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Dark matter: A spin one-half fermion field with mass dimension one?
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We report an unexpected theoretical discovery of a spin one-half matter field with mass dimension one.
It is based on a complete set of eigenspinors of the charge conjugation operator. Because of its unusual
properties with respect to charge conjugation and parity, it belongs to a nonstandard Wigner class.
Consequently, the theory exhibits nonlocality with �CPT�2 � �I. Its dominant interaction with known
forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate it as a first-principle
candidate for dark matter.
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The twentieth century may be described accurately as an
era of local quantum field theories (QFTs). The concepts
emerged in its first half, after unifying quantum mechanics,
special relativity, and classical field theory. The applica-
tions were found and studied in detail, especially in the
second half. This has culminated in the fantastically suc-
cessful standard model (SM) of particle physics which
describes all known forces of Nature except for gravity
[1]. As the unification of gravity with the quantum realm is
still a work in progress, it is worthwhile to tread gingerly. A
safe, if somewhat vague, statement is that quantum gravity
induces nonlocality. This is realized in different ways
explicitly in string theory [2], in loop quantum gravity
[3], and in noncommutative field theories [4], to name
just the most prominent candidates for quantum gravity.
Clearly, abandoning locality is a big step. Therefore, we
would like to be as conservative as possible regarding
further deviations from the SM and its foundation in local
QFT.

Just dropping the postulate of locality is not specific
enough. The path we will take is built upon the classic
framework of Wigner [5] where particles are described by
irreducible projective representations of the full Poincaré
group. At the kinematic level, they are labeled by its
Casimir invariants. In addition, they are endowed with
certain behavior under parity P and charge conjugation C
as distinguished by various Wigner classes. This notion of
particles is a corner stone of any description of the low-
energy regime that we are able to explore experimentally
(‘‘low’’ with respect to the Planck scale). Thus, we would
like to keep it, and advocate an ab initio exploration of a
nonstandard Wigner class (NSWC). At this point two
important facts are recalled: (a) For the standard Wigner
classes, the P and C anticommute for fermions and com-
mute for bosons; this is true for all particles of the SM; and
(b) any nontrivial theory built upon a NSWC has to be
nonlocal [6]. The second property is the reason why the
NSWCs are discarded normally. However, we regard it not
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as a disadvantage but as a virtue, because nonlocality is
introduced in a definite way with no free parameters apart
from particle properties. For the sake of concreteness we
shall focus on spin one-half and consider eigenspinors of
the charge conjugation operator; abbreviated as Elko from
the German ‘‘Eigenspinoren des Ladungskonjugations-
operators.’’ As we will show below, this assumption of
neutrality will not only lead to a special type of nonlocality
with a certain mass dependence, but also to a NSWC with
�C;P� � 0.

Moreover, we will discover that the constructed matter
field, despite carrying spin one-half, is endowed with mass
dimension one. This aspect, as we will argue, makes it a
first-principle dark matter candidate.

The derivation of the Dirac equation as presented, e.g. in
Ref. [7], carries a quantum mechanical aspect in allowing
for the fact that the two Weyl spaces may carry a relative
phase; and concurrently a relativistic element via the
Lorentz transformation properties of the Weyl spinors. In
turn, the very existence of the latter depends on the exis-
tence of two spacetime SU�2�s, with the following gener-
ators of transformation: A� � 1

2 �J� iK�. The J and K
represent the generators of rotations and boosts, respec-
tively. We use the Pauli matrices � � ��1; �2; �3� and the
Dirac matrices �� in standard Weyl representation, sub-
sequently. For J � �=2 and A	 � 0 [A� � 0] we have
the �1=2; 0� right-handed [�0; 1=2� left-handed] Weyl space
where K equals �i�=2 [	 i�=2]. From the womb of this
structure emerges the Dirac equation, ���p� �
mI� �p� � 0, which carries the particle-antiparticle sym-
metry via the operation of charge conjugation. In Weyl
realization, the operator associated with it is

C �
O i�
�i� O

� �
K; (1)

whereK complex conjugates a spinor appearing on its right
and � is Wigner’s spin half time reversal operator. We
employ the representation � � �i�2. Note that
���=2���1 � ���=2�
. Equation (1) yields the expected
C � ��2K. The boost operator, �	 � ��, with
-1 © 2005 The American Physical Society
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s �
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� � p
E	m

�
; (2)

and the �1=2; 0� � �0; 1=2�-space charge conjugation op-
erator, C, commute. In terms of energy E and momentum
p � pp̂ the boost parameter, ’ � ’p̂, is defined as
cosh�’� � E=m, sinh�’� � p=m, where m is the mass.

Formal structure of Elko.—We have summarized above
the origin and form of C. We now proceed to obtain its
eigenspinors. If �L�p� transforms as a left-handed spinor,
then �����
L�p� transforms as a right-handed spinor—
where � is an unspecified phase. As a consequence, the
following spinors belong to the �12 ; 0� � �0;

1
2� representa-

tion space:1

��p� �
�����
L�p�
�L�p�

� �
: (3)

These become eigenspinors of C, viz. Elko, with real
eigenvalues if the phase � is restricted to � � �i:

C��p� � ���p� (4)

The plus [minus] sign yields self-conjugate [anti self-
conjugate] spinors: �S�p� [�A�p�].

To obtain explicit expressions for ��p�, we consider the
rest frame (p � 0) and decompose the �L�0� into helicity
eigenstates: � � p̂��L �0� � ��

�
L �0�. Taking p̂ �

�sin� cos�; sin� sin�; cos�� yields

�	L �0� �
����
m
p

ei#1
cos��=2�e�i�=2

sin��=2�ei�=2

 !
; (5a)

��L �0� �
����
m
p

ei#2
sin��=2�e�i�=2

� cos��=2�ei�=2

 !
: (5b)

We set #1 � #2 � 0.2 This leads to four spinors

�f�;�g�0� �
�����L �0��




��L �0�

� �
: (6)

Two of these are [anti]-self-conjugate and arise from set-
ting � � 	i [� � �i]. These are denoted by �S

f�;�g�0�
[�A
f�;�g�0�]. The first [second] helicity entry refers to the
�12 ; 0� [�0; 1

2�] transforming component of the ��p�.
Equations (2) and (6) yield the boosted spinors:

�S=A
f�;�g�p� �

��������������
E	m

2m

s �
1�

p
E	m

�
�S=A
f�;�g�0�: (7)

In the massless limit �S=A
f�;	g�p� identically vanishes while

�S=A
f	;�g�p� does not. Moreover, the relation, � �
1There is a second set of spinors that may be built by starting
with a right-handed Weyl spinor �R�p�, and the observation that
����
�
R�p� transforms as a left-handed Weyl spinor. Because of
its equivalence with the set considered in the present work, we
postpone its details to [8].

2This choice is important for the specific norms given in
Eqs. (9a) and (9b).
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p̂����L �0��

 � �����L �0��


, physically implies the fol-
lowing: ����L �0��


 has opposite helicity of ��L �0�. Since
� � p̂ commutes with �� this result holds for all p. We thus
have the important property for Elko: they are not single
helicity objects. That is, Elko cannot be eigenspinors of the
helicity operator. The same shall be assumed for one-
particle states.

For any �12 ; 0� � �0;
1
2� spinor 	�p�, the Dirac dual spinor

	�p� is defined as 	�p� :� 	y�p��0. It is readily verified
that, with respect to the Dirac dual, the Elko have an
imaginary biorthogonal norm, which is a hindrance to
physical interpretation and quantization. Therefore, we
define a new dual which is required to have the property
that: (a) It yields an invariant real definite norm, and (b) it
must secure a positive definite norm for two of the four
Elko ’s, and negative definite norm for the remaining two.
Up to an irrelevant relative sign, a unique definition, which
we call Elko dual, is

�
: S=A
f�;�g�p� :� �i��S=A

f�;�g�p��
y�0: (8)

With the Elko dual thus defined, we now have, by con-
struction, the orthonormality relations

�
:S

�p��I
0 �p� � 	2m�

0�SI; (9a)

�
:A

�p��I
0 �p� � �2m�

0�AI; (9b)

where I 2 fS; Ag; and the completeness relation

1

2m

X



��S
�p��
:S

�p� � �A
�p��

:A

�p�� � I; (10)

which clearly shows the necessity of the anti-self-
conjugate spinors. In the above equations, the subscript 

ranges over two possibilities: f	;�g; f�;	g. The detailed
structure underlying the completeness relation resides in
the following spin sumsX




�S
�p��
:S

�p� � 	m�I	G�p��; (11a)

X



�A
�p��
:A

�p� � �m�I�G�p��; (11b)

which together define G�p�. A detailed calculation shows
that G is an odd function of p:

G �p� � �G��p�; (12)

a result which carries considerable significance for the
discussion following Eq. (19). Equations (9a), (9b), (10),
(11a), and (11b) have their direct counterparts in Dirac’s
construct.

It appears to be standard textbook wisdom that for
bosons [fermions] particle and antiparticle have the same
[opposite] relative intrinsic parity. To our knowledge, the
only textbook which tells a more intricate story is that by
Weinberg [1]. The only known explicit construct of a
theory which challenges the conventional wisdom was
reported about a decade ago [9]. In that pure spin one
-2
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bosonic theory, particles and antiparticles carry opposite,
rather than same, relative intrinsic parity. It manifests itself
through anticommutativity, as opposed to commutativity,
of the �1; 0� � �0; 1�-space’s C and P operators. In a some-
what parallel fashion, we shall now show that, for the spin
half Elko C and P commute, rather than anticommute as
they do for the Dirac case. The P acting on Elko yields

P�S
f�;�g�p� � �i�

A
f�;�g�p�; (13)

and the same equation with a minus sign on the left-hand
side for �A $ �S. That is, Elko are not eigenspinors of the
parity operator. Applying it twice establishes P2 � �I, as
opposed to Dirac spinors where P2 � 	I. Under time
reversal T � i�5C, we obtain

T�S
�p� � �i�A
�p�; T�A
�p� � 	i�S
�p�; (14)

implying T2 � �I. It is now a simple exercise to show

ELKO : �C;P� � 0; �C; T� � 0; fP; Tg � 0:

This proves our claim that Elko belong to a NSWC [5]. We
confirm also Wigner’s expectation �CPT�2 � �I and rec-
oncile with Weinberg’s observation (Appendix C of
Chapter 2 in [1]) due to Elko’s dual helicity nature.

Physical properties of Elko.—An Elko-based quantum
field with well-defined CPT properties may now be intro-
duced

��x� �
Z d3p

�2�3
1�����������������

2mE�p�
p X

�

�c��p��S��p�e
�ip�x�

	 cy��p��
A
��p�e

	ip�x��; (15)

with the expected anticommutation relations

fc��p�; c
y
�0 �p

0�g � �2�3�3�p� p0����0 ; (16)

fcy��p�; c
y
�0 �p

0�g � fc��p�; c�0 �p0�g � 0; (17)

for the creation and annihilation operators cy��p� and c��p�,
respectively. Its Elko dual �

:
�x� is obtained by replacing

everywhere ��p� with its Elko dual, exchanging c with cy,
and swapping ip�x� $ �ip�x�. The propagator follows
from textbook methods. It entails evaluation of
hjT���x0��

:
�x��ji, where T is the fermionic time-ordering

operator, and j i is the vacuum state. The result in terms of
the spin sums reads

S�x� x0� � �
Z d3p

�2�3
i

2mE�p�


X
�

���t0 � t��S��p��
:S
��p�e�ip��x

0��x��

� ��t� t0��A��p��
:A
��p�e	ip��x

0��x���: (18)

On using Eqs. (11a) and (11b) for the spin sums, it sim-
plifies to

S �x�x0��
Z d4p

�2�4
eip��x

��x0�� I	G�p�
p�p��m2	 i�

: (19)
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In (19), the limit �! 0	 is understood. The structure of
the obtained propagator differs from that of Dirac because
in this latter case �I� G�p�� appearing in the spin sums is
replaced by its counterpart ��I� ��p�=m� [with the plus
sign giving the spin sum for particle spinors uh�p�, while
the minus sign yields the same for antiparticle spinors
vh�p�]. Exploiting the property (12), it is clear that, in
the absence of a preferred direction, such as the one arising
from a fixed background, like a reference fluid, a thermal
bath or an external magnetic field, to name just a few, the
second term in Eq. (19) identically vanishes; as a result,
Eq. (19) reduces to the Klein-Gordon propagator.
Consequently, the field ��x� carries mass dimension one
as announced above. It forbids particles described by the
theory to enter SU�2�L doublets of the SM. The field ��x�
thus becomes a first-principle candidate for dark matter as
will be discussed below in more detail.

The identity3 ���p��
�

 � imI"

�

��

S=A
� �p� � 0; follows

as a simple algebraic exercise of applying ��p� to �S=A�p�
[8,10]. It cannot be interpreted as a Dirac equation with an
off-diagonal mass term. Instead, the mentioned identity
shows that Elko satisfy the Klein-Gordon equation,
�p�p

� �m2��S=A�p� � 0.
As a further consistency check, from the Lagrangian

density

L free � @��
:
�x�@���x� �m2�

:
�x���x�; (20)

one may construct the Hamiltonian density and it turns out
that the anticommutation relations (16) and (17) are com-
patible with positive energy, like in the Dirac case.

Given (15), its dual �
:
�x�, as well as the canonical

momentum �x� implied by Eq. (20), as input it is easy
to calculate the field anticommutators. We find that
f��x; t�; �

:
�x0; t�g vanishes while f��x; t�; �x0; t�g �

i�3�x� x0�. This is as expected on the basis of a local
QFT. The departure from locality is contained in the result
that f��x; t�; ��x0; t�g and f�x; t�; �x0; t�g do not vanish.
The emergent nonlocality is captured by the expression

d

dm

�
m
Z

x�x0
hjf��x; t�; ��x0; t�gji

�
�

1

m
�1�0:

In the limit of large m nonlocality becomes negligible. It is
worth emphasizing that nonlocality for Elko emerges as a
higher order effect, for it resides entirely in those expecta-
tion values where two Elko fields, or two momenta, appear
together (cf. [8] for details).

Having established nonlocality, CPT-properties and
mass dimension one, the physics of Elko becomes even
more interesting when coupling to the matter content of the
SM is considered. Since interaction terms with mass di-
-3
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mension greater than four will be assumed to be suppressed
by some fundamental mass scale, say, the Planck scale,
focus will be solely on power counting renormalizable and
super-renormalizable terms.4 It is easy to check that none
of the latter are present: a scalar interaction term Elko must
appear in even powers, so super-renormalizable terms must
contain exactly two Elkos and one other field. However, it
cannot be a spinor (or else the interaction term would not
be a scalar) or a gauge field (or else the interaction term
would not be gauge invariant). Therefore, only a neutral
scalar field remains as possible candidate. The only scalar
field within the SM is the Higgs, which is an SU�2�L
doublet. Thus, only power counting renormalizable terms
have to be considered. In addition to the free Lagrangian
density (20) and quartic Elko self-interactions, there is a
possible Elko-Higgs interaction

L H � 
H�
2�x��

:
�x���x�; (21)

where ��x� is the Higgs doublet and 
H is a dimensionless
coupling constant. The fact that Elko may not interact
directly with non-Abelian gauge fields5 or fermions of
the SM explains why Elko has not been detected yet.
However, since it does interact with the Higgs there is a
chance that it might be discovered at LHC. Thus, due to its
weak interaction with the matter content of the SM, Elko
provides a first-principle candidate for dark matter.
4We do not intend to discuss renormalizability which is tricky
for nonlocal theories, but rather impose only simple power
counting arguments in order to extract the dominant terms in
the low-energy limit.

5While Elko may carry a coupling to an Abelian gauge field
with associated field strength F���x�, e.g. of the form
�
:
�x�����F���x���x�, the coupling constant has to be very small

because such terms affect photon propagation. Thus, the domi-
nant interaction between Elko and particles of the SM is ex-
pected to be via (21). We thank Dima Vassilevich for raising a
question in this regard.
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Perhaps it not too provocative an assertion that, what-
ever dark matter is, one thing that seems reasonably as-
sured is that in the low-energy limit it behaves as one of the
representations of the Lorentz group. Since the known
particles are described by quantum fields involving finite
dimensional representation spaces, and since none of them
fits the properties called for by dark matter, one is guided to
study the matter content of the unexplored Wigner classes.
Here, we have examined one such spin one-half represen-
tation space. It is emphasized that all our findings depend
crucially on a single postulate: neutrality, as encoded in
Eq. (4).

Not only do our results offer a possible new candidate
for dark matter, but they also provide unexpected theoreti-
cal insights into the particle content of the spacetime
symmetries.

We are grateful to Terry Pilling and Dima Vassilevich for
helpful discussions. CONACyT (Mexico) is acknowledged
for funding this research through Project No. 32067-E. D.
Grumiller is supported by Project No. J2330-N08 of the
Austrian Science Foundation (FWF).

Note added.—During the time this paper was under
review, Ref. [11] appeared. In that paper, da Rocha and
Rodrigues calculate the bilinear covariants for the Elko
spinor fields and show that Elko belongs to class 5 in
Lounesto spinor classification [12]. They further discuss
distinction between Elko and Majorana spinors. In addi-
tion, if Elko is to serve as a dark matter candidate in the
standard model of cosmology, Ref. [8] provides an esti-
mate for the Elko mass (about 20 MeV) and the relevant
cross section (roughly 2 pb). A refinement of that analysis
in the form of an S-matrix calculation is desirable. First
steps in this direction are also provided in Ref. [8], where
the impact of nonlocality on a perturbative treatment has
been studied to a certain extent. In particular, nonstandard
contractions emerge in the analogue of Wick’s theorem.
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