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We propose to measure the Cabibbo-Kobayashi-Maskawa parameter 2�� � using B0 decays involving
several intermediate states, and describe a general formalism that applies to a broad class of decays. The
main advantage of this method is that the ratios between the interfering amplitudes can be measured
without requiring external input. In addition, discrete ambiguities are resolved.
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I. INTRODUCTION

CP violation is one of the most important topics in
current particle physics research. In the standard model,
CP violation arises due to a single complex phase in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix V [1]. A ma-
jor goal of B meson physics is to measure the angles and
sides of the CKM unitarity triangle. Theoretically clean
measurement methods are crucial for obtaining these pa-
rameters accurately. The BABAR [2] and Belle [3] mea-
surements of the parameter sin�2��, where � �
arg��VcdV

�
cb=VtdV

�
tb�, confirm the standard model to

within the precision of the experiments, and increased
precision is expected in the coming years.

Crucial studies of the CKM mechanism and constraints
on new physics can be obtained by measuring the CKM
angle � � arg��VudV�ub=VcdV

�
cb�. The greatest challenges

presented by these measurements is that they require very
large data samples and are subject to discrete ambiguities.
It is therefore important to use every possible mode and
method for measuring �, and to devise methods that help
resolve the ambiguities.

An important class of measurements makes use of de-
cays such as B! D��� to measure 2�� �. Proposed
initially by Dunietz [4], the first attempts to measure time-
dependent CP asymmetries proportional to sin�2�� ��
and cos�2�� �� have been conducted by BABAR [5] and
Belle [6] using the modes B! D������ and B! D���.
While these measurements are currently statistically lim-
ited, their precision will become significant as more data
are accumulated [7]. At that stage, the greatest difficulty in
extracting 2�� � from these results will be the lack of
precise knowledge of the ratio between the interfering
amplitudes, defined as r � jA� �B0 ! D����h��=A�B0 !

D����h��j, where h� indicates the light hadron �� or ��.
In principle, r may be obtained from the difference

between the magnitudes of two terms with different time
dependences in the decay rate. These terms are �1� r2�
and �1� r2� cos��mt�, where �m is the B0 � �B0 oscilla-
tion frequency. However, with r�O�1� 2%�, extracting
it from the O�r2� difference between these O�1� terms
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requires prohibitively large data sets and an excellent
understanding of the B flavor mistag rates. Thus, the
time-dependent measurement has negligible sensitivity to
the value of r, which must therefore be obtained by assum-
ing factorization and SU(3) symmetry to make use of the
ratio of branching fractions B� �B0 ! D����s h��=B�B0 !

D����h��. This approximation ignores the contribution of
annihilation diagrams and some SU(3) breaking effects,
and is taken to have a theoretical error of roughly 30% [5].

In B! D����, the single parameter r is replaced by a
matrix �mn of ratios between the magnitudes of the b!
u �cd and b! c �ud contributions of the of three different
helicity amplitudes contributing to the decay. It has been
shown [8] that �mn may be obtained using only first-order
O��mn� terms. Not having to rely on small second-order
terms or external input regarding amplitude ratios, this
provides a much improved, theoretically clean measure-
ment of 2�� �.

In this paper we generalize and extend that method to
other decays that proceed through more than one inter-
mediate state. Examples include B! D���, which can
interfere with B! D����1450� and nonresonant B!
D����0; B! D�a�1 , where nonresonant contributions
are expected under the a1 peak; and B! D�����, where
interference between several excited charmed mesons may
be realized in the decays D��� ! D� and D��� ! D��,
in addition to possible contributions from nonresonant
decays.

In all these cases, the interfering contributions have
overlapping yet different distributions in relevant analysis
variables. The first of these variables is the invariant mass
squared s of the final state of the resonance. The second
variable s0 typically describes an angular distribution that
is fully determined by the spin of the resonance. In the case
of B! D�a�1 , s0 corresponds to the two variables of the
Dalitz plot of the a1 decay.

Our method applies equally well to modes with higher
excitations, such as B! D����, B! D��a�1 , B!
D�����, and B! D���a�1 , in which s0 corresponds to
several angular and mass-related variables. In addition to
-1 © 2005 The American Physical Society
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the interference between several resonances and nonreso-
nant contributions, these decays involve several helicity
amplitudes, which are treated as different intermediate
states in our method.
II. MEASURING 2���

Let us consider a decay of the type described above,
involving the interference of N intermediate states. We
denote the final state by f ( �f) if it contains a c (c) quark.
The four decay amplitudes of interest are

A�B0 ! f� � A� �B0 ! �f� �
XN

m�1

Amgm�s; s0�ei�m;

A�B0 ! �f� �
XN

m�1

amgm�s; s
0�ei��m���;

A� �B0 ! f� �
XN

m�1

amgm�s; s
0�ei��m���;

(1)

where �m (�m) is the CP-conserving phase and Am �am� is
the magnitudes of the b! c �ud (b! u �cd) decay ampli-
tude proceeding via intermediate state m, and gm�s; s0� is a
known function of the final state variables s and s0 that
depends on the nature of the intermediate state m. For
example, for f � D����0 and m being the index of the
D��� intermediate state, gm�s; s0� � R�s�s0, where s is the
square of the ��0 invariant mass, R�s� is a Breit-Wigner
function, and s0 is the cosine of the angle between the
momenta of the B and of one of the pions, calculated in
the ���0 rest frame (the ‘‘helicity’’ angle). Vector-vector
intermediate states, such as D����, must be further di-
vided into the different helicity amplitude, each of which
has a different s0 dependence.

With the above equations, the time-dependent decay
rates for B0�t� ! f and B0�t� ! �f become

��B0�t� ! f� � e��t
X

m;n

	Imn � Cmn cos��mt�

� S�mn sin��mt�
; (2a)

��B0�t� ! �f� � e��t
X

m;n

	Imn � Cmn cos��mt�

� S�mn sin��mt�
; (2b)

where for convenience we define the symbols

Imn �
1

2
fgmg�n�AmAne�i��n��m� � amane�i��n��m��g;

Cmn �
1

2
fgmg

�
n�AmAne

�i��n��m� � amane
�i��n��m��g;

S�mn � Imfgmg�nAnamei��m��n�ei�g;

S�mn � Imfgmg
�
nAmane

�i��n��m�ei�g;

� � ��2�� ��:

(3)

The decay rates for �B0 decays are obtained from the B0
071302
rates by inverting the sign of the cos��mt� and sin��mt�
terms. They double the statistics but do not yield additional
information.

Next, we determine the conditions under which all the
unknown parameters of Eqs. (2) can be obtained from the
measurement, and show that these conditions are satisfied
in the typical case of interfering Breit-Wigner resonances
and a possible nonresonant contribution.

The three terms of Eq. (2a) are distinguishable based on
their different time dependences, thus determining their
coefficients. The relative differences between Imn and Cmn
are of order �aman�=�AmAn� � r2 � 10�4, which is practi-
cally unobservable. As a result, these terms yield the
parameters Am and �m, while am and �m are measured
from the coefficients of the sin��mt� terms, as described
later. To study the conditions for obtaining Am and �m, we
expand
X

m;n

AmAnfgmg
�
ne
�i��n��m�g

�
X

m

jgmj2A2
m � 2

X

m<n

Re�gmg�n�AmAn cos��n � �m�

� 2
X

m<n

Im�gmg�n�AmAn sin��n � �m�: (4)

If jgmj2, Re�gmg�n�, and Im�gmg�n� all have different s and/
or s0 dependences, Eq. (4) yields N2 unique observables,
which is more than enough to determine the 2N � 1 un-
knowns Am and �m (one of the �m phases is a global phase
and can be chosen arbitrarily) for N � 2. This uniqueness
condition is satisfied when all the gm are Breit-Wigner
functions,

gm�s� �
Mm�m

s�M2
m � iMm�m

; (5)

even when all contributions have the same s0 dependence.
A nonresonant contribution g1 � 1 introduces N � 1 de-
generate relations:

Im �g1g
�
m� � jgmj

2; (6)

where gm�m> 1� is a Breit-Wigner function. In this case,
the number of observables is reduced to N2 � �N � 1�.
However, a solution still exists for N � 2, and this solution
is unambiguous when the nonresonant contribution is
small enough relative to the resonant contributions. In
addition, most practical cases involve resonances with total
spins different from 0, and hence s0 dependences that
distinguish them from a nonresonant s-wave contribution.
This guarantees a unique solution of Eq. (4) in terms of Am
and �m.

We note that these conclusions do not depend on the
assumption that the aman terms in Imn and Cmn are negli-
gible. In fact, they apply equally well to the
amanfgmg�ne�i��n��m�g terms in Eq. (3).
-2



IMPROVED MEASUREMENT OF 2�� � PHYSICAL REVIEW D 72, 071302 (2005)

RAPID COMMUNICATIONS
We now show how the coefficients of the sin��mt� terms
in Eq. (2) yield the values of the remaining 2N � 1 un-
knowns, namely, am, �m, and �. The coefficients are
X

mn

S�mn�
X

m

Amamjgmj
2 sin��
�mm��

X

m<n

Im�gmg
�
n�

�	�Aman cos��
�nm�
Anamcos��
�mn�


�
X

m<n

Re�gmg�n�	Aman sin��
�nm�

�Anam sin��
�mn�
 (7)

where �nm � �n � �m. If jgmj2, Re�gmg�n�, and Im�gmg�n�
are all different, Eq. (7) yields N2 observables for S�mn and
N2 for S�mn. It is therefore possible to obtain all the un-
knowns for N � 2.
III. DISCRETE AMBIGUITIES

In the N � 1 case, only the first term in Eq. (7) is
nonvanishing. The measurement of � then suffers from
an eight-fold ambiguity, due to the invariance of the ob-
servable sin��
 �mn� under the three symmetry opera-
tions [9]:

S�=2 � �! �mm � �=2; �mm ! �� �=2;

S0� � �! �mm � �; �mm ! �� �;

S0
 � �! ���; �mm ! ��mm:

(8)

In the typical N > 1 case, S�=2 and S0
 are no longer good
symmetries, since they are broken by the cos��
 �mn�
terms, which are distinguishable from the sin��
 �mn�
terms by virtue of the different s and/or s0 dependences of
their coefficients. This further improves the measurement
of �.
IV. DISCUSSION AND SUMMARY

In this paper, we have outlined the formalism for mea-
suring 2�� � with neutral B meson decays involving
interference between several intermediate states. We have
shown that, despite involving a more complicated analysis,
these decays have distinct advantages over B! D������,
once our formalism is applied to their analysis, thus en-
hancing the overall precision with which 2�� � is known.

First, as already noted for the special case of B!
D���� decays [8], our method is sensitive to 2�� �
using only first-order terms in the ratios am=An between
the b! u �cd and b! c �ud amplitudes. By contrast, in
B! D������, or in the analysis of other decay modes
that ignores the contribution of multiple intermediate
states, one needs to extract r � a1=A1 from O�r2� terms,
or rely on external measurements and incur a large theo-
retical uncertainty. Since r is as small as 1� 2%, this
advantage is realized in our method even when the ampli-
071302
tude of one of the interfering intermediate states is much
greater than the others.

Second, the B! D������ measurement is subject to an
eight-fold ambiguity, while in our method, the ambiguity is
only two-fold.

Our method is not completely model-independent, since
one has to assume specific forms for the gm functions, such
as a Breit-Wigner for the resonances. However, this model
dependence is much smaller than the 30% theoretical error
estimated for r. Most resonances are well understood, and
their shapes can be studied with the terms of Eqs. (4). In
addition, the number of observables in Eq. (7) is greater
than the number of unknowns when there are more than
two intermediate states. The additional constraints may be
used to further reduce the model dependence associated
with some gm functions.

We emphasize that these conclusions and the formalism
presented here do not depend on a specific final state, but
apply whenever enough is known about the gm�s; s0� func-
tions for a solution to be obtainable, which in practice
holds for a majority of the cases.

It is interesting to note some similarities and differences
between the method we present here and methods devel-
oped for measuring � in B! DK. Multibody final state
B! DK decays (such as B� ! DK��0 [10], B� !
D��K� [11], B� ! D�K�� [12], or B! DK with multi-
body D decays [13]) have been shown to improve the
measurement of �. This improvement is mostly due to
the resolution of ambiguities and the ability to make use
of new B and D modes that are not accessible with two-
body �-measurement methods. As we have shown here,
similar advantages are realized by interference between
intermediate states in the measurement of 2�� � with
multibody B! D���-like modes. But in addition, these
measurements benefit mostly from the fact that they do not
depend on the very small r2 terms. By contrast, B! DK
decays are governed by the amplitude ratio rB � jA�B� !
�D0K��=A�B� ! D0K��j � 10� 20%, which is about an

order of magnitude larger than r. Therefore, the sensitivity
advantage brought about by interference between inter-
mediate states is much greater in B! D��� than in B!
DK.

Finally, it is worthwhile to mention the possibility of
measuring 2�� � with modes in which the b! c �ud
diagram is strongly suppressed, resulting in r�O�1�
[14]. Unfortunately, due to the small branching fractions,
one expects a low signal to background ratio in these
modes, severely limiting their sensitivity [15].
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