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The HyperCP collaboration has recently reported the observation of three events for the decay �� !
p����. They have suggested that new physics may be required to understand the implied decay rate and
the observed M�� distribution. Motivated by this result, we reexamine this mode within the standard
model, considering both the short-distance and long-distance contributions. The long-distance part
depends on four complex form factors. We determine their imaginary parts from unitarity, fix two of
the real parts from the �� ! p�measurements, and estimate the other two with vector-meson-dominance
models. Taking into account constraints from �� ! pe�e�, we find that �� ! p���� is long-distance
dominated and its rate falls within the range suggested by the HyperCP measurement.
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I. INTRODUCTION

Three events for the decay mode �� ! p���� have
been recently observed by the HyperCP (E871) collabora-
tion [1] with results that suggest new physics may be
needed to explain them. In this paper we reexamine this
mode [2] within the standard model.

There are short- and long-distance contributions to this
decay. In the standard model (SM), the leading short-
distance contribution comes from the Z-penguin and box
diagrams, as well as the electromagnetic penguin with the
photon connected to the dimuon pair [3]. We find that this
contribution yields a branching ratio of order 10�12, which
is much smaller than the central experimental value of
8:6� 10�8 reported by HyperCP [1]. It is well known
that the long-distance contribution to the weak radiative
mode �� ! p� is much larger than the short-distance
contribution. It is therefore also possible to have enhanced
long-distance contributions to �� ! p���� via an inter-
mediate virtual photon from �� ! p�. We find that the
resulting branching ratio is in agreement with the measured
value. There is, of course, still the possibility [4] that new
physics is responsible for the observed branching ratio of
�� ! p� and hence that of �� ! p����. This implies
that it is essential to have an up-to-date estimate of the
standard model contributions, on which we concentrate in
this work.

In Sec. II we update the estimate of the short-distance
amplitude. We use the standard effective Hamiltonian for
the s! d‘�‘� transition [3] supplemented with hadronic
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matrix elements for the relevant currents. In Sec. III we
study the long-distance contributions mediated by a real or
a virtual photon. These can be parametrized by four (com-
plex) gauge-invariant form factors [2]. We determine the
imaginary parts of these form factors from unitarity. The
real parts of two of the form factors can be reasonably
assumed to be constant as a first approximation and can
then be extracted from the measured rate and asymmetry
parameter for �� ! p� up to a fourfold ambiguity. The
real parts of the two remaining form factors cannot be
extracted from experiment at present, and so we estimate
them using vector-meson-dominance models. Finally, in
Sec. IV we combine all these results to present the pre-
dictions for the rates and spectra of the two modes �� !
p����; pe�e�. Before concluding, we discuss the im-
plications of our analysis for the possibility that new
physics could be present in the recent measurement by
HyperCP.
II. SHORT-DISTANCE CONTRIBUTIONS

The short-distance effective Hamiltonian responsible for
�� ! p‘�‘� contains contributions originating from the
Z-penguin, box, and electromagnetic-penguin diagrams. It
is given by [3,5]

Heff �
GF���

2
p V�udVus��z7V � �y7V�O7V � �y7AO7A	

�
GF���

2
p

X
j

V�jdVjsc
j
7�O7�; (1)

where Vkl are the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [6], z, y, and c are the Wilson
coefficients, � � �V�tdVts=�V

�
udVus�, and
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O7V � �d���1� �5�s �‘���‘�;

O7A � �d���1� �5�s �‘����5‘�;

O7� �
e

16�2
�d���F���ms�1� �5� �md�1� �5�	s;

(2)
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with F�� being the photon field-strength tensor. The con-
tribution of O7� to �� ! p‘�‘� occurs via the photon
converting to a lepton pair. The total short-distance con-
tribution to the �� ! p‘�‘� amplitude is then given by
M��� ! p‘�‘�� � hp‘�‘�jH effj�
�i

�
GF���

2
p

�
V�udVus��z7V � �y7V�hpj �d���1� �5�sj��i �‘

���‘� � �y7Ahpj �d���1� �5�sj��i �‘
����5‘�	

�
X
j

V�jdVjs
i�cj7�
2�q2 ��ms �md�hpj �d���q�sj��i � �ms �md�hpj �d���q��5sj��i	 �‘

���‘�
�
; (3)
where q � p� � pp.
To obtain the corresponding branching ratio, one needs

to know the hadronic matrix elements. Employing the
leading-order strong Lagrangian in chiral perturbation the-
ory (�PT), given in Eq. (B1), we find

hpj �d��sj��i � � �p���;

hpj �d���5sj��i � �D� F� �p���5�;
(4)

where D � 0:80 and F � 0:46 from fitting to hyperon
semileptonic decays, and using quark-model results [7]
we obtain

hpj �d���sj��i � c� �p����;

hpj �d����5sj�
�i � c� �p����5�;

(5)

where c� � �1=3. Furthermore, we adopt the CKM-
matrix elements given in Ref. [8], the typical Wilson co-
efficients obtained in the literature [3,5], namely z7V �

�0:046�, y7V � 0:735�, y7A � �0:700� [3], and cj7�
being dominated by cc7� � 0:13 [5], and the quark masses
md � 9 MeV and ms � 120 MeV.

The resulting branching ratio for �� ! p���� is
about 10�12, which is way below the observed value.
There are uncertainties in the hadronic matrix elements,
the Wilson coefficients, and the CKM-matrix elements, but
these uncertainties will not change this result by orders of
magnitude. We therefore conclude that in the SM the short-
distance contribution is too small to explain the HyperCP
data on �� ! p����.

Now, a large branching ratio for �� ! p‘�‘� may be
related to the large observed branching ratio for �� ! p�,
compared with their respective short-distance contribu-
tions. With only the short-distance contribution to �� !
p� within the SM, the branching ratio is predicted to be
much smaller than the experimental value [4]. However,
beyond the SM it is possible to have an enhanced short-
distance contribution to �� ! p� [4] which would en-
hance the amplitude for �� ! p����. The origin of the
enhancement may be from new interactions such as
WL-WR mixing in left-right symmetric models and left-
right squark mixing in supersymmetric models [4]. These
types of interactions have small effects on other related
flavor-changing processes such as K0- �K0 mixing, but can
have large effects on �� ! p� and therefore also on
�� ! p‘�‘�. Thus the observed branching ratio for
�� ! p� can be reproduced even if one assumes that
there is only the short-distance contribution. More likely,
however, the enhancement is due to long-distance contri-
butions within the SM. In the next section we present the
most complete estimate possible at present for these long-
distance contributions.

III. LONG-DISTANCE CONTRIBUTIONS

In this section we deal with the contributions to �� !
p‘�‘� that are mediated by a photon. For a real inter-
mediate photon there are two form factors that can be
extracted from the weak radiative hyperon decay Bi !
Bf� and are usually parametrized by the effective
Lagrangian

L �
eGF

2
�Bf�a� b�5����BiF��: (6)

The two form factors, a and b, are related to the width and
decay distribution of the radiative decay by

��Bi ! Bf�� �
G2
Fe

2

�
�jaj2 � jbj2�!3; (7)

d�

d cos	

 1� � cos	; � �

2Re�ab��

jaj2 � jbj2
; (8)

where ! is the photon energy, and 	 is the angle between
the spin of Bi and the three-momentum of Bf. The mea-
sured values for �� ! p� are [8]

���� ! p�� � �10:1� 0:4� � 10�15 MeV;

� � �0:76� 0:08:
(9)

When the photon is a virtual one, there are two addi-
tional form factors, and the total amplitude can be parame-
trized as
-2
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FIG. 1. Unitarity cut.

1We have taken the nonzero elements of �5 to be positive.
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M�Bi ! Bf�
�� � �eGF

�Bf�i�
��q��a� b�5�

� �q2�� � q� 6q��c� d�5�	Bi"��; (10)

where q is the photon four-momentum. We note that the a
and c (b and d) terms are parity conserving (violating). The
corresponding amplitude for Bi ! Bf‘�‘� is then

M�Bi ! Bf‘
�‘�� �

�ie2GF

q2
�Bf�a� b�5����q

�

� Bi �‘���‘� � e2GF

� �Bf���c� d�5�Bi �‘���‘�; (11)

where now q � p‘� � p‘� : In general a, b, c, and d
depend on q2, and for �� ! p�� the first two are con-
strained at q2 � 0 by the data in Eq. (9) as

ja�0�j2 � jb�0�j2 � �15:0� 0:3�2 MeV2;

Re�a�0�b��0�� � ��85:3� 9:6� MeV2:
(12)

These form factors are related to the ones in Ref. [2] by

a � 2ib1; b � 2ib2; c �
ia1

q2 ; d � �
ia2

q2 :

(13)

As we will estimate later on, these form factors have
fairly mild q2-dependence. If they are taken to be constant,
by integrating numerically over phase space we can deter-
mine the branching ratios of �� ! p‘�‘� to be, with a
and b in MeV,

B���!p�������2:00�jaj2�jbj2��1:60�jaj2�jbj2�	

�10�10��1:05jcj2�18:2jdj2�

�10�6��0:29Re�ac��

�16:1Re�bd��	�10�8; (14a)

B���!pe�e����4:22�jaj2�jbj2��0:21�jaj2�jbj2�	

�10�8��5:38jcj2�15:9jdj2�

�10�5��1:51Re�ac��

�21:1Re�bd��	�10�7: (14b)

If the form factors have q2-dependence, the expression is
different, and the rate should be calculated with the for-
mula which we give in Appendix A.

A. Imaginary parts of the form factors from unitarity

The form factors which contribute to the weak radiative
hyperon decays have been studied in chiral perturbation
theory [9–11]. The imaginary parts of a and b for �� !
p� have been determined from unitarity with different
results in the literature. Neufeld [9] employed relativistic
baryon �PT to find, for q2 � 0,

Im a�0� � 2:60 MeV; Imb�0� � �1:46 MeV (15)

in the notation of Eq. (6), whereas Jenkins et al. [10], using
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the heavy-baryon formulation, obtained

Im a�0� � 6:18 MeV; Imb�0� � �0:53 MeV: (16)

Because of this disagreement, and since we also need the
imaginary parts of the form factors c and d, we repeat here
the unitarity calculation employing both the relativistic and
heavy baryon approaches.

Our strategy to derive the imaginary parts of the four
form factors in Eq. (11) from unitarity is illustrated in
Fig. 1. As the figure shows, these imaginary parts can be
determined from the amplitudes for the weak nonleptonic
decays �� ! p�0 and �� ! n�� (the vertex indicated
by a square in Fig. 1) as well as the reactions N�! N��

(the vertex indicated by a blob in Fig. 1). The weak decays
have been measured [8], and we express their amplitudes
as1

M ��� ! N�� � iGFm2
��

�N�AN� � BN��5��; (17)

where

An�� � 0:06; Bn�� � 18:53;

Ap�0 � �1:43; Bp�0 � 11:74:
(18)

Following Refs. [9,10], we adopt the N�! p�� ampli-
tudes derived in lowest-order �PT.

We present the details of our unitarity calculation in
Appendix B. The results in the relativistic and heavy
baryon approaches are given in Eqs. (B2) and (B8), re-
spectively. In Fig. 2 we display the two sets of form factors
for 0 � q2 � �m� �mN�

2. We note that, although only the
�� ! n�� transition contributes to the heavy-baryon
form factors at leading order, the sizable difference be-
tween the Ima, or Imc, curves arises mainly from relativ-
istic corrections, which reduce the heavy-baryon numbers
by about 50%. On the other hand, the difference between
the Imb, or Imd, curves is due not only to relativistic
corrections, but also to An�� being much smaller than
Ap�0 .

To compare with the numbers in Eqs. (15) and (16)
calculated in earlier work, we find from the relativistic
formulas in Eq. (B2)
-3
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FIG. 2. Imaginary parts of the form factors in �� ! p��,
obtained using heavy-baryon �PT (solid lines) and relativistic
baryon �PT (dashed lines).
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Im a�0� � 2:84 MeV; Imb�0� � �1:83 MeV; (19)

and from the heavy-baryon results in Eq. (B8)

Im a�0� � 6:84 MeV; Imb�0� � �0:54 MeV: (20)

Thus our relativistic results are close to those in Eq. (15),
from Ref. [9], and our heavy-baryon numbers to those in
Eq. (16), from Ref. [10].2 These two sets of numbers are
different for the reasons mentioned in the preceding
paragraph.

B. Real parts of the form factors

The real parts of the form factors cannot be completely
predicted at present from experimental input alone. For
Rea�q2� and Reb�q2�, the values at q2 � 0 can be extracted
from Eq. (12) after using Eq. (19) or (20) for the imaginary
parts. Thus the relativistic numbers in Eq. (19) lead to the
four sets of solutions

Re a�0���13:3 MeV; Reb�0��
6:0 MeV;

Rea�0���6:0 MeV; Reb�0��
13:3 MeV;
(21)

while the heavy-baryon results in Eq. (20) imply

Re a�0���11:1 MeV; Reb�0��
7:3 MeV;

Rea�0���7:3 MeV; Reb�0��
11:1 MeV:
(22)

Since these numbers still cannot be predicted reliably
2Our heavy-baryon expressions for Ima�0� and Imb�0� are
identical to those in Ref. [10], except that their Ima�0� formula
has one of the overall factors of 1=�m� �mN� apparently
coming from their approximating ��m� �mN�

2 �m2
�	

1=2 as
m� �mN . This is the main reason for the value of Ima�0� in
Eq. (16) being smaller than that in Eq. (20).
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within the framework of �PT [9,10], we will assume that

Re a�q2� � Rea�0�; Reb�q2� � Reb�0�; (23)

where the q2 � 0 values are those in Eqs. (21) and (22) in
the respective approaches. This assumption is also reason-
able in view of the fairly mild q2-dependence of the
imaginary parts seen in Fig. 2, and of the real parts of c
and d below. In predicting the �� ! p‘�‘� rates in the
following section, we will use the 8 sets of possible solu-
tions in Eqs. (21) and (22).

The real parts of c and d cannot be extracted from
experiment at present. Our interest here, however, is in
predicting the SM contribution, and therefore we need to
estimate them. To do so, we employ a vector-meson-
dominance assumption, presenting the details in
Appendix C. The results for Rec�q2� and Red�q2� are given
in Eqs. (C3) and (C5), respectively. In Fig. 3 we display the
two form factors for 0 � q2 � �m� �mN�

2. We can see
from Figs. 2 and 3 that c is dominated by its imaginary part,
but that d is mostly real.

IV. RESULTS AND CONCLUSIONS

We can now evaluate the rates and spectra of �� !
p‘�‘� resulting from the various standard model contri-
butions. Since the short-distance contributions discussed in
Sec. II are very small, we shall neglect them. Consequently,
the rates are determined by the various form factors in
�� ! p�� calculated in the preceding section and applied
in Eq. (A1).

In Table I, we have collected the branching ratios of
�� ! p���� and �� ! pe�e� corresponding to the 8
sets of solutions in Eqs. (21) and (22), under the assump-
tion of Eq. (23) for Rea and Reb. The real parts of c and d
in Eqs. (C3) and (C5) are used in all the unbracketed
branching ratios. For the imaginary parts of the form
factors, the expressions in Eq. (B2) [Eq. (B8)] contribute
to the unbracketed branching ratios in the upper (lower)
half of this table. Within each pair of square brackets, the
first number is the branching ratio obtained without con-
tributions from both c and d, whereas the second number is
the branching ratio calculated with only the real parts of all
the form factors.

In Fig. 4 we show the invariant-mass distributions of the

���� pair, with M�� �
�����
q2

p
, that correspond to the
-4



TABLE I. Branching ratios of �� ! p����; pe�e� in the standard model. The unbracketed
branching ratios receive contributions from all the form factors, with the expressions in Eq. (B2)
[Eq. (B8)] for the imaginary parts contributing to the numbers in the first (last) four rows. Within
each pair of square brackets, the first number has been obtained with c � d � 0, and the second
with only the real parts of all the form factors.

Rea (MeV) Reb (MeV) 108B��� ! p����� 106B��� ! pe�e��

13.3 �6:0 1.6 [2.2, 1.3] 9.1 [9.2, 8.6]
�13:3 6.0 3.4 [2.2, 3.1] 9.4 [9.2, 8.8]

6.0 �13:3 5.1 [6.7, 4.7] 9.6 [9.8, 9.0]
�6:0 13.3 9.0 [6.7, 8.6] 10.1 [9.8, 9.5]
11.1 �7:3 2.3 [2.9, 1.5] 9.3 [9.3, 7.2]
�11:1 7.3 4.5 [2.9, 3.7] 9.6 [9.3, 7.5]

7.3 �11:1 4.0 [5.1, 3.2] 9.5 [9.6, 7.4]
�7:3 11.1 7.3 [5.1, 6.4] 10.0 [9.6, 7.8]
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smallest and largest rates of �� ! p���� listed in
Table I for both the relativistic baryon [(a) and (b)] and
heavy baryon [(c) and (d)] cases. For �� ! pe�e�, the
mass distributions of the e�e� pair, two of which are
displayed in Fig. 5, differ very little from each other and

are strongly peaked at low Mee �
�����
q2

p
. Also shown in the

figures are the distributions obtained with c � d � 0
(dashed curves), as well as those without contributions
(a)

Re a = 13.3 MeV
Re b = −6.0 MeV

10
2
3
×

dΓ
(Σ

+
→

pµ
+

µ
−

)
dq

2
(M

eV
−

1
)

Mµµ (MeV)

2

1

0
220 240 260

(b)

Re a = −6.0 MeV
Re b = 13.3 MeV

10
2
3
×

dΓ
(Σ

+
→

pµ
+

µ
−

)
dq

2
(M

eV
−

1
)

Mµµ (MeV)

6

4

2

0
220 240 260

(c)

Re a = 11.1 MeV
Re b = −7.3 MeV

Mµµ (MeV)

2

1

0
220 240 260

(d)

Re a = −7.3 MeV
Re b = 11.1 MeV

Mµµ (MeV)

6

4

2

0
220 240 260

FIG. 4. Invariant-mass distributions of the lepton pair in �� !
p���� corresponding to the smallest and largest branching
ratios for the (a,b) relativistic and (c,d) heavy baryon cases in
Table I. In all distribution figures, each solid curve receives
contributions from all the form factors, each dashed curve has
been obtained with c � d � 0, and each dotted curve involves
no imaginary parts of all the form factors.
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from the imaginary parts of all the form factors (dotted
curves).

We can see from Table I, Figs. 4 and 5 that the effect of
the c and d contributions on the total rates can be up to
nearly 40% in �� ! p����, but it is much smaller in
�� ! pe�e�. Furthermore, the contributions of the
imaginary parts of the form factors can be as large as
35% to the p���� rate and roughly 20% to the pe�e�

rate. This implies that a careful analysis of experimental
results, especially in the case of �� ! p����, should
take into account the imaginary parts of the form factors.

For �� ! p����, HyperCP measured the branching
ratio to be �8:6�6:6

�5:4 � 5:5� � 10�8 [1]. It is evident that all
the predictions in Table I for the p���� mode corre-
sponding to the different sets of form factors fall within the
experimental range. For �� ! pe�e�, the branching ratio
can be inferred from the experimental results given in
Ref. [12], which reported the width ratio ���� !
pe�e��=���� ! p�0� � �1:5� 0:9� � 10�5 and inter-
preted the observed events as proceeding from �� !
p��, based on the very low invariant-masses of the e�e�
(a)

Re a = 13.3 MeV
Re b = −6.0 MeV

10
1
8
×

dΓ
(Σ

+
→

pe
+

e−
)

dq
2

(M
eV

−
1
)

M ee (MeV)

5

4

3

2

1

0
2 4 6 8 10

(b)

Re a = 11.1 MeV
Re b = −7.3 MeV

M ee (MeV)

5

4

3

2

1

0
2 4 6 8 10

FIG. 5. Low-mass portion of the invariant-mass distributions
of the lepton pair in �� ! pe�e� corresponding to two of the
branching ratios in Table I, for the (a) relativistic and (b) heavy
baryon cases.
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pair.3 This number, in conjunction with the current data on
�� ! p�0 [8], translates into B��� ! pe�e�� � �7:7�
4:6� � 10�6. Clearly, the results for the pe�e� mode in
Table I are well within the experimentally allowed range.
Based on the numbers in Table I, we may then conclude
that within the standard model

1:6� 10�8 � B��� ! p����� � 9:0� 10�8;

9:1� 10�6 � B��� ! pe�e�� � 10:1� 10�6:
(24)

The agreement above between the predicted and ob-
served rates of �� ! p‘�‘� indicates that these decays
are dominated by long-distance contributions. However,
the predicted range for B��� ! p����� is sufficiently
wide that we cannot rule out the possibility of a new
physics contribution of the type suggested by HyperCP
[1]. Motivated by the narrow distribution of dimuon masses
of the events they observed, they proposed that the decay
could proceed via a new intermediate particle of mass

214 MeV, with a branching ratio of �3:1�2:4

�1:9 � 1:5� �
10�8 [1]. For this hypothesis to be realized, however, the
new physics would have to dominate the decay. It will be
3We note that the upper limit of 7� 10�6 quoted in Ref. [8]
and obtained in Ref. [12] is for the presence of weak neutral
currents in �� ! pe�e� and not for the branching ratio of this
mode.
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interesting to see if this hypothesis will be confirmed by
future measurements.

Finally, we observe that the smaller numbers B��� !
p����� 
 2� 10�8 in Table I correspond to the mass
distributions peaking at lower masses, M�� 
 220 MeV,
in Fig. 4. It is perhaps not coincidental that these numbers
are similar to the branching ratio and new-particle mass,
respectively, in the HyperCP hypothesis above. This may
be another indication that it is not necessary to invoke new
physics to explain the HyperCP results.
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APPENDIX A: DIFFERENTIAL RATE OF
�� ! p‘�‘�

If the form factors have q2-dependence, before integrat-
ing over phase space to obtain the branching ratio we
should use
d���� ! p‘�‘��

dq2dt
�
�2G2

F

4�m3
�

�
��2m2

l � q
2���mp �m��

2 � q2��m� �mp�
2 � 2q2f�mp;m�; ml; q

2; t�	
jaj2

q4

� ��2m2
l � q

2���mp �m��
2 � q2��m� �mp�

2 � 2q2f�mp;m�; ml; q
2; t�	

jbj2

q4

� ��2m2
l � q

2���mp �m��
2 � q2� � 2f�mp;m�; ml; q

2; t�	jcj2 � ��2m2
l � q

2���mp �m��
2 � q2�

� 2f�mp;m�; ml; q2; t�	jdj2 � 2�m� �mp��2m2
l � q

2���mp �m��
2 � q2�	

Re�ac��

q2

� 2�m� �mp��2m2
l � q

2���mp �m��
2 � q2	

Re�bd��

q2

�
; (A1)
where t � �p� � p‘��2 and

f�mp;m�;ml;q2;t��m4
l ��m

2
p�m2

��q
2�2t�m2

l

�m2
pm2

���m
2
p�m2

��t��q
2� t�t;

with the integration intervals given by

tmax;min �
1

2

�
m2

� �m
2
p � 2m2

l � q
2 �

������������������
1�

4m2
l

q2

s

�
���������������������������������������������������������
�m2

� �m
2
p � q2�2 � 4m2

pq2
q �

;

q2
min � 4m2

l ; q2
max � �m� �mp�

2:

(A2)
It is worth mentioning that, since the form factors belong to
the �� ! p�� amplitude, they do not depend on t.

APPENDIX B: IMAGINARY PARTS OF FORM
FACTORS IN �PT

The chiral Lagrangian for the interactions of the lowest-
lying mesons and baryons is written down in terms of the
lightest meson-octet and baryon-octet fields, which are
collected into 3� 3 matrices ’ and B, respectively [13].
The mesons enter through the exponential � � 
2 �
exp�i’=f�; where f � f� � 92:4 MeV is the pion decay
constant. In the relativistic baryon �PT, the lowest-order
strong Lagrangian is given by [13]

Ls � h �Bi���@�B� �V�; B	�i �m0h �BBi

�Dh �B���5fA�; Bgi � Fh �B���5�A�; B	i;

(B1)
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FIG. 6. Leading-order diagrams for N�! p�� reactions.
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where h� � �i � Tr�� � �� in flavor space, m0 is the baryon
mass in the chiral limit, V� � 1

2 �
@
�
y � 
y@�
� �

i
2 eA

��
yQ
� 
Q
y�; and A� � i
2 �
@

�
y � 
y@�
� �
1
2 eA

��
yQ
� 
Q
y�; with A� being the photon field and
Q � diag�2;�1;�1�=3 the quark-charge matrix.4 The pa-
rameters D and F will enter our results below only through
the combination D� F � 1:26:

From Ls we derive two sets of diagrams, shown in
Fig. 6, which represent the N�! p�� reactions involved
in the unitarity calculation of the imaginary parts of the
form factors a, b, c, and d. It then follows from Fig. 1 that
the first set of diagrams is associated with the weak tran-
sition �� ! n��, and the second with �� ! p�0.
Consequently, we express our results as

ImF �
�D� F�m2

��

8
���
2
p
�f�

�
~F� �

~F 0���
2
p

�
for F � a; b; c; d;

(B2)
4Under a chiral transformation, �B! U �BUy, B! UBUy, V� !
by 
! L
Uy � U
Ry.
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where ~F� � ~F 0� comes from the n�� �p�0� contribution,
and write them in terms of the weak amplitudes A� �
An�� , A0 � Ap�0 , B� � Bn�� , and B0 � Bp�0 given in
Eq. (18). Working in the �� rest frame, which implies
that the energies and momenta of the photon and proton in
the final state and of the pion in the intermediate are fixed
by kinematics, we define
z� �
�
2E�E� � 2jp�jjp�j � q2

2E�E� � 2jp�jjp�j � q
2

�
;

z0 �

�
2E�Ep � 2jp�jjppj �m

2
�

2E�Ep � 2jp�jjppj �m
2
�

�
:

(B3)
The expression for ~F from each set of diagrams can then
be written as
~a�;0�
B�;0mN

2m2
�jp�j

�2jp�jjp�jf
�a�
�;0� ln�z�;0�g

�a�
�;0	

��m��mN�
2�q2	��m��mN�

2�q2	2
; ~b�;0�

�A�;0mN

2m2
�jp�j

�2jp�jjp�jf
�b�
�;0� ln�z�;0�g

�b�
�;0	

��m��mN�
2�q2	2��m��mN�

2�q2	
;

~c�;0�
B�;0mN

2m2
�jp�j�mN�m��

�2jp�jjp�jf
�c�
�;0� ln�z�;0�g

�c�
�;0	

��m��mN�
2�q2	��m��mN�

2�q2	2
;

~d�;0�
�A�;0mN

2m2
�jp�j�m��mN�

�2jp�jjp�jf
�d�
�;0� ln�z�;0�g

�d�
�;0	

��m��mN�
2�q2	2��m��mN�

2�q2	
;

(B4)

where

f�a�� �mNm
5
���q

2�2m2
��m

2
N�m

4
��mN�3q

2�3m2
��2m2

N�m
3
���q

4�5m2
�q

2�2m4
N��q

2�m2
��m

2
N�m

2
�

�mN�m
2
N�q

2��2q2�3m2
��m

2
N�m���q

2�m2
N�

2�m2
N�m

2
��;

g�a�� �m��mNq6��mN�2mN�m���mN�m���m2
��3mN�m���q4�m2

��3m2
��4m2

N��mN�m��q2

�m2
��mN�m��

2�mN�m��
3�;

f�a�0 �3mNm
5
���q

2�2m2
��3m2

N�m
4
��mN�4m2

N�3�q2�m2
���m

3
���q

4�5m2
�q2�4m4

N��q
2�m2

��m2
N�m

2
�

�mN�m2
N�q

2��2q2�3m2
��m2

N�m���q2�m2
N�

2�m2
N�m

2
��;

g�a�0 �m���2m2
�m�q

4��mN�m���3m
4
��2�3m2

N�2m�mN�m
2
��m

2
��mN�mN�m��

2�3mN�m���q
2

�mN�mN�m��
2m��mN�m��

3�; (B5a)
UV�Uy � i@�UUy, and A� ! UA�Uy, where U is defined
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f�b�� � mNm
5
� � �q

2 � 2m2
� �m

2
N�m

4
� �mN�3q

2 � 3m2
� � 2m2

N�m
3
� � �q

4 � 5m2
�q

2 � 2m4
N � �q

2 �m2
��m

2
N�m

2
�

�mN�m2
N � q

2��2q2 � 3m2
� �m2

N�m� � �q2 �m2
N�

2�m2
� �m2

N�;

g�b�� � �m���mNq6 � ��3mN �m��m2
� �mN��2m2

N �m�mN �m2
���q

4 �m2
��3m2

� � 4m2
N��mN �m��q2

�m2
��mN �m��

3�mN �m��
2�;

f�b�0 � 3mNm
5
� � �q

2 � 2m2
� � 3m2

N�m
4
� �mN�3�q

2 �m2
�� � 4m2

N�m
3
� � �q

4 � 5m2
�q

2 � 4m4
N � �q

2 �m2
��m

2
N�m

2
�

�mN�m
2
N � q

2��2q2 � 3m2
� �m

2
N�m� � �q

2 �m2
N�

2�m2
� �m

2
N�;

g�b�0 � �m���2m2
�m�q4 � �mN �m���3m4

� � 2�3m2
N � 2m�mN �m2

��m
2
� �mN�3mN �m���mN �m��

2�q2

�mN�mN �m��
3m��mN �m��

2�;

(B5b)
f�c�� � m2
��8m

4
� � 5mNm

3
� � �3q

2 �m2
N�m

2
� � 3mN�m

2
N � q

2�m� � �q
2 �m2

N�
2�

� �mN �m����mNm
4
� � �q

2 � 2m2
N�m

3
� � 4q2mNm

2
� � �q

4 �m2
Nq

2 � 2m4
N�m� �mN�q

2 �m2
N�

2�;

g�c�� � ��mN �m��m��mN�2mN �m��q4 � �m4
� � 2�3m2

N � 2m�mN �m2
��m

2
� �mN�mN �m���mN �m��

2�q2

� 2m2
��mN �m��

2�m2
� �m��m� �mN���;

f�c�0 � m2
��8m

4
� � 5mNm

3
� � �3q

2 �m2
N�m

2
� � 3mN�m

2
N � q

2�m� � �q
2 �m2

N�
2�

� �mN �m��
2�2m4

� �mNm
3
� � �3q

2 �m2
N�m

2
� � 3mN�m

2
N � q

2�m� � �q
2 �m2

N�
2�;

g�c�0 � �mN �m��m���m4
� � �2m2

N � 4m�mN � 2m2
��m

2
� �mN�mN �m��

2�mN �m���q2

� �mN �m��
2�2m4

� � 2�2m2
N �m�mN �m2

��m
2
� �mN�mN �m��

2�2mN �m����;

(B5c)
f�d�� � �mN �m����mNm
4
� � �q

2 � 2m2
N�m

3
� � 4q2mNm

2
� � �q

4 �m2
Nq

2 � 2m4
N�m� �mN�q

2 �m2
N�

2�

�m2
��8m

4
� � 5mNm

3
� � �3q

2 �m2
N�m

2
� � 3mN�q

2 �m2
N�m� � �q

2 �m2
N�

2�;

g�d�� � m��mN �m����mN�2mN �m��q4 � �m4
� � 2�3m2

N � 2m�mN �m2
��m

2
� �mN�mN �m��

2�mN �m���q2

� 2m2
��mN �m��

2�m2
� �m��mN �m����;

f�d�0 � �mN �m��
2�2m4

� �mNm
3
� � �3q

2 �m2
N�m

2
� � 3mN�q

2 �m2
N�m� � �q

2 �m2
N�

2�

�m2
��8m

4
� � 5mNm

3
� � �3q

2 �m2
N�m

2
� � 3mN�q

2 �m2
N�m� � �q

2 �m2
N�

2�;

g�d�0 � m��mN �m����m4
� � 2�m2

N � 2m�mN �m2
��m

2
� �mN�mN �m���mN �m��

2�q2

� �mN �m��
2�2m4

� � 2�2m2
N �m�mN �m2

��m
2
� �mN�mN �m��

2�2mN �m����:

(B5d)
In our numerical computations, m� � m�� ; mN�
1
2�mp�

mn�; m��
1
3�2m�� �m�0�; the numbers being from

Ref. [8].
In heavy-baryon �PT [14], the relevant Lagrangian can

be found in Ref. [10], and the weak radiative and nonlep-
tonicamplitudes in Eqs. (10) and (17)become, respectively,

M�Bi ! Bf�
�� � �eGF

�Bf�2�S � qS
� � S�S � q�a

� 2�S � qv� � S�v � q�b	Bi"
�
�

� eGF
�Bf��q

2v� � q�v � q�c

� 2�q2S� � q�S � q�d	Bi"
�
�; (B6)
074003
M ��� ! N�� � iGFm
2
��

�N
�
AN� � 2S � p�

BN�
2m�

�
�;

(B7)

where v is the baryon four-velocity and S is the baryon spin
operator. Following Ref. [10], to obtain the imaginary parts
of the form factors we evaluate the loop diagrams dis-
played in Fig. 7. In the heavy-baryon approach, only the
diagrams with the �� ! n�� transition yield nonzero
contributions to the leading-order imaginary parts. The
results are
-8



FIG. 7. Diagrams for imaginary part of �� ! p�� amplitude.
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Ima �
�D� F�m2

��

8
���
2
p
�f�

Bn��

2m�

( �������������������
�2 �m2

�

q �
1�

1
2 q

2

�2 � q2

�

�
q4 � 4m2

���
2 � q2�

4��2 � q2�3=2
ln

"
2�2 � q2 � 2

�������������������
�2 �m2

�

p ������������������
�2 � q2

p
�����������������������������������������
q4 � 4m2

���
2 � q2�

p
#)
; (B8a)

Imb �
�D� F�m2

��

8
���
2
p
�f�

An��

(
��

�������������������
�2 �m2

�

p
�2 � q2

�
1�

3
2q

2

�2 � q2

�

� �
3q4 � 4m2

���
2 � q2�

4��2 � q2�5=2
ln

"
2�2 � q2 � 2

�������������������
�2 �m2

�

p ������������������
�2 � q2

p
�����������������������������������������
q4 � 4m2

���
2 � q2�

p
#)
; (B8b)

Imc �
�D� F�m2

��

8
���
2
p
�f�

Bn��

2m�

( �������������������
�2 �m2

�

q �2 � 2m2
�

���2 � q2�

�
��q2 � 2m2

��

2��2 � q2�3=2
ln

"
2�2 � q2 � 2

�������������������
�2 �m2

�

p ������������������
�2 � q2

p
�����������������������������������������
q4 � 4m2

���
2 � q2�

p
#)
; (B8c)

Imd �
�D� F�m2

��

8
���
2
p
�f�

An��

( �������������������
�2 �m2

�

q 3
2q

2

��2 � q2�2

�
q4 � 2q2�2 � 4m2

���
2 � q2�

4��2 � q2�5=2
ln

"
2�2 � q2 � 2

�������������������
�2 �m2

�

p ������������������
�2 � q2

p
�����������������������������������������
q4 � 4m2

���
2 � q2�

p
#)
; (B8d)
(a)

(b)
where � � m� �mN: We have checked that these formu-
las can be reproduced from the relativistic results in
Eq. (B2) by expanding the latter in terms of �=m�,�����
q2

p
=m�, and m�=m� and keeping the leading nonzero

terms.

APPENDIX C: REAL PARTS OF c�q2�AND d�q2�

Vector mesons can contribute to c via the pole diagrams
shown in Fig. 8(a). The strong vertices in the diagrams
come from the Lagrangian [15,16]

L0s � GDh �B��fV�; Bgi � GFh �B���V�; B	i

� G0h �B��BihV�i �
1

2
efVh�D

�V� �D�V��

� �
yQ
� 
Q
y�i�@�A� � @�A��; (C1)

with V � 1
2�3�

0 � � � � containing the nonet of vector-
meson fields and D�V� � @�V� � �V�;V�	,5 whereas
5Under a chiral transformation, V! UVUy and D�V� !
UD�V�Uy.

074003
the weak vertices arise from

Lw � GFm2
���hDh

�Bf
yh
; Bgi � hFh �B�
yh
; B	i

� hVhh
V�V�
yi� � H:c:; (C2)
FIG. 8. Pole diagrams contributing to the c and d amplitudes.
A single line (double line) denotes a baryon (vector meson) field,
and a solid dot (hollow square) represents a strong (weak) vertex.
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with h being a 3� 3-matrix having elements hkl � 
k2
3l
which selects out s! d transitions. The relevant parame-
ters in L0s are GD � �13:9 and GF � 17:9 from a recent
dispersive analysis [16,17],6 and fV � 0:201 from �0 !
e�e� rate [8], while those in Lw are hD � �72 MeV and
hF � 179 MeV extracted at tree level from S-wave hy-
peron nonleptonic decays [18], but hV cannot be deter-
mined directly from data. To estimate hV, we use the
SU�6�w relation h�0jH wj �K0i � h�0jH wj �K�0i derived in
Ref. [19]. Thus, employing the weak chiral Lagrangian
L’

w � �8f2hh@��@��yi � H:c:; with �8 � 7:8� 10�8

from K ! �� data, we find hV � �4�8m2
K=�GFm2

��� �

�0:34 GeV2. Putting things together and adopting ideal
!-� mixing, we then obtain
6Although G0 does not appear in our results, it enters the
extraction of GD;F. Writing the ppV part of L0s as
1
2 �p��p�g�NN�

0
� � g!NN!� � g�NN���, we have g�NN �

GD � GF � 4:0, g!NN � GD � GF � 2G0 � 41:8, and
g�NN �

���
2
p
�GD � GF � G0� � �18:3, where the numbers are

from Refs. [16,17].

074003
Rec �
fV�GD � GF�m2

���hD � hF�

6�m� �mN�

�
3

q2 �m2
�

�
1

q2 �m2
!
�

2

q2 �m2
�

�
�
fV�GD � GF�m2

��hV
12�q2 �m2

K� �

�

�
3

q2 �m2
�
�

1

q2 �m2
!
�

2

q2 �m2
�

�
: (C3)

The form factor d can receive vector-meson contribu-
tions from the parity-violating Lagrangian

L0w � GFm2
��hPVhh
f� �B;���5B	;V�g
yi � H:c:; (C4)

which are represented by the diagram in Fig. 8(b). The
parameter hPV also cannot be fixed directly from data, and
so we estimate it by adopting again the SU�6�w results of
Ref. [19] to be hPV � 2:41: It follows that

Re d �
fVm2

��hPV

6

�
3

q2 �m2
�
�

1

q2 �m2
!
�

2

q2 �m2
�

�
:

(C5)
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