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We present ‘‘state-of-the-art’’ theoretical expressions for the triple differential �B! Xul
� �� decay rate

and for the �B! Xs� photon spectrum, which incorporate all known contributions and smoothly
interpolate between the ‘‘shape-function region’’ of large hadronic energy and small invariant mass,
and the ‘‘OPE region’’ in which all hadronic kinematical variables scale with MB. The differential rates
are given in a form which has no explicit reference to the mass of the b quark, avoiding the associated
uncertainties. Dependence on mb enters indirectly through the properties of the leading shape function,
which can be determined by fitting the �B! Xs� photon spectrum. This eliminates the dominant
theoretical uncertainties from predictions for �B! Xul

� �� decay distributions, allowing for a precise
determination of jVubj. In the shape-function region, short-distance and long-distance contributions are
factorized at next-to-leading order in renormalization-group improved perturbation theory. Higher-order
power corrections include effects from subleading shape functions where they are known. When
integrated over sufficiently large portions in phase space, our results reduce to standard OPE expressions
up to yet unknown O��2

s� terms. Predictions are presented for partial �B! Xul
� �� decay rates with various

experimental cuts. An elaborate error analysis is performed that contains all significant theoretical
uncertainties, including weak annihilation effects. We suggest that the latter can be eliminated by
imposing a cut on high leptonic invariant mass.
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I. INTRODUCTION

A major effort of the B-physics community is underway
to map out the apex of the unitarity triangle, which pro-
vides a graphical representation of the effect of CP viola-
tion in the quark flavor sector of the standard model. One of
the biggest successes of this endeavor was the precise
determination of the angle �, which has been measured
with high accuracy from the time-dependent CP asymme-
try in the B! J= KS decay channel [1,2]. The length of
the side opposite the angle � is proportional to jVubj. A
high-precision determination of this quantity would enable
us to test the validity of the standard model and search for
possible deviations from its predictions.

Good theoretical knowledge of strong-interaction effects
in weak decays of B mesons is crucial for a reliable
exploration of the flavor sector of the standard model. In
particular, the determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements jVcbj and jVubj relies on
an accurate description of bound-state effects in semilep-
tonic decays. At present, the most precise calculations are
available for inclusive semileptonic decays �B! Xl� ��.

The theoretical tools for the calculation of inclusive B
decays are QCD factorization on the one hand [3–11], and
local operator product expansions (OPE) on the other
[12,13]. Both approaches perform a systematic separation
of long-distance hadronic quantities from short-distance
perturbative ones, while organizing the calculation in in-
verse powers of the heavy b-quark massmb. The OPE is an
appropriate tool for the calculation of total inclusive rates
(for example in �B! Xcl� �� decay) or for partial rates
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integrated over sufficiently large regions in phase space,
where all components of the final-state hadronic momen-
tum P�X are large compared to �QCD. QCD factorization,
on the other hand, is better suited for the calculation of
partial rates and spectra near kinematical boundaries,
where typically some components of P�X are large, while

the invariant hadronic mass MX �
������
P2
X

q
is small. For ex-

ample, any �B! Xul
� �� event can be described with three

independent kinematical variables, a useful choice of
which is [9,14]

Pl � MB � 2El; P� � EX � j ~PXj;

P� � EX � j ~PXj:
(1)

Here P� are the light-cone components of the hadronic
final-state momentum along the jet direction, El is the
charged-lepton energy, EX is the jet energy, and ~PX is the
jet momentum, all measured in the B-meson rest frame.
The phase space for these variables is

M2
�

P�
� P� � Pl � P� � MB; (2)

with M� being the mass of the lightest possible hadronic
final state. The product P�P� � M2

X is the hadronic in-
variant mass squared. In order to avoid large backgrounds
from b! c transitions, all measurements of jVubj are in
one way or another restricted to the region of phase space
where P�P� <M2

D. If the quantity P� takes values near
its maximum at MB, then P� is restricted to a region of
-1 © 2005 The American Physical Society
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1More precisely, we define a new shape function Ŝ�!̂� by the
combination of leading and subleading shape functions contrib-
uting to �B! Xs� decay, and we will use the same function to
make predictions for �B! Xul

� �� decay distributions.
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order M2
D=MB, which is numerically comparable to �QCD.

This means that there are three parametrically different
energy scales in the problem: the mass MB of the initial

state, the mass of the final hadronic state�
�������������������
MB�QCD

q
, and

the low-scale �QCD at which perturbation theory breaks
down and hadronic physics must be parameterized in terms
of nonperturbative matrix elements. QCD factorization
disentangles the effects from these scales, so that the
perturbative contributions can be expanded in powers of
�s��h� with �h �mb (giving rise to ‘‘hard functions’’)

and �s��i� with �i �
������������������
mb�QCD

q
(giving rise to ‘‘jet

functions’’).
It is important to note that the heavy-quark expansions

valid in these two kinematical regions are not identical,
because the power-counting rules differ in the two regimes.
Also the nature of the nonperturbative inputs is different. In
the OPE region, nonperturbative physics is encoded in a
few hadronic parameters, and the heavy-quark expansion is
the usual Wilsonian expansion in local operators. In the
endpoint (or shape-function) region, the presence of mul-
tiple scales complicates the power counting, and the inter-
play between soft and collinear modes gives rise to large
nonlocalities. As a result, nonperturbative physics is de-
scribed by hadronic structure functions called ‘‘shape func-
tions’’, and the heavy-quark expansion is an expansion in
nonlocal string operators defined on the light-cone. The
connections between the two regimes is that moments of
the shape functions can be expressed in terms of local
operators.

The goal of the present work is to develop a formalism
that smoothly interpolates between the two kinematical
regimes (see [15] for a related discussion, which is how-
ever restricted to the tree approximation). This is essential
for building an event generator for inclusive �B! Xul� ��
and �B! Xs� decays, which can be used to study partial
and differential decay rates in different kinematical do-
mains. In the shape-function region, our approach relies on
exact QCD factorization theorems, which exist in every
order of power counting. They allow us to systematically
disentangle short- and long-distance physics and, in the
process, resum parametrically large logarithms order by
order in perturbation theory. This factorization can be done
with high accuracy for the terms of leading power in 1=mb,
and with somewhat less sophistication for the first-order
power corrections. For the second-order power corrections,
we only include contributions that do not vanish when
integrated over all phase space. This is a safe approxima-
tion; the effects of the remaining 1=m2

b terms can to a large
extent be absorbed by a redefinition of the subleading
shape functions arising at order 1=mb.

Our formalism is ‘‘optimized’’ for the shape-function
region in the sense that sophisticated theoretical technol-
ogy is applied in this regime. However, when our expres-
sions for the differential decay rates are integrated over
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sufficiently wide domains, they automatically reduce to the
simpler results that can be derived using the OPE approach,
up to yet unknown terms of O��2

s�. The moment relations
for the shape functions are crucial in this context. Note that
local 1=m2

b corrections in the OPE receive contributions
from terms of leading power (1=m0

b), subleading power
(1=mb), and subsubleading power (1=m2

b) in the shape-
function region, so the transition is highly nontrivial. In
implementing the program outlined here, we include all
presently known information on the triple differential �B!
Xul

� �� decay rate and on the differential �B! Xs� decay
rate in a single, unified framework. We neglect, for sim-
plicity, hadronic power corrections of order 1=m3

b and
higher, which are known to have a negligible effect on
the observables considered here. The only possible excep-
tion is contributions from ‘‘weak annihilation’’, which are
estimated as part of our error analysis. We also ignore the
existing results on O��0�2

s� radiative corrections for some
single-differential distributions, because the corresponding
corrections are not known for the double or triple differ-
ential �B! Xul

� �� decay spectra. While these O��0�
2
s�

terms are sometimes found to be large when naive pertur-
bation theory in �s�mb� is used, their effects are expected
to be small in our scheme, which is based on a complete
scale separation using QCD factorization. We see no rea-
son why the �0�

2
s terms should be enhanced compared to

other, unknown corrections of O��2
s�.

A technical complication in realizing the approach de-
scribed here has to do with the treatment of phase-space
factors. The heavy-quark expansion of the hadronic tensor
for �B! Xul� �� decay gives rise to expressions that are
singular at certain points in phase space. One way to avoid
these singularities is to also expand phase-space factors
order by order in 1=mb (see, e.g., the treatment in [16]).
However, since this expansion depends on the kinematical
cuts of any given analysis, it cannot be implemented in a
straightforward way in an event generator. An alternative is
to reorganize the heavy-quark expansion in such a way that
the expansion parameter is related to hadronic (as opposed
to partonic) kinematical variables, in which case kinemati-
cal singularities are always canceled by exact phase-space
factors. Following this strategy, we obtain expressions for
decay distributions and partial decay rates which are free of
explicit reference to partonic quantities such as the b-quark
mass. A dependence on mb enters only implicitly via the
first moment of the leading-order shape function Ŝ�!̂�. The
philosophy of our approach is that this function1 is ex-
tracted experimentally from a fit to the �B! Xs� photon
spectrum, which has been measured with good precision in
the region where P� � MB � 2E� ��QCD. This is analo-
-2
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gous to the extraction of parton distribution functions from
deep inelastic scattering. The photon spectrum is experi-
mentally accessible to energies as low as 1.8 GeV, which
corresponds to a sampling of the shape function for values
of !̂ up to about 1.7 GeV. Once the shape function has been
extracted over this range, we can use it to obtain predic-
tions for arbitrary partial �B! Xul

� �� decay rates with
cuts. In doing so, the residual hadronic uncertainties in
the extraction of jVubj only enter at the level of power
corrections.

We emphasize that the program outlined above is
equivalent to an approach put forward in [4] and later
refined in [17–19], in which jVubj is extracted with the
help of shape-function independent relations between
weighted integrals over differential decay distributions in
�B! Xs� and �B! Xul

� ��. The experimental error in the
results for these weighted integrals corresponds, in our
approach, to the error in the prediction of �B! Xul

� ��
partial rates resulting from the experimental uncertainty
in the extraction of the shape function from the �B! Xs�
photon spectrum. While the shape-function independent
relations are very elegant, it is more convenient for the
construction of a generator to have a formulation where the
shape function is used as an input. In this way, it is possible
to impose arbitrary cuts on kinematical variables without
having to recompute the weight functions in each case.

The paper is structured as follows: In Sec. II we collect
the relevant formulas for the calculation of the �B! Xs�
photon spectrum. These expressions can be used to extract
the leading nonperturbative structure function from experi-
ment. An analogous presentation for the triple-differential
decay rate in �B! Xul

� �� decays is presented in Sec. III. In
order to perform a numerical analysis one needs to rely on
parametrizations of the shape functions. A collection of
several useful functional forms is given in Sec. IV. In
Sec. V we present a full error analysis of partial �B!
Xul� �� decay rates for a variety of experimental cuts. We
also explore the sensitivity of the results to the b-quark
mass and to the functional forms adopted for the shape
functions. Sec. VI contains our conclusions.

II. INCLUSIVE RADIATIVE DECAYS

The decay process �B! Xs�, while more complex in its
short-distance physics, is considerably simpler in its kine-
matics than the semileptonic process �B! Xul� ��. Since
the radiated photon is on-shell, the hadronic variables P�
that describe the momentum of the Xs system are trivially
related to the photon energy E� by P� � MB � 2E� and
P� � MB. In the crudest approximation, namely, at tree
level and leading power, the photon-energy spectrum is
directly proportional to the leading shape function,
d�s=dE� / Ŝ�P��. In this section we collect all relevant
formulas needed to compute the �B! Xs� photon spec-
trum or, equivalently, the invariant hadronic mass distribu-
tion. It is implicitly assumed that these spectra are
073006
sufficiently ‘‘smeared’’ (e.g., by experimental resolution)
to wash out any sharp hadronic structures. In cases where
the resolution is such that the K	 resonance peak is ob-
served, it can be accounted for by combining the formulas
in this section with the prescription for subtracting the K	

peak proposed in [20].
The differential �B! Xs� decay rate can be written as

d�s
dE�

�
G2
F�

2�4 E
3
�jVtbV	tsj2m2

b��h�


 �Ceff
7���h��

2U��h;�i�F ��P��; (3)

where the structure function F � depends on the photon
energy via P� � MB � 2E�. The prefactor contains the
electromagnetic fine-structure constant � normalized at
q2 � 0, two powers of the running b-quark mass (defined
in the MS scheme) originating from the electromagnetic
dipole operator Q7� in the effective weak Hamiltonian,
and the square of the corresponding Wilson coefficient
Ceff

7�, which is needed at next-to-leading order in
renormalization-group improved perturbation theory [21].
Renormalization-group running from the hard scale �h �

mb to the intermediate scale �i �
������������������
mb�QCD

q
gives rise to

the evolution factor U��h;�i�, whose explicit form is
discussed in Appendix A. We keep U and �Ceff

7��
2 outside

of the structure function F �; it is understood that when
combining the various terms in (3) all perturbative quanti-
ties should be expanded for consistency to the required
order in �s.

A. Leading-power factorization formula

At leading order in 1=mb the structure function F �

factorizes as [11]

F �0�� �P�� � jHs��h�j
2
Z P�

0
d!̂ mbJ�mb�P� � !̂�; �i�


 Ŝ�!̂; �i�: (4)

At this order a single nonperturbative parton distribution
function arises, called the leading shape function [4] and
denoted by Ŝ�!̂; �i�. Our notation is adopted from [9,16]:
hatted shape functions have support for !̂ 
 0. The func-
tion Ŝ is defined in terms of a nonlocal matrix element in
heavy-quark effective theory (HQET). Renormalization-
group running between the intermediate scale and a low
hadronic scale is avoided when using the shape functions
renormalized at the intermediate scale �i. Evolution ef-
fects below this scale are universal (i.e., process indepen-
dent) and so can be absorbed into the renormalized shape
function. Short-distance contributions from scales above
�h �mb are included in the hard function Hs, which in
practice is obtained by matching the effective weak
Hamiltonian onto a current operator in soft-collinear ef-
fective theory (SCET). At next-to-leading order in pertur-
-3
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bation theory, the result reads
Hs��h� � 1�
CF�s��h�

4�

�
�2 ln2 mb

�h
� 7 ln

mb

�h
� 6�

�2

12

�
� "ew �

Ceff
8g ��h�

Ceff
7���h�

CF�s��h�

4�

�
�

8

3
ln
mb

�h
�

11

3
�

2�2

9
�

2�i
3

�

�
C1��h�

Ceff
7���h�

CF�s��h�

4�

�
104

27
ln
mb

�h
� g�z� �

VubV
	
us

VtbV
	
ts
�g�0� � g�z��

�
� "peng; (5)

where the variable z � �mc=mb�
2 denotes the ratio of quark masses relevant to charm-loop penguin diagrams, and the

‘‘penguin function’’ g�z� can be approximated by the first few terms of its Taylor expansion,

g�z� � �
833

162
�

20�i
27
�

8�2

9
z3=2 �

2z
9
�48� 5�2 � 36�3 � �30�� 2�3�i� �36� 9�2 � 6�i� lnz

� �3� 6�i� ln2z� ln3z� �
2z2

9
�18� 2�2 � 2�3i� �12� 6�2� lnz� 6�i ln2z� ln3z�

�
z3

27
��9� 14�2 � 112�i� �182� 48�i� lnz� 126 ln2z� � . . . : (6)
The Wilson coefficients C1 and Ceff
8g in (5) multiply the

current-current operators Qu;c
1 and the chromo-magnetic

dipole operator Q8g in the effective weak Hamiltonian.
The quantities "ew � �1:5% and "peng � �0:6% account
for small electroweak corrections and the effects of pen-
guin contractions of operators other thanQu;c

1 , respectively.
The differential decay rate (3) is formally independent of
the matching scales �h and �i. The �h dependence of the
evolution factorU��h;�i� cancels the scale dependence of
the product m2

b��h��C
eff
7���h��

2jHs��h�j
2, while its �i de-

pendence compensates the scale dependence of the con-
volution integral J��i� � Ŝ��i�.
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Finally let us discuss the jet function J, which appears as
the hard-scattering kernel in the convolution integral in (4).
It can be written in terms of distributions that act on the
shape function Ŝ. At one-loop order, the jet function is
given by [8,9]

J�p2; �� � ��p2�

�
1�

CF�s���
4�

�7� �2�

�

�
CF�s���

4�

�
1

p2

�
4 ln

p2

�2 � 3
��
��2�

	
; (7)

where the star distributions have the following effect on a
function f when integrated over a domain Q2 [22]:
Z Q2

�0
dp2

�
1

p2

�
��2�

	
f�p2� �

Z Q2

0
dp2 f�p

2� � f�0�

p2 � f�0� ln
Q2

�2 ;

Z Q2

�0
dp2

�
1

p2 ln
p2

�2

�
��2�

	
f�p2� �

Z Q2

0
dp2 f�p

2� � f�0�

p2 ln
p2

�2 �
f�0�

2
ln2 Q

2

�2 :
(8)
B. Kinematical power corrections

There exists a class of power corrections to (4) that do
not involve new hadronic quantities. Instead, the power
suppression results from the restriction of certain variables
(P� in the present case) to a region where they are kine-
matically suppressed (here P� � MB). The corresponding
terms are known in fixed-order perturbation theory, with-
out scale separation and renormalization-group resumma-
tion [23,24] (see also [20]). To perform a complete RG
analysis of even the first-order terms in 1=mb is beyond the
scope of the present work. Since, as we will see later,
power corrections only account for small corrections to
the decay rates, an approximate treatment will suffice. To
motivate it, we note the following two facts [11]: First,
while the anomalous dimensions of the relevant subleading
SCET and HQET operators are only known for a few cases
[25], the leading Sudakov double logarithms are the same
as for the terms of leading power, because they have a
geometric origin in terms of Wilson lines [26]. The leading
Sudakov double logarithms are therefore the same as those
resummed into the function U in (3). Secondly, the kine-
matical power corrections in �B! Xs� decay are associ-
ated with gluon emission into the hadronic final state Xs.
Because of the kinematical restriction to low-mass final
states, i.e. M2

X �MB�QCD, we associate a coupling �s� ���
with these terms, where typically ����i. Strictly speak-
ing, however, the scale ambiguity associated with the
choice of �� could only be resolved by computing the
relevant anomalous dimensions.

Within this approximation, the kinematical power cor-
rections to the structure function F � can be extracted from
[11,20]. We find it convenient to express the result in terms
of the variable
-4
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x �
P� � !̂
MB � P�

; (9)

which in the shape-function region scales like �QCD=mb. We obtain

F �
kin�P�� �

1

MB � P�

CF�s� ���
4�

X
i; j � 1; 7; 8

i � j

Ci��h�Cj��h�

Ceff
7���h�

2

Z P�

0
d!̂ Ŝ�!̂; �i�hij�x� �

	2

9m2
c

C1��h�

Ceff
7���h�

Ŝ�P�; �i�: (10)
The coefficient functions hij�x� are

h77�x� � �3�5� 2x� � 2�8� 9x� 3x2� ln
�

1�
1

x

�
;

h88�x� �
2

9
�1� 3x� 4x2 � 2x3�

�
2 ln

mb

ms
� ln

�
1�

1

x

��

�
1

9
�3� 9x� 16x2 � 8x3�;

h78�x� �
2

3
�5� 8x� 4x2� �

8

3
x�1� x�2 ln

�
1�

1

x

�
;

h11�x� �
16

9

Z 1

0
du�1� x� u�




��������z�1� x�u
G
�

u
z�1� x�

�
�

1

2

��������2
;

h17�x� � �3h18�x�

� �
8

3

Z 1

0
duuRe

�
z�1� x�

u
G
�

u
z�1� x�

�
�

1

2

�
;

(11)

where as before z � �mc=mb�
2, and

G�t� �
�
�2arctan2

�������������������
t=�4� t�

p
; t < 4;

2�ln��
��
t
p
�

�����������
t� 4
p

�=2� � i�
2 �

2; t 
 4:
(12)

In the shape-function region the expressions for hij�x�
could, if desired, be expanded in a power series in x �
O��QCD=mb�, and this would generate a series of power-
suppressed terms F �

kin�n��P�� with n 
 1, where the
superscript ‘‘n’’ indicates the order in the 1=mb expansion.
Note that this expansion would contain single logarithms
lnx� ln��QCD=mb�. These are precisely the logarithms
that would be resummed in a more proper treatment using
effective field-theory methods.

Outside the shape-function region the variable x can take
on arbitrarily large positive values, and F �

kin�P�� is no
longer power-suppressed. Note that for P� ! MB (corre-
sponding to x! 1 and E� ! 0) most functions hij�x�
grow like x2 or weaker, so that the spectrum tends to a
constant. The only (well-known) exception is h88�x�, which
grows like x3, giving rise to a 1=E� soft-photon singularity
[24]. The main effect of the kinematical power corrections
(10) to the photon spectrum is to add a radiative tail
extending into the region of small photon energies. These
073006
corrections therefore become the more significant the
larger the integration domain over E� is.

C. Subleading shape-function contributions

At order 1=mb in power counting, different combina-
tions of subleading shape functions enter the �B! Xs� and
�B! Xul

� �� decay distributions [27–30]. They provide the
dominant hadronic power corrections, which must be com-
bined with the kinematical power corrections discussed in
the previous section. We include their effects using the
results of recent calculations in [16,31,32]. Little is known
about the subleading shape functions apart from expres-
sions for their first few moments. In particular, the norms of
these functions vanish at tree level, while their first mo-
ments are determined by the HQET parameters 	1 and 	2,
which are defined via the forward B-meson matrix ele-
ments of the kinetic-energy and the chromo-magnetic op-
erators, respectively [33].

For the case of �B! Xs� decay, subleading shape-
function contributions are currently only known for the
matrix elements of the dipole operator Q7�, and the corre-
sponding hard and jet functions have been computed at tree
level. Adopting the notations of [16], the relevant sublead-
ing shape functions are t̂�!̂�, û�!̂�, and v̂�!̂�. An addi-
tional function, called s0, has been absorbed by a
redefinition of the leading shape function, and it is included
in our definition of Ŝ�!̂�. Roughly speaking, û�!̂� is the
‘‘light-cone generalization’’ of the local HQET kinetic-
energy operator. The functions v̂�!̂� and t̂�!̂� are both
generalizations of the local chromo-magnetic HQET op-
erator, but t̂�!̂� contains also a light-cone chromo-electric
operator, which has no equivalent in the local OPE expan-
sion. (Such a contribution arises since there are two exter-
nal 4-vectors in the SCET expansion, n and v, while there
is only v in the HQET expansion.) The contribution of
subleading shape functions to the �B! Xs� photon spec-
trum is

F �
hadr�1��P�� �

1

MB � P�
��� ��� P��Ŝ�P�� � t̂�P��

� û�P�� � v̂�P���: (13)

Compared to [16], we have replaced 1=mb with 1=�MB �
P�� in the prefactor, which is legitimate at this order. (The
form of the shape functions restricts P� to be of order
-5
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�QCD.) The appearance of the HQET parameter �� �
�MB �mb�mb!1

is peculiar to the subleading shape-
function contributions. This quantity is defined via the first
moment of the leading-order shape function [9].

The formula given above can be modified to suit the
purpose of extracting the shape function from the photon
spectrum better. To this end, we absorb a linear combina-
tion of the subleading shape functions into a redefinition of
the leading shape function, in such a way that the moment
relations for this function remain unchanged to the order
we are working. This is accomplished by defining

Ŝ�!̂� � Ŝ�!̂� �
2� ��� !̂�Ŝ�!̂� � t̂�!̂� � û�!̂� � v̂�!̂�

mb
:

(14)

When using Ŝ instead of Ŝ in the leading-power formula
(4), the subleading shape-function contribution becomes

F �
hadr�1��P�� � �

3� ��� P��
MB � P�

Ŝ�P��: (15)

The hatted shape functions used in the present work are
related to the original definitions in [16] by

Ŝ�!̂� � S� ��� !̂� �
s0�

��� !̂�
mb

; t̂�!̂� � t� ��� !̂�;

û�!̂� � u� ��� !̂�; v̂�!̂� � v� ��� !̂�; (16)

where the unhatted functions have support on the interval
between �1 and ��. It is convenient to rewrite ��� !̂ �
!��!, where

�! � ��� �MB �mb� �
	1 � 3	2

2mb
� . . . (17)

accounts for the mismatch between the HQET parameter ��
and the difference �MB �mb� due to power-suppressed
terms in the 1=mb expansion [34]. It follows that the
variable ! � �MB �mb� � !̂ runs from �1 to �MB �
mb�. The moment relations for the leading and subleading
shape functions derived in [4,16,27] can be summarized as

Ŝ�!̂� � S�!� �!� �
s0�!��!�

mb

� ��!� �
	1

6
�00�!� �

	1 � 3	2

2mb
�0�!� � . . . ;

t̂�!̂� � t�!� �!� � 	2�0�!� � . . . ;

û�!̂� � u�!� �!� � �
2	1

3
�0�!� � . . . ;

v̂�!̂� � v�!��!� � �	2�
0�!� � . . . :

(18)

The function Ŝ has the same moment expansion as Ŝ. The
hadronic parameter 	2 determines the leading contribution
to the hyperfine splitting between the masses of B and B	
073006
mesons through m2
B	 �m

2
B � 4	2 �O�1=mb� [33], from

which it follows that 	2 � 0:12 GeV2. The value of the
parameter 	1 is more uncertain. In much the same way as
the b-quark pole mass, it is affected by infrared renormalon
ambiguities [35,36]. It is therefore better to eliminate 	1 in
favor of some observable, for which we will choose the
width of the leading shape function.

D. Residual hadronic power corrections

At order 1=m2
b a new set of sub-subleading shape func-

tions enter, which so far have not been classified com-
pletely in the literature. Since the functional form of even
the subleading shape functions is rather uncertain, there is
no need to worry too much about the precise form of sub-
subleading shape functions. Most of their effects can be
absorbed into the subleading functions. An exception,
however, are terms that survive when the sub-subleading
shape functions are integrated over a wide domain.
Whereas the norms of all subleading (� 1=mb) shape
functions vanish, the norms of the sub-subleading shape
functions (� 1=m2

b) are in general nonzero and given in
terms of the heavy-quark parameters 	1 and 	2. (At tree
level, the class of functions with nonzero norm has been
studied in [15].) Our strategy in the present work will be as
follows: We start from the well-known expressions for the
(tree-level) second-order power corrections to the �B!
Xs� photon spectrum [37] (and similarly for the triple-
differential �B! Xul

� �� decay distribution [12,13], see
Sec. III D). They are of the form 	i=m

2
b times one of the

singular distributions ��p2�, �0�p2�, or �00�p2�, where p2 �
�mbv� q�2 is the invariant partonic mass squared of the
final-state jet. As mentioned earlier, the power counting in
the shape-function region is different from the one used in
OPE calculations, and indeed a good portion of the 1=m2

b
terms in the OPE is already accounted for by the contribu-
tions proportional to the leading and subleading shape
functions in (4) and (13). We identify the corresponding
terms using the moment relations for the shape functions in
(18). In particular, this reproduces all terms at order 1=m2

b
in the OPE which contain derivatives of ��p2�. We include
the remaining terms of the form �	i=m2

b���p
2� by replacing
��p2� � ��p�p�� �
1

p� � p�

Z
d!��p� �!���!�

!
1

P� � P�

Z
d!̂��P� � !̂�Ŝ�!̂� �

Ŝ�P��
P� � P�

:

(19)
Here p� are the light-cone projections of the partonic
momentum p�, which are related to the hadronic
quantities P� by P� � p� � �MB �mb�. Similarly, !̂ �
�MB �mb� �!.
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The result of these manipulations is

F �
hadr�2� �

	1

�MB � P��2
Ŝ�P��: (20)

Together with (4) and (13) this accounts for all known first-
and second-order power corrections to the �B! Xs� pho-
ton spectrum, both in the shape-function region and in the
OPE region. The redefinition (14) of the leading shape
function from Ŝ to Ŝ leaves the form of the second-order
power corrections unaffected.

In Sec. V we study the numerical impact of second-order
power corrections on various �B! Xul� �� partial rates and
find their effects to be tiny. It is therefore a safe approxi-
mation to neglect hadronic power corrections of order
1=m3

b or higher. The only possible exception to this con-
clusion relates to the so-called weak annihilation terms in
�B! Xul

� �� decay, which will be included in our error
analysis.
III. INCLUSIVE SEMILEPTONIC DECAYS

All hadronic physics in �B! Xul� �� decays is encoded in
the hadronic tensor W��, which is defined via the disconti-
nuity of the forward B-meson matrix element of a
correlator of two flavor-changing weak currents J� �
�u���1� �5�b. Explicitly,

W�� �
1

2MB



1

�
Imh �B�v�ji

Z
d4xeiq�xTfJy��0�; J��x�gj �B�v�i;

(21)

where v is the B-meson velocity and q the momentum
carried by the lepton pair. The hadronic tensor can be
decomposed into five structure functions Wi, which are
the coefficients of the five possible Lorentz structures built
out of two independent 4-vectors. Typical choices for these
two vectors are q and v, p and v, etc. Here, as above, p �
mbv� q is the momentum of the jet of light particles into
which the b quark decays. In principle, all choices are
equivalent, and it is solely a matter of convenience which
basis one picks.

The triple-differential decay rate can then be expressed
in terms of kinematical prefactors and the functions Wi. It
is a known fact that the total decay rate is proportional to
five powers of the b-quark mass. Further sensitivity to mb
is picked up for partial decay rates by the kinematical cuts.
For example, cutting on the leptonic invariant mass q2 >
q2

0 introduces roughly five additional powers, and the
resulting partial decay rate is proportional to �mb�

a with
a � 10 [38,39]. This is the reason why theoretical predic-
tions were typically made for event fractions, so that at
least the five powers of mb in the total rate drop out. For
practical purposes, however, this procedure presents no
advantage as the value of the total decay rate cannot be
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measured. Furthermore, the mb dependence of the total
rate is clearly related to the mb dependence of partial rates,
and it is important to take this correlation into account
when combining calculations of event fractions with those
of the total decay rate. In Sec. V, where we present theo-
retical predictions, we will thus focus directly on predic-
tions for partial decay rates, not event fractions. Note that
information about mb enters the triple-differential decay
rate in two ways, via the hadronic structure functions Wi
and through their kinematical prefactors. Whether or not
mb appears explicitly in the prefactors depends on the
decomposition of W��, i.e., on the choice of vectors used
to form the five possible Lorentz structures.

A very useful set of 4-vectors turns out to be �v; n�,
where n is a lightlike vector in the direction of the jet of
light particles. In SCET, n denotes the direction of the
collinear particles in the jet, which is typically set to be
along the z axis. The normalization is chosen such that
v � n � 1, so that n� � �1; 0; 0; 1� in the rest frame of the B
meson. The conjugate direction to n is denoted by �n� �
�1; 0; 0;�1� and marks the direction of the photon in �B!
Xs� decay, or the direction of the lepton pair in �B!
Xul

� �� decay. We then decompose

W�� � �n�v� � n�v� � g�� � i
����n�v�� ~W1

� g�� ~W2 � v
�v� ~W3 � �n

�v� � n�v�� ~W4

� n�n� ~W5: (22)

The structure functions ~Wi all have mass dimension �1 in
this basis. In terms of the ~Wi functions the triple-
differential decay rate reads

d3�u
dP�dP�dPl

�
G2
FjVubj

2

16�3 Uy��h;�i��MB � P��


 ��P� � Pl��MB � P� � Pl � P��F 1

� �MB � P���P� � P��F 2

� �P� � Pl��Pl � P��F 3�; (23)

where we have collected the relevant combinations of ~Wi
into the three functions

Uy��h;�i�F 1 � ~W1; Uy��h;�i�F 2 �
~W2

2
;

Uy��h;�i�F 3 �

�
y
4

~W3 � ~W4 �
1

y
~W5

�
;

(24)

and defined a new kinematical variable

y �
P� � P�
MB � P�

; (25)

which can take values 0 � y � 1. The leading evolution
factor Uy��h;�i� has been factored out in (23) for conve-
nience, as we have done earlier in (3). The function
Uy��h;�i� differs from the corresponding function in �B!
Xs� decay by a y-dependent factor,
-7
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FIG. 1. The hadronic phase space in P� and P�. The light
gray region contains background from �B! Xcl

� �� decays, while
the dark gray region is only populated by �B! Xul� �� events.
The line separating the two regions is the contour where M2

X �
P�P� � M2

D. Each point represents a �B! Xul
� �� event in a

Monte-Carlo simulation using the results of this paper. While the
shape-function region of large P� and small P� is highly
populated, there is not a single event with P� larger than
3 GeV out of the 1300 events generated.

2In the shape-function region, where P� � P�, we have y �
p�=mb, which is the variable used in the leading-power analysis
in [9].
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Uy��h;�i� � U��h;�i� y�2a���h;�i�; (26)

where the function a� in the exponent is related to the cusp
anomalous dimension and is given in Appendix A.

Equation (23) for the triple-differential rate is exact.
Note that there is no reference to the b-quark mass at this
point. The only dependence on mb is through the structure
functions F i�P�; y� (via hard matching corrections and via
the moment constraints on the shape function Ŝ), which are
independent of the leptonic variable Pl. The fact that the
total decay rate �u is proportional to m5

b is not in contra-
diction with (23). It is instructive to demonstrate how these
five powers of mb are recovered in our approach. At tree
level and leading power the functions F 2 and F 3 vanish,
while F 1 � Ŝ�P��. Integrating over the full range of Pl
and P� builds up five powers of �MB � P��. For the
purpose of illustration, let us rename the P� variable to
!̂ in the last integration, so that the total decay rate is given
as

�u �
G2
FjVubj

2

192�3

Z MB

0
d!̂�MB � !̂�

5Ŝ�!̂�

�
G2
FjVubj

2

192�3

Z MB�mb

�mb

d!�mb �!�5S�!�

�
G2
FjVubj

2

192�3 �mb � h!i�5
�

1�O
�

1

m2
b

��
: (27)

At tree level, the first moment of the shape function S�!�
vanishes. Beyond tree level this is no longer the case, and
the average h!i depends on the size of the integration
domain. The above observation motivates the use of the
shape-function scheme [9], in which the b-quark mass is
defined as mSF

b � mpole
b � h!i �O�1=mb�. After this is

done, (27) recovers the form of the conventional OPE
result.

Equation (23) and the above argument tell us that the
differential rate is a priori rather insensitive to the b-quark
mass in the endpoint region, where P� (and therefore h!̂i)
is a small quantity. Only when the rates are integrated over
a sufficiently wide domain, so that shape-function integrals
can be approximated using a moment expansion, a depen-
dence on mb enters indirectly via the first moment of the
leading-order shape function. Likewise, a dependence on
other HQET parameters such as 	1 enters via the sensitiv-
ity to higher moments.

In the remainder of this section we present the various
contributions to the structure functions F i, following the
same line of presentation as we did in the case of �B! Xs�
decay in Sec. II. As before, while the resulting expressions
are optimized for the shape-function region, they can be
used over the entire phase space and give the correct result
for the total decay rate up to corrections of O��2

s�. In the
shape-function region, where P� is a small quantity, one
may organize each F i as a series in inverse powers of
1=�MB � P��. No assumption about the variable y is
073006
made, which is treated as an O�1� quantity.2 A preview
of the results of our calculation is depicted in Fig. 1, which
shows an illustration of our prediction for the distribution
of events in the plane �P�; P��.

A. Leading-power factorization formula

The leading-power expressions for the hadronic struc-
ture functions Wi have been calculated in [9] at one-loop
order in renormalization-group improved perturbation the-
ory. At this level F 2 does not obtain a contribution,
whereas F 1 and F 3 do. Symbolically, they take the fac-
torized form Hui J � Ŝ, consisting of hard functions Hui
and the convolution of the jet function J with the leading
shape function Ŝ. More precisely,

F �0�i �P�; y� �Hui�y;�h�
Z P�

0
d!̂ ymbJ�ymb�P� � !̂�;�i�


 Ŝ�!̂;�i�; (28)

where the hard functions are given by
-8
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Hu1�y;�h� � 1�
CF�s��h�

4�

�
�4 ln2 ymb

�h
� 10 ln

ymb

�h

� 4 lny�
2 lny
1� y

� 4L2�1� y� �
�2

6
� 12

�
;

Hu3�y;�h� �
CF�s��h�

4�
2 lny
1� y

; (29)

and Hu2 � 0. As before, the differential decay rate is

independent of the matching scales �h �mb and �i �������������������
mb�QCD

q
. The jet function J has already been given in

(7). Note that the b-quark mass appears only as the argu-
ment of logarithms, where it plays the role of setting the
renormalization scale.

B. Kinematical power corrections

As in the case of �B! Xs� decay, there is a class of
power corrections to the �B! Xul

� �� decay distributions
which are small only because of the restriction to certain
regions in phase space, but which are not associated with
new hadronic parameters. In the present case, these terms
can be extracted from the one-loop expressions derived in
[22]. They are then convoluted with the leading shape
function. As previously, the scale separation that can be
achieved for these power-suppressed terms is only approxi-
mate, and we thus assign a coupling �s� ��� with them,

where the scale �� is expected to be of order �i �������������������
mb�QCD

q
.

The resulting expressions for the structure functions can
be written in a compact form in terms of the variables x and
y defined in (9) and (25). We find

F 1
kin�P�; y� �

1

MB � P�

CF�s� ���
4�

Z P�

0
d!̂ Ŝ�!̂; �i�




�
f1�x; y�

�1� x�2y�x� y�
�

2g1�x; y�

x�1� x�2y2�x� y�


 ln
�
1�

y
x

�
�

4

x
ln
�
y�

y
x

��
;

F kin
2 �P�; y� �

1

MB � P�

CF�s� ���
4�

Z P�

0
d!̂ Ŝ�!̂; �i�




�
f2�x; y�

�1� x�2y2�x� y�
�

2xg2�x; y�

�1� x�2y3�x� y�


 ln
�
1�

y
x

��
;

F kin
3 �P�; y� �

1

MB � P�

CF�s� ���
4�

Z P�

0
d!̂ Ŝ�!̂; �i�




�
f3�x; y�

�1� x�2y3�x� y�
�

2g3�x; y�

�1� x�2y4�x� y�


 ln
�
1�

y
x

��
; (30)

THEORY OF CHARMLESS INCLUSIVE B DECAYS AND . .
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where the functions fi, gi are given by
f1�x; y� � �9y� 10y2 � x��16� 12y� 6y2�

� x2�13y� 12�;

g1�x; y� � �2y3 � 2xy2�4� y� � x2y�12� 4y� y2�

� 4x3�y� 2� � 3x4�y� 2�;

f2�x; y� � y2 � xy�8� 4y� y2� � 3x2y�10� y�

� x3�12� 19y� � 10x4;

g2�x; y� � 2y2 � 4xy�1� 2y� � x2y�18� 5y�

� 6x3�1� 2y� � 5x4;

f3�x; y� � 2y3�2y� 11� � xy2��94� 29y� 2y2�

� 2x2y��72� 18y� 13y2� � x3��72� 42y

� 70y2 � 3y3� � 10x4�6� 6y� y2�;

g3�x; y� � 4y4 � 6x�y� 5�y3 � 4x2y2��20� 6y� y2�

� x3y�90� 10y� 28y2 � y3� � x4�36� 36y

� 50y2 � 4y3� � 5x5�6� 6y� y2�: (31)
The above formulas are the exact O��s� corrections to the
leading-power expression. This means that, when inte-
grated over the entire phase space, they will give rise to
the correct result for the total rate up to that order. In the
shape-function region (where P� � P�) the integrands in
(30) can be expanded in powers of 1=mb by counting y �
O�1� and x � O�1=mb�. Note that this organizes the 1=mb
expansion as an expansion in powers of the hadronic
variable 1=�MB � P��. The leading terms read
F kin�1�
1 �P�; y� �

1

MB � P�

CF�s� ���
4�

Z P�

0
d!̂ Ŝ�!̂; �i�




�
6�

5

y
�

�
12

y
� 4

�
ln
y
x

�
;

F kin�1�
2 �P�; y� �

1

MB � P�

CF�s� ���
4�

Z P�

0
d!̂ Ŝ�!̂; �i�




�
1

y

�
;

F kin�1�
3 �P�; y� �

1

MB � P�

CF�s� ���
4�

Z P�

0
d!̂ Ŝ�!̂; �i�




�
4�

22

y
�

8

y
ln
y
x

�
: (32)
Further accuracy can be achieved by adding the next-order
corrections, for which we obtain
-9
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F kin�2�
1 �P�; y� �

1

�MB�P��
2

CF�s� ���
4�

Z P�

0
d!̂�P� � !̂�Ŝ�!̂;�i�

�
�12�

16

y
�

3

y2�

�
12

y2 �
20

y
� 6

�
ln
y
x

�
;

F kin�2�
2 �P�; y� �

1

�MB�P��2
CF�s� ���

4�

Z P�

0
d!̂�P� � !̂�Ŝ�!̂;�i�

�
1�

2

y
�

7

y2�
4

y2 ln
y
x

�
;

F kin�2�
3 �P�; y� �

1

�MB�P��
2

CF�s� ���
4�

Z P�

0
d!̂�P� � !̂�Ŝ�!̂;�i�

�
�6�

69

y
�

64

y2 �

�
52

y2 �
28

y

�
ln
y
x

�
:

(33)
In the various phase-space regions of interest to the deter-
mination of jVubj, the above terms (32) and (33) approxi-
mate the full result (30) very well (see Sec. V below).

Let us comment here on a technical point already men-
tioned in the Introduction. When combined with the phase-
space factors in (23), the exact expressions for F kin

i in (30)
are regular in the limit P� ! P�, corresponding to y! 0.
However, this feature is not automatically ensured when
the structure functions, but not the phase-space factors, are
expanded about the heavy-quark limit. With our choice of
the variables x and y, we encounter terms as singular as
1=yn at n-th order in the expansion, as is obvious from the
explicit expressions above. Phase space scales like y2 in the
limit y! 0 (note that Pl ! P� as P� ! P� because of
(2)), so that the results (32) and (33) can be applied without
encountering any kinematical singularities. In order to
achieve this, it was crucial to define the variable y in the
way we did in (25). We emphasize this point because
straightforward application of the technology of SCET
073006
and HQET developed in [16,31,32] would give an expan-
sion of the structure functions F i in powers of 1=p�,
whereas phase space is proportional to 4 ~p2 � �p� �
p��

2 / y2. In the kinematical region where p� < 0, which
is allowed due to off-shell effects in the Bmeson, this leads
to singularities as p� ! 0. In order to avoid these singu-
larities, we have reorganized the SCET expansion as an
expansion in 1=�p� � p�� instead of 1=p�, where
jp�j � p� in the shape-function region.
C. Subleading shape-function contributions

The contributions from subleading shape functions to
arbitrary �B! Xul

� �� decay distributions have been de-
rived (at tree level) in [16,31,32]. The results involve the
same set of subleading shape functions as previously dis-
cussed in Sec. II C. Again, the structure function F 2 does
not obtain a contribution, while
F hadr�1�
1 �P�; y� �

1

MB�P�

�
� ���P��Ŝ�P��� t̂�P���

û�P��� v̂�P��
y

�
;

F hadr�1�
3 �P�; y� �

1

MB�P�

2

y

�
�� ���P��Ŝ�P��� 2t̂�P���

t̂�P��� v̂�P��
y

�
:

(34)

At this point we recall the discussion of Sec. II C, where we have argued that the �B! Xs� photon spectrum should be used
to fit the function Ŝ of (14), which is defined to be a linear combination of the leading shape function Ŝ and the subleading
shape functions t̂, û, v̂. When the above results are rewritten in terms of the new function Ŝ nothing changes in the
expressions for F �0�i except for the simple replacement Ŝ! Ŝ, which we from now on assume. At the level of subleading
shape functions F hadr�1�

2 � 0 and F hadr�1�
3 remain unchanged, while

F hadr�1�
1 �P�; y� �

1

MB � P�

�
�� ��� P��Ŝ�P�� � 2t̂�P��

� �û�P�� � v̂�P���
�

1

y
� 1

��
: (35)

It follows that there reside some linear combinations of subleading shape functions in the triple-differential decay rate that
cannot be extracted from information on the photon spectrum in �B! Xs� decays. In the end, this dependence gives rise to
a theoretical uncertainty.

D. Residual hadronic power corrections

In analogy with our treatment for the case of �B! Xs� decay, we start from the expressions for the 1=m2
b corrections to

the triple-differential �B! Xul� �� decay rate obtained by applying the OPE to the hadronic tensor [12,13]. Converting
these results into the �v; n� basis and changing variables from v � q and q2 to p� � n � p and p� � �n � p, we find
-10
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~W�2�1 � ��p��
�
1�

2	1 � 3	2

3p2
�

�
� �0�p��

�
2	1 � 3	2

3p�
�

5	1 � 15	2

6mb

�
� �00�p��

	1

6
;

~W�2�2 � ��p��
�
�

4	1 � 6	2

3p2
�

�
;

y
4

~W�2�3 �
~W�2�4 �

1

y
~W�2�5 �

��p��
p�

�
2	1 � 12	2

3p�
�

4	1 � 9	2

3mb

�
�
�0�p��
p�

�
2	1

3
� 4	2

�
: (36)
The desired 1=�MB � P��
2 corrections to the structure

functions F i can then be extracted by expanding the lead-
ing and subleading contributions F �0�i and F hadr�1�

i in terms
of their moments in (18), and by subtracting the results
from (36). Following the same procedure as in Section II D
to express the remaining power corrections in terms of the
leading shape function, we obtain
F hadr�2�
1 �P�; y� �

1

�MB�P��
2

�
4	1� 6	2

3y2 �
	1� 3	2

3

�

 Ŝ�P��;

F hadr�2�
2 �P�; y� �

1

�MB�P��2

�
�2	1� 3	2

3y2

�
Ŝ�P��;

F hadr�2�
3 �P�; y� �

1

�MB�P��2

�
4	1� 24	2

3y2 �
4	1� 9	2

3y

�

 Ŝ�P��: (37)
These expressions remain unchanged when the shape func-
tion Ŝ is used instead of Ŝ.
E. Weak annihilation contributions

In the OPE calculation several contributions appear at
third order in the power expansion: 1=mb corrections to the
kinetic and chromo-magnetic operators, the Darwin and
spin-orbit terms, and weak annihilation contributions. The
Darwin and spin-orbit terms correspond to the forward
B-meson matrix elements of (light) flavor-singlet operators
[40]. The corresponding HQET parameters �3

D and �3
LS can

in principle be extracted from moments of inclusive �B!
Xcl� �� decay spectra. They are insensitive to the flavor of
the spectator quark inside the B meson. The weak annihi-
lation contribution, on the other hand, results from
four-quark operators with flavor nonsinglet structure.
Graphically, this contribution corresponds to a process in
which the b and �u quark annihilate into a W�. Weak
annihilation terms come with a phase-space enhancement
factor of 16�2 and so are potentially more important than
other power corrections of order 1=m3

b. Because of the
flavor dependence, these contributions can effect neutral
and charged Bmesons differently [41]. One choice of basis
for the corresponding four-quark operators is [42]
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h �Bj �bL��uL �uL�
�bLj �Bi �

f2
BM

2
B

4
B1;

h �Bj �bRuL �uLbRj �Bi �
f2
BM

2
B

4
B2;

(38)

where fB is the B-meson decay constant, and Bi are
hadronic parameters. In the vacuum saturation approxima-
tion they are given by B1 � B2 � 1 for charged B mesons
and B1 � B2 � 0 for neutral ones. The total semileptonic
rate is proportional to the difference �B2 � B1�, which
implies that the weak annihilation contribution would van-
ish in this approximation. Currently, only rough estimates
are available for the magnitude of the deviation of this
difference from zero. The resulting effect on the total
branching ratio is [43]

�B� �B! Xul
� ��� � 3:9

�
fB

0:2 GeV

�
2
�
B2 � B1

0:1

�
jVubj

2:

(39)

Again, we expect this effect to be different for charged and
neutral B mesons. The most important feature of weak
annihilation is that it is formally concentrated at the kine-
matical point where all the momentum of the heavy quark
is transferred to the lepton pair [41]. At the parton level this
implies that the corresponding contribution is proportional
to ��q2 �m2

b�. It is therefore included in every cut that
includes the q2 endpoint, and its effect is independent of
the specific form of the cut.

We suggest two different strategies to control this effect.
The first is to include it in the error estimate as a constant
contribution proportional to the total rate. A recent study
[44] puts a limit on this effect of�1:8% on the total rate (at
68% confidence level) by analyzing CLEO data. The sec-
ond one is to impose a cut q2 � q2

max, thus avoiding the
region where the weak annihilation contribution is concen-
trated. The maximal value of q2 is �MB �M��

2, but one
must exclude a larger region of phase space, such that the
excluded contribution to the decay rate at large q2 (corre-
sponding to a region near the origin in the �P�; P�� plane)
can be reliably calculated. In our numerical analysis, we
will study the effect of a cut q2 � �MB �MD�

2, which
satisfies this criterion.

For completeness, we note that even after the weak
annihilation contribution near maximum q2 has been re-
moved, there could in principle exist other, flavor-specific
contributions to the semileptonic decay amplitudes that are
different for charged and neutral B mesons. The leading
-11
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terms of this kind contribute at order 1=mb in the shape-
function region and are parameterized by a set of four-
quark subleading shape functions [16,31,32]. Model esti-
mates of these contributions show that they are very small
for all observables considered for an extraction of jVubj
[32,45]. If only flavor-averaged decay rates are measured,
the effects of four-quark subleading shape functions can be
absorbed entirely by a redefinition of the functions û�!̂�
and v̂�!̂� [16], without affecting the moment relations
in (18).
IV. SHAPE-FUNCTION PARAMETRIZATIONS

Hadronic-physics effects enter the description of inclu-
sive decay rates via nonperturbative shape functions.
Perturbation theory cannot tell us much about the local
form of these functions, but moments of them are calcu-
lable provided that the domain of integration is much larger
than �QCD. Since the shape functions contain information
about the internal structure of the B meson, knowledge of
them relates directly to the determination of the b-quark
mass mb, the kinetic-energy parameter 	1, and in principle
the matrix elements of higher-dimensional operators.
Improved measurements of the shape of the �B! Xs�
photon spectrum will therefore lead directly to a more
precise determination of HQET parameters. This argument
can be turned around to constrain the leading shape func-
tion using knowledge of mb and 	1 from other physical
processes such as a b! c moment analysis [46]. We
emphasize, however, that there are obviously infinitely
many locally different functions that have identical first
few moments. In this section we present a few functional
forms that can be used to model the shape functions and to
fit the current experimental data.

To achieve stringent constraints on the leading shape
function a precise definition of the HQET parameters is
required. It is a well-known fact that the pole-mass scheme
introduces uncontrollable ambiguities. To avoid these un-
certainties several short-distance definitions have been
proposed, such as the MS scheme, the potential-subtraction
scheme [47], the ��1S� scheme [48], the kinetic scheme
[49], or the shape-function scheme [9]. While the decay
rates are of course independent of the particular choice, it
is advantageous to use a mass scheme that is designed for
the physics problem at hand. In the case of inclusive B
decays into light particles, this is the shape-function
scheme.

A. Models for the leading shape function

Model-independent constraints on the shape function
Ŝ�!̂; �i� can be derived by analyzing moments defined
with an upper limit of integration !̂0, i.e.

MN�!̂0; �i� �
Z !̂0

0
d!̂!̂NŜ�!̂; �i�: (40)
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For practical applications, !̂0 should be taken of order the
size of the window where the �B! Xs� photon spectrum is
experimentally accessible, !̂0 � MB � 2Emin

� with Emin
� �

1:8 GeV. These moments can be expanded in terms of
matrix elements of local operators as long as !̂0 is large
compared to �QCD. In the shape-function scheme, HQET
parameters are defined to all orders in perturbation theory
through ratios of such moments, e.g. [9]

M1��f �
����f;�i�; �i�

M0��f �
����f;�i�; �i�

� ����f;�i�;

M2��f �
����f;�i�; �i�

M0��f �
����f;�i�; �i�

�
�2
���f;�i�

3
� ��2��f;�i�:

(41)

Here, the factorization scale �f � �QCD is related to the
size of the integration domain via the implicit equation
!̂0 � �f �

����f;�i�. In practice �f is close to the in-
termediate scale �i. At tree level, the relations between
parameters in the shape-function scheme and the pole
scheme are ����f;�i� �

��pole and �2
���f;�i� � �	1.

The corresponding relations at one- and two-loop order
have been worked out in [9,50], respectively. These rela-
tions allow us to obtain precise determinations of
����f;�i� and �2

���f;�i� from other physical processes.
For reference purposes, it is helpful to quote values for ��

and �2
� using only a single scale �	 instead of two inde-

pendent scales �f and �i. To one-loop order, these pa-
rameters can be related to those determined from the
moments via [9]

����	; �	� � ����f;�i� ��	
CF�s��	�

�
��f

CF�s��i�

�




�
1� 2

�
1�

�2
���f;�i�

3�2
f

�
ln
�f

�i

�
;

�2
���	; �	� � �2

���f;�i�

�
1�

CF�s��	�
2�

�
CF�s��i�

�




�
1

2
� 3 ln

�f

�i

��
� 3�2

f

CF�s��i�

�
ln
�f

�i
;

(42)

where we have neglected higher-dimensional operator ma-
trix elements that are suppressed by inverse powers of �f.
A typical choice for the scale �	 is 1.5 GeV, which we will
use as the reference scale throughout this work. It will be
convenient to connect the parameter �� extracted from the
first moment of the shape function with a low-scale sub-
tracted quark-mass definition referred to as the ‘‘shape-
function’’ mass. Following [9], we define

mb��f;�i� � MB �
����f;�i�: (43)

The general procedure for modeling the leading shape
function Ŝ�!̂; �i� from a given functional form F�!̂� is as
-12



THEORY OF CHARMLESS INCLUSIVE B DECAYS AND . . . PHYSICAL REVIEW D 72, 073006 (2005)
follows. The shape of F�!̂� is assumed to be tunable so that
it can be used to fit the �B! Xs� photon spectrum. Only
the norm of the shape function is fixed theoretically. Note
that the moment relations (41) are insensitive to the norm,
so that formulas for �� and �2

� follow directly from the
functional form of F�!̂�. Examples of such formulas will
be given below. We define moments M�F�N �!̂0� of F in
analogy with (40). The first relation in (41) implies that
for a given !̂0 the factorization scale is

�f � !̂0 �
M�F�1 �!̂0�

M�F�0 �!̂0�
: (44)

Now that�f is known, the norm is determined by requiring
that the zeroth moment of the shape function is [9]

M0�!̂0; �i� � 1�
CF�s��i�

�

�
ln2

�f

�i
� ln

�f

�i
�
�2

24

�

�
CF�s��i�

�

�
ln
�f

�i
�

1

2

��2
���f;�i�

3�2
f

� . . . :

(45)

It follows that �M0�!̂0; �i�=M
�F�
0 �!̂0��F�!̂� serves as a

model of Ŝ�!̂; �i� or Ŝ�!̂; �i�.
We now suggest three two-parameter models for the

leading-order shape function based on an exponential-
type function F�exp�, a Gaussian-type function F�gauss�,
and hyperbolic-type function F�hyp�. We use two parame-
ters that can be tuned to fit the photon spectrum: a dimen-
sionful quantity � which coincides with the position of the
average h!̂i, and a positive number b which governs the
behavior for small !̂. The functions we propose are
0 0.5 1 1.5 2 2.5 3
0
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FIG. 2 (color online). LEFT: Different functional forms for t
F�gauss��!̂;�; 2� (dotted), and F�hyp��!̂;�; 2� (dash-dotted) as func
parameters � and b tuned such that mb��	; �	� � 4:61 GeV and �
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F�exp��!̂; �; b� �
N�exp�

�

�
!̂
�

�
b�1

exp
�
�d�exp�

!̂
�

�
;

F�gauss��!̂; �; b� �
N�gauss�

�

�
!̂
�

�
b�1

exp
�
�d�gauss�

!̂2

�2

�
;

F�hyp��!̂; �; b� �
N�hyp�

�

�
!̂
�

�
b�1

cosh�1

�
d�hyp�

!̂
�

�
: (46)
For convenience, we normalize these functions to unity.
The parameters d�i� are determined by the choice � � h!̂i.
We find
N�exp� �
db
�exp�

��b�
; d�exp� � b;

N�gauss� �
2db=2
�gauss�

��b=2�
; d�gauss� �

�
��1�b2 �

��b2�

�
2
;

N�hyp� �
�4d�hyp��

b

2��b����b; 1
4� � ��b;

3
4��
;

d�hyp� �
b
4

��1� b; 1
4� � ��1� b;

3
4�

��b; 1
4� � ��b;

3
4�

;

(47)
where ��b; a� �
P
1
k�0�k� a�

�b is the generalized
Riemann zeta function. An illustration of the different
functional forms is given on the left-hand side in Fig. 2.
We show a plot with the choice b � 2, corresponding to a
linear onset for small !̂.

For the first two models, analytic expressions for the
HQET parameters �� and �2

� are available. Following the
discussion above, we compute the moments on the interval
�0; !̂0� and find for the exponential form F�exp��!̂; �; b�
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0
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he leading shape function. We show F�exp��!̂;�; 2� (solid),
tions of the ratio !̂=�. RIGHT: The same functions with the
2
���	; �	� � 0:2 GeV2. See text for explanation.
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����f;�i� �
�

b

��1� b� � ��1� b; b!̂0

� �

��b� � ��b; b!̂0

� �
;

�2
���f;�i� � 3

�
�2

b2

��2� b� � ��2� b; b!̂0

� �

��b� � ��b; b!̂0

� �

� ����f;�i�
2

�
; (48)

where �f � !̂0 �
����f;�i�, and ��x; y� is the incom-

plete Gamma function. A similar calculation for the
Gaussian form F�gauss��!̂; �; b� yields

����f;�i� �
���������������
d�gauss�

p ��1�b2 � � ��1�b2 ;
d�gauss�!̂2

0

�2 �

��b2� � ��b2 ;
d�gauss�!̂2

0

�2 �
;

�2
���f;�i� � 3

�
�2

d�gauss�

��1� b
2� � ��1� b

2 ;
d�gauss�!̂2

0

�2 �

��b2� � ��b2 ;
d�gauss�!̂2

0

�2 �

� ����f;�i�
2

�
: (49)

The corresponding relations for F�hyp��!̂; �; b� must be
obtained numerically.

Ultimately the shape function should be fitted to the
�B! Xs� photon spectrum, and the above equations then

determine �� and �2
�. On the other hand, these formulas

can be inverted to determine � and b from the current
values of the HQET parameters. For example, if we adopt
the values mb��	; �	� � 4:61 GeV and �2

���	; �	� �
0:20 GeV2 for the parameters in (42) at �	 � 1:5 GeV,
then we find the parameter pair � � 0:72 GeV, b � 3:95
for the exponential model, � � 0:71 GeV, b � 2:36 for
the Gaussian model, and � � 0:73 GeV, b � 3:81 for the
hyperbolic model. On the right-hand side of Fig. 2 we show
these three different functions plotted on the interval
�0; !̂0� over which the moment constraints are imposed.
While the exponential (solid) and hyperbolic (dash-dotted)
curves are barely distinguishable, the Gaussian model has
quite different characteristics. It is broader, steeper at the
onset, faster to fall off, and the maximum is shifted toward
larger !̂.

An important comment is that, once a two-parameter
ansatz is employed, the shape-function parameters (i.e.,mb
and �2

�) can either be determined from a fit to the entire
photon spectrum, or to the first two moments of the spec-
trum. Both methods are equivalent and should yield con-
sistent results. If they do not, it would be necessary to
refine the ansatz for the functional form of the shape
function.

In most applications shape functions are needed for
arguments !̂ of order �QCD. However, in some cases,
like the ideal cut on hadronic invariant mass, !̂ is required
to be as large as MD, which is much larger than �QCD. The
large-!̂ behavior of the shape functions can be computed
in a model-independent way using short-distance methods.
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For the leading shape function, one finds [9]

Ŝ�!̂� �QCD;�i� � �
CF�s��i�

�
1

!̂� ��

�
2 ln

!̂� ��

�i
� 1

�
� . . . : (50)

Note that this radiative tail is negative, implying that the
shape function must go through zero somewhere near !̂�
few �QCD. For practical purposes, we ‘‘glue’’ the above
expression onto models of the nonperturbative shape func-
tion starting at !̂ � ����i=

���
e
p
� 1:6 GeV, where the

tail piece vanishes. In this way we obtain a continuous
shape-function model with the correct asymptotic behav-
ior. We stress that for applications with a maximal P� not
larger than about 1.6 GeV the radiative tail of the shape
function is never required. This includes all methods for
extracting jVubj discussed later in this work, except for the
case of a cut on hadronic invariant mass, MX � M0, if M0

is above 1.6 GeV.

B. Models for subleading shape functions

In the last section we have been guided by the fact that
the �B! Xs� photon spectrum is at leading power directly
determined by the leading shape function. This helped in
finding models that have roughly the same shape as the
photon spectrum. At the subleading level considered here,
however, no such guidance is provided to us. The available
information is limited to the tree-level moment relations
(18), stating that the norms of the subleading shape func-
tions vanish while their first moments do not. In [16], two
classes of models have been proposed, in which the sub-
leading shape functions are ‘‘derived’’ from the leading
shape function. A particularly simple choice is

t̂�!̂� � �	2Ŝ
0�!̂�; û�!̂� �

2	1

3
Ŝ0�!̂�;

v̂�!̂� � 	2Ŝ
0�!̂�:

(51)

Below, we will sometimes refer to this set of functions as
the ‘‘default choice’’. We choose the parameter �	1 in the
expression for û�!̂� (as well as in the expressions for the
second-order hadronic power corrections) to coincide with
the quantity �2

���f;�i� given in (48) and (49). However,
for consistency with the tree-level moment relations, we
identity the parameter �� in (15) and (35) with the quantity
����f;�i� evaluated in the limit where !0 ! 1. This
implies �� � � for all three types of functions and ensures
that the subleading shape functions have zero norm when
integrated over 0 � !̂ <1.

There are of course infinitely many possibilities to find
models for subleading shape functions that are in accor-
dance with (18). Any function with vanishing norm and
first moment can be arbitrarily added to any model for a
subleading shape function without violating the moment
relations. Several such functions have been proposed in
-14
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FIG. 3 (color online). Nine models for the subleading shape
function û�!̂� obtained by adding or subtracting one of the four
functions hn�!̂� to the default model in (51), shown as the thick
central line. See text for explanation.
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recent work on subleading shape functions, see e.g.
[16,30,32,45]. Specifically, we define the functions

h1�!̂� �
M2

N�3
0

aa�1

2��a�
za�1e�az

�
a� 1

z
� a�2� z�

�
;

h2�!̂� �
M2

N�3
0

a3

2
e�az

�
1� 2az�

a2z2

2

�
;
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M2

N�3
0

��
2
�������
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�� 2
e�az

2

�
1� 2z

����
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�
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�
z lnz�

z
2
�1� z2� �

�
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��
;

(52)

where z � !̂=�0, and the reference quantity �0 �

O��QCD� depends on the type of function, namely �0 �
�� for h1 and h2, �0 �

2
3

�� for h3, and �0 �
8

3�
�� for h4.

The quantity a is a free parameter. The functions (52) have
by construction vanishing norm and first moment. Their
second moments are given by the parameter M2, provided
the normalization constants are chosen asN � 1 for h1 and
h2, and

N � 1�
4� �

2��� 2�

1

a
; N � 1�

�2�4� ��
8��� 2�

1

a
(53)

for h3 and h4, respectively. The values for the parameters a
andM2 should be chosen such that the following character-
istics of subleading shape functions are respected: First,
they are dimensionless functions, so that their values are
naturally of O�1� for !̂��QCD. Secondly, when inte-
grated over a sufficiently large domain, their contributions
are determined in terms of their first few moments. In
particular, this implies that for values of !̂� �QCD the
integrals over the subleading shape functions must ap-
proach zero. Taking these considerations into account,
we use M2 � �0:3GeV�3 in all cases and choose a � 3:5
for h1, a � 5 for h2, and a � 10 for h3 and h4.

Given the four functions (52), we can construct several
new models for the subleading shape functions t̂�!̂�, û�!̂�,
and v̂�!̂�. For each function, we construct a set of 9 models
by adding or subtracting any of the functions hn�!̂� to the
default choice in (51). Together, this method yields 93 �
729 different sets ft̂i�!̂�; ûj�!̂�; v̂k�!̂�g with i; j; k �
1; . . . ; 9. This large collection of functions will be used to
estimate the hadronic uncertainties in our predictions for
partial decay rates. Note that for most of these sets we no
longer have t̂i�!̂� � �v̂k�!̂�, which was an ‘‘accidental’’
feature of the default model (51). The fact that the two
functions have equal (but opposite in sign) first moments
073006
does not imply that their higher moments should also be
related to each other.

For the case of û�!̂� the resulting functions are shown in
Fig. 3, where we have used the exponential model (46)
with parameters � � 0:72 GeV and b � 3:95 for the lead-
ing shape function. In the region !̂��QCD they differ
dramatically from each other, while the large !̂ depen-
dence is dominated by the moment relations (18).

C. Illustrative studies

We stressed several times that the calculation of the
hadronic tensor is optimized for the shape-function region
of large P� and small P�, while it can smoothly be
extended over the entire phase space. The notions ‘‘large
P�’’ and ‘‘small P�’’ are to be understood as the sizes of
integration domains for P� and P�. Only when the differ-
ential distributions are integrated over a sufficiently large
region in phase space, global quark-hadron duality ensures
that the partonic description used in the present work
matches the true, hadronic distributions with good accu-
racy. A more ambitious goal would be to calculate the
differential decay rate point by point in the �P�; P�� plane.
This can be done invoking local quark-hadron duality, as
long as there is a sufficiently large number of hadronic final
states contributing to the rate at any given point in phase
space.

It is instructive to integrate the triple-differential decay
rate (23) over the leptonic variable Pl in the range P� �
Pl � P�, which yields the exact formula

d2�u
dP�dP�

�
G2
FjVubj

2

96�3 Uy��h;�i��MB� P���P� � P��
2


 f�3MB� 2P� � P��F 1� 6�MB� P��F 2

� �P� �P��F 3g: (54)

Our theoretical prediction for the double differential decay
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FIG. 4 (color online). LEFT: Theoretical prediction for the double differential decay rate. The light area represents a large decay rate.
Black regions denote areas where the decay rate is close to zero. The dotted line is given by P�P� � M2

D, which means that charm
background is located in the upper wedge. See text for further explanation. RIGHT: The P� spectrum extended to large values of P�.
The thin solid line denotes the leading-power prediction, the dashed line depicts first-order power corrections, the dash-dotted line
shows second-order power corrections, and the thick solid line is their sum.
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rate (54) is shown on the left-hand side of Fig. 4. We use the
exponential model for the leading shape function with
parameters mb��	; �	� � 4:61 GeV and �2

���	; �	� �
0:2 GeV2, as well as the default choice (51) for the sub-
leading shape functions. For very small P� values the rate
turns negative (to the left of the gray line in the figure),
signaling a breakdown of quark-hadron duality. It is reas-
suring that the only region where this happens is the
‘‘resonance region’’, where the hadronic invariant mass is
of order �QCD, and local duality breaks down.

Another useful quantity to consider is the differential P�
rate, which is obtained by integrating the double differen-
tial rate over P� in the range P� � P� � MB. The result-
ing P� spectrum is shown on the right-hand side of Fig. 4.
In the plot we also disentangle the contributions from
different orders in power counting.
V. PREDICTIONS AND ERROR ESTIMATES FOR
PARTIAL RATES

Before discussing predictions for partial �B! Xul� ��
rates for various kinematical cuts, let us recapitulate the
ingredients of the calculation and general procedure. We
have presented expressions for the triple-differential decay
rate, which can be organized in an expansion in inverse
powers of �MB � P��. The leading-power contribution is
given at next-to-leading order in renormalization-group
improved perturbation theory. At first subleading power
two contributions arise. The first type involves subleading
073006
shape functions and is included at tree evel, while the
second type contributes perturbative corrections of order
�s that come with the leading shape function. Further
contributions enter at second subleading power and are
again of the two types: perturbative corrections of order
�s and nonperturbative structures at tree level. In summary,
then, partial rates can be computed term by term in an
expansion of the form

�u � ��0�u � ��
kin�1�
u � �hadr�1�

u � � ��kin�2�
u � �hadr�2�

u � � . . . :

(55)

The goal of this section is to test the convergence of this
series expansion and to perform a thorough analysis of
uncertainties. For the kinematical corrections �kin�n�

u the
sum of all terms is known and given by the expressions
in (30), while the first two terms in the series correspond to
the expanded results in (32) and (33). We will find that in
all cases of interest the first two terms give an excellent
approximation to the exact result for �kin

u .
For the purpose of illustration, we adopt the exponential

model for the shape function and present numerical results
for two sets of input parameters, which are biased by
the results deduced from fits to �B! Xcl

� �� moments
[50]. Specifically, we use mb��	; �	� � 4:61 GeV,
�2
���	; �	� � 0:2 GeV2 (set 1) and mb��	; �	� �

4:55 GeV, �2
���	; �	� � 0:3 GeV2 (set 2). The values of

the b-quark mass coincide with those obtained at two-loop
and one-loop order in [50] (see also the discussion below),
-16
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while the values of �2
� are close to the corresponding

values in that reference. As was mentioned before, in the
future the leading shape function Ŝ�!̂; �i� should be ex-
tracted from a fit to the �B! Xs� photon spectrum, in
which case the uncertainty in its shape becomes an experi-
mental error, which can be systematically reduced with
improved data. In the process, the ‘‘theoretically pre-
ferred’’ parameter values used in the present work will
be replaced with the ‘‘true’’ values extracted directly
from data. While this will change the central values for
the partial rates, our estimates of the theoretical errors will
only be affected marginally.

The different sources of theoretical uncertainties are as
follows: First, there are uncertainties associated with the
functional forms of the subleading shape functions. To
estimate them, we take the spread of results obtained
when using the large set of different models described in
Sec. IV B, while the central value for a partial decay rate
corresponds to the default model (51). Secondly, there are
perturbative uncertainties associated with the choice of the
matching scales �h, �i, and ��. Decay rates are formally
independent of these scales, but a residual dependence
remains because of the truncation of the perturbative se-
ries. Our error analysis is as follows:
(i) T
he hard scale �h is of order mb. In perturbative
logarithms the scale appears in the combination
�ymb=�h�, see e.g. (29). To set a central value for
�h we are guided by the average hyimb. The lead-
ing term for the double differential decay rate
d2�u=dP�dy is proportional to 2y2�3� 2y�. It fol-
lows that the average y on the interval �0; 1� is 0.7.
However, in some applications y is not integrated
over the full domain. Also, there are large negative
constants in the matching correction Hu1 in (29),
whose effect can be ameliorated by lowering the
scale further. In the error analysis we use the central
value of�h � mb=2 � 2:3 GeV and vary the scale
by a factor between 1=

���
2
p

and
���
2
p

. For the central
value �s��h� � 0:286. ������������������q
(ii) T
he intermediate scale �i � mb�QCD serves as
the renormalization point for the jet and shape
functions. We fix this scale to �i � 1:5 GeV.
Variations of �i would affect both the normaliza-
tion and the functional form of the shape func-
tion, as determined by the solution to the
renormalization-group equation for the shape func-
tion discussed in [9,11]. In practice, effects on the
shape are irrelevant because the shape function is
fitted to data. The only place where the intermedi-
ate scale has a direct impact on the extraction
of jVubj is through the normalization of the
shape function (45). In the analysis we therefore
estimate the uncertainty by assigning the value
���s��i�=��2 as a relative error, where �s��i� �
0:354.
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(iii) T
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he scale �� appears as the argument of �s in the
perturbative contributions �kin

u . We vary �� from
�i=

���
2
p

to
���
2
p
�i with the central value �� � �i �

1:5 GeV.

These three errors are added in quadrature and assigned as
the total perturbative uncertainty. Finally, we need to esti-
mate the effects from higher-dimensional operators at third
and higher-order in power counting. If the considered cut
includes the region of phase space near the origin (P� �
P� ��QCD), then the dominant such contributions are
weak annihilation effects, which we have discussed in
Sec. III E. From the analysis in [44] one can derive a bound
on the weak annihilation contribution that is �1:8% of the
total decay rate, for which we take �u � 70jVubj

2ps�1

(see below). The resulting uncertainty ��WA
u �

�1:3jVubj2ps�1 affects all partial rates which include the
region near the origin in the �P�; P�� plane. The uncer-
tainty from weak annihilation can be avoided by imposing
a cut q2 � q2

max (see Sec. V F). For all observables consid-
ered in the present work, other power corrections of order
1=m3

b can be safely neglected. This can be seen by multi-
plying the contributions from second-order hadronic power
corrections to the various decay rates (called �hadr�2�

u ) by an
additional suppression factor �QCD=mb � 0:1.

The following subsection contains a discussion of the
total decay rate. In the remainder of this section we then
present predictions for a variety of kinematical cuts de-
signed to eliminate (or reduce) the charm background.
These partial rates can be computed either numerically
or, in many cases, semianalytically. In Appendix B we
discuss how to perform the integrations over the kinemati-
cal variables Pl and P� analytically.

A. Total decay rate

Before presenting our predictions for the various partial
decay rates, it is useful to have an expression for the total
�B! Xul� �� decay rate expressed in terms of the heavy-
quark parameters defined in the shape-function scheme.
We start from the exact two-loop expression for the total
rate derived in [51], add the second-order hadronic power
corrections, which are known at tree level [12,13], and
finally convert the parameters mb and 	1 from the pole
scheme to the shape-function scheme. The relevant re-
placements at two-loop order can be taken from [50] and
read

mpole
b � mb � 0:424�	�s���

�
1�

�
1:357� 1:326 ln

�
�	

� 0:182
�2
�

�2
	

�
�s���

�

�
3	2 ��2

� � 0:330�2
	�2

s���
2mb

� . . . ;

�	1 � �2
� � 0:330�2

	�
2
s��� � . . . ; (56)



TABLE I. Partial decay rate �u�E0� for a cut on charged-
lepton energy El > E0 in the B-meson rest frame, given in units
of jVubj2ps�1. Predictions are based on the shape-function
parameter values mb � 4:61 GeV, �2

� � 0:2 GeV2 (top) and
mb � 4:55 GeV, �2

� � 0:3 GeV2 (bottom).

E0 [GeV] Mean Subleading SF Perturbative Total

1.9 24.79 �0:53 �1:90
�1:66

�2:34
�2:15

2.0 18.92 �0:60 �1:35
�1:20

�1:95
�1:84

2.1 13.07 �0:71 �0:82
�0:75

�1:66
�1:63

2.2 7.59 �0:81 �0:38
�0:34

�1:55
�1:54

2.3 3.12 �0:89 �0:15
�0:16

�1:55
�1:55

2.4 0.42 �1:05 �0:16
�0:22

�1:65
�1:65

1.9 21.10 �0:53 �1:57
�1:35

�2:08
�1:92

2.0 15.83 �0:60 �1:08
�0:94

�1:77
�1:68

2.1 10.73 �0:68 �0:64
�0:55

�1:57
�1:54

2.2 6.12 �0:74 �0:31 �1:50
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where here and from now on mb � mb��	; �	� and �2
� �

�2
���	; �	� are defined in the shape-function scheme. At a

reference scale �	 � 1:5 GeV the values of these parame-
ters have been determined to be mb � �4:61� 0:08� GeV
and �2

� � �0:15� 0:07� GeV2 [50],3 where we account
for the small 1=mb correction to the relation for the pole
mass in the above formula (corresponding to a shift of
about �0:02 GeV in mb), which was not included in that
paper.

The resulting expression for the total decay rate is

�u �
G2
FjVubj

2m5
b

192�3

�
1� �s���

�
�0:768� 2:122

�	
mb

�

� �2
s���

�
�2:158� 1:019 ln

mb

�

�

�
1:249� 2:814 ln

�
�	
� 0:386

�2
�

�2
	

�
�	
mb

� 0:811
�2
	

m2
b

�
�

3��2
� � 	2�

m2
b

� . . .
�
: (57)

We observe that for �	 � 1:5 GeV and � � O�mb�, the
perturbative expansion coefficients are strongly reduced
compared to their values in the pole scheme (� 0:768
and �2:158, respectively), indicating a vastly improved
convergence of the perturbative expansion. For mb � � �
4:61 GeV, and �2

� � 0:15 GeV2 we obtain for the one-
loop, two-loop, and power corrections inside the brackets
in (57): f1� 0:017� 0:030� 0:004g. All of these are very
small corrections to the leading term.

Including the uncertainties in the values of mb and �2
�

quoted above, and varying the renormalization scale �
between mb and mb=2 (with a central value of mb=

���
2
p

),
we get

�u
jVubj

2 ps�1 � 68:0�5:9
�5:5�mb� � 0:7��2

��
�0:6
�0:9���

� �68:0� 0:7��2
��
�0:6
�0:9����

�
mb

4:61 GeV

�
4:81
:

(58)

Here and below, we quote values for decay rates in units of
jVubj

2ps�1. To convert these results to partial branching
fractions the numbers need to be multiplied by the average
B-meson lifetime. Without including the two-loop correc-
tions, the central value in the above estimate increases to
70.6. For comparison, with the same set of input parameters
our new approach based on (23) predicts a total decay rate
of �u � �71:4�6:2

�5:0 � 0:5�jVubj2ps�1, where the first error
accounts for perturbative uncertainties while the second
one refers to the modeling of subleading shape functions
(to which there is essentially no sensitivity at all in the total
rate). The fact that this is in excellent agreement with the
3The values obtained from a one-loop analysis are mb �
�4:55� 0:08� GeV and �2

� � �0:34� 0:07� GeV2.
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direct calculation using (57) supports the notion that the
formalism developed in this work can be used to describe
arbitrary �B! Xul� �� decay distributions, both in the
shape-function region and in the OPE region of phase
space.

B. Cut on charged-lepton energy

Traditionally, the most common variable to discriminate
against the charm background is the charged-lepton energy
El. As long as one requires that El is bigger than �M2

B �
M2
D�=2MB � 2:31 GeV, the final hadronic state cannot

have an invariant mass larger than MD. For this ideal cut,
and using the default set of subleading shape functions, we
find

��0�u � ��
kin�1�
u � �hadr�1�

u � � ��kin�2�
u � �hadr�2�

u �

� �6:810� �0:444� 3:967�

� �0:042� 0:555��jVubj
2ps�1: (59)

The corrections from subleading shape functions are quite
sizable, in accordance with the findings in [28–30]. Note
that the sum �kin�1�

u � �kin�2�
u � 0:486 is an excellent ap-

proximation to the exact result �kin
u � 0:482 (all in units of

jVubj2ps�1) obtained using (30), indicating that the expan-
sion of the kinematical power corrections is converging
rapidly. The same will be true for all other observables
considered below.

In practice, the cut on El can be relaxed to some extent
because the background is well understood, thereby in-
creasing the efficiency and reducing the impact of theo-
retical uncertainties. Our findings for different values of the
cut E0 are summarized in Table I. Here and below, the
�0:23 �1:48

2.3 2.47 �0:84 �0:17
�0:22

�1:53
�1:53

2.4 0.29 �0:99 �0:18
�0:24

�1:61
�1:62
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TABLE III. Partial decay rate �u��P; E0� for a cut on the
hadronic variable P� � �P and lepton energy El 
 E0, given in
units of jVubj2ps�1. Predictions are based on the shape-function
parameter values mb � 4:61 GeV, �2

� � 0:2 GeV2 (top) and
mb � 4:55 GeV, �2

� � 0:3 GeV2 (bottom).

�P [GeV] E0 [GeV] Mean Subl. SF Pert. Total

0.70 0.0 48.90 �1:15 �2:83
�2:65

�3:30
�3:15

0.65 0.0 45.34 �1:46 �2:55
�2:41

�3:20
�3:09

0.60 0.0 41.34 �1:76 �2:26
�2:15

�3:13
�3:05
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columns have the following meaning: ‘‘Mean’’ denotes the
prediction for the partial decay rate, ‘‘Subleading SF’’ the
uncertainty from subleading shape functions, and
‘‘Perturbative’’ the total perturbative uncertainty. In the
column ‘‘Total’’ we add the stated errors plus the uncer-
tainty from weak annihilation in quadrature.

Experiments often do not measure the partial rates in the
B-meson rest frame, but in the rest frame of the ��4S�
resonance produced in e�e� collisions. Boosting to the
��4S� frame with � � v=c � 0:064 has a small effect on
the spectrum and rates. The exact formula for this boost is
[20]

�����u �E0� �
1

�� � ��

Z MB=2

��E0

dE
d��B�u
dE




�
�� �max

�
��;

E0

E

��
; (60)

where �� �
�������������
1� �
p

=
�������������
1� �
p

, and the factor � �

1=
���������������
1� �2

p
� 1:002 on the left-hand side takes the time

dilation of the B-meson lifetime �0B � ��B into account.
(In other words, branching fractions are Lorentz invariant.)
The above formula can be accurately approximated by the
first term in an expansion in �2, which yields [20]

�����u �E0� � ��B�u �E0� �
�2

6
E3

0

�
d
dE

1

E
d��B�u
dE

�
E�E0

�O��4�; (61)

as long as E0 is not too close to the kinematical endpoint
(i.e., E0 � ��MB=2 � 2:47 GeV). The numerical results
for the partial decay rate �����u �E0� in the rest frame of the
��4S� resonance are given in Table II.
TABLE II. Same as Table I, but for the partial decay rate
�����u �E0� for a cut on lepton energy El > E0 in the ��4S� rest
frame.

E0 [GeV] Mean Subleading SF Perturbative Total

1.9 24.82 �0:54 �1:91
�1:66

�2:35
�2:15

2.0 19.00 �0:61 �1:37
�1:21

�1:96
�1:85

2.1 13.25 �0:71 �0:85
�0:76

�1:68
�1:63

2.2 7.99 �0:78 �0:42
�0:37

�1:54
�1:53

2.3 3.83 �0:86 �0:18
�0:13

�1:54
�1:53

2.4 1.31 �0:99 �0:10
�0:14

�1:61
�1:61

1.9 21.16 �0:54 �1:58
�1:35

�2:09
�1:93

2.0 15.94 �0:60 �1:10
�0:95

�1:78
�1:69

2.1 10.94 �0:68 �0:66
�0:57

�1:58
�1:54

2.2 6.49 �0:74 �0:34
�0:26

�1:50
�1:48

2.3 3.05 �0:84 �0:17
�0:18

�1:53
�1:53

2.4 0.98 �0:92 �0:13
�0:18

�1:56
�1:57
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Cut on hadronic P�
Cutting onP� samples the same hadronic phase space as

a cut on the charged-lepton energy, but with much better
efficiency [9,14]. The phase space P� � �P with the ideal
separator �P � M2

D=MB � 0:66 GeV contains well over
half of all �B! Xul

� �� events. Here we find with the default
settings

��0�u � ��
kin�1�
u � �hadr�1�

u � � ��kin�2�
u � �hadr�2�

u �

� �53:225� �4:646� 11:862� � �0:328

� 0:227��jVubj2ps�1: (62)

We see a much better convergence of the power series than
in the case of a cut on the charged-lepton energy, namely
53:225� 7:216� 0:100 when grouping the above num-
bers according to their power counting. Once again, the
sum �kin�1�

u � �kin�2�
u � 4:973 is very close to the full kine-

matical correction �kin
u � 4:959 (in units of jVubj2ps�1).

Often times it is required to impose an additional cut on
the charged-lepton energy, as leptons that are too soft are
difficult to detect. In Table III we list results for both El 

0 and El 
 1:0 GeV. For the ideal cut we find that the
0.55 0.0 36.91 �2:01 �1:95
�1:87

�3:08
�3:02

0.50 0.0 32.09 �2:34 �1:64
�1:58

�3:12
�3:09

0.70 1.0 43.36 �1:02 �2:54
�2:39

�3:01
�2:88

0.65 1.0 40.18 �1:30 �2:28
�2:16

�2:92
�2:82

0.60 1.0 36.59 �1:59 �2:01
�1:92

�2:86
�2:80

0.55 1.0 32.61 �1:86 �1:73
�1:67

�2:84
�2:80

0.50 1.0 28.29 �2:19 �1:44
�1:40

�2:91
�2:89

0.70 0.0 39.95 �1:19 �2:18
�2:06

�2:79
�2:70

0.65 0.0 36.94 �1:42 �1:95
�1:86

�2:72
�2:66

0.60 0.0 33.67 �1:65 �1:71
�1:65

�2:69
�2:65

0.55 0.0 30.15 �1:88 �1:47
�1:43

�2:70
�2:68

0.50 0.0 26.40 �2:09 �1:22
�1:21

�2:73
�2:72

0.70 1.0 35.42 �1:13 �1:95
�1:85

�2:59
�2:51

0.65 1.0 32.73 �1:34 �1:74
�1:66

�2:53
�2:48

0.60 1.0 29.81 �1:55 �1:52
�1:47

�2:51
�2:48

0.55 1.0 26.65 �1:76 �1:29
�1:27

�2:52
�2:51

0.50 1.0 23.29 �1:95 �1:07
�1:06

�2:56
�2:55
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TABLE IV. Partial decay rate �u�M0; q
2
0; E0� for combined

cuts MX � M0 on hadronic invariant mass, q2 > q2
0 on leptonic

invariant mass, and El 
 E0 on charged-lepton energy, given in
units of jVubj2ps�1. Predictions are based on the shape-function
parameter values mb � 4:61 GeV, �2

� � 0:2 GeV2 (top) and
mb � 4:55 GeV, �2

� � 0:3 GeV2 (bottom).

M0 [GeV] q2
0�GeV2� E0 [GeV] Mean Subl. SF Pert. Total

MD 0.0 0.0 59.30 �0:36 �4:22
�3:73

�4:42
�3:96

1.70 0.0 0.0 53.13 �0:73 �3:67
�3:31

�3:95
�3:61

1.55 0.0 0.0 45.72 �1:16 �3:11
�2:84

�3:55
�3:32

MD 6.0 0.0 34.37 �0:37 �2:97
�2:58

�3:25
�2:89

1.70 8.0 0.0 24.80 �0:36 �2:24
�1:98

�2:59
�2:37

MD �MB �MD�
2 0.0 12.55 �0:49 �1:41

�1:24
�1:95
�1:83

MD 0.0 1.0 53.49 �0:36 �3:91
�3:45

�4:13
�3:69

1.70 0.0 1.0 48.25 �0:63 �3:42
�3:08

�3:70
�3:38

1.55 0.0 1.0 41.81 �1:03 �2:91
�2:66

�3:34
�3:12

MD 6.0 1.0 33.88 �0:37 �2:94
�2:55

�3:22
�2:87

1.70 8.0 1.0 24.74 �0:36 �2:23
�1:97

�2:59
�2:37

MD �MB �MD�
2 1.0 12.55 �0:49 �1:41

�1:24
�1:95
�1:83

MD 0.0 0.0 50.08 �0:54 �3:52
�3:11

�3:78
�3:40

1.70 0.0 0.0 44.20 �0:86 �2:98
�2:69

�3:35
�3:09

1.55 0.0 0.0 37.76 �1:22 �2:46
�2:26

�3:03
�2:86

MD 6.0 0.0 29.42 �0:35 �2:50
�2:16

�2:82
�2:52

1.70 8.0 0.0 20.87 �0:39 �1:84
�1:61

�2:26
�2:08

MD �MB �MD�
2 0.0 10.49 �0:48 �1:16

�1:00
�1:76
�1:68

MD 0.0 1.0 45.29 �0:50 �3:27
�2:88

�3:54
�3:18

1.70 0.0 1.0 40.22 �0:77 �2:78
�2:50

�3:15
�2:90

1.55 0.0 1.0 34.55 �1:09 �2:31
�2:11

�2:85
�2:69

MD 6.0 1.0 28.99 �0:34 �2:48
�2:13

�2:80
�2:50

1.70 8.0 1.0 20.82 �0:39 �1:83
�1:60

�2:26
�2:08

MD �MB �MD�
2 1.0 10.49 �0:48 �1:16

�1:00
�1:78
�1:68
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prediction is quite precise, as the total theoretical uncer-
tainty is only about 6.8%. For comparison, the ideal cut for
the lepton energy is uncertain by about 50%, but rapidly
improving as the energy cut is relaxed.

D. Cut on hadronic invariant mass and q2

The most efficient separator for the discrimination of
�B! Xcl

� �� events is a cut on the invariant mass MX of the
hadronic final state, MX � MD [52,53]. It has also been
argued [54] that a cut on q2 can reduce the shape-function
sensitivity, since it avoids the collinear region in phase
space where P� � P�. In order to optimize signal effi-
ciency and theoretical uncertainties, it was suggested in
[55] to combine a q2 cut with a cut on hadronic invariant
mass.

The theoretical predictions obtained in [54,55] were
based on a conventional OPE calculation, which was as-
sumed to be valid for these cuts. The assessment of the
shape-function sensitivity was based on convolving the
tree-level decay rate with a ‘‘tree-level shape function’’,
for which two models (a realistic model similar to the ones
considered here, and an unrealistic �-function model) were
employed. The shape-function sensitivity was then in-
ferred from the comparison of the results obtained with
the two models. The sensitivity to subleading shape func-
tions was not considered, since it was assumed to be very
small. Since our formalism smoothly interpolates between
the ‘‘shape-function’’ and ‘‘OPE’’ regions, and since we
include radiative corrections as well as power corrections
as far as they are known, we can estimate the sensitivity of
a combined MX –q2 cut to the leading and subleading
shape functions much more accurately. Contrary to [55],
we do not find a significant reduction of the shape-function
sensitivity when adding the q2 cut to a cut on hadronic
invariant mass.

In Table IV we give results for typical cuts on MX and
q2, with and without including an additional cut on
charged-lepton energy. Let us study the contributions for
the optimal cut MX � MD in detail. We find with the
default settings
��0�u � ��
kin�1�
u � �hadr�1�

u � � ��kin�2�
u � �hadr�2�

u �

� �58:541� �8:027� 9:048� � �2:100

� 0:318��jVubj2ps�1: (63)
Note the almost perfect (accidental) cancellation of the two
terms at order 1=mb. The resulting power series, 58:541�
1:022� 1:782, again exhibits good convergence. As pre-
viously, the sum �kin�1�

u � �kin�2�
u � 10:127 is a good ap-

proximation to the exact value �kin
u � 9:753 (in units of

jVubj2ps�1). The analogous analysis for a combined cut
MX � 1:7 GeV and q2 
 8:0 GeV2 reads
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��0�u � ��
kin�1�
u � �hadr�1�

u � � ��kin�2�
u � �hadr�2�

u �

� �25:880� �4:049� 6:358� � �1:399

� 0:171��jVubj
2ps�1; (64)

which means that the power series is 25:880� 2:309�

1:228. Here we have �kin�1�
u � �kin�2�

u � 5:449, which is
close to �kin

u � 5:160 (in units of jVubj2ps�1).

E. Cut on smax
H and El

In [56], the BABAR collaboration employed a cut on
both El 
 E0 and a new kinematical variable smax

H � s0,
where the definition for smax

H involves both hadronic and
leptonic variables. In the B-meson rest frame, it is

smax
H � M2

B � q
2 � 2MB

�
El �

q2

4El

�
: (65)
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TABLE V. Partial decay rate �u�s0; E0� for combined cuts
smax
H � s0 and El 
 E0, given in units of jVubj2ps�1. Predictions

are based on the shape-function parameter values mb �
4:61 GeV, �2

� � 0:2 GeV2 (top) and mb � 4:55 GeV, �2
� �

0:3 GeV2 (bottom).

s0�GeV2� E0 [GeV] Mean Subl. SF Pert. Total

3.5 1.8 17.39 �0:62 �1:54
�1:36

�2:08
�1:96

3.5 1.9 15.86 �0:63 �1:33
�1:18

�1:94
�1:84

3.5 2.0 13.70 �0:66 �1:05
�0:94

�1:77
�1:71

3.5 2.1 10.78 �0:73 �0:71
�0:64

�1:62
�1:59

3.5 1.8 14.57 �0:60 �1:25
�1:09

�1:87
�1:77

3.5 1.9 13.18 �0:61 �1:06
�0:92

�1:76
�1:68

3.5 2.0 11.28 �0:64 �0:82
�0:71

�1:63
�1:58

3.5 2.1 8.77 �0:69 �0:54
�0:46

�1:54
�1:51

TABLE VI. Examples of partial decay rates with a cut on
q2 � �MB �MD�

2 imposed to eliminate the weak annihilation
contribution. We consider an additional cut on the hadronic
variable P� � �P (top), or on the hadronic invariant mass
MX � M0 (bottom). As before, decay rates are given in units
of jVubj2ps�1. Predictions are based on the shape-function
parameters mb � 4:61 GeV and �2

� � 0:2 GeV2.

�P [GeV] Mean Subleading SF Perturbative Total

0.70 39.96 �1:27 �2:16
�2:01

�2:51
�2:38

0.65 37.18 �1:50 �1:99
�1:85

�2:49
�2:38

0.60 34.05 �1:71 �1:82
�1:69

�2:50
�2:41

0.55 30.61 �1:89 �1:63
�1:52

�2:49
�2:42

0.50 26.86 �1:97 �1:44
�1:33

�2:44
�2:38

M0 [GeV] Mean Subl. SF Pert. Total

MD 46.75 �0:65 �2:82
�2:50

�2:89
�2:58

1.70 40.70 �1:12 �2:32
�2:11

�2:58
�2:39

1.55 33.69 �1:56 �1:88
�1:73

�2:44
�2:32
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Rewriting the phase space of this cut in the variables P�,
P�, Pl, we find

0 � P� � min�MB � 2E0;
�����
s0
p
�;

P� � P� � min
�
s0

P�
;MB

�
;

P� � Pl � min�MB � 2E0; P��;

(66)

where it is understood that if q2 � �MB � P��

�MB � P�� � �MB �

�����
s0
p
�2, then the interval Pmin

l < Pl <
Pmax
l must be excluded from the Pl integration. Here

Pmax=min
l �P�; P�� �

�
P� � P�

2
�
s0 � P�P�

2MB

�

�

���������������������������������������������������������������������
P� � P�

2
�
s0 � P�P�

2MB

�
2
� s0

s
:

(67)

A summary of our findings is given in Table V. When
compared to the pure charged-lepton energy cut in Table I,
the additional cut on smax

H eliminates roughly another 20%–
30% of events. However, the hope is that this cut also
reduces the sensitivity to the leading shape function, which
we expect to be sizable for the pure El cut. The uncertainty
from subleading shape functions, however, is almost un-
affected by the smax

H cut.

F. Eliminating weak annihilation contributions

In Sec. III E we have argued that a cut on high q2, i.e.,
q2 < q2

0, will eliminate the effect of weak annihilation and
remove the uncertainty associated with this contribution.
The cutoff q2

0 should be small enough to exclude the region
around q2 � m2

b, where this contribution is concentrated. It
is instructive to assess the ‘‘cost’’ of such an additional cut
in terms of the loss of efficiency and, more importantly, the
behavior of the remaining uncertainties. In order to do this,
073006
we combine the cut q2 � �MB �MD�
2 with either a cut on

P� or onMX. While this particular choice for q2
0 still leaves

some room to improve the efficiency by increasing q2
0, it is

not desirable to raise the cut much further, since this would
threaten the validity of quark-hadron duality.

The results are summarized in Table VI and can be
compared to the previous ‘‘pure’’ P� and MX cuts in
Tables III and IV. As an example, let us consider the case
P� � 0:65 GeV, which is close to the charm threshold.
Without the additional q2 cut we found that the total
theoretical uncertainty (including the weak annihilation
error) is �7:0

�6:8 %. When cutting in addition on q2 � �MB �

MD�
2, the efficiency decreases by about 20% as expected.

However, due to the absence of the weak annihilation
uncertainty, the overall uncertainty decreases to �6:7

�6:4 %.
Therefore both strategies result in comparable relative
uncertainties, with a slight favor for imposing the addi-
tional cut from the theoretical point of view.

While the small reduction of theoretical errors hardly
seems worth the effort of imposing the q2 cut, performing
an analysis of the type outlined here and comparing its
results with those obtained without the additional cut may
help to corroborate the expectation that the weak annihi-
lation contribution is indeed not much larger than what has
been found in [44].

G. Dependence on mb and shape-function sensitivity

Nonperturbative hadronic physics enters in our approach
via the form of the leading and subleading shape functions.
The strongest sensitivity by far is to the first moment of the
leading shape function, which determines the HQET pa-
rameter �� and with it the b-quark mass. Given that the
value of mb � mb��	; �	� can be determined with good
precision from other sources (such as moments of the
-21
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leptonic or hadronic invariant mass spectra in �B! Xcl
� ��

decays), it is instructive to disentangle this dependence
from the sensitivity to higher moments or, more generally,
to the functional form of the shape functions for fixed mb.

To explore the dependence on mb we define the expo-
nent

a�mb� �
d ln�u
d lnmb

�

�
4�u
�u

�
=
�
4mb

mb

�
; (68)

which means that �u � �mb�
a. Table VII shows the values

of this exponent over a wide range of values of mb for a
variety of experimental cuts. To estimate the sensitivity to
the functional form we scan over a large set of models for
the subleading shape functions, and we also study the
difference between the results obtained using the exponen-
tial or the Gaussian ansatz for the leading shape function.
The corresponding variations are added in quadrature and
given as a relative change in the corresponding partial
decay rates (labeled ‘‘Functional Form’’). In all cases,
�2
� � 0:2 GeV2 is kept fixed. Because we restrict our-

selves to only two functional forms for the leading shape
function in this study, the resulting sensitivities should be
interpreted with caution.

The entries in the table are listed in roughly the order of
increasing sensitivity to mb and to the functional form of
the shape functions, with the hadronic invariant mass cut
showing the least sensitivity and the lepton energy cut
exhibiting the largest one. To some extent this reflects the
different efficiencies (or ‘‘inclusiveness’’) of the various
cuts. It is reassuring that a � 10 for the pure q2 cut, in
accordance with the findings of [38,39]. Perhaps somewhat
TABLE VII. Values of the exponent a�mb� f
�2
� � 0:2 GeV2 is kept fixed. Also quoted is th

functional form of the shape functions. See text f

mb [GeV] 4.5

MX � MD a 9.5
Functional Form 1.4

MX � 1:7 GeV a 12.
Functional Form 2.9

MX � 1:7 GeV a 10.
q2 
 8 GeV2 Functional Form 2.0

q2 
 �MB �MD�
2 a 11.

Functional Form 5.0

P� � M2
D=MB a 16.

Functional Form 5.3

El 
 2:2 GeV a 22.
Functional Form 16.2
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surprisingly, for this cut a substantial sensitivity to shape-
function effects remains even for fixed mb and �2

�. It is
well-known that the partial rate with a cut q2 
 �MB �
MD�

2 can be calculated using a local OPE in powers of
�QCD=mc [38,54], thereby avoiding the notion of shape-
function sensitivity. Differences between the functional
forms of the shape functions in our approach correspond
to effects that are formally of order 1=m3

c and higher. It
is not unreasonable that these effects should be of order
3%–5%.

We also checked that for much more relaxed cuts the
value of a�mb� tends to 4:8, as stated in (58). For example,
for a cut P� � �P we find (with mb � 4:61 GeV and
�2
� � 0:2 GeV2):
�P�GeV�
or different k
e sensitivity
or explanatio

0 4.55

8.8
% 1.1%

5 11.5
% 2.6%

3 9.8
% 1.7%

4 11.1
% 4.4%

7 15.0
% 4.8%

6 21.0
% 13.1%

-22
0.6
inemati
of the p
n.

4

8
0

1
2

9
1

1
4

1
4

1
11
0.8
cal cu
artial

.60

.2
.8%

0.5
.2%

.3
.5%

0.9
.0%

3.6
.4%

9.7
.0%
1.0
ts. The
decay

4.6

7.7
0.5%

9.7
1.9%

9.0
1.4%

10.
3.6%

12.
4.0%

18.
9.3%
1.2
param
rates t

5

8

2

5

1.6
eter
o the

4.70

7.3
0.4%

8.9
1.6%

8.7
1.4%

10.6
3.2%

11.1
3.6%

17.4
7.9%
2.0
 3.0
 MB
a
 15.4
 9.8
 7.0
 5.8
 5.1
 5.0
 4.9
 4.8
VI. CONCLUSIONS

A high-precision measurement of the parameters of the
unitarity triangle is an ongoing quest, which necessitates
the close cooperation of theory and experiment. The deter-
mination of jVubj from inclusive �B! Xul

� �� decay re-
quires the measurement of partial decay rates with
kinematical cuts that eliminate the large background
from �B! Xcl� �� decay, as well as theoretical predictions
for such quantities. To this end, it is desirable to have a
theoretical description of the triple-differential decay rate,
which can be used for predicting arbitrary partial rates
obtained after integrating over certain regions of phase
space. One problem in providing such a description is
that the power-counting rules of the heavy-quark expan-
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sion are different in different kinematical domains. In this
paper we have overcome this difficulty.

In the shape-function region, our results are in agree-
ment with QCD factorization theorems, and perturbative
effects have been separated from nonperturbative shape
functions. When the allowed phase space extends over a
large domain, our results smoothly reduce to the expres-
sions obtained from the local operator product expansion.
We have presented a formalism in which event distribu-
tions and partial decay rates are expressed without explicit
reference to partonic quantities such as the b-quark mass.
The sensitivity to such hadronic parameters enters indi-
rectly, via the moments of shape functions. The most
important nonperturbative object, namely the leading-
order shape function, can be extracted from the photon
spectrum in �B! Xs� decay. This is analogous to extrac-
tions of parton distribution functions from fits to data on
deep inelastic scattering. In this way, the dominant uncer-
tainty from our ignorance about bound-state effects in the
B meson is turned into an experimental uncertainty, which
will reduce with increasing accuracy of the experimental
data on the photon spectrum. Residual hadronic uncertain-
ties are power-suppressed in the heavy-quark expansion.

One goal of this paper was to present a detailed frame-
work in which this program can be carried out. We have
given formulas that can be readily used for the construction
of an event generator, as well as to estimate the remaining
theoretical uncertainties in a robust and automated fashion.

In practice the leading shape function needs to be pa-
rameterized. We have suggested three different functional
forms, which can be used to fit the data of the �B! Xs�
photon spectrum. Once the data is accurately described by
a choice of the shape functions, this function can be used in
the predictions for partial �B! Xul� �� rates and spectra.
Subleading shape functions give rise to theoretical uncer-
tainties starting at the level of 1=mb power corrections. We
have estimated these uncertainties using a large set of
models, each of which obeys the known tree-level moment
relations, but which are very different in their functional
form. A second error estimate is determined by the residual
renormalization-scale dependence. We also considered un-
certainties from weak annihilation effects, which in prin-
ciple can be avoided by cutting away the region of phase
space in which they contribute. We have suggested a cut on
high leptonic invariant mass, which accomplishes just that.

The second half of this paper contains detailed numeri-
cal predictions for a variety of partial �B! Xul

� �� decay
rates with different kinematical cuts, including cuts on the
charged-lepton energy (both in the rest frame of the B
meson and of the ��4S� resonance), on the hadronic quan-
tity P� � EX � j ~PXj, on MX, on q2, and on various com-
binations of these variables. Along with our predictions for
the rates we have presented a complete analysis of theo-
retical uncertainties. Once the data on the �B! Xs� photon
spectrum are sufficiently precise to accurately determine
073006
the leading-order shape function, a determination of jVubj
with theoretical uncertainties at the 5%–10% level now
seems feasible.
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APPENDIX A: PERTURBATIVE EXPRESSIONS

1. Anomalous dimensions

Here we list the known perturbative expansions of the
�-function and relevant anomalous dimensions. We work
in the MS scheme and define

���s� �
d�s���
d ln�

� �2�s
X1
n�0

�n

�
�s
4�

�
n�1

;

�cusp��s� �
X1
n�0

�n

�
�s
4�

�
n�1

;

�0��s� �
X1
n�0

�0n

�
�s
4�

�
n�1

;

(A1)

as the expansion coefficients for the �-function, the
leading-order SCET current anomalous dimension, and
the cusp anomalous dimension. To three-loop order, the
�-function reads [57]

�0 �
11

3
CA �

2

3
nf;

�1 �
34

3
C2
A �

10

3
CAnf � 2CFnf;

�2 �
2857

54
C3
A �

�
C2
F �

205

18
CFCA �

1415

54
C2
A

�
nf

�

�
11

9
CF �

79

54
CA

�
n2
f;

(A2)

where nf � 4 is the number of light flavors, CA � 3 and
CF � 4=3. The three-loop expression for the cusp anoma-
lous dimension has recently been obtained in [58]. The
coefficients read
-23
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�0 � 4CF;

�1 � 8CF

��
67

18
�
�2

6

�
CA �

5

9
nf

�
;

�2 � 16CF

��
245

24
�

67�2

54
�

11�4

180
�

11

6
�3

�
C2
A

�

�
�

209

108
�

5�2

27
�

7

3
�3

�
CAnf

�

�
�

55

24
� 2�3

�
CFnf �

1

27
n2
f

�
:

(A3)

The SCET anomalous dimension � is explicitly known
only to one-loop order. However, the two-loop coefficient
can be extracted by noting that � is related to the axial-
gauge anomalous dimension in deep inelastic scattering
[11]. The result is

�00 � �5CF;

�01 � �8CF

��
3

16
�
�2

4
� 3�3

�
CF

�

�
1549

432
�

7�2

48
�

11

4
�3

�
CA �

�
125

216
�
�2

24

�
nf

�
:

(A4)
2. Evolution factor

The exact expression for the evolution factor reads

lnU��h;�i� � 2S���h;�i� � 2a���h;�i� ln
mb

�h

� 2a�0 ��h;�i�; (A5)

where the functions of the right-hand side are solutions to
the renormalization group equations

d
d ln�

S���;�� � ��cusp��s���� ln
�
�
;

d
d ln�

a���;�� � ��cusp��s����;

d
d ln�

a�0 ��;�� � ��0��s����;

(A6)

with boundary conditions S��;�� � 0 etc. at � � �.
These equations can be integrated using that d=d ln� �
���s�d=d�s. The solutions are

S���;�� � �
Z �s���

�s���
d�

�cusp���

����

Z �

�s���

d�0

���0�
;

a���;�� � �
Z �s���

�s���
d�

�cusp���

����
;

(A7)

and similarly for a�0 .
Next, we give explicit results for the Sudakov exponent

S� and the functions a� and a� in (A5) at next-to-leading
order in renormalization-group improved perturbation the-
ory. We obtain
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a���;�� �
�0

2�0

�
ln
�s���
�s���

�

�
�1

�0
�
�1

�0

�
�s��� � �s���

4�

� . . .
�
; (A8)

and similarly for a�. The next-to-leading order expressions
for the Sudakov exponent S� contains the three-loop co-
efficients �2 and �2. With r � �s���=�s���, it reads

S���;�� �
�0

4�2
0

�
4�
�s���

�
1�

1

r
� lnr

�
�

�
�1

�0
�
�1

�0

�


 �1� r� lnr� �
�1

2�0
ln2r

�
�s���

4�

��
�1�1

�0�0
�
�2

�0

�
�1� r� r lnr�

�

�
�2

1

�2
0

�
�2

�0

�
�1� r� lnr

�

�
�2

1

�2
0

�
�2

�0
�
�1�1

�0�0
�

�2

�0

�
�1� r�2

2

�
� . . .

�
:

(A9)

The next-to-leading-logarithmic evolution factor
U��h;�i� can be obtained by combining the above ex-
pressions according to (A5) and expanding out terms of
order �s.
APPENDIX B: PARTIALLY INTEGRATED DECAY
RATES

With the exception of the combined cut on the lepton
energy El and the hadronic quantity smax

H studied in
Sec. V E, all other partial rates investigated in our analysis
can be derived by first integrating the triple-differential
decay rate (23) over the lepton energy El 
 E0 and P� �
Pmax
� analytically, where the quantity Pmax

� (and in principle
even E0) may depend on the value of P�. The remaining
integration over P� is then performed numerically. In such
a situation, we need to evaluate the partially integrated
decay rate

d�u
dP�

�
Z Pmax

�

P�
dP�

Z min�P�;MB�2E0�

P�
dPl

d3�u
dPldP�dP�

:

(B1)

Changing variables from P� to y defined in (25), the
constraint P� � Pmax

� translates into the integration do-
main 0 � y � ymax, where in analogy to (25) we define

ymax �
Pmax
� � P�
MB � P�

;

y0 �
Pmax
l � P�
MB � P�

� 1�
2E0

MB � P�
:

(B2)

From the phase-space relation (2) it follows that a cut on
the lepton energy has no effect if y0 
 ymax. The result of
-24
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performing the integrations in (B1) can be written as

d�u�ymax; y0�

dP�
�

�
�Au �ymax�; ymax � y0;
�Au �y0� � �Bu ; ymax > y0;

(B3)

where

�Au �yi� �
G2
FjVubj

2

96�3 �MB � P��
5U��h;�i�



Z yi

0
dy y2�2a���3� 2y�F 1 � 6�1� y�F 2

� yF 3�;

�Bu �
G2
FjVubj

2

96�3 �MB � P��
5U��h;�i�



Z ymax

y0

dy y�2a�y0��6y�1� y0� � 6y2

� y0�3� 2y0��F 1 � 6y�1� y�F 2

� y0�3y� 2y0�F 3�: (B4)

When the kinematical power corrections in (30) are ex-
panded as in (32) and (33), the resulting integrals over y
can be expressed in terms of the master functions In�b; z�
073006
given in eq. (86) of [9]. The resulting expressions are used
to obtain the numbers in the various tables in Sec. V.

We now list the values of y0 and ymax for the different
cuts studied in Sec. V. Whenever a cut El 
 E0 on the
charged-lepton energy is applied, we have

y0 � 1�
2E0

MB � P�
: (B5)

For an additional cut P� � �P, we have ymax � 1 and 0 �
P� � min��P;MB � 2E0�. For a cut on hadronic invariant
mass, MX � M0, we have

ymax �
min�MB;M2

0=P�� � P�
MB � P�

(B6)

and 0 � P� � min�M0;MB � 2E0�. For a cut on leptonic
invariant mass, q2 
 q2

0, we have

ymax � 1�
q2

0

�MB � P��2
(B7)

and 0 � P� � min�MB � q0;MB � 2E0�. Finally, for the
combined MX –q2 cut we take the minimum of the pre-
vious two ymax values.
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