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Motivated by the recent experimental data, we have revisited the B! �K;�� decays in the framework
of QCD factorization, with inclusion of the important strong penguin corrections of order �2

s induced by
b! Dg�g� (D � d or s and g� denotes an off-shell gluon) transitions. We find that these higher order
strong penguin contributions can provide �30% enhancement to the penguin-dominated B! �K decay
rates, and such an enhancement can improve the consistency between the theoretical predictions and the
experimental data significantly, while for the tree-dominated B! �� decays, these higher order
contributions play only a minor role. When these strong penguin contributions are summed, only a small
strong phase remains and the direct CP asymmetries get small corrections. We also find that patterns of
the ratios between the CP-averaged branching fractions remain nearly unaffected even after including
these higher order corrections and the �K puzzle still persists. Our results may indicate that to resolve the
puzzle one would have to resort to new physics contributions in the electroweak penguin sector as found
by Buras et al.
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I. INTRODUCTION

The study of exclusive hadronic B-meson decays can
provide not only an interesting avenue to understand the
CP violation and flavor mixing of the quark sector in the
standard model (SM), but also powerful means to probe
different new physics scenarios beyond the SM. With the
operation of B-factory experiments, large amounts of
experimental data on hadronic B-meson decays are
being collected and measurements of previously known
observables are becoming more and more precise. Thus,
studies of the hadronic B-meson decays have entered a
precision era.

With respect to the theoretical aspect, several novel
methods have also been proposed to study exclusive had-
ronic B decays, such as the ‘‘naive’’ factorization (NF) [1],
the perturbative QCD method (pQCD) [2], the QCD facto-
rization (QCDF) [3,4], the soft collinear effective theory
ding author.
: yangyd@henannu.edu.cn.
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(SCET) [5], and so on. For quite a long time, the decay
amplitudes for exclusive two-body hadronic B decays were
estimated in the NF approach, and in many cases, this
approach could provide the correct order of the magnitude
of the branching fractions. However, it cannot predict the
direct CP asymmetries properly due to the assumption of
no strong rescattering in the final states. It is therefore no
longer adequate to account for the new B-factory data. The
other methods mentioned above are proposed to supersede
this conventional approach. Since we shall use QCDF
approach in this paper, we would only focus on this ap-
proach below.

The essence of the QCDF approach can be summarized
as follows: since the b quark mass is much larger than the
strong-interaction scale �QCD, in the heavy-quark limit
mb � �QCD, the hadronic matrix elements relevant to
two-body hadronic B-meson decays can be represented
in the factorization form [3]
hM1�p1�M2�p2�jQijB�p�i � hM1�p1�jj1jB�p�ihM2�p2�jj2j0i
�

1�
X
rn�

n
s �O��QCD=mb�

�
; (1)
where Qi is the local four-quark operator in the effective
weak Hamiltonian, j1;2 are bilinear quark currents, and M1

is the meson that picks up the spectator quark from the B
meson, while M2 is the one that can be factored out from
the �B;M1� system. This scheme has incorporated elements
of the NF approach (as the leading contribution) and the
hard-scattering approach (as the subleading corrections).
It provides a means to compute the hadronic matrix ele-
ments systematically. In particular, the final-state strong-
interaction phases, which are very important for studying
CP violation in B-meson decays, are calculable from first
principles with this formalism. Its accuracy is limited only
by higher order power corrections to the heavy-quark limit
and the uncertainties of theoretical input parameters such
as quark masses, form factors, and the light-cone distribu-
tion amplitudes. Details about the conceptual foundations
and the arguments of this approach could be found in
Refs. [3,4].
-1 © 2005 The American Physical Society
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Among the two-body hadronic B-meson decays, the
charmless B! �K and B! �� modes are very interest-
ing, since a significant interference of tree and penguin
amplitudes is expected, and hence have been studied most
extensively. Experimentally, all four decay channels for
B! �K (B� ! ��K0, B� ! �0K�, B0 ! ��K	, and
B0 ! K0�0) and the three for B! �� (B� ! ���0,
B0 ! ���
, and B0 ! �0�0) have been observed with
the CP-averaged branching ratios measured within a few
percent errors by the CLEO [6–8], BABAR [9], and Belle
[10] collaborations. The CP asymmetries in these decay
modes have also been measured recently [11–19]. In par-
ticular, measurements of the direct CP asymmetry in B0 !
��K	 have been recently achieved at the 5:7� level by
BABAR [13,14] and Belle [15–17,20]. All these experi-
mental data can therefore provide very useful information
for improving the existing model calculations. On the
theoretical side, these decay modes have also been ana-
lyzed in detail within the QCDF formalism [21–24].
Because of lack of precise experimental data at that time,
no large discrepancies between the theoretical predictions
and the experimental data were found. However, the cur-
rent new B-factory data for B! �K;�� decays indicate
some potential inconsistencies with the predictions based
on this scheme. For example, new experimental data for
B0 ! �0K0; �0�0 decay rates are significantly larger than
the theoretical predictions with this scheme. In addition,
predictions for the direct CP asymmetries in these modes
are also inconsistent with the data, even with the opposite
sign for some processes [21,25]. Moreover, the experimen-
tal results of the following ratios between the CP-averaged
branching fractions for B! �K;�� decays [26,27]

R�
 � 2
�

BR�B� ! ���0� � BR�B
 ! �
�0�

BR�B0
d ! ���
� � BR� �B0

d ! ���
�

� �B0
d

�B�

� 2:20� 0:31; (2)
R00 � 2
�

BR�B0
d ! �0�0� � BR� �B0

d ! �0�0�

BR�B0
d ! ���
� � BR� �B0

d ! ���
�

�
� 0:67� 0:14; (3)
R �
�

BR�B0
d ! �
K�� � BR� �B0

d ! ��K
�

BR�B� ! ��K0� � BR�B
 ! �
 �K0�

�
�B�

�B0
d

� 0:82� 0:06; (4)
Rc � 2
�

BR�B� ! �0K�� � BR�B
 ! �0K
�

BR�B� ! ��K0� � BR�B
 ! �
 �K0�

�
� 1:00� 0:09; (5)
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Rn �
1

2

�
BR�B0

d ! �
K�� � BR� �B0
d ! ��K
�

BR�B0
d ! �0K0� � BR� �B0

d ! �0 �K0�

�
� 0:79� 0:08; (6)

with numerical results compiled by the Heavy Flavor
Averaging Group (HFAG) [28], have shown very puzzling
patterns [29,30]. Within the SM, predictions based on the
QCDF approach give Rc � Rn, while the value for R is
quite consistent with the experimental data [25]. The cen-
tral values for R�
 and R00 calculated with the QCD
factorization [25] give R�
 � 1:24 and R00 � 0:07 as
emphasized by Buras et al.[30], which are also inconsistent
with the current experimental data. Though none of these
exciting results is conclusive at the moment due to large
uncertainties both theoretically and experimentally, it is
important and interesting to take them seriously and to find
out possible origins of these discrepancies. Recently, quite
a lot of works have been done to study the implications of
these new experimental data [30–41]. In this paper, we
restrict ourselves to the possibility that these deviations
result from our insufficient understanding of the hadronic
dynamics and investigate the higher order strong penguin
effects induced by b! Dg�g� transitions, whereD � d or
s depends on the specific decay modes. The off-shell
gluons g� are either emitted from the internal quark loops,
external quark lines, or split off from the virtual gluon of
the strong penguin.

As shown in the literature [42–47], contributions of the
higher order b! sgg process to the inclusive and semi-
inclusive decay rates of B-meson decays could be large
compared to the b! sg process. For example, in [45],
Greub and Liniger have found that the next-to-leading
logarithmic result of BNLL�b! sg� � �5:0� 1:0� 
10
5 is more than a factor of 2 larger than the leading
logarithmic one BLL�b! sg� � �2:2� 0:8�  10
5. In
addition, in [47], we have found the higher order strong
penguin could give large corrections to B! �Xs. We also
note that the large higher order chromo-magnetic penguin
contributions have also been found by Mishima and Sanda
[48] in the pQCD factorization framework. Since the B!
�K decays are dominated by strong penguin contributions,
it is interesting to investigate these higher order b! sg�g�

strong penguin effects on these penguin-dominated pro-
cesses. However, for consistency, we will also investigate
these effects on the tree-dominated B! �� decays. After
direct calculations, we find that these higher order strong
penguin contributions can provide �30% enhancement to
the penguin-dominated B! �K decay rates, and such an
enhancement can improve the consistency between the
theoretical predictions and the experimental data effec-
tively. For tree-dominated B! �� decays, however, their
effects are quite small. Since the b! Dg�g� strong pen-
guin contributions contain only a relatively small strong
phase, their effects on the direct CP asymmetries are also
small. In addition, the patterns of the quantities R, Rc, Rn,
-2
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R�
, and R00 defined above remain unaffected even with
these new contributions included.

This paper is organized as follows: In Sec. II, using the
QCDF approach, we first calculate the B! �K;�� decay
amplitudes at the next-to-leading order in �s, and then take
into account the b! Dg�g� strong penguin contributions
to the decay amplitudes. In Sec. III, after presenting the
theoretical input parameters relevant to our analysis, we
give our numerical results for B! �K and B! �� de-
cays. Some discussions on these higher order corrections
and the � dependence of the relevant quantities are also
presented. Finally, we conclude with a summary in Sec. IV.
In Appendix A, we present the correction functions at next-
to-leading order in �s. Explicit forms for the quark loop
functions are given in Appendix B.
II. DECAY AMPLITUDES FOR B! �K;��
DECAYS IN QCDF APPROACH

A. The effective weak Hamiltonian for hadronic
B decays

In phenomenological treatment of the hadronic B-meson
decays, the starting point is the effective weak Hamiltonian
at the low energy [49,50], which is obtained by integrating
out the heavy degree of freedom (e.g. the top quark, W�

and Z bosons in the SM) from the Lagrangian of the full
theory. After using the unitarity relation
�t � �u � �c, it
can be written as

H eff �
GF���

2
p

X
p�u;c

��0�p

 
C1Q

p
1 � C2Q

p
2 �

X
i�3;...;10

CiQi

� C7�Q7� � C8gQ8g

!
� H:c:; (7)

where �p � VpbV
�
ps (for b! s transition) and �0p �

VpbV�pd (for b! d transition) are products of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.
The effective operators Qi govern a given decay process
and their explicit form can be read as follows.
(i) C
urrent-current operators:

Qp
1 � � �pb�V
A� �Dp�V
A;

Qp
2 � � �pibj�V
A� �Djpi�V
A;

(8)
(ii) Q
CD-penguin operators:

Q3 � � �Db�V
A
X
q

� �qq�V
A;

Q4 � � �Dibj�V
A
X
q

� �qjqi�V
A;

Q5 � � �Db�V
A
X
q

� �qq�V�A;

Q6 � � �Dibj�V
A
X
q

� �qjqi�V�A;

(9)
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(iii) E
-3
lectroweak penguin operators:

Q7 � � �Db�V
A
X
q

3

2
eq� �qq�V�A;

Q8 � � �Dibj�V
A
X
q

3

2
eq� �qjqi�V�A;

Q9 � � �Db�V
A
X
q

3

2
eq� �qq�V
A;

Q10 � � �Dibj�V
A
X
q

3

2
eq� �qjqi�V
A;

(10)
(iv) E
lectro- and chromo-magnetic dipole operators:

Q7� �

e

8�2 mb
�D��	�1� �5�F

�	b;

Q8g �

gs
8�2 mb

�D��	�1� �5�G�	b;
(11)
where � �q1q2�V�A � �q1���1� �5�q2, i; j are color indices,
eq are the electric charges of the quarks in units of jej, and
a summation over q � u; d; s; c; b is implied. For decay
modes induced by the quark level b! d transition,D � d,
while for b! s transition, D � s.

The Wilson coefficients Ci��� in Eq. (7) represent all the
contributions from physics with scale higher than ��
O�mb� and have been reliably evaluated up to the next-
to-leading logarithmic order. Numerical results for these
coefficients evaluated at different scales can be found
in [49].

B. Decay amplitudes at the next-to-leading order in �s
Using the weak effective Hamiltonian given by Eq. (7),

we can now write the decay amplitudes for the general two-
body hadronic B! M1M2 decays as

hM1M2jH effjBi �
GF���

2
p

X
p�u;c

�pCihM1M2jQ
p
i jBi: (12)

Then, the most essential theoretical problem obstructing
the calculation of the hadronic B-meson decay amplitudes
resides in the evaluation of the hadronic matrix elements of
the local operators hM1M2jQ

p
i jBi. Within the formalism of

the QCDF, this quantity could be simplified greatly in the
heavy-quark limit. To leading power in �QCD=mb, but to
all orders in perturbation theory, it obeys the following
factorization formula [21],

hM1M2jQ
p
i jBi � FB!M1

j �m2
M2
�  TI

M2;ij
��M2

� FB!M2
j �m2

M1
�  TI

M1;ij
��M1

� TII
i ��B ��M1

��M2
; (13)

where �M is the leading-twist light-cone distribution am-
plitude of the meson M, and the � products indicate an
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integration over the light-cone momentum fractions of the
constituent quarks inside the mesons. The quantity FB!Mj

denotes the B! M transition form factor. This formula is
illustrated by the graphs shown in Fig. 1.

In Eq. (13), the hard-scattering kernels TI
M;ij and TII

i are
calculable order by order with the perturbation theory.
TI
M;ij starts at tree level, and at higher order in �s contains

the ‘‘nonfactorizable’’ corrections from the hard gluon
exchange and the light-quark loops (penguin topologies).
The hard ‘‘nonfactorizable’’ interactions involving the
spectator quark are part of the kernel TII

i . At the leading
order, TI

M;ij � 1, TII
i � 0, and the QCDF formula repro-

duce the NF results. Nonperturbative effects are either
suppressed by �QCD=mb or parametrized in terms of the
meson decay constants, the transition form factors FB!Mj ,
and the light-cone distribution amplitudes �B, �M. The
relevant Feynman diagrams contributing to these kernels at
the next-to-leading in �s are shown in Fig. 2.

According to the arguments in [3], the weak annihilation
contributions to the decay amplitudes are power sup-
pressed compared to the leading spectator interaction in
the heavy-quark limit, and hence do not appear in the
factorization formula (13). Nevertheless, as emphasized
in [2,51,52], these contributions may be numerically im-
portant for realistic B-meson decays. In particular, the
annihilation contributions with QCD corrections could
give potentially large strong phases, hence large CP vio-
lation could be expected [2,51]. It is therefore necessary to
FIG. 1. Graphical representation of the factorization formula.
Only one of the two form-factor terms in (13) is shown for
simplicity.

B̄ M1

M2

Qi

b

(a)

B̄ M1

M2

Qi

b

(b)

B̄ M1

M2

Qi

b

(c)

B̄ M1

M2

Qi

b

(d)

��
��

B̄ M1

M2

Qi
b

(e)

B̄ M1

M2

Q8g

b

(f)

B̄ M1

M2

Qi

b

(g)

B̄ M1

M2

Qi

b

(h)

FIG. 2. Order �s corrections to the hard-scattering kernels
TI
M;ij [coming from the diagrams (a)–(f)] and TII

i (from the last
two diagrams).
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take these annihilation contributions into account. At lead-
ing order in �s, the annihilation kernels arise from the four
diagrams shown in Fig. 3. They result in a further contri-
bution to the hard-scattering kernel TII

i in the factorization
formula.

As indicated in the factorization formula (13), the meson
light-cone distribution amplitudes (LCDAs) play an im-
portant role in the QCDF formalism. For convenience, we
list the relevant formula as follows (details can be found in
[53]).

LCDAs for B meson.—In the heavy-quark limit, the
light-cone projector for the B meson in the momentum
space can be expressed as [3,53,54]

M B
�
 � 


ifBmB

4
��1� v6 ��5f�

B
1 ��� � n6 
�B

2 ���g�
�;

(14)

with the normalization conditionZ 1

0
d��B

1 ��� � 1;
Z 1

0
d��B

2 ��� � 0; (15)

where � is the momentum fraction of the spectator quark in
the B meson. For simplicity, we consider only the leading-
twist �B

1 ��� contribution in this paper. Since almost all
the momentum of the B meson is carried by the heavy b
quark, we expect that �B

1 ��� � O�mb=�QCD� and � �
O��QCD=mb�.

LCDAs for light mesons.—For the light-cone projector
of light pseudoscalar mesons in momentum space, we use
the form given by [55]

MP
�
 �

ifP
4

�
6p�5��x� 
�P�5

6k26k1

k1 � k2
�p�x�

�
�

; (16)

where fP and p are the decay constant and the momentum
of the meson. The parameter �P � m2

P=�m1��� �m2����,
with m1;2��� being the current quark mass of the meson
constituents, is proportional to the chiral quark condensate.
��x� is the leading-twist distribution amplitude, whereas
�p�x� the sub-leading-twist (twist-3) one. All of them are
normalized to 1. The quark and antiquark momenta of
meson constituents, k1 and k2, are defined, respectively, by

k�1 � xp� � k�? �
~k2
?

2xp � �p
�p�;

k�2 � �1
 x�p
� 
 k�? �

~k2
?

2�1
 x�p � �p
�p�;

(17)

where �p is a lightlike vector whose 3-components point
b

B̄

M2

M1

⊗

(a)

B̄

M2

M1

⊗

(b)

B̄

M2

M1

⊗

(c)

B̄

M2

M1

⊗

(d)

FIG. 3. The annihilation diagrams of order �s.
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into the opposite direction of ~p. It is understood that only
after the factor k1 � k2 in the denominator of Eq. (16)
canceled can we take the collinear approximation, i.e.,
the momentum k1 and k2 can be set to xp and �1
 x�p,
respectively.

From now on, we denote by u the longitudinal momen-
tum fraction of the constituent quark in the emitted meson
M2, which can be factored out from the �B;M1� system,
and by v the momentum fraction of the quark in the
074007
recoiled meson M1, which picks up the spectator quark
from the decaying Bmeson. For the Bmeson decaying into
two light energetic hadronic final states, we define the
light-cone distribution amplitudes by choosing the � di-
rection along the decay path of the emission meson M2.

Equipped with these necessary preliminaries, the four
B! �K and the three B! �� decay amplitudes can be
expressed as [21,25]
A�B
 ! �
K0� � �p

��
ap4 


1

2
ap10

�
� rK�

�
ap6 


1

2
ap8

��
X�B


�
;K0� � ��ub2 � ��u � �c��b3 � b
ew
3 ��X

�B
;�
K0�;

���
2
p

A�B
 ! �0K
� � ��ua1 � �p�a
p
4 � a

p
10� � �pr

K
� �a

p
6 � a

p
8 ��X

�B
�0;K
� �

�
�ua2 � �p

3

2
�
ap7 � a

p
9 �

�
X�B


K
;�0�

� ��ub2 � ��u � �c��b3 � b
ew
3 ��X

�B
;�0K
�;

A�B0 ! ��K
� � ��ua1 � �p�a
p
4 � a

p
10� � �pr

K
� �a

p
6 � a

p
8 ��X

�B0��;K
� � ��u � �c�
�
b3 


1

2
bew

3

�
X�B

0;��K
�;

���
2
p

A�B0 ! �0K0� �

�
�ua2 � �p

3

2
�
ap7 � a

p
9 �

�
X�B

0K0;�0� 
 �p

��
ap4 


1

2
ap10

�
� rK�

�
ap6 


1

2
ap8

��
X�B

0�0;K0�


 ��u � �c�
�
b3 


1

2
bew

3

�
X�B

0;�0K0�; (18)

A�B0 ! ���
� � ��0ua1 � �
0
p�a

p
4 � a

p
10� � �

0
pr
�
��a

p
6 � a

p
8 ��X

�B0��;�
�

�

�
�0ub1 � ��0u � �0c�

�
b3 � 2b4 


1

2
bew

3 �
1

2
bew

4

��
X�B

0;���
�;

���
2
p

A�B
 ! �
�0� �

�
�0u�a1 � a2� �

3

2
�0p�
a

p
7 � r

�
�a

p
8 � a

p
9 � a

p
10�

�
X�B


�
;�0�;

A� �B0 ! �0�0� �

�

�0ua2 � �0p

�
ap4 


1

2
ap10

�
� �0pr��

�
ap6 


1

2
ap8

�



3

2
�0p�
a

p
7 � a

p
9 �

�
X�B

0�0;�0�

�

�
�0ub1 � ��

0
u � �

0
c�

�
b3 � 2b4 


1

2
bew

3 �
1

2
bew

4

��
X�B

0;�0�0�; (19)
where the ‘‘chirally enhanced’’ factor rM� � rM� ��� asso-
ciated with the coefficients a6 and a8 is defined by

rK� ��� �
2m2

K

mb����mu;d��� �ms����
;

r����� �
2m2

�

mb����mu��� �md����
;

(20)

withmq��� being the current quark mass and depending on
the scale �. The CP-conjugated decay amplitudes are
obtained from the above expressions by just replacing
��0�p with ��0��p .

In Eqs. (18) and (19), we have defined X� �BM1;M2� as the
factorized amplitude with the mesonM2 being factored out
from the � �B;M1� system

X� �BM1;M2� � hM2j� �q2q3�V
Aj0i � hM1j� �q1b�V
Aj �Bi: (21)

In term of the decay constant and the transition form
factors defined by [53,56]
hM�p�j �q���5q0j0i � 
ifPp�; (22)

hM�p0�j �q��bj �B�p�i � F �B!M
� �q2�

�
p� � p0�



m2
B 
m

2
M

q2 q�
�

� F �B!M
0 �q2�

m2
B 
m

2
M

q2 q�; (23)

the factorized amplitude can be written as

X� �BM1;M2� � i
GF���

2
p �m2

B 
m
2
M1
�F

�B!M1
0 �m2

M2
�fM2

; (24)

where we have combined the factor GF��
2
p in the effective

Hamiltonian. The quantity X� �B;M1M2� associated with the
-5
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FIG. 4. Representative diagrams induced by the b! Dg�g�

transition which are not evaluated. Here we give only the
chromo-magnetic dipole operator Q8g contributions. With O8g

replaced by the other operators, the corresponding diagrams for
these operators can also be obtained.
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annihilation coefficient bi and bew
i is given by

X� �B;M1M2� � i
GF���

2
p fBfM1

fM2
: (25)

The parameters ai � ai�M1M2� in Eqs. (18) and (19)
encode all the ‘‘nonfactorizable’’ corrections up to next-to-
leading order in �s, and are calculable with perturbative
theory. The general form of these coefficients api can be
written as [25]

api �M1M2� �

�
Ci �

Ci�1

Nc

�
�
Ci�1

Nc

CF�s
4�

�
Vi�M2�

�
4�2

Nc
Hi�M1M2�

�
� Ppi �M2�; (26)

where CF � �N2
C 
 1�=�2NC�, and NC � 3 is the number

of colors. The upper (lower) signs apply when i is odd
(even) and the superscript ‘‘p’’ should be omitted for i �
1; 2. The first part in Eq. (26) corresponds to the NF results,
and the remaining ones to the corrections up to the next-to-
leading order in �s. The quantities Vi�M2� account for the
one-loop vertex corrections, Hi�M1M2� for the hard spec-
tator interactions, and Ppi �M1M2� for the penguin contrac-
tions. In general, these quantities can be written as the
convolution of the hard-scattering kernels with the meson
distribution amplitudes. Explicit forms for these quantities
are relegated to Appendix A.

The parameters bi � bi�M1M2� in Eqs. (18) and (19)
correspond to the weak annihilation contributions and are
given as [25]

b1 �
CF
N2
c
C1A

i
1;

b3 �
CF
N2
c
�C3Ai1 � C5�Ai3 � A

f
3� � NcC6A

f
3�;

(27)

b2 �
CF
N2
c
C2A

i
1; b4 �

CF
N2
c
�C4A

i
1 � C6A

i
2�; (28)

bew
3 �

CF
N2
c
�C9Ai1 � C7�Ai3 � A

f
3� � NcC8A

f
3�; (29)

bew
4 �

CF
N2
c
�C10Ai1 � C8Ai2�; (30)

where we have omitted the argument ‘‘M1M2.’’ These
coefficients correspond to the current-current annihilation
(b1; b2), the penguin annihilation (b3; b4), and the electro-
weak penguin annihilation (bew

3 ; b
ew
4 ), respectively. The

explicit form for the building blocks Ai;jk can be found in
Appendix A.

It should be noted that within the QCDF framework, all
the nonfactorizable power suppressed contributions except
for the hard spectator and the annihilation contributions are
neglected. We have rederived the above next-to-leading
074007
order formulas calculated by Beneke and Neubert [25],
for which no deviation has been found.

C. The b! Dg�g� strong penguin contributions to the
B! �K;�� decays

From the previous subsection, we can see that, up to
next-to-leading order in �s and to leading power in
�QCD=mb, the strong-interaction phases originate from
the imaginary parts of the functions g�u� and G�s; u�, as
defined in Eq. (A2) and Eq. (A8), respectively. The pres-
ence of a strong-interaction phase in the penguin function
G�s; u� is well known and commonly referred to as the
Bander-Silverman-Soni (BSS) mechanism [57]. The reli-
able calculation of the imaginary part of function g�u�
arising from the hard gluon exchanging between the two
outgoing mesons is a new product of the QCDF approach.
However, recent experimental data indicate that there may
exist extra new strong-interaction phases in hadronic
B-meson decays. Since the b! sgg transitions play an
important role in the inclusive and semi-inclusive B-meson
decays as discussed in the literature [42– 48], in this sec-
tion we shall generalize these results to exclusive two-body
hadronic B decays, and investigate these b! Dg�g�

strong penguin contributions to B! �K;�� decays.
At the quark level, the b! Dg�g� transitions can occur

in many different manners as depicted by Figs. 4–6. For
example, one of the gluons can radiate from the external
quark line, with the other one coming from the chromo-
magnetic dipole operator O8g as in Figs. 5(b) and 5(c) or
from the internal quark loop in the QCD-penguin diagrams
in Figs. 6(b) and 6(c). On the other hand, the two gluons
can also radiate from the internal quark loops in Figs. 6(d)
and 6(e) or split off the virtual gluon of the strong penguin
processes as shown by Figs. 5(a) and 6(a). Here we do not
consider the diagrams of the category in Fig. 4, since their
contributions can be absorbed into the definition of the
B! M1 transition form factors Figs. 4(a) and 4(b) or
further suppressed by g2

s=16�2. It is easy to clarify this
-6
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FIG. 6. Strong penguin contributions induced by the b!
Dg�g� transition.
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M2
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(b)
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FIG. 5. Chromo-magnetic operator Q8g contributions induced
by the b! Dg�g� transition.
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point by comparing the strengths of Fig. 4(c) to that of
Fig. 5(a).

As can be seen from Figs. 5 and 6, these penguin
diagrams should be the dominant contributions of order
�2
s , since they are not two-loop QCD diagrams and there is

no additional 1
16�2 suppression factor compared to the

genuine two-loop contributions of order �2
s . Studies of

these contributions could be helpful for understanding
the higher order perturbative corrections within the
QCDF formalism. In the following, we first discuss these
higher order strong penguin contributions to decay modes
with two light pseudoscalar mesons in the final states,
074007
B! M1M2, and then specialize this general case to the
B! �K;�� decays and investigate the effect of these
higher order corrections on the branching ratios and CP
asymmetries for these modes.

We start with the calculation of the diagrams in Fig. 5. In
this case, the weak decay is induced by the chromo-
magnetic dipole operator O8g. The calculation is straight-
forward with the result given by
AQ8g
� 
i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�
�M2
�u��M1

�v�
�

1

6�1
 u��1
 v�
�

3�3
 v�
2�1
 u��1
 v�v

�

� rM1
� �M2

�u��M1
p �v�

�
2
 u

6�1
 u�u�1
 v�
�

3�3
 u
 v� uv�

2�1
 u�2�1
 v�v

�

� rM2
� �M2

p �u��M1
�v�

�
1� u

6�1
 u��1
 v�
�

3�3
 u
 v
 uv�
2�1
 u��1
 v�v

�

� rM1
� rM2

� �M2
p �u��

M1
p �v�

�
1

6�1
 u��1
 v�
�

3�3
 v�
2�1
 u��1
 v�v

��
; (31)
Q1,3

b s,d

g∗(µ, a, k)

I a
µ(k )

Q4,6

b s,d

g∗(µ, a, k)

Ĩ a
µ(k )

FIG. 7. Building blocks Ia��k� (associated with the contraction
of the operators Q1;3) and ~Ia��k� (associated with the contraction
of the operators Q4;6) for Figs. 6(a)–6(c).
where �t � VtbV�ts (for the b! s transition) and �0t �
VtbV�td (for the b! d transition) are products of the
CKM matrix elements. As always, �M and �M

p denote
the leading-twist and twist-3 LCDAs of the pseudoscalar
meson M in the final state, respectively.

In calculation of the Feynman diagrams of Fig. 6, we
follow the method proposed by Greub and Liniger [45].
First, we calculate the fermion loops in these individual
diagrams, and then insert these building blocks into the
entire diagrams to obtain the total contributions. In evalu-
ating the internal quark loop diagrams, we shall adopt the
naive dimensional regularization (NDR) scheme and the
modified minimal subtraction (MS) scheme. In addition,
we shall adopt the ad hoc Feynman gauge throughout this
paper. Similar to the calculation of the penguin contrac-
tions in Appendix A, we should consider the two distinct
contractions in the weak interaction vertex of these pen-
guin diagrams.

As can be seen from Fig. 6, the first three diagrams have
the same building block Ia��k� (corresponding to the con-
traction of operators Q1;3) or ~Ia��k� (associated with the
contractions of the operators Q4;6). These building blocks
are shown in Fig. 7 and given by

Ia��k� �
gs

4�2 �
�

2

�
�2
 ��4��2�=2�k�6k
 k2���

 �1
 �5�T
a
Z 1

0
dx

x�1
 x�

�m2
q 
 x�1
 x�k2 
 i��=2

;

(32)
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O1,3

b s,d

g∗(µ, a, k) g∗(ν, b,p)

O1,3

b s,d

g∗(ν, b,p) g∗(µ, a, k)

J ab
µν(k, p)

Q4,6

b s,d

g∗(µ, a, k) g∗(ν, b,p)

Q4,6

b s,d

g∗(ν, b,p) g∗(µ, a, k)

J̃ ab
µν(k, p)

FIG. 8. Building blocks Jab�	�k; p� (associated with operators
Q1;3) and ~Jab�	�k; p� (associated with operators Q4;6) for
Figs. 6(d) and 6(e).
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~Ia��k� �
gs

2�2 �
�

2

�
�4��2�=2�k�6k
 k

2����1
 �5�

 Ta
Z 1

0
dx

x�1
 x�

�m2
q 
 x�1
 x�k

2 
 i��=2
; (33)

where k and Ta are the momentum and the color generator
of the off-shell gluon, gs is the strong coupling constant,
andmq the pole mass of the quark propagating in the quark
loops. The free indices � and a should be contracted with
the gluon propagator when inserting these building blocks
into the entire diagrams. Here we have used the d dimen-
sion space-time as d � 4
 . After performing the sub-
traction with the MS scheme, we get

Ia��k� �
gs

8�2

�



2

3



4

3
ln
mb

�
�G�sq; 1
 u�

�
 �k�6k
 k

2����1
 �5�T
a; (34)

~Ia��k� �
gs

8�2

�



4

3
ln
mb

�
�G�sq; 1
 u�

�
 �k� 6k
 k2����1
 �5�Ta; (35)

with the function G�s; u� defined by Eq. (A8).
The sum of the fermion loops in the last two diagrams in

Fig. 6 are denoted by the building block Jab�	�k; p� (corre-
sponding to the contraction of operators Q1;3) or ~Jab�	�k; p�
(corresponding to the contraction of operators Q4;6), as
depicted by Fig. 8. Using the decomposition advocated
by [44,45], these building blocks can be expressed as

Jab�	�k; p� � T��	�k; p�fTa; Tbg � T
�	�k; p��Ta; Tb�; (36)

~J ab�	�k; p� � ~T��	�k; p�fTa; Tbg � ~T
�	�k; p��Ta; Tb�;

(37)

where the first part is symmetric, while the second one is
antisymmetric with respect to the color structures of the
two gluons. Here k�p�, a�b�, and ��	� are the momentum,
color, and polarization of the off-shell gluons. Below, we
refer to the gluon with indices �	; b; p� as the one connect-
ing with the spectator quark from the B meson.

In the NDR scheme, after integrating over the (shifted)
loop momentum, we can present the quantities T��	�k; p�
and ~T��	�k; p� as [44,45]

T��	�k; p� �
�s
4�

�
E��; 	; k��i5 � E��; 	; p��i6


 E��; k; p�
k	
k � p

�i23 
 E��; k; p�


p	
k � p

�i24 
 E�	; k; p�
k�
k � p

�i25


 E�	; k; p�
p�
k � p

�i26

�
�1
 �5�; (38)
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T
�	�k; p� �
�s
4�

�
6kg�	�i2 � 6pg�	�i3 � ��k	�i8

� ��p	�i9 � �	k��i11 � �	p��i12

� 6k
k�k	
k � p

�i15 � 6k
k�p	
k � p

�i16 � 6k
p�k	
k � p

�i17

� 6k
p�p	
k � p

�i18 � 6p
k�k	
k � p

�i19 � 6p
k�p	
k � p

�i20

� 6p
p�k	
k � p

�i21 � 6p
p�p	
k � p

�i22

�
�1
 �5�;

(39)

~T ��	�k; p� � aT��	�k; p�; (40)

~T 
�	�k; p� � T
�	�k; p� �
�s
4�

�
6kg�	

4

3

 6pg�	

4

3

 ��k	

8

3


 ��p	
4

3
� �	k�

4

3
� �	p�

8

3

�
�1
 �5�;

(41)

where the matrix E in Eq. (38) is defined by

E��; 	; k� � ���	6k
 ��k	 � �	k� 
 6kg�	

� 
i�	�
k
��
�5; (42)

with the second line obtained in a four dimension context
with the Bjorken-Drell conventions. The parameter a in
Eq. (40) denotes the chiral structure of the local four-quark
operators in the weak interaction vertex with a � �
corresponding to �V 
 A� � �V 	 A�, respectively. The
-8
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dimensionally regularized expressions for the �i functions are collected in Appendix B.
Equipped with the explicit form for these building blocks, we can now evaluate all the Feynman diagrams in Fig. 6. After

direct calculations, the final results with the subscript denoting the contraction of the corresponding operator in the weak
interaction vertex are

AQ1
� i

�2
sfBfM1

fM2

N3
c

��0�p
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�



2

3



4

3
ln
mb

�
�G�sp; 1
 u�

�
f1�u; v�

� i
�2
sfBfM1

fM2

N3
c

��0�p
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudvf2�u; v;mp�; (43)

A Q3
� 
i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�



4

3



8

3
ln
mb

�
�G�0; 1
 u� �G�1; 1
 u�

�
f1�u; v�


 i
�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv�f2�u; v; 0� � f2�u; v;mb��; (44)

AQ4
� 
i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�



4nf
3

ln
mb

�
� �nf 
 2�G�0; 1
 u� �G�sc; 1
 u� �G�1; 1
 u�

�

 f1�u; v� 
 i
�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv��nf 
 2�f3�u; v; 0� � f3�u; v;mc� � f3�u; v;mb��; (45)

AQ6
� 
i

�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv

�



4nf
3

ln
mb

�
� �nf 
 2�G�0; 1
 u� �G�sc; 1
 u� �G�1; 1
 u�

�

 f1�u; v� 
 i
�2
sfBfM1

fM2

N3
c

��0�t
Z 1

0
d�

�B
1 ���
�

Z 1

0
dudv��nf 
 2�f4�u; v; 0� � f4�u; v;mc� � f4�u; v;mb��; (46)

with

f1�u; v� � �M2
�u��M1

�v�
�

1

12�1
 u��1
 v�
�

3�3
 2u
 v�
4�1
 u��1
 v�v

�

� rM1
� �M2

�u��M1
p �v�

�
3�3
 v�

4�1
 u��1
 v�v
�

2
 u
12�1
 u�u�1
 v�

�


 rM1
� rM2

� �M2
p �u��

M1
p �v�

�
1

12�1
 u��1
 v�



3�3
 2u
 v� 2uv�
4�1
 u��1
 v�v

�

� rM2
� �M2

p �u��M1
�v�

�
1

12�1
 v�
�

3�3
 v�
4�1
 v�v

�
; (47)

f2�u; v;mq� � �M2
�u��M1

�v�
�

3�i2
8�1
 u��1
 v�

�
3�i3

8�1
 u�v
�

7�i6
24�1
 u�v

�
3�i8

8�1
 v�v
�

7�i23

24�1
 v�v

�
7�1
 u� v��i5

24�1
 u��1
 v�v

�

 rM1

� �M2
�u��M1

p �v�
�

3

8�1
 u�v
��i3 � �i21� �

3�i12

4�1
 u�v

�
7

24�1
 u�v
��i6 ��i26� �

7�i5
12�1
 u��1
 v�

�
3

8�1
 u��1
 v�
��i2 
 �i8 � �i17�

�


 rM2
� �M2

p �u��M1
�v�

�
3�i2

8�1
 v�v
�

7�i23

24�1
 v�v
�

7�i5
12�1
 v�v



3�i8

8�1
 v�

�

� rM1
� rM2

� �M2
p �u��

M1
p �v�

�
7�i5

12�1
 v�



3�i12

8v



7u�i23

12�1
 u��1
 v�
�

3u
8�1
 u�v

��i3 � �i21�

�
7

24�1
 u�v
��i6 ��i26� �

3

8

�
1

�1
 u��1
 v�
�

1

v

�
��i2 � �i8 � �i17�

�
; (48)
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f3;�4��u; v;mq� � �M2
�u��M1

�v�
�


�3
 2u
 2v�

2�1
 u��1
 v�v
�

3�i2
8�1
 u��1
 v�

�
3�i3

8�1
 u�v
�

7�1
 u� v��i5
24�1
 u��1
 v�v

�
7�i6

24�1
 u�v
�

3�i8
8�1
 v�v

�
7�i23

24�1
 v�v

�

 rM1

� �M2
�u��M1

p �v�
�

3

2�1
 u��1
 v�v

�
3

8�1
 u�v
��i3 � �i21� �

7

24�1
 u�v
��i6 � �i26� �

3�i12

4�1
 u�v
�

7�i5
12�1
 u��1
 v�

�
3

8�1
 u��1
 v�
��i2 
 �i8 ��i17�

�

 rM2

� �M2
p �u��M1

�v�
�

3

2�1
 v�v
�

3�i2
8�1
 v�v

�
7�i23

24�1
 v�v
�

7�i5
12�1
 v�v



3�i8

8�1
 v�

�
� rM1

� rM2
� �M2

p �u��
M1
p �v�

�



3
 2u
 2v� 2uv
2�1
 u��1
 v�v

�
7�i5

12�1
 v�



3�i12

8v
	

7u�i23

12�1
 u��1
 v�
�

3u
8�1
 u�v

��i3 � �i21� �
7

24�1
 u�v
��i6 ��i26�

�
3

8

�
1

�1
 u��1
 v�
�

1

v

�
��i2 � �i8 � �i17�

�
; (49)
where the argument mq is the quark mass propagating in
the fermion loops. At this stage, the �i functions are the
ones that have been performed with the Feynman parame-
ter integrals, whose explicit forms can be found in
Appendix B.

With the individual operator contributions given above,
the total contributions of these higher order b! Dg�g�

strong penguin diagrams to the decay amplitudes of B!
M1M1 modes can be written as

A b!Dg�g� �
GF���

2
p �Ceff

8gAQ8g
� C1AQ1

� C3AQ3

� C4AQ4
� C6AQ6

�: (50)

In order to specialize these general results to B! �K;��
decays, we just need to replace M1 and M2 with the
corresponding mesons. Explicitly, the b! Dg�g� strong
penguin contributions to the decay amplitudes of the four
B! �K and the three B! �� decay channels are

A0�B
 ! �
K0� �A0�B0 ! ��K
�

�Ab!sg�g� �M1 ! �;M2 ! K�;���
2
p

A0�B
 ! �0K
� � 

���
2
p

A0�B0 ! �0K0�

�Ab!sg�g� �M1 ! �;M2 ! K�;

(51)

A0�B0 ! ���
� �A0�B0 ! �0�0�

�Ab!dg�g� �M1 ! �;M2 ! ��;

A0�B
 ! �
�0� � 0; (52)

where the superscript ‘‘0’’ is indicated there to be distin-
guished from the next-to-leading order results given by
Eqs. (18) and (19). The total decay amplitudes are then
the sum of these two pieces.
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With the total decay amplitudes, the branching ratio for
B! M1M2 decays reads

B�B! M1M2� �
�Bpc
8�m2

B

jA�B! M1M2�

�A0�B! M1M2�j
2 � S; (53)

where �B is the lifetime of the Bmeson, S � 1=2 ifM1 and
M2 are identical, and S � 1 otherwise. pc is the magnitude
of the momentum of the final-state particle M1;2 in the
B-meson rest frame and is given by

pc �
1

2mB

��������������������������������������������������������������������������������������������
�m2

B 
 �mM1
�mM2

�2��m2
B 
 �mM1


mM2
�2�

q
:

(54)

As for the direct CP asymmetries, we use the definition
of the difference of the �B-meson minus B-meson decay
rates divided by their sum. With the branching ratios of
the CP-conjugated modes denoted by B� �B! �f�, the
CP-averaged branching ratios and the direct CP asymme-
tries for B! f decays can be expressed, respectively, as

�B �
1

2
�B� �B! �f� �B�B! f��; (55)

A CP �
B� �B! �f� 
B�B! f�

B� �B! �f� �B�B! f�
: (56)
III. NUMERICAL CALCULATION AND
DISCUSSIONS

A. Input parameters

The theoretical predictions with the QCDF approach
depend on many input parameters such as the CKM matrix
elements, Wilson coefficients, hadronic parameters, and so
on. We present all the relevant input parameters as follows.
-10
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Wilson coefficients.—The Wilson coefficients Ci��� in
the effective weak Hamiltonian have been reliably eval-
uated to the next-to-leading logarithmic order. To proceed,
we use the following numerical values at the � � mb
scale, which have been obtained in the NDR scheme
[49,58],

C1 � 1:082; C2 � 
0:185; C3 � 0:014;

C4 � 
0:035; C5 � 0:009; C6 � 
0:041;

C7=� � 
0:011; C8=� � 0:059;

C9=� � 
1:241; C10=� � 0:218;

Ceff
7� � 
0:299; Ceff

8g � 
0:143:

(57)

The CKM matrix elements.—The widely used parame-
trization of the CKM matrix elements in analyzing
B-meson decays is the Wolfenstein parametrization, which
emphasizes the hierarchies among its elements and is ex-
panded as a power series in the parameter � � jVusj [59],

VCKM �

1
 �2

2 � A�3��
 i��


� 1
 �2

2 A�2

A�3�1
 �
 i�� 
A�2 1

0BBB@
1CCCA

�O��4�: (58)

The values of the four Wolfenstein parameters (A, �, �, and
�) could be determined from the best knowledge of the
experimental and theoretical inputs. In this paper, we take

A � 0:8533; � � 0:2200;

�� � 0:20; �� � 0:33;
(59)
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as our default input values [60]. The parameters �� and ��
are defined by �� � ��1
 �2

2 �; �� � ��1
 �2

2 �.
Masses and lifetimes.—For the quark mass, there are

two different classes appearing in the QCDF approach.
One type is the pole quark mass which appears in the
evaluation of the penguin loop corrections, and is denoted
by mq with q � u; d; s; c; b. In this paper, we take

mu � md � ms � 0; mc � 1:47 GeV;

mb � 4:80 GeV;
(60)

as our default input values.
The other one is the current quark mass which appears in

the equations of motion and is used to calculate the matrix
elements of the penguin operators as well as the chiral
enhancement factors rM� . This kind of quark mass is scale
dependent. To get the corresponding value at the given
scale, we should use the renormalization group equation
to run them, which can be found, for example, in [49].
Following Ref. [25], we hold �mu �md�=ms fixed and use
ms as an input parameter. Explicitly, we take

mu�2 GeV� � md�2 GeV� � 0:0413ms�2 GeV�;

ms�2 GeV� � 90 MeV; mb�mb� � 4:40 GeV;
(61)

where the difference between the u and d quark is not
distinguished.

For meson masses and the lifetimes of the B meson, we
adopt the center values given by [60]
�Bu � 1:671 ps; �Bd � 1:536 ps; mBu � 5:2794 GeV; mBd � 5:2790 GeV;

mK� � 493:7 MeV; mK0 � 497:6 MeV; m�� � 139:6 MeV; m�0 � 135:0 MeV:
Light-cone distribution amplitudes of mesons.—Since
the QCDF approach is based on the heavy-quark assump-
tion, to a very good approximation, we can use the asymp-
totic form of the LCDAs for light mesons [53,56,61]

�M�x� � 6x�1
 x�; �M
p �x� � 1: (62)

With respect to the endpoint divergence associated with the
momentum fraction integral over the LCDAs appearing in
this paper, in analogy to the treatment in Refs. [21,62], we
regulate the integral with an ad hoc cutoffZ 1

0
dv

�M
p �v�

1
 v
!

Z 1
�h=mB

0
dv

�M
p �v�

1
 v
� ln

mB

�h
; (63)

with �h � 500 MeV, and do not distinguish whether this
divergence comes from the hard spectator rescattering or
from the annihilation contributions. The possible complex
phase associated with this integral has also been neglected.
As for the B-meson wave functions, within our approxi-
mation, we need only consider the first inverse moment of
the LCDA �B

1 ��� defined by [21]

Z 1

0

d�
�

�B
1 ��� �

mB

�B
; (64)

where the hadronic parameter �B has been introduced to
parametrize this integral. This parameter has been eval-
uated using different methods [63,64] recently. In this
paper, we take �B � 460 MeV as our default input value
[63].

Decay constants and transition form factors.—The de-
cay constants and the form factors are nonperturbative
parameters and can be determined from experiments and/
or theoretical estimations. For the decay constants, we take

fB � 200 MeV: (65)
-11
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For the form factors involving the B! K and B! �
transitions, we take

FB!�0 �0� � 0:258; FB!K0 �0� � 0:331; (66)

as the default values at the maximum recoil. In addition,
we use the formula

FB!M0 �q2� �
rM2

1
 q2=m2
fit�M�

; (67)

to parametrize the dependence of this form factor on the
momentum-transfer q2, with the fit parameters given by

r�2 � 0:258; m2
fit��� � 33:81;

rK2 � 0:330; m2
fit�K� � 37:46:

(68)

All of these values are taken from the latest QCD sum rule
analysis [65].

B. Numerical results and discussions

With the theoretical expressions and the input parame-
ters given above, we can now evaluate the branching ratios
and the direct CP asymmetries for B! �K and B! ��
decays. For each quantity, we first give the predictions at
the next-to-leading order in �s, and then take into account
the b! Dg�g� strong penguin corrections, which are of
order �2

s . The combining contributions of the two pieces,
denoted by O��s � �

2
s�, are then given in the last. For

comparison, the NF results are also presented. All the
averaged experimental data are taken from HFAG [28].

1. The CP-averaged branching ratios for B! �K;��
decays

In the SM, the four B! �K decays are dominated by
the b! s strong penguin diagrams, with additional sub-
dominant contributions from the tree and electroweak pen-
guin diagrams. The three B! �� decays, however, are
tree-dominated modes. It is therefore expected that these
TABLE I. The CP-averaged branching ratios (i
the default input parameters. �Bf and �Bf�a denote
contributions, respectively. The NF results, whi
comparison. �� � 0:20 and �� � 0:33.

Decay mode NF �Bf

O��s� O��s � �2
s

B
 ! �
K0 10.07 13.28 17.31
B
 ! �0K
 5.69 7.30 9.37
B0 ! ��K
 7.71 10.25 13.61
B0 ! �0K0 3.38 4.63 6.26
B0 ! ���
 7.41 7.69 7.99
B
 ! �
�0 5.12 5.06 5.06
B0 ! �0�0 0.15 0.16 0.19
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higher order strong penguin diagrams considered in this
paper should contribute effectively to B! �K modes,
while having only a minor impact on B! �� ones.
Numerical results of the CP-averaged branching ratios
for these modes are collected in Table I.

The dependence of these CP-averaged branching ratios
on the weak phase � is shown by Fig. 9 (without the
annihilation contributions) and Fig. 10 (with the annihila-
tion contributions), where the solid and dashed lines cor-
respond to the theoretical predictions with and without the
b! Dg�g� strong penguin contributions included, respec-
tively. The horizontal solid lines denote the experimental
data as given in Table I, with the thicker one denoting its
center value and the thinner ones its error bars. In these and
the following figures, the default values of all inputs pa-
rameters except for the CKM angle � are used.

From these two figures and the numerical results given
by Table I, we can see that:
(i) F
n units o
the res

ch are

� O�

16
8

12
5
8

0

-12
or penguin-dominated B! �K decays, due to the
enhancement of the penguin amplitudes, the QCDF
scheme prefers larger branching ratios than the NF
approximation. With our default input parameters,
however, predictions for the branching rations are
still smaller than the experimental data even after
the inclusion of the annihilation contributions, if
we consider only contributions up to the next-to-
leading order in �s. The effects of these higher
order b! sg�g� strong penguin corrections are
very prominent in these penguin-dominated B!
�K decays. With our input parameters, we find that
these higher order strong penguin contributions can
give �30% enhancement to the corresponding
branching ratios, and such an enhancement can
improve the consistency between the theoretical
predictions and the experimental data significantly.
In addition, we find that the effect of the annihila-
tion contributions on the branching ratios, though
not negligible, is not so large as claimed by the
pQCD method [2,51].
f 10
6) for B! �K;�� decays with
ults without and with the annihilation
of order O��0

s�, are also shown for

�Bf�a Exp.

�s� O��s � �2
s�

.04 20.44 24:1� 1:3

.72 10.97 12:1� 0:8

.46 16.15 18:2� 0:8

.70 7.50 11:5� 1:0

.32 8.63 4:5� 0:4
� � � � � � 5:5� 0:6
.17 0.21 1:45� 0:29



FIG. 9. The � dependence of the CP-averaged branching
ratios for B! �K;�� decays without the annihilation contri-
butions. The solid and dashed lines correspond to the theoretical
predictions with and without the b! Dg�g� strong penguin
contributions included, respectively. The horizontal solid lines
denote the experimental data as given in Table I, with the thicker
ones being its center values and the thinner its error bars.

FIG. 10. The � dependence of the CP-averaged branching
ratios for B! �K;�� decays with the annihilation contribu-
tions included. The meaning of the curves and the horizontal
solid lines is the same as in Fig. 9.
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(ii) F
or tree-dominated B! �� decays, the higher
order b! dg�g� contributions play only a minor
role. To a very good approximation, the B� !
���0 decay can be considered as a pure tree
process, and it does not receive annihilation con-
tributions either. The theoretical prediction for the
corresponding branching ratio agrees with the data
quite well. For the other two B! �� modes,
however, theoretical predictions with QCDF ap-
proach are quite inconsistent with the measured
ratios, even with the annihilation and the higher
order strong penguin contributions included. With
our input parameters, we find that the theoretical
prediction for the �B0 ! �0�0 mode is about an
eighth of the experimental data; for the �B0 !
���
 mode, on the other hand, a value about 2
times larger than the data is predicted.
(iii) A
s for the � dependence of the corresponding
branching ratios, we can see that the two decay
modes, B� ! ���0 and B� ! ��K0, are almost
independent of this angle, since the corresponding
074007-13
decay amplitudes have to a good approximation
only a single weak phase. In addition, the discrep-
ancy between the theoretical prediction and the
experimental data for B0 ! ���
 can be removed
if we use a large angle �� 120�. With the annihi-
lation and the higher order strong penguin contri-
butions included, the four B! �K modes,
however, prefer a smaller value for this angle
around �� 80�, which is quite consistent with
the latest direct experimental measurement � �
81� � 19��stat:� � 13��sys:� � 11��model� [66].
(iv) T
he theoretical predictions for the branching ratios
are very sensitive to the value of the form factor
FB!�0 . For example, the large measured decay rates
for the four B! �K decays can be well accom-
modated with a larger value of the form factor as
shown by Beneke and Neubert [25]. On the other
hand, the prediction for B0 ! ���
 decays can
become consistent with the data only when a
smaller value is used. The large measured ratio
for B0 ! �0�0, however, remains unresolved
with the varying of these parameters. It is a tough
theoretical challenge to accommodate the current
experimental data in the SM.



TABLE II. Ratios between the CP-averaged branching frac-
tions for B! �K;�� modes. The values in the parentheses are
the ones without the annihilation contributions.

NF O��s� O��s � �
2
s� Exp.

R�
 1.272 1.119 (1.209) 1.077 (1.163) 2:20� 0:31
R00 0.040 0.041 (0.042) 0.048 (0.047) 0:67� 0:14
R 0.833 0.845 (0.840) 0.860 (0.855) 0:82� 0:06
Rc 1.130 1.087 (1.100) 1.074 (1.083) 1:00� 0:09
Rn 1.140 1.092 (1.106) 1.077 (1.087) 0:79� 0:08

FIG. 11. Ratios of the CP-averaged branching fractions de-
fined by Eq. (2) as functions of the weak phase �. The meaning
of the curves and the horizontal solid lines is the same as in
Fig. 9.
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Since the uncertainties in the predictions for branching
ratios can be largely eliminated by taking ratios between
them, we now discuss the variations of the quantities
defined by Eq. (2) with the higher order b! Dg�g� strong
penguin contributions included. It is the known ‘‘�K’’
puzzle [29,30] that the SM predictions are inconsistent
with current experiment data. The theoretical predictions
and the current experimental data for these ratios are
collected in Table II. For the � dependence of these quan-
tities, we display them in Fig. 11, where the curves and the
TABLE III. The direct CP asymmetries (in un
default input parameters. AfCP and Af�aCP denote
contributions, respectively.

Decay mode AfCP

O��s� O��s � �2
s�

B
 ! �
K0 0.73 0.52
B
 ! �0K
 7.59 6.94
B0 ! ��K
 5.31 4.83
B0 ! �0K0 
3:08 
2:84
B0 ! ���
 
4:73 
5:51
B
 ! �
�0 
0:30 
0:31
B0 ! �0�0 55.52 58.53
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horizontal solid lines have the same interpretations as in
Fig. 9.

From Table II and Fig. 11, we can find that the two ratios
Rc and Rn are indeed approximately equal within the SM
as claimed in Ref. [30], while the experimental data for the
two quantities are quite different with the puzzling pattern
Rn < 1. On the other hand, the value of the quantity R
predicted by the QCDF approach is well consistent with
the experimental data. For the other two ratios R�
 and
R00, the discrepancies between the theoretical predictions
and the experimental data are quite large. As the b!
Dg�g� strong penguin contributions to B! �K;�� de-
cays are similar in nature, and hence eliminated in the
ratios between the corresponding branching fractions, the
patterns of the these quantities remain unaffected even with
these new strong penguin contributions included. From the
� dependence of the ratios between the four B! �K
decays, a smaller value for this phase is preferred. On the
other hand, a larger value for this phase is favored by B!
�� decays. These inconsistencies may be hints for new
physics playing in the electroweak penguin sector as sug-
gested by Buras et al. [30].

2. The direct CP asymmetries for B! �K;�� decays

Contrary to the NF approximation, the QCDF scheme
can predict the strong-interaction phases and hence the
direct CP asymmetries in the heavy-quark limit. The nu-
merical results and the experimental data for this quantity
involving the four �K and the three �� final states are
collected in Table III. The � dependence of the direct CP
asymmetries is displayed in Fig. 12 (without the annihila-
tion contributions) and Fig. 13 (with the annihilation con-
tributions), in which the curves and the horizontal solid
lines also have the same interpretation as in Fig. 9.

From these two figures and the numerical results given
in Table III, we can see that:
(i) T
its of 10
the resu

O��s�

0.65
6.56
4.39

2:71

4:54
� � �

55.03

-14
he direct CP asymmetries for B! �K;�� de-
cays are predicted to be typically small with the
QCDF formalism. This could be well understood,

2) for B! �K;�� decays with the
lts without and with the annihilation

Af�aCP Exp.

O��s � �2
s �

0.46 
2:0� 3:4
6.07 4� 4
4.08 
10:9� 1:9

2:54 
9� 14

5:27 37� 10
� � � 
2� 7
55.50 28� 39



FIG. 13. The � dependence of the CP asymmetries with the
annihilation contributions included. The meaning of the curves
and the horizontal solid lines is the same as in Fig. 9.

FIG. 12. The � dependence of the CP asymmetries without
the annihilation contributions. The meaning of the curves and the
horizontal solid lines is the same as in Fig. 9.
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since the direct CP asymmetries are proportional to
the sines of the strong-interaction phases, which are
usually suppressed by �s and/or �QCD=mb within
the QCDF formalism. Because of a potentially
large relative phase between the QCD penguins
and the coefficient a2, the B0 ! �0�0 mode, how-
ever, is an exception to this general rule. The direct
CP asymmetries for this mode is predicted to be
about 55%.
(ii) A
lthough the individual Feynman diagram in Fig. 6
carries a large strong phase, the combining contri-
butions of these b! Dg�g� strong penguin dia-
grams contain only a relatively small one. Thus,
these higher order strong penguin contributions to
the direct CP asymmetries are also small.
(iii) T
he theoretical predictions for ACP�B
0 ! ���
�

and ACP�B
0 ! ��K
� are quite smaller than the

experimental data, particularly with the opposite
sign. How to accommodate these discrepancies in
the SM is still a challenge.
IV. CONCLUSIONS

In this paper, we have revisited the B! �K;�� decays
in the framework of QCDF with the b! Dg�g� strong
074007
penguin contributions included. The main conclusions of
this paper are:
(1) F
-15
or penguin-dominated B! �K decays, the higher
order strong penguin contributions induced by b!
sg�g� transitions to the branching ratios are rather
large. With our input parameters, we find that these
higher order strong penguin contributions can give
�30% enhancement to the corresponding branching
ratios, and such an enhancement can improve the
consistency between the theoretical predictions and
the experimental data significantly.
(2) F
or tree-dominated B! �� decays, the higher or-
der b! dg�g� contributions to the corresponding
branching ratios are quite small.
(3) B
ecause of large cancellations among the b!
Dg�g� strong penguin contributions, only a rela-
tively small strong phase remains, so that the con-
tributions have small effects on predictions of the
direct CP asymmetries.
(4) S
ince corrections of these higher order strong pen-
guin diagrams to the decay amplitudes are similar in
nature, and hence canceled in the ratios between the
corresponding branching fractions, the patterns of
the quantities R, Rc, Rn, R�
, and R00 remain un-
affected compared to the next-to-leading order re-
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sults. So we have not found a solution to the ‘‘�K’’
puzzle. Our results indicate that to resolve the
puzzle we may have to resort to new physics con-
tributions through the electroweak penguin sector as
observed by Buras et al. [30].
(5) T
he theoretical predictions for the branching ratios
and the direct CP asymmetries still have large theo-
retical uncertainties. The dominant errors are in-
duced by the uncertainties of the FB!�;K0 �q2� form
factors, strange quark mass ms���, and the CKM
angle �.
Although the results presented here still have large
theoretical uncertainties, the b! Dg�g� strong penguin
contributions to two-body hadronic B-meson decays, par-
ticularly to penguin-dominated modes, have been shown to
be very important. Further systematic studies on these
higher order contributions to charmless B decays are there-
fore interesting and deserving.
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Note added.—After this work was finished, we note an
interesting study of �2

s corrections to B! �K;�� decays
has been carried out by Li, Mishima, and Sanda [67] in
pQCD formalism. However, the contributions studied here
as depicted by the Feynman diagrams in Figs. 5 and 6 are
not included in their paper.

APPENDIX A: CORRECTION FUNCTIONS AT
NEXT-TO-LEADING ORDER IN �s

In this appendix, we present the explicit form for the
correction functions appearing in the parameters ai and bi.
Details about the calculation can be found in Refs. [21,25].

One-loop vertex corrections.—The vertex parameters
Vi�M2� result from the first four diagrams in Fig. 2, given
by (with M2 � �, or K)
Vi�M2� �

8>>><>>>:
R

1
0 du�M2

�u��12 lnmb
� 
 18� g�u�� i � 1–4; 9; 10;R

1
0 du�M2

�u��
12 lnmb
� � 6
 g�1
 u�� i � 5; 7;R

1
0 du�M2

p �u��
6� i � 6; 8;

(A1)
Q1,3

M2

Q4,6

M2

FIG. 14. Two different penguin contractions.
with

g�u� � 3
�

1
 2u
1
 u

lnu
 i�
�
: (A2)

The scheme-dependent constants 
18, 6, 
6 are specific
to the NDR scheme for �5. �M2

and �M2
p denote the

leading-twist and twist-3 LCDAs of the emitted meson
M2, respectively.

Penguin contractions.—The QCD and electroweak pen-
guin parameters Pp4;6 and Pp8;10 arise from the diagrams in
Figs. 2(e) and 2(f). Considering the fact that there exist two
distinct penguin contractions as shown in Fig. 14, these
penguin contributions can be written as

Pp4 �M2� �
CF�s
4�Nc

�
C1

�
4

3
ln
mb

�
�

2

3

GM2

�sp�
�

� C3

�
8

3
ln
mb

�
�

4

3

GM2

�0� 
GM2
�1�
�

� �C4 � C6�

�
4nf
3

ln
mb

�

 �nf 
 2�GM2

�0�


GM2
�sc� 
GM2

�1�
�


 2Ceff
8g

Z 1

0

du
1
 u

�M2
�u�

�
; (A3)
Pp6 �M2� �
CF�s
4�Nc

�
C1

�
4

3
ln
mb

�
�

2

3

 ĜM2

�sp�
�

� C3

�
8

3
ln
mb

�
�

4

3

 ĜM2

�0� 
 ĜM2
�1�
�

� �C4 � C6�

�
4nf
3

ln
mb

�

 �nf 
 2�ĜM2

�0�


 ĜM2
�sc� 
 ĜM2

�1�
�

 2Ceff

8g

�
; (A4)
Pp10�M2� �
�

9�Nc

�
�C1 � NcC2�

�
4

3
ln
mb

�
�

2

3

GM2

�sp�
�


 3Ceff
7�

Z 1

0

du
1
 u

�M2
�u�
�
; (A5)
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Pp8 �M2� �
�

9�Nc

�
�C1 � NcC2�

�
4

3
ln
mb

�
�

2

3

 ĜM2

�sp�
�


 3Ceff
7�

�
; (A6)

where CF � �N2
c 
 1�=2Nc, and Nc � 3 is the number of

colors. nf � 5 is the number of light-quark flavors. The
pole quark mass ratios, su � 0, sc � �mc=mb�

2, are in-
volved in the evaluation of these penguin diagrams. The
functions GM2

�s� and ĜM2
�s� are defined, respectively, by

GM2
�s� �

Z 1

0
duG�s; 1
 u��M2

�u�;

ĜM2
�s� �

Z 1

0
duG�s; 1
 u��M2

p �u�;
(A7)

with

G�s; u� � 
4
Z 1

0
dxx�1
 x� ln�s
 x�1
 x�u
 i��;

(A8)

where the term i� is the ‘‘ prescription.’’ The interpreta-
tion of �M2

and �M2
p is the same as in the discussion of

vertex corrections.
Hard spectator interactions.—The parameters

Hi�M1M2� originate from the hard gluon exchange be-
tween the meson M2 and the spectator quark (correspond-
ing to the last two diagrams in Fig. 2) with the results given
by

Hi�M1M2� �
fBfM1

�m2
B 
m

2
M1
�FB!M1

0 �m2
M2
�

Z 1

0

d�
�

�B
1 ���


Z 1

0
du

Z 1

0
dv
�

�M2
�u��M1

�v�

�1
 u��1
 v�

� rM1
�

�M2
�u��M1

p �v�

u�1
 v�

�
; (A9)

for i � 1–4; 9; 10,

Hi�M1M2� � 

fBfM1

�m2
B 
m

2
M1
�FB!M1

0 �m2
M2
�

Z 1

0

d�
�

�B
1 ���


Z 1

0
du

Z 1

0
dv
�

�M2
�u��M1

�v�

u�1
 v�

� rM1
�

�M2
�u��M1

p �v�

�1
 u��1
 v�

�
; (A10)

for i � 5; 7, and Hi�M1M2� � 0 for i � 6; 8. In these
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results �B
1 ��� is the leading-twist LCDAs of the B meson

as defined by Eq. (14).
Weak annihilation contributions.—The basic building

blocks for annihilation contributions originate from
Fig. 3 and are given by (omitting the argument M1M2 for
brevity)

Ai1 � ��s
Z 1

0
dudv

�
�M2
�u��M1

�v�
�

1

v�1
 u �v�
�

1

�u2v

�

� rM1
� rM2

� �M2
p �u��

M1
p �v�

2

�uv

�
;

Af1 � 0;

Ai2 � ��s
Z 1

0
dudv

�
�M2
�u��M1

�v�
�

1

�u�1
 u �v�
�

1

�uv2

�

� rM1
� rM2

� �M2
p �u��

M1
p �v�

2

�uv

�
;

Af2 � 0;

Ai3 � ��s
Z 1

0
dudv

�
rM1
� �M2

�u��M1
p �v�

2 �v
�uv�1
 u �v�


 rM2
� �M1

�v��M2
p �u�

2u
�uv�1
 u �v�

�
;

Af3 � ��s
Z 1

0
dudv

�
rM1
� �M2

�u��M1
p �v�

2�1� �u�

�u2v

� rM2
� �M1

�v��M2
p �u�

2�1� v�

�uv2

�
; (A11)

where the superscripts ‘‘i’’ and ‘‘f’’ refer to gluon emission
from the initial and final-state quarks, respectively. The
subscript ‘‘k’’ refers to one of the three possible Dirac
structures �1 � �2, i.e., k � 1 for �V 
 A� � �V 
 A�, k �
2 for �V 
 A� � �V � A�, and k � 3 for �
2�
�S
 P� � �S� P�.

Considering the off-shellness of the gluon in Figs. 2 and
3, it is reasonable to evaluate the vertex and penguin
corrections at the scale ��mb, with the hard spectator
scattering and the weak annihilation contributions at the
scale �h �

����������
�h�

p
with �h � 0:5 GeV.
APPENDIX B: ANALYTIC EXPRESSIONS FOR
THE �i FUNCTIONS

In the NDR scheme, after performing the loop-
momentum integration, we can present the analytic ex-
pressions for the �i functions appearing in Eqs. (38) and
(39) as
�i5 � 
�
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q
 2m2
qx
 2k2x2� 2k2x3� 2p2y
 2p2y2� 2p2xy2

� 4�k � p�xy
 4�k � p�x2y� 4C
 12Cx
 4Cx�; (B1)
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�i6 � �
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q� 2k2x
 2k2x2
 2m2
qy� 2k2x2y
 2p2y2� 2p2y3

� 4�k � p�xy
 4�k � p�xy2� 4C
 12Cy
 4Cy�; (B2)

�i23 � 4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�xy; (B3)

�i24 � 4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�y�1
 y�; (B4)

�i25 � 
4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�x�1
 x�; (B5)

�i26 � 
�i23; (B6)

�i2 � �
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q
 2m2
qx
 2k2x2� 2k2x3� 2p2y
 2p2y2� 2p2xy2

� 4�k � p�xy
 4�k � p�x2y� 4C
 4Cx
 4C� 4Cx�; (B7)

�i3 � 
�
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q� 2k2x
 2k2x2
 2m2
qy� 2k2x2y
 2p2y2� 2p2y3

� 4�k � p�xy
 4�k � p�xy2� 4C
 4Cy
 4C� 4Cy�; (B8)

�i8 � 
�
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q� 2m2
qx� 2k2x2
 2k2x3� 2p2y
 2p2y2
 2p2xy2

� 4�k � p�x2y� 4C� 4Cx
 4C
 4Cx�; (B9)

�i9 � 
�
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q� 2k2x
 2k2x2
 2m2
qy
 4k2xy� 2k2x2y
 2p2y2

� 2p2y3
 4�k � p�y� 4�k � p�xy� 4�k � p�y2
 4�k � p�xy2� 4C
 4Cy
 4C� 4Cy�; (B10)

�i11 � �
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q
 2m2
qx
 2k2x2� 2k2x3� 2p2y
 4p2xy
 2p2y2

� 2p2xy2
 4�k � p�x� 4�k � p�x2� 4�k � p�xy
 4�k � p�x2y� 4C
 4Cx
 4C� 4Cx�; (B11)

�i12 � �
�

2

�
�4��2�=2

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��2m2

q� 2k2x
 2k2x2� 2m2
qy
 2k2x2y� 2p2y2
 2p2y3

� 4�k � p�xy2� 4C� 4Cy
 4C
 4Cy�; (B12)

�i15 � 8�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��1
 x�x2; (B13)

�i16 � 4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�x�1
 x��1
 2y�; (B14)

�i17 � 
4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�xy�1
 2x�; (B15)

�i18 � 
4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�y�1
 x
 y� 2xy�; (B16)
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�i19 � 4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�x�1
 x
 y� 2xy�; (B17)

�i20 � 
4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��1
 2x�y�1
 y�; (B18)

�i21 � 4�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2�xy�1
 2y�; (B19)

�i22 � 
8�
�

2

�
�4��2�=2�k � p�

Z 1

0
dx
Z 1
x

0
dyC
1
�=2��1
 y�y2; (B20)

where the parameter C is defined by

C � m2
q 
 x�1
 x�k

2 
 y�1
 y�p2 
 2xy�k � p� 
 i�; (B21)

with mq being the quark mass in the fermion loops.
For a Bmeson decaying into two light energetic hadronic final states, the characteristic scale for the quark momentum of

the final-state meson constituents is of order mb, whereas the momentum of the spectator quark from the B meson is of
order �QCD. Assuming that the off-shell gluon with index �	; b; p� is connected with the spectator quark in the Bmeson, at
leading power in �QCD=mb, the �i functions given above can then be simplified greatly. After subtracting the regulator 
using the MS scheme and performing the Feynman parameter integrals, we get (here we give only the relevant �i functions
needed in this paper; details for the others can be found in Ref. [47])

�i5 � 2�
2r1

r3
�G0�r1� 
G0�r1 � r3�� 


4

r3
�G
1�r1� 
G
1�r1 � r3��; (B22)

�i6 � 
2

4

r3
�

2r1�1� r3�

r2
3

G0�r1� 

2�r1 � r3 � r1r3�

r2
3

G0�r1 � r3� �
4

r3
�G
1�r1� 
G
1�r1 � r3��



�4
 r1�r1

r2
3

T0�r1� �
�4
 r1 
 r3��r1 � r3�

r2
3

T0�r1 � r3�; (B23)

�i23 � 
2

2r1

r3
�G0�r1� 
G0�r1 � r3�� �

4

r3
�G
1�r1� 
G
1�r1 � r3��; (B24)

�i26 � 
�i23; (B25)

�i2 � 

22

9
�

8

3
ln
�
mc



2�8� r1�

3r3
G0�r1� �

2�8� r1 
 2r3�

3r3
G0�r1 � r3� �

4

r3
�G
1�r1� 
G
1�r1 � r3��; (B26)

�i3 �
22

9
�

12

r3
�

4r1

3r3



8

3
ln
�
mc



2�7r1 
 r3 
 3r1r3 � 2r2
1 
 2r2

3�

3r2
3

G0�r1 � r3� �
2r1�7� 2r1 
 3r3�

3r2
3

G0�r1�



4�2r1 � r3�

r2
3

�G
1�r1� 
G
1�r1 � r3�� �
3�4
 r1�r1

r2
3

T0�r1� 

3�4
 r1 
 r3��r1 � r3�

r2
3

T0�r1 � r3�; (B27)

�i8 �
32

9



16

3
ln
�
mc



8�2� r1�

3r3
G0�r1� �

8�2� r1 � r3�

3r3
G0�r1 � r3�; (B28)

�i12 � 

32

9
�

12

r3
�

4r1

3r3
�

16

3
ln
�
mc
�

2r1�7� 2r1 � 6r3�

3r2
3

G0�r1� 

2�2r2

1 
 r3�1
 4r3� � r1�7� 6r3��

3r2
3

G0�r1 � r3�



8r1

r2
3

�G
1�r1� 
G
1�r1 � r3�� �
3�4
 r1�r1

r2
3

T0�r1� 

3�4
 r1 
 r3��r1 � r3�

r2
3

T0�r1 � r3�; (B29)
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�i17 �
2

3
�

2�8� r1�

3r3
G0�r1� 


2

3

�
8� r1

r3
�

4

r1 � r3

�
G0�r1 � r3� 


4

r3
�G
1�r1� 
G
1�r1 � r3��; (B30)

�i21 � 

2

3



16

r3



8r1

3r3
�

2r1�4r2
1 � 3r3�8� r3� � r1�20� 7r3��

3r2
3�r1 � r3�

G0�r1 � r3� 

2r1�20� 4r1 � 3r3�

3r2
3

G0�r1�

�
4�4r1 � r3�

r2
3

�G
1�r1� 
G
1�r1 � r3�� 

4�4
 r1�r1

r2
3

T0�r1� �
4�4
 r1 
 r3��r1 � r3�

r2
3

T0�r1 � r3�; (B31)
where we have introduced the notations r1 � k2=m2
q, r2 �

p2=m2
q, and r3 � 2�k � p�=m2

q, with mq � mc or mb. For
light u; d; s quark loops, these �i functions can be eval-
uated straightforwardly.

The functions Gi�t��i � 
1; 0� are defined by

Gi�t� �
Z 1

0
dxxi ln�1
 x�1
 x�t
 i��: (B32)

The explicit form for G
1;0�t� can be found in Ref. [45].
In addition, we have also introduced the function Ti�t�,

which is defined by
074007
Ti�t� �
Z 1

0
dx

xi

1
 x�1
 x�t
 i�
: (B33)

The explicit form for T0�t� is given by [47]

T0�t� �

8>><
>>:

4 arctan
�����
t

4
t

p����������
t�4
t�
p ; 0 � t � 4

2i��2 ln�
��
t
p


������
t
4
p

�
2 ln�
��
t
p
�
������
t
4
p

�����������
t�t
4�
p ; t > 4:

(B34)
[1] M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 29, 637
(1985); Z. Phys. C 34, 103 (1987).

[2] T. W. Yeh and H-n. Li, Phys. Rev. D 56, 1615 (1997); Y. Y.
Keum, H-n. Li, and A. I. Sanda, Phys. Lett. B 504, 6
(2001); Phys. Rev. D 63, 054008 (2001); Y. Y. Keum
and H-n. Li, Phys. Rev. D 63, 074006 (2001).

[3] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B591, 313
(2000).

[4] M. Neubert, AIP Conf. Proc. 602, 168 (2001); AIP Conf.
Proc. 618, 217 (2002).

[5] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. Lett.
87, 201806 (2001); Phys. Rev. D 65, 054022 (2002); 67,
071502 (2003); J. Chay and C. Kim, Phys. Rev. D 65,
114016 (2002); M. Beneke, A. P. Chapovsky, M. Diehl,
and T. Feldmann, Nucl. Phys. B643, 431 (2002).

[6] D. Cronin-Hennessy et al. (CLEO Collaboration), Phys.
Rev. Lett. 85, 515 (2000).

[7] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 65,
031103 (2002).

[8] A. Bornheim et al. (CLEO Collaboration), Phys. Rev. D
68, 052002 (2003).

[9] BABAR Collaboration, http://www-public.slac.stanford.
edu/babar/BaBarPublications.

[10] Belle Collaboration, http://belle.kek.jp.
[11] S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 85,

525 (2000).
[12] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 93,

021601 (2004).
[13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

93, 131801 (2004).
[14] M. Giorgi, in Proceedings of the 32nd International
Conference on High Energy Physics, Beijing, China,
2004, edited by H. S. Chen, D. S. Du, W. G. Li, and
C. D. Lu (World Scientific, Singapore, 2004).

[15] Y. Chao and P. Chang (Belle Collaboration), Phys. Rev. D
71, 031502 (2005).

[16] Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 93,
191802 (2004).

[17] K. Abe et al. (Belle Collaboration), hep-ex/0409049.
[18] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

94, 181802 (2005).
[19] Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 94,

181803 (2005).
[20] Y. Sakai, in Ref. [14].
[21] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,

Nucl. Phys. B606, 245 (2001).
[22] T. Muta, A. Sugamoto, M. Z. Yang, and Y. D. Yang, Phys.

Rev. D 62, 094020 (2000).
[23] D.-s. Du, D.-s. Yang, and G.-h. Zhu, Phys. Lett. B 488, 46

(2000).
[24] D.-s. Du, H.-j. Gong, J.-f. Sun, D.-s. Yang, and G.-h. Zhu,

Phys. Rev. D 65, 074001 (2002).
[25] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,

Nucl. Phys. B675, 333 (2003).
[26] R. Fleischer and T. Mannel, Phys. Rev. D 57, 2752 (1998).
[27] A. J. Buras and R. Fleischer, Eur. Phys. J. C 11, 93 (1999).
[28] Heavy Flavor Averaging Group, http://www.slac.stanford.

edu/xorg/hfag.
[29] A. J. Buras and R. Fleischer, Eur. Phys. J. C 16, 97 (2000).
[30] A. J. Buras, R. Fleischer, S. Recksiegel, and F. Schwab,

Phys. Rev. Lett. 92, 101804 (2004); Nucl. Phys. B697, 133
-20



REEXAMINING B! ��, �K DECAYS IN QCD . . . PHYSICAL REVIEW D 72, 074007 (2005)
(2004); Acta Phys. Pol. B 36, 2015 (2005); hep-ph/
0411373.

[31] S. Mishima and T. Yoshikawa, Phys. Rev. D 70, 094024
(2004).

[32] Y. L. Wu and Y. F. Zhou, Phys. Rev. D 71, 021701
(2005).

[33] Y. Y. Charng and H. n. Li, Phys. Rev. D 71, 014036
(2005).

[34] X. G. He and B. H. J. McKellar, hep-ph/0410098.
[35] S. Baek, P. Hamel, D. London, A. Datta, and D. A. Suprun,

Phys. Rev. D 71, 057502 (2005).
[36] T. Carruthers and B. H. J. McKellar, hep-ph/0412202.
[37] S. Nandi and A. Kundu, hep-ph/0407061.
[38] T. Morozumi, Z. H. Xiong, and T. Yoshikawa, hep-ph/

0408297.
[39] C. N. Burrell and A. R. Williamson, hep-ph/0504024.
[40] C. S. Kim, S. Oh, and C. Yu, hep-ph/0505060 [Phys. Rev.

D (to be published)].
[41] T. W. Yeh, hep-ph/0506181.
[42] W. S. Hou, Nucl. Phys. B308, 561 (1988).
[43] J.-M. Gérard and W. S. Hou, Phys. Rev. Lett. 62, 855

(1989); Phys. Rev. D 43, 2909 (1991); Phys. Lett. B 253,
478 (1991).

[44] H. Simma and D. Wyler, Nucl. Phys. B344, 283 (1990);
J. Liu and Y. P. Yao, Phys. Rev. D 41, 2147 (1990).

[45] C. Greub and P. Liniger, Phys. Rev. D 63, 054025 (2001).
[46] S. W. Bosch and G. Buchalla, Nucl. Phys. B621, 459

(2002); M. Beneke, T. Feldmann, and D. Seidel, Nucl.
Phys. B612, 25 (2001); A. Ali and A. Y. Parkhomenko,
Eur. Phys. J. C 23, 89 (2002).

[47] G. Eilam and Y. D Yang, Phys. Rev. D 66, 074010 (2002).
[48] S. Mishima and A. I. Sanda, Prog. Theor. Phys. 110, 549

(2003).
074007
[49] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev.
Mod. Phys. 68, 1125 (1996).

[50] A. J. Buras, hep-ph/9806471; Lect. Notes Phys. 558, 65
(2000).
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