define at L> 0�

A1�L�
a1�L�

�
�
Z 1

0
e�Lt

� ~A1�t�
~a1�t�

�
dt: (3.2)

The advantage of this representation is that it transforms
the result of a differential operator into an algebraic ex-
pression containing monomials. Then, applying Eq. (3.1)
to (3.2), we get

A n�L� �
1

�n� 1�!

�
�

d
dL

�
n�1

A1�L�

�
Z 1

0
e�Lt

�
tn�1

�n� 1�!
	 ~A1�t�

�
dt; (3.3)

so that we establish the correspondence

A n�L� ! ~An�t� �
tn�1

�n� 1�!
	 ~A1�t�; (3.4)

whereas for the case of the conventional pQCD coupling,
one has the evident Laplace conjugates ~an

a1�L� �
1

L
 !~a1 � 1; (3.5)

an�L� !~an �
tn�1

�n� 1�!
	 ~a1: (3.6)

Equation (3.4) enables us to generalize An�L� to any
real index �. To do so, let us introduce the following
definition for the Laplace conjugate ~A��t�:

~A ��t� �
def t��1

����
	 ~A1�t�: (3.7)

At this stage of the continuation in the index �, we have
based our considerations solely on the first relation in
Eq. (3.3). Therefore, the Laplace conjugate (3.7) remains
valid for any nonpower perturbative expansion satisfying
this relation, reiterating that this holds true at the one-loop
level. To complete the generalization process, we should
obtain an expression for ~A1�t�, based on Eq. (2.6). This
gives the result

A 1�L� �
1

L
�

1

eL � 1
 ! ~A1�t� � 1�

X1
m�1


�t�m�;

(3.8)

which can be verified by a straightforward calculation.
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Let us pause for a moment to make some useful remarks
concerning the behavior of the two parts of Eq. (3.8). One
should note the strong difference in the behavior of these
functions with respect to the logarithmic term of standard
perturbation theory, on the one hand,

1

L
 !1;

and the pole remover appearing in APT, on the other,

1

eL � 1
 !

X1
m�1


�t�m�:

Thus, one can define A��L� according to Eq. (3.3), and,
then, using Eqs. (3.7) and (3.8), arrive at

A ��L� �
Z 1

0
e�Lt

t��1

����
	 ~A1�t�dt

�
1

L�
�

1

����
	
X1
m�1

e�Lmm��1: (3.9)

The series on the rhs of the latter equality coincides with
the definition of the Lerch transcendental function [48]
��z; �0; i� at �0 � �� 1< 0 for i � 1, i.e.,

X1
m�1

zm

m1�� � z��z; 1� �; 1�: (3.10)

The analytic continuation of ��z; s; 1� in the variables z; s,
adopting the notation of Batemann and Erdelýi [48], de-
termines � as an analytic function of the variable z in the
plane with a cut along �1;1� for any fixed s (see for more
details in Appendix A.3). Finally, A� in Eq. (3.9) can be
rewritten in the form of an analytic function with respect to
both variables � and L; viz.,

A ��L� �
1

L�
�
e�L

����
��e�L; 1� �; 1�: (3.11)

We state here and prove in Appendix A that A� is an entire
function in �.

B. Analytic properties

To assess the analytic properties of Eq. (3.11), it is useful
to recast the Lerch function ��z; �; 1� via (see [48],
Eq. (1.10.14) and also [49], Chap. 8)

z��z; �; 1� � F�z; �� (3.12)

entailing

A ��L� �
1

L�
�
F�e�L; 1� ��

����
; (3.13)

where the first term in Eq. (3.13) corresponds to the stan-
dard PT, while the second one expresses the pole remover.
-4
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Note that for a positive integer index, � � m � 2, one has
the relation [48]

F�z; 1�m� � ��1�mF
�
1

z
; 1�m

�
; (3.14)

so that substituting Eq. (3.14) in (3.13), one arrives at

A m�L� � ��1�mAm��L� (3.15)

that confirms the specific symmetry relations worked out in
[4]. From relation (3.15) and Eq. (A6) one obtains the
explicit asymptotic expression for Am�L� at L! �1

Am�L! �1� � ��1�mAm�jLj ! 1�

� ��1�m=jLjm �O�1=jLjm�: (3.16)

This estimate can be extended to any real value � > 1 of
the index m. To make the content of Eq. (3.13) more
transparent, we display in Fig. 1(a) the graphs of the
analytic coupling for indices from �3 to 0 and values of
L in the range�3 to 3. Appealing to Eqs. (3.17) and (3.18)
for negative values of the index �, one makes sure that, for
L � 1 (red thick dotted line above the zero line), this
function is equal to unity for all integer values of the index
� � �m. On the other hand, for L<�1, the value of
A�m�L� depends on whether or not m is even or odd.
For even values, it is positive, whereas for odd values it is
negative, therefore giving rise to oscillations shown in
Fig. 1(a). Note also that for values of L � 1, the oscillatory
behavior of the graphs for A��L� starts to be much less
pronounced (red thick broken lines) because Lm is positive
for all positive values of m. The opposite behavior is
exhibited for L< 0, as one sees from the blue broken lines.

From Fig. 1(b), we observe that, in the region where
A��L� is smaller than unity (as explicitly indicated in the
figure), this function is monotonic in � for � � 2. On the
other hand, in the region where A��L�> 1—possible
only for � < 1 and L< 0—this function starts to be non-
monotonic in �, so that there are two different points �1

and �2, both corresponding to the same value of A��L�.
-3 -2.5 -2 -1.5 -1 -0.5 0
-5

-2.5

0

2.5

5

7.5

10

12.5

ν

A(1)
ν (+3)

A(1)
ν (−3)

(a)

FIG. 1 (color online). (a) Comparison of different curves for A�
�

values of L, ranging from L � �3 to L � �3. The blue broken
correspond to L > 0. The two dotted lines denote the results for L �
the zero line. (b) The same comparison for � � 0 using the same l
L � �10 (dashed lines). The dotted lines here correspond to L � 
2
The blue solid lines in both panels show A�1�

� �0�.
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Focusing on the values of A��L� for L> 0, we see that all
curves are monotonic in L and are bounded by an envelope
represented by A��0� [blue thick solid line in Fig. 1(b)]. If
we consider only the interval of � 2 �0; 1�, then the mono-
tonicity property extends also to the negative values of L.

Contrary to that case, the coupling Am�L� oscillates in
L [4] for higher values ofm> 2. These oscillations are not
visible in Fig. 1(b) because of the smallness of the corre-
sponding amplitudes. They appear due to rather general
reasons: (i) the asymptotic conditions given by Eq. (3.16):
Am��1� �Am�1� � 0 for m � 2; (ii) the differential
relation between Am and A1, expressed in Eq. (3.1).
Therefore, Am�2 has m zeros in the vicinity of the former
‘‘Landau pole’’ (L � 0) [4]—see Fig. 2. This property is
rather unexpected from the point of view of the standard
power-series perturbation theory and will be discussed
below in connection with Eq. (3.22). This oscillation prop-
erty of the coupling extends to A��L� for all real values of
the index � � 2.

To reveal the relevance of this representation for physi-
cal applications, let us now consider A for some particular
values of the index �. For the case of a negative index, the
A�� play the role of the ‘‘inverse powers’’ of A1 that
may be considered as the images of a��s . Then, expression
(3.13) can be rewritten in the form

A���L� � L� �
Li��1�e�L�

�����
; (3.17)

A�m�L� � lim
"!0

A�m�"�L� � Lm; at m � 0; 1; 2; . . . ;

(3.18)

where we have taken into account that for � � 0

F�z; �� � Li��z�; (3.19)

with Li� being the well-known polylogarithm function. It
is worth remarking here that the ‘‘inverse powers’’
A�m�L� � Lm coincide with the inverse powers of the
original running coupling a�m�L� � Lm.
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

ν

A(1)
ν (−10)

A(1)
ν (+10)

(b)

A(1)
1 (−∞)

1��L� as functions of the index � � 0, corresponding to various
lines correspond to L< 0, whereas the red thick broken lines

1, with the line associated with the value L � 1 being closer to
ine designations, but for values of L, ranging from L � �10 to
, whereas the short-dashed lines represent the result for L � 
5.
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FIG. 2 (color online). Comparison of different curves for
A�1�

m �L� as functions of L, corresponding to various values of
the index m, ranging from m � 2 to m � 5. To show all the
details in a single plot, higher couplings are multiplied by
numerical factors in order to normalize them to the scale of
A�1�

2 �L�. The solid line shows A�1�
2 �L�, the blue dotted line

corresponds to 8 	A�1�
3 �L�, the green short-dashed line to 60 	

A�1�
4 �L�, and the red long-dashed line to 480 	A�1�

5 �L�.
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To make explicit the properties of Eq. (3.13), we convert
this equation into a series representation, using Eq. (A3), to
obtain

F�z; 1� �� � ����
�

ln
�

1

z

��
��
�
X1
r�0

��1� �� r�
lnr�z�
r!

(3.20)

for j ln�z�j< 2�, where ���� is the Riemann � function.
Now we are in the position to express A� in the form of a
series, i.e.,

A ��L���
1

����

X1
r�0

��1���r�
��L�r

r!
for jLj<2�

(3.21)

because the ‘‘standard logarithms,’’ contained in both parts
of expression (3.13), mutually cancel, as one verifies by
substituting Eq. (3.20) into Eq. (3.13). Then, we can state
the following important corollaries:

(1) A��0� � ����1� ���=���� is an entire function of
�. Of particular importance are the following values:

A1�0� �
1

2
; A2�0� �

1

12
; A3�0� � 0;

A4�0� � �
1

720
; A5�0� � 0 (3.22)

that coincide with the results provided in [4]. Note
that A2n�1�0� � 0 for n � 1 is due to the property
���2n� � 0, while the set of A2n�0� is alternating
in sign [48]. These properties illustrate the details of
the coupling oscillations in the vicinity of L � 0 for
index values m> 2. A convenient series representa-
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tion of Am for an integer index m is presented and
discussed in Appendix A (item 3).

(2) Taking into account the relation �lim�!0���1�
�� r�=����� � 
0r [see, e.g., Eq. (A7)], one can
take the limit

A 0�L� � lim
�!0

A��L� � 1; (3.23)

dispensing with the constraint jLj< 2� and proving
assertion (2.8).

(3) Equation (3.18) can be rederived from representa-
tion (3.21) in a way similar to that described in the
previous item.

The upshot of these considerations is that the linear space
fAng is now completed via the inclusion of the elements
A� for any real values of the index �, so that one can take
derivatives with respect to this continuous variable—
dubbed ‘‘index derivative.’’

C. Analytic images of products of coupling powers
and logarithms

To this point, we have considered only powers of the
running coupling, adopting the viewpoint of the Shirkov-
Solovtsov APT. Now we are going to consider more com-
plicated expressions, like �a�l���Lm, where the power � is a
real number and the power m is an integer, following the
broader analytization principle of KS [38,39].

To compute this image, we have first to determine the
image of a� ln�a�, which can be rewritten as the derivative
of a� with respect to �; viz.,

a� ln�a� �
d
d�
a�: (3.24)

Because of the linearity of the differential operator, this
derivative can be directly applied to any element of the
completed space fAng to generate the corresponding im-
age, �a� ln�a��an, and define�

d
d�
a�
�

an
�
def d
d�

A�: (3.25)

In the following, we shall employ for the sake of simplicity
a special notation for the derivatives with respect to the
index of the nonpower expansion and define

D kA� �
dk

d�k
A�: (3.26)

From Eqs. (3.13) and (3.25), we obtain

�a� ln�a��an � �
lnL
L�
�

d
d�

�
F�e�L; 1� ��

����

�
(3.27)

and taking multiple derivatives on both sides of Eq. (3.25),
we compute the image of a�Lm, as in Eq. (3.27). This
procedure applies to any desired degree m of such terms.

The extension to higher loops makes use of the APT
expansion of higher-loop quantities in terms of one-loop
-6
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ones. Before doing that, we consider first the image of a�2�
on the basis of the perturbation expansion, given in
Eq. (B5) in conjunction with Eq. (3.26), to obtain the
element A1 at the two-loop level:

A�2�
1 �L� �A�1�

1 � c1DA�1�
��2 � c

2
1�D

2 �D1 � 1�A�1�
��3

�O�D3A�1�
��4�: (3.28)

This formula can be readily generalized to any index �:

A�2�
� �L� �A�1�

� � c1�DA�1�
��1 � c

2
1�
�
�1� ��

2
D2

�D1 � 1
�
A�1�

��2 �O�D3A�1�
��3�; (3.29)

where c1 � b1=b2
0 is an auxiliary expansion parameter.

The quality of the two-loop approximation for the lowest
index [cf. Eq. (3.28)] and higher indices [cf. Eq. (3.29)] will
be analyzed numerically in the next section. Here it suffi-
ces to mention that the achieved accuracy is of the order of
about 1% down to L � 0.

To construct the image of �a�2���L, cf. Eq. (2.10), we first
perform the analytization of Eq. (B7) and then use
Eq. (3.25) to arrive at the final expression

��a�2��L��
�L�an � L�2��;1�L�

�A�2�
��1 � c1DA�2�

� �O�A�2�
��1�;

(3.30)
TABLE I. Comparison of the standard PT

Theory Space Series expansion

PT fa�
�l�g�2R F�L� �

P
mfma

m
�l��L�

APT fA�l�
m gm2N F �L� �

P
mfmA

�l�
m �L�

FAPT fA�l�
� g�2R F �L� �

P
mfmA

�l�
m �L�

TABLE II. Calculational rules for FAPT w

Standard QCD PT

a1
�1��L� � 1=L A�1�

1 �L� �
1
L� �1=�e

L � 1��

a��1��L� � 1=L� A�1�
� �L� � 1

L� � �F�e
�L; 1� ��=���

a�
�l��L�ln

m�a�l��L�� DmA�l�
� �L� � �dm=d�m��A

�l�
� �L��

a�
�2��L� A�2�

� �L� �A�1�
� �L� � c1�DA�1�

��1

a�
�2��L�L L�2��;1�L� �A�2�

��1�L� � c1DA�2�
� �L

�A�1�
��1�L� � c1����ln�L�

a��2��L�L
2 L�2��;2�L� �A�2�

��2�L� � 2c1DA�2�
��

�A�1�
��2�L� � c1�DA�1�

��

exp��xa�L�� e�x=L �
���
x
p P

m�1e
�mL�J1�2

�������
xm
p

�=
p

aNote that in evaluating this expression in the next line we use Eqs
bNote that in evaluating this expression in the next line we use Eqs
cFor the derivation of this expression, we refer to Appendix C.
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which can be recast, by means of the one-loop analytic
coupling and with the aid of Eq. (3.27), in the form

L�2��;1�L� �A�1�
��1 � c1�

�
ln�L� �  ���

L�
�  ���A�1�

�

�
DF�e�L; 1� ��

����

�
�O�D2A�1�

��1�: (3.31)

The analytization of �a�2��L��� 	 L2, expressed in terms of
Eq. (B9), can be performed in an analogous way with the
result

L �2�
�;2�L� �A�2�

��2 � 2c1DA�2�
��1 � c

2
1D

2A�2�
�

� 2c2
1A

�2�
� �O�DA�2�

��1�: (3.32)

The one-loop approximation of this two-loop expression is
given by

L �2�
�;2�L� �A�1�

��2 � c1�DA�1�
��1

� c2
1

�2 � �� 4

2
D2A�1�

� �O�DA�1�
��1�:

(3.33)

A compilation of the required formulas to achieve the
analytization of powers of the coupling in conjunction
with logarithms at the two-loop order, is provided in
Appendix B.
, APT, and FAPT with L � ln�Q2=�2�.

Inverse powers Multiplication Index derivative

�a�l��L��
�m a�

�l�a
�
�l� � a���

�l� am
�l�ln

ka�l�

No No No

A�1�
�m�L� � Lm No DkA�l�

m

ith L � ln�Q2=�2�, m 2 N, and � 2 R.

QCD FAPT

��

�L� � c2
1������ 1�=2�D2 �D1 � 1�A�1�

��2�L� �O�D3A�1�
��3�

a

� �O�D2A�2�
��1�

b

�  ����=L�� �  ���A�1�
� �L� � ��DF�e�L; 1� ���=������

1�L� � c
2
1D

2A�2�
� �L� � 2c2

1A
�2�
� �L� �O�DA�2�

��1�
b

1�L� � c
2
1���

2 � �� 4�=2�D2A�1�
� �L�����

m� for L > 0c

. (B6) and (3.13).

. (B8), (B9), and (3.13).
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Up to now we have studied expressions appearing in
fixed-order perturbation theory. But similar considerations
apply also to resummed perturbation theory. Indeed, first
attempts to apply the analytization procedure of Shirkov-
Solovtsov APT were already presented in [36,37,39]. The
crucial point here is how to deal with the requirement of
analyticity when performing a Sudakov resummation.
Because of the nonpower series character of APT, resum-
mation of (soft-gluon) logarithms does not lead to expo-
nentiation. The latter can be retained only in the case of the
so-called naive analytization [2], proposed in [36,37]. The
exact expression for the Sudakov factor is too complicated
and too specific to be discussed in the present analysis. We,
therefore, consider in Appendix C a simplified version of a
‘‘toy Sudakov’’ factor that, nevertheless, bears the key
characteristics pertaining to resummation under the asser-
tion of analyticity. For clarity, we compare the basic in-
gredients of FAPT in Table I with their counterparts in
conventional perturbation theory and APT. More detailed
expressions are shown in Table II in the next section.

IV. VALIDATION OF THE NEW SCHEME

A. Analytic verification of the one-loop spectral density

An alternative way to derive Eq. (2.15) for the spectral
density 	�, is to compare two different representations for
A�: one given by the dispersion relation, Eq. (2.3), and the
other provided by the Laplace representation, Eq. (3.3).
Then, we get

A ��L� �
Z 1

0

	����

��Q2 d� �
Z 1

0
e�Lt ~A��t�dt: (4.1)

Next, we make a double Borel transformation of both
representations, the Laplace one and that of the dispersion
integral, the aim being to extract 	����. This is done by
applying first M2B̂�M2!Q2� on both sides of Eq. (4.1) and
then employing

M2B̂�M2!Q2�

�
1

��Q2

�
� exp���=M2�;

M2B̂�M2!Q2�

�
�2

Q2

�
t
�
M2

��t�

�
�2

M2

�
t
:

(4.2)
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In the second step, we carry out one more Borel trans-
formation, B̂�1=�!1=M2�, to obtain

	���� �
Z 1

0

�
�2

�

�
t sin��t�

�
~A��t�dt: (4.3)

The final step is to substitute in Eq. (4.3) the expression for
~A��t�, given by Eq. (3.7), to arrive at the final result

	���� �
1

��2 � L2�����=2
sin
�
� arccos

�
L����������������������������

L2��� � �2
p ��

(4.4)

�
1

��2 � L2�����=2
sin
�
� arctan

�
�
L���

��
for L���> 0;

(4.5)

where L��� � ln��=�2�. To gain a more complete under-
standing of the role of the Landau pole remover in ~A�, it is
important to remark that it does not contribute to the
spectral density, the reason being that this part is not
altering the nature of the discontinuity. The latter is solely
determined by the term 1=L. One appreciates that expres-
sions (4.5) and (2.15) coincide, as they should, hence
establishing the equivalence between the two alternative
extensions of the analytization procedure to fractional in-
dices. The two-loop approximate expression for the spec-
tral density is given in Appendix B.

B. Verification of the two-loop approximations

Now look specifically at the quality of the two-loop
expansion in FAPT. In doing so, we define the following
quantities with the help of an auxiliary parameter c1 and
the index derivative D, [as in Eq. (3.28)]:

(i) NLO, i.e., retaining terms of order c1

�FAPT
2 �L� � 1�

A�1�
1 �L� � c1DA�1�

��2�L�

A�2�
1 �L�

(4.6)

(ii) NNLO, i.e., retaining terms up to order c2
1

�FAPT
3 �L� � 1�

A�1�
1 �L� � c1DA�1�

��2�L� � c
2
1�D

2 �D1 � 1�A�1�
��3�L�

A�2�
1 �L�

: (4.7)

For the corresponding quantities within the standard QCD perturbation theory, we use Eq. (B5) to obtain
(i) NLO, i.e., retaining terms of order c1

�PT
2 �L� � 1�

a�1��L� � c1a2
�1��L� lna�1��L�

a�2��L�
(4.8)

(ii) NNLO, i.e., retaining terms up to order c2
1
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�PT
3 �L� � 1�

a�1��L� � c1a
2
�1��L� lna�1��L� � c

2
1a

3
�1��L��ln

2a�1��L� � lna�1��L� � 1�

a�2��L�
: (4.9)
First, let us compare the transition from the NLO [cf.
Eq. (4.6)] to the NNLO [cf. Eq. (4.7)] in FAPT [see
Fig. 3(a)]. One appreciates that by taking into account
the NNLO terms, a significant improvement of the con-
vergence quality of the FAPT series is achieved. Indeed,
even atQ2 � �2, which corresponds to L � 0, the error of
truncating the FAPT series at the NLO is about 5%, while
by taking into account the NNLO correction this error
becomes even smaller than 0.5%. In Fig. 3(b) we show
the relative quality of these approximations concerning the
loop expansion between the standard perturbation theory
and FAPT, as quantified by Eqs. (4.7) and (4.9). One
appreciates the strong suppression of �FAPT

3 �L� relative to
its conventional analogue in the small L region, say, below
approximately L � 2.

The same comparison can be realized for A�2�
2 , using

Eq. (3.29). Indeed, we demonstrate in Fig. 4(a) the quality
of this FAPT expansion in comparison with the results of
the numerical integration of the NLO spectral density 	2

(for more details, we refer to Appendix B and [5]) in the
dispersion-integral representation, provided by Eq. (2.3).
In this graphics, we also display the results obtained nu-
merically by Magradze in [23]. The message from Fig. 4(a)
-4 -2 0 2 4 6 8 10

0.02

0.04

0.06

0.08

L

A(2)
2 (L ) (a)

0

0

1

FIG. 4 (color online). (a) Comparison of different results for A

analytically via Eq. (3.29); A�2�;num
2 �L� (dashed line) is derived by

available results of the numerical procedure of Magradze in [23]. (b
fractional index (power) of the coupling. The solid line represents A
line stands for a0:62

�2� �L�.
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is quite clear. Our analytic (solid line) and our numerical
calculation (dashed line) are in mutual support, while the
results of [23] differ considerably with respect to both the
magnitude and the trend of the negative values of L. The
good convergence of the proposed series for A�2�

1;2

[Eq. (3.29)], that had been demonstrated above, can be
traced to the basis of APT. Indeed, this nonpower expan-
sion of the quantities A�2�

1;2 in terms of A�1�
m has a finite

radius of convergence, the reasons being discussed in
Ref. [50].

To give the reader an impression of the dependence on L
of A�2�

� �L�, we show in Fig. 4(b) a comparison of this
quantity with its counterpart in standard QCD, namely,
�a�2��L��

�. For the purpose of illustration, we select the
value � � �2=�2b0� � 0:62, which corresponds to the 1-
loop evolution exponent of the nonsinglet quark operator
of index 2, entering a number of applications in DIS and
also various exclusive reactions [43,51,52].

In support of our two-loop approximation (within
FAPT), we display in Fig. 5 results for the analytic images
A�2�

� with � � k=4 and k � 0; 1; . . . ; 8. We observe the
same monotonic pattern, i.e., no crossing, of curves, found
-4 -2 0 2 4 6

.25

0.5

.75

1

.25

1.5

L

a0.62(L )

AFAPT
0.62 (L )

(b)

�2�
2 �L�. The solid line corresponds to A�2�;FAPT

2 �L�, computed
means of a numerical integration. The dotted line represents the
) Comparison of FAPT and standard QCD PT with respect to the
�2�;FAPT
0:62 �L�, computed analytically via Eq. (3.29), while the dashed
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already for the one-loop case, shown in Fig. 1(b). We
investigated numerically the range of negative values of
L and found that crossing appears only for indices � < 1,
again in close analogy to the one-loop case.

The pivotal results of this paper are collected in Table II,
where we provide the reader with explicit calculational
rules to connect the standard QCD perturbation theory
with FAPT. We stress that the presented algorithm has
broad applications in phenomenology and can play a major
role in the perturbative analysis of observables both in
inclusive and exclusive QCD reactions.

V. CONCLUSIONS

With hindsight we can say that the requirement of
analyticity at the amplitude level of hadronic quantities
in QCD, expressed by Karanikas and Stefanis [38], is
instrumental in improving perturbation-theory calcula-
tions. First, as shown in an accompanying paper by two
of us (A. P. B. and N. G. S.) together with Karanikas [40], it
enables one to minimize both the sensitivity on the renor-
malization scheme and scale setting and also the depen-
dence on the factorization scale. The reason for this latter
advantage is that it includes into the analytization proce-
dure not only the powers of the running coupling, but also
logarithms (or exponentials) that may contain the momen-
074014
tum scale with respect to which analyticity is required.
Second, starting at this point, we have shown in the present
work that invoking this analyticity principle gives rise to a
generalization of the original APT to fractional powers of
the coupling. As a bonus, this approach improves the
convergence of the perturbative expansion signifi-
cantly—see Fig. 3.

Our main goal in this analysis was to work out in
mathematical detail the procedure for determining analytic
expressions for any real power of the running coupling and
delineate the main results. To keep our presentation as
general as possible, we have purposefully refrained from
considering specific examples and concentrated instead on
generic features and expressions. In this vein, we have
discussed products of the running coupling (or its powers)
with (powers of) logarithms, which are typical for contri-
butions encountered in higher-order corrections of QCD
perturbation theory, or when taking into account evolution
effects via the renormalization-group equation. Similar
logarithmic terms also appear in calculations employing
light-cone sum rules [42,43]. In an analogous way, we have
discussed the resummation of nonpower series in the ana-
lytic images in order to capture the key features of Sudakov
resummation of soft-gluon effects (see Appendix C). All
these elements of FATP, required for further applications of
this formalism to improve the calculation of any hadronic
amplitude at the two-loop level, are collected in Table II. In
this context, we mention that we have developed approxi-
mate expressions for the two-loop analytic images in terms
of one-loop quantities that can facilitate practical compu-
tations significantly.

In conclusion, this report has emphasized rigorous meth-
ods rather than specific applications. A first example of the
present framework is discussed in [40], focusing on the
topic of the renormalization-scheme and factorization-
scale independence of the electromagnetic pion form fac-
tor, relative to its treatment within the standard QCD
perturbation theory or original APT. The methods pre-
sented here are intended to be used in the low-to-medium
momentum range where the standard perturbative ap-
proach faces the problem of the Landau pole and in pro-
cesses or under circumstances where the original APT is
insufficient because it is tied to integer powers of the
coupling. We believe that our assortment of analytic ex-
pressions for a variety of expressions ranging from any real
powers of the coupling to more complicated products
containing logarithms, provides sufficient evidence for
the usefulness of the approach for higher-order perturba-
tive calculations.
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APPENDIX A: ANALYTIC PROPERTIES OF
��z;��; 1� AND A�

1. The function ��z;��; i� can be determined by means
of the analytic continuation of the series [48]

��z; s; i� �
X1
m�0

zm

�m� i�s
for jzj< 1; s � 1; 2; 3; . . .

(A1)

in both variables z and s. This analytic continuation for
every fixed s, which is not a positive integer, determines �
as an analytic function of z, regular in the plane with a cut
along the axis �1;1�, and for every fixed z in the cut plane
as an analytic function of s being regular, except possibly
at the points s � 1; 2; 3; . . . ; as was mentioned in [48]. We
can improve this statement for s � 1 using Eq. (3.19) to
obtain

��z; s; i� �
1

zi

�
z��z; s; 1� �

Xi�1

m�1

zm

ms

�

�
1

zi

�
Lis�z� �

Xi�1

m�1

zm

ms

�
: (A2)

One appreciates that there are no singularities for any
positive integer values of s. Hence, we can conclude that
��z; s; 1� is an analytic function in s at any fixed z on the
cut plane. Moreover, the function A��L�, see expression
(3.11),

A ��L� �
1

L�
�
e�L��e�L; 1� �; 1�

����
;

has no poles in � and is, therefore, an entire function in �.
2. There is a useful series representation for ��z; s; 1�

[48] [cf. (3.20)]; viz.,

��z;s;1��
1

z

�
��1�s�

�
ln
�
1

z

��
s�1
�
X1
r�0

��s�r�
lnr�z�
r!

�
(A3)

for j ln�z�j< 2�, s � 1; 2; 3; . . . that allows one to continue
��z; s; 1� for integer positive s � m values by means of the
limit s � m� "; "! 0 in Eq. (A3). To take this limit, one
should expand in " the first term in the square brackets in
expression (A3), which is proportional to ��1�m� "�.
The other singular term appears in the sum and is propor-
tional to ��1� "� � 1="�  �1� �O�"�. The singular-
ities, contained in both these parts, mutually cancel.
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3. The expansion of A��L�, Eq. (3.21), is simplified for
an integer index � � m � 1 to read

A m�L� �
1

�m� 1�!

X1
r�0

Bm�r
�m� r�r!

��L�r for jLj< 2�;

(A4)

where Bm are the Bernoulli numbers. From the property
B2n�1 � 0 it follows that A2n�L� is an even function of its
argument, while A2n�1�L� is an odd one. Note here that
the pole remover F�e�L; 1�m� in expression (3.13) re-
duces to elementary functions for the case of an integer
index. Indeed, according to Eq. (3.1), the operator �d=dL
shifts the second argument of the function F by unity, i.e.,
m! m� 1, to get

�
d
dL

F�e�L;�m� � F�e�L;��m� 1��:

Taking into account that F�e�L; 0� � �eL � 1��1 and ap-
plying the previous relation m times we arrive at

F�e�L;�m� �
�
�

d
dL

�
m
F�e�L; 0� �

�
�

d
dL

�
m 1

eL � 1
:

(A5)

This representation leads to an exponentially suppressed
asymptotic limit for the function F�e�L;�m�; viz.,

F�e�L;�m�jL!
1 
 e�jLj: (A6)

4. We supply here the Lindelöf formula [53]

���� �
1

2
�

1

�� 1
�
Z 1

0

sin�� arctan�t��dt

�1� t2��=2�e2�t � 1�
; (A7)

which fixes ���� as an analytic function with a simple pole
at � � 1. This representation for ���� has been used in
Sec. III B.

5. Now we are in the position to supply also the analytic
images of the coupling in the timelike regime for L�s� �
log�s=�2� � 0, employing the notation of [6,54]:

A ��s� �
Z 1
s

d�
�
	����

�
1

�

Z 1
L�s�

dL
sin�� arctan��=L��

��2 � L2��=2
: (A8)

This integral can be evaluated to provide a result analogous
to A��L� for the spacelike regime; namely,

A ��s� �
sin���� 1� arctan��=L�s���

���� 1���2 � L�s�2����1�=2
: (A9)

A similar expression for the timelike coupling has been
obtained before in [55] using the ‘‘contour-improved re-
summation technique.’’
-11
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APPENDIX B: ANALYTIZATION OF POWERS OF
THE COUPLING MULTIPLIED BY LOGARITHMS

1. The expansion of the � function in the NLO approxi-
mation is given by

d
dL

�
�s�L�

4�

�
� �b0

�
�s�L�

4�

�
2
� b1

�
�s�L�

4�

�
3
; (B1)

where L � ln��2=�2� and

b0 �
11

3
CA �

4

3
TRNf;

b1 �
34

3
C2

A �

�
4CF �

20

3
CA

�
TRNf

(B2)

with CF � �N
2
c � 1�=2Nc � 4=3, CA � Nc � 3, TR �

1=2, and Nf denoting the number of flavors. Then, the
corresponding two-loop equation for our coupling a �
b0�=�4�� looks like

da�2�
dL

� �a2
�2��L��1� c1a�2��L�� with c1 �

b1

b2
0

: (B3)

The renormalization-group solution of this equation as-
sumes the form

1

a�2�
� c1 ln

�
a�2�

1� c1a�2�

�
� L: (B4)

Then, for the expansion of a�2��L� in terms of a�1��L� �
1=L we have, retaining terms of the order a3

�1�,

a�2� � a�1� � c1a
2
�1� lna�1� � c

2
1a

3
�1��ln

2a�1� � lna�1� � 1�

�O�a4
�1�ln

3�a1��: (B5)

2. Now, for the product �a�2���L, we obtain from (B4)

�a�2���L � �a�2����1 � �a�2���c1 ln
�

a�2�
1� c1a�2�

�
: (B6)

Expanding the logarithmic term ln�1� c1a�2��, while re-
taining terms of order a��1

�2� , a�
�2� ln�a�2��; viz.,

�a�2���L � �a�2����1 � c1�a�2��� ln�a�2�� �O�a��1
�2� � (B7)

and, finally, expanding the coupling a�2� in terms a � a�1�,
we find

�a�2���L � a��1 � �a�c1 ln�a� �O�a��1ln2�a��: (B8)

Calculating �a�2���L2 in an analogous way, we derive

�a�2��
�L2 � �a�2��

��2�1� c1a�2� ln�a�2���
2 � 2c2

1a
�
�2�

�O�a��1
�2� ln�a�2���

� a��2 � �a��1c1 ln�a�

�

�
�2 � �� 4

2

�
a�c2

1ln2�a� �O�a� ln�a��:

(B9)
074014
3. We consider here the spectral density 	���� beyond
the leading-order approximation. At the l-loop level,
	�l�� ��� can always be presented in the same form as for
the leading order, given in Eq. (2.15), i.e.

	�l�� ��� �
1

�
Im�a�

�l������ �
1

�

sin��’�l�����

�R�l�����
� ; (B10)

but keeping in mind that the phase ’�l� and the radial part
R�l� have a multiloop content. At the two-loop level, one
should, strictly speaking, deal with the imaginary part of
the Lambert function W�1 (see [20]) because the exact
solution of Eq. (B4) can be realized in terms of the Lambert
function. Instead of following this procedure, we can alter-
natively take the well-known first-iteration solution of
Eq. (B4) that provides us with sufficient accuracy the
following result:

1

a�2��L�
!

1

aiter
�2� �L�

� L� c1 ln�L� c1�: (B11)

For this approximate solution aiter
�2� , we have

�R�2�����
2 � �L��� � c1 ln

� ���������������������������������������
�L��� � c1�

2 � �2
q

�

�
2

� ��� c1��L�����
2; (B12)

’�2���� � �� c1��L����; (B13)

��L���� � arccos
�

L��� � c1���������������������������������������
�L��� � c1�

2 � �2
p �

; (B14)

with L��� � ln��=�2�. The spectral density 	�2��iter
��1 ���

with the phase and the radial part from Eqs. (B12)–(B14)
appears to be very close to the numerical, but exact result
for 	�2�1 ���, based on W�1 —see, e.g., [5].

APPENDIX C: ANALYTIZATION OF THE TOY
MODEL FOR SUDAKOV RESUMMATION

Here we discuss the analytic image of expression
FS�x; L� � exp��xa�l��L��, which originates as a part of
the procedure of the Sudakov resummation, where x is a
free parameter. We consider the following example, serv-
ing as a ‘‘toy model’’ for this resummation:

fFS�x; L�gan �

�
1�

X
m�1

��xa�l��L��
m

m!

�
an

� 1�
X
m�1

��x�m
A�l�

m �L�
m!

: (C1)

One can verify that for the asymptotic limits of L, Eq. (C1)
reduces to the evident forms:

1�
X
m�1

��x�m
A�l�

m �L�
m!

�

�
1� x for L! �1;
1 for L! �1:

(C2)
-12
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FIG. 6 (color online). (a) Functions F�an�
S �x; L� calculated for different values of x using the one-loop FAPT. The horizontal solid line

corresponds to x � 0, while the broken lines represent the specific x values shown above them. (b) Comparison of the toy Sudakov
function, calculated within the present framework (solid line), with the result of the naive analytization [2,36,37] (dashed line), and
that from conventional QCD perturbation theory (dotted line). Note the different scale for the ordinate relative to panel (a).

QCD ANALYTIC PERTURBATION THEORY: FROM . . . PHYSICAL REVIEW D 72, 074014 (2005)
The first asymptote on the rhs of Eq. (C2) appears due to
the equality A�l�

m ��1� � 
1m, see, for instance, [4]. The
second asymptote is due to the property that in the UV
regime APT reduces to the standard perturbation theory.
Both properties are illustrated in Fig. 6(a). In Fig. 6(b) we
compare different versions of the toy Sudakov function,
obtained within the present framework (solid line), using
the naive analytization [2,36,37] (dashed line), and con-
ventional QCD perturbation theory (dotted line).

On the other hand, restricting the loop order to l � 1,
one can derive an explicit expression for Eq. (C1) in the
region of L> 0, which is based on the Laplace represen-
074014
tation given by Eq. (3.3) and expression (3.8) for ~A1,
namely,

F�an�
S �x; L� � e�x=L �

���
x
p X

m�1

e�Lm
J1�2

�������
xm
p

�����
m
p ; L > 0:

(C3)

The perturbative part of ~Am in (C1) reproduces exactly the
asymptotic expression exp��xa�1��L�� on the rhs of
Eq. (C3), while the pole remover generates the sum of
the exponents in�L, weighted by the Bessel functions, J1,
exhibiting how the large L behavior is violated.
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