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A master action for the bosonic p-brane, interpolating between the Nambu-Goto and Polyakov
formalisms, is discussed. The fundamental arbitrariness of extended structures (p-brane) embedded in
spacetime manifold has been exploited to build an independent metric in the brane world volume. The
cosmological term for the generic case follows naturally in the scheme. The dynamics of the structure
leads to a natural emergence of the A-D-M like split of this world volume. The role of the gauge
symmetries vis-à-vis reparametrization symmetries is analyzed by a constrained Hamiltonian approach.
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I. INTRODUCTION

String theory is considered as the candidate theory to
unite all fundamental interactions including gravity. For
uniqueness and consistency of different perturbative string
theories, extended structures like membranes [1] are re-
quired to be introduced with an independent physical status
[2]. A generic element of this class is a p-dimensional
spatially extended structure called the p-brane. Apart
from the symmetries of the spacetime in which the brane
is embedded it also carries various symmetries associated
with reparametrization of the world volume. These sym-
metries have been discussed extensively in the literature.
However, all these studies are based on either the Nambu-
Goto (N-G) [1,3–6] or the Polyakov-type [7] actions and a
systematic analysis of the mutual correspondence between
the different formalisms is lacking. Aspects of symmetries
continue to be of fundamental importance in the study of
dynamics of the brane and it is indeed crucial to understand
these issues from a unified point of view. The present paper
will be devoted to the analysis of the basic world volume
symmetries of a bosonic p-brane from such a unified
approach. Implications and consequences of the symme-
tries will also be discussed.

The p-brane sweeps out a p� 1 dimensional world
volume in the embedding spacetime. The dynamics of
the brane can be analyzed from different action formal-
isms. In the N-G description the physical action is pre-
scribed solely in terms of the spacetime coordinates of the
brane, taken as independent fields. Alternatively, in the
Polyakov action formalism the metric in the world volume
is considered as a collection of independent fields in addi-
tion to the usual spacetime coordinates. The equivalence of
these two approaches is usually established by starting
from the Polyakov action and solving out the independent
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metric in favor of the spacetime coordinates. In the present
paper, on the contrary, we address the reverse problem by
demonstrating how the independent metric can be gener-
ated by exploiting the reparametrization symmetry of the
NG action for the p-brane. An intermediate step is the
construction of an interpolating action. Such actions were
earlier introduced for discussing various aspects of sym-
metries and noncommutativity in the case of strings and
membranes [8–10]. However the methods used were spe-
cific to the particular choice of p � 1�strings�; p �
2�membranes� only, which do not admit a generalization
to the arbitrary p-case that is essential for the present
analysis. The interpolating action is based on the first-class
constraints of the NG theory. The independent metric will
be generated from the corresponding Lagrange multipliers
enforcing these constraints. This reveals a deep connection
of the metric components with the gauge symmetries of the
brane. The mismatch between the number of independent
gauge degrees of freedom and the number of independent
metric elements brings out the arbitrariness, inherent in the
Polyakov formulation, explicit in our construction. Fixing
the arbitrariness in terms of the embedding makes the
transition to the Polyakov form complete. Notably, the
cosmological term emerges as a logical consequence of
our analysis.

The process of introducing the independent metric in the
world volume through the interpolating action formalism
has a very interesting outcome. First-class constraints of
the N-G theory generate temporal development and also
shifts in the space like directions. The independent metric
constructed with the help of the Lagrange multipliers en-
forcing these constraints naturally emerge with a decom-
position of the �p� 1�-dimensional metric into the
�p�-dimensional spatial part plus the multipliers which
are the analogues of the lapse and shift variables of general
relativity. Indeed, the metric generated in our formalism
appears in a canonical form which is shown to be identical
with the famous Arnowitt-Deser-Misner (A-D-M) repre-
sentation in general relativity [11]. In other words our
analysis provides a genesis of the A-D-M representation
from a string theoretic perspective.
-1 © 2005 The American Physical Society
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The interpolating action formalism is based on the gauge
symmetries of the theory. These gauge degrees of freedom
actually correspond to the invariance under reparametrisa-
tion of the brane world volume. Considering the pivotal
role played by the gauge symmetries in our analysis, it is
only natural to undertake a thorough investigation of these
symmetries vis-à-vis the reparametrisation symmetries. In
this paper we address this problem using a Hamiltonian
method of abstracting the independent gauge parameters
introduced earlier in the literature [12].

The organisation of the paper is as follows. In Sec. II we
introduce the interpolating action for the generic p-brane
and discuss its passage to the N-G and the Polyakov forms.
Specifically, the method of obtaining the independent met-
ric components from the fields of the interpolating theory
has been elaborated. Various consistency conditions have
been deduced which are used in the sequel. In Sec. III the
emergence of the A-D-M decomposition of the p-brane
world volume from our construction has been indicated.
Sec. IV discusses a comprehensive analysis of the gauge
symmetries of the interpolating action and its parallel with
the reparametrisation invariance of the theory. We con-
clude in Sec. V.
II. INTERPOLATING ACTION FOR THE
BOSONIC P-BRANE

The p-brane is a p dimentional object which sweeps out
a �p� 1� dimensional world volume parametrized by �
and �a. The index a run from 1 to p. Henceforth these
parameters are collectively referred as �i��0 � �; �a �
�a�. The N-G action of bosonic p-brane is the integrated
proper area of this world volume:

SNG � �
Z
dp�1�

�������
�h
p

(1)

where h is the determinant of the induced metric

hij � @iX
�@jX� (2)

Note that we have kept the p-brane tension implicit. The
canonical momenta conjugate to X� are

�� �
�h�������
�h
p f@0X� � @aX� �habh0bg (3)

where �h is the determinant of the matrix hab. Also �hab 1 is
the inverse of hab. The primary constraints following from
(3) are,

�0 �
1

2
��2 � �h� � 0 ; �a � ��@aX

� � 0 (4)

The nontrivial Poission’s bracket of the theory are given by

fX���; ��;����; �0�g � ��� ���� �0� (5)
1Note that �hab is different from the space part of hij:
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Using these Poisson brackets it is easy to work out the
algebra of the constraints

f�0���;�0��0�g � 4� �h��� �hab����b���

� �h��0� �hab��0��b��
0��@a����� �

0��

f�a���;�0��
0�g � ��0��� ��0��

0��@a����� �
0��

f�a���;�b��
0�g � ��b���@a����� �

0��

��a��
0�@0b����� �

0��� (6)

Clearly, the Poisson brackets between the constraints (6)
are weakly involutive so that the set (4) is first class. Since
the p-brane action (1) possesses reparametrization invari-
ance, the canonical Hamiltonian following from the action
vanishes. Thus the total Hamiltonian is only a linear com-
bination of the constraints (4):

H T � �
�0

2
��2 � �h� � �a��@aX

� (7)

In the above expression �0 and �a are the Lagrange
multipliers.

The Polyakov action for the p-brane is given by,

SP � �
1

2

Z
dp�1�

�����
�
p

gfgij@iX
�@jX� � �p� 1�g (8)

The metric gij are now considered as independent fields.
The equations of motion for gij are

gij � hij (9)

Substituting these in (8) we retrieve the N-G form (1). Note
the cosmological term

�����
�
p

g�p� 1� in the action. For p �
1 this term vanishes. We thus observe that the presence of
the cosmological term is characteristic of the higher branes
as opposed to the strings. The reason for this difference is
the Weyl invariance of the string which is not shared by the
higher branes. In our action level construction this cosmo-
logical term will emerge systematically.

We now come to the construction of an interpolating
action for the p-brane. The first step is to consider the
Lagrange multipliers as independent fields and write an
alternative first order Lagrangian for the p-brane

L I � ��
_X� �H T (10)

The equation of motion for �� following from the
Lagrangian (10) is

�� � �
_X� � �a@aX�

�0
(11)

Substituting �� in (10) we get the interpolating
Lagrangian
-2
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LI � �
1

2�0
� _X� _X� � 2�a _X�@aX� � �a�b@aX�@bX��

�
�0

2
�h (12)

for the p-brane.
The Lagrangian (12) has been referred to as the inter-

polating Lagrangian because this can be reduced to either
the N-G or the Polyakov form of the p-brane action. Let us
first discuss the passage to the N-G form. From the inter-
polating Lagrangian it is easy to write down the equations
of motion for �0 and �a :

�2
0 �
�h
�h2

; �a � �h0b
�hba (13)

From the first equation of (13) �0 is determined modulo a
sign. This can be fixed by demanding the consistency of (3)
with (11), the equation of motion for �� following from
the first order Lagrangian (10). Thus we have

�0 � �

�������
�h
p

�h
(14)

Substituting �a and �0 in (12) we retrieve the Nambu–
Goto action (1).

The reduction of the interpolating Lagrangian to the
Polyakov form of the p-brane action is nontrivial. In deriv-
ing the interpolating Lagrangean from the N-G theory we
have promoted the �p� 1� Lagrange multipliers as inde-
pendent fields. Note that in the Polyakov action the extra
degrees of freedom is more than this number. The precise
size of the mismatch is �p��p� 1�=2. We thus observe that
the interpolating action is a less redundant description than
the Polyakov action. So to make the transition from the
interpolating Lagrangean to the Polyakov form we require
to introduce just as many independent fields. This can be
done by including an arbitrary spatial part Gab in LI,
which has the right number of independent components.
We therefore modify the interpolating Lagrangian (12) for
the p-brane in the following way

LI��
1

2�0
� _X� _X��2�a _X�@aX

����a�b@aX
�@bX�

��2
0

�GGab@aX�@bX����
�0

2
� �GGab@aX�@bX�� �h�

(15)

where �G is the determinant of Gab which is the inverse of
the arbitrary matrix Gab, �a; b � 1; 2; . . .p�. This specific
choice of the arbitrary part will be convenient in the sub-
sequent calculation. Observe that (15) can be cast as

L I��
1

2

�������
�g
p

gij@iX�@jX
��

�0

2
� �GGab@aX�@bX

�� �h�

(16)
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where

gij � ��g��1=2

0
@ 1
�0

�a
�0

�b
�0

�a�b��2
0

�GGab

�0

1
A (17)

Here g is the determinant of gij which is the inverse of gij.
This imposes stringent constraints on the construction (17).
So its consistency must explicitly be examined. Observe
that by exploiting the dynamics of the p-brane we are able
to generate an independent metric on the world volume of
the brane. The arbitrary function Gab signifies a funda-
mental elasticity in the spatial part of the metric. The
Lagrangean (16) is almost in the required Polyakov form
except for the omission of the cosmological constant. Also
there is an additional term which is not there in the
Polyakov Lagrangean. It is precisely the consistency re-
quirement of the construction (17) which identifies this
extra piece in (16) with the cosmological constant, pro-
vided we fix the elasticity in the embedding. The validity of
these assertions will be demonstrated now.

From the identification (17) we get after a straightfor-
ward calculation that

det gij � ��1�p
��p�1�

0

�
�������
�g
p

��p�1�
det� �GGab� (18)

But we require det gij � g�1. Comparing, we get the con-
dition

��p�1�
0 � ��1��1�p�

� �������
�g
p

�G

�
�p�1�

(19)

Starting from our construction (17) one can solve for �0

and �a as

1

�0
�

�������
�g
p

g00; �a �
g0a

g00 (20)

Using (20) in (17), we get after a few steps

Gab �
g
�G
�gabg00 � g0ag0b� (21)

Inverting Gab we arrive at

Gab �

�
gg00

�G

�
gab (22)

From (21) we obtain after some calculations

detGab �

�
g
�G

�
p

det gij�g00�p�1 (23)

But, by definition, detGab � 1= �G. Using this in (23) we
find,

�G �p�1� � �gg00��p�1� (24)

There is an apparent ambiguity of sign in determining �G
from (24) when p is odd. For now we take the positive
solution for all p. Then from (22)
-3
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Gab � gab (25)

The consistency requirment thus restricts the arbitrariness
of Gab through (25). We use (19) and (25) to express the�������
�g
p

factor in terms of the �G and �0 as 2

�������
�g
p

� ��0
�G � ��0 det gab (26)

Finally, we discuss the reduction of the interpolating action
to the Polyakov form. Note that the spatial part of the
metric gij is still remaining arbitrary. Also no attention
has so far been paid to the background spacetime in which
the brane is embedded. We now propose the rigid structure

gab � hab (27)

In this connection it may be observed that this is just the
spatial part of (9) which is required to demonstrate the
equivalence of the Polyakov form with the N-G. Now
Eq. (27), along with (25), imposes

Gab � hab (28)

Plugging it in the Lagrangean (16) and using (26) we find
that the last term of (16) is precisely equal to the cosmo-
logical constant occurring in the Polyakov action (8). This
completes the reduction of the interpolating Lagrangian to
the Polyakov form. The connection (27) fixes the brane in
its embedding. A couple of interesting observations also
follow from this. First, we can understand now the nature
of the ambiguities of sign encountered above for odd p
more clearly. If we chose the opposite sign in (25) then we
would have Gab � �hab and �0 should then be expressed
from (19) as �0 �

�����
�g
p

�G
. Otherwise there would be contra-

diction with (14). Next, for p � 1 we find that the imposed
rigidity admits a residual scale transformation. This is the
well known Weyl invariance of the string.

III. EMERGENCE OF A-D-M DECOMPOSITION
FROM THE BRANE DYNAMICS

The interpolating action formalism enables us to intro-
duce an independent metric in the world volume swept out
by the N-G brane. The process depends crucially on the
first-class constraints of the theory. We have also clearly
identified the arbitrariness in the spatial part of the metric.
Our method thus introduces the metric in a very special
way such that the world volume is decomposed into the p
dimensional spatial part along with the multipliers which
generate temporal evolution with shifts in the spacelike
direction. This decomposition of the metric is reminiscent
of the A-D-M decomposition in geometrodynamics [11].
Indeed, the connection with A-D-M decomposition was
noticed earlier in the special cases of string and membrane
[9]. We are now in a position to show how the A-D-M
2Note that for odd p another sign ambiguity appears here. This
is actually related with the corresponding uncertainty about sign
stated above. We shall explore the connection subsequently.
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representation follows from the dynamics of the generic p-
brane. To see this we have to use (26) to first express the
metric in terms of its arbitrary spatial part and the Lagrange
multipliers only. The construction (17) then reduces to

gij �

0
@� 1

�2
0 det gab

� �a

�2
0 det gab

� �b

�2
0 det gab

� �gab � �a�b

�2
0 det gab

�

1
A (29)

where �gab is the inverse of the spatial metric gab
3. In the A-

D-M construction the metric gij of physical spacetime is
represented as

gij �
�� 1

�N�2
Na

�N�2

Nb

�N�2
� �gab � NaNb

�N�2
�

�
(30)

where N and Na are, respectively, the lapse and shift
variables and �gab is the inverse of the ‘‘metric’’ gab on
the spatial hypersurface. Using the correspondence

�Na�� ��a; and N � �0

��������������
det gab

p
(31)

it is easy to convince oneself that the A-D-M decomposi-
tion of the brane volume emerges from our analysis. Note
that in the correspondences (31) apart from the Lagrange
multipliers only the space part of the metric gij is involved.
The flexibility in gab is apparent in our Eq. (25). Modulo
this arbitrariness the lapse and shift variables are the fields
�0 and �a in our interpolating Lagrangean (16). They in
turn owe their existence to the constraints (4) which are
nothing but the superhamiltonian and supermomentum of
the theory. Our interpolating Lagrangean (12) can thus be
considered as the brane analog of the A-D-M formulation
of geometrodynamics.
IV. CONSTRAINT STRUCTURE AND GAUGE
SYMMETRY

The interpolating action formalism offers a composite
scenario for discussing alternative actions of the p-brane. A
thorough understanding of its gauge symmetries will thus
be very much appropriate to our context. In this section we
will discuss the gauge symmetries of the different actions
and find their exact correspondence with the reparametri-
zation invariances. Since our discussion will be centered on
the interpolating action (12) let us begin with an analysis of
its constraint structure. The independent fields in (12) are
X�, �0 and �a. Let the corresponding momenta be denoted
by ��, ��0

and ��a respectively. By definition

�� � �
1

�0
� _X� � �a@aX�� ; ��0

� 0 ; ��a � 0

(32)

In addition to the Poisson brackets similar to (5) we now
3Note that as in the case of �hab, �gab is also different from the
spatial part of the identification matrix gij.
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have

f�0��; ��;��0
��; �0�g � ���� �0�

f�a��; ��;��b��; �
0�g � ���� �0��ab

(33)

The canonical Hamiltonian following from (12) is

H c � ��a��@aX� �
�0

2
��2 � X02� (34)

which reproduces the total Hamiltonian of the NG action.
From the definition of the canonical momenta we can
easily identify the primary constraints

��0
� 0 ; ��a � 0 (35)

Conserving these primary constraints we find that two new
secondary constraints emerge. These are the constraints of
Eq. (4), as expected. The primary constraints of the NG
action appear as secondary constraints in this formalism.
No more secondary constraints are obtained. The system of
constraints for the Interpolating Lagrangean thus com-
prises of the set (4) and (35). The Poisson brackets of the
constraints of (35) vanish within themselves. Also the PB
of these with (4) vanish. All the constraints are first class
and therefore generate gauge transformations on LI but the
number of independent gauge parameters is equal to the
number of independent primary first-class constraints. In
the following analysis we will apply a systematic proce-
dure [12] of abstracting the most general local symmetry
transformations of the Lagrangean. A brief review of the
procedure will thus be appropriate.

Consider a theory with first-class constraints only. The
set of constraints �a is assumed to be classified as

��a� � ��a1
; �a2

� (36)

where a1 belong to the set of primary and a2 to the set of
secondary constraints. The total Hamiltonian is

HT � Hc � ��a1�a1
(37)

where Hc is the canonical Hamiltonian and �a1 are
Lagrange multipliers enforcing the primary constraints.
The most general expression for the generator of gauge
transformations is obtained according to the Dirac conjec-
ture as

G � �	a�a (38)

where 	a are the gauge parameters, only a1 of which are
independent. By demanding the commutation of an arbi-
trary gauge variation with the total time derivative, (i.e.
d
dt ��q� � ��ddt q�) we arrive at the following Eqs. [12,13]

��a1 �
d	a1

dt
� 	a�Va1

a � �b1Ca1
b1a
� (39)

0 �
d	a2

dt
� 	a�Va2

a � �b1Ca2
b1a
� (40)
066015
Here the coefficients Va1
a and Ca1

b1a
are the structure func-

tions of the involutive algebra, defined as

fHc;�ag � Vba�b ; f�a;�bg � Ccab�c (41)

Solving (40) it is possible to choose a1 independent gauge
parameters from the set 	a and expressG of (38) entirely in
terms of them. The other set (39) gives the gauge variations
of the Lagrange multipliers. It can be shown that these
equations are not independent conditions but appear as
internal consistency conditions. In fact the conditions
(39) follow from (40) [12].

We begin the analysis with the interpolating action (12).
Here the fields are X�; �0 and �a. The set of constraints are
given by (35) along with (4). All these constraints are first
class. Denoting these by the set f�kgwe write the generator
of the gauge transformations of (12) as

G �
Z
d�
k�k (42)

where 
k are the gauge parameters. We could proceed
from this and construct the generator of gauge transforma-
tions from (42) by including the whole set of first-class
constraints (4) and (35). Using (40) the dependent gauge
parameters can be eliminated. After finding the gauge
generator in terms of the independent gauge parameters,
the variations of the fields X�, �0 and �a can be worked
out. However, looking at the intermediate first order form
(10) we understand that the variations of the fields �0 and
�a can be calculated alternatively, ( using (39)) from the
NG theory where they appear as Lagrange multipliers. We
adopt this alternative procedure. The generator of gauge
transformations has already been given in (42) where �i
now stands for the first-class constraints of the N-G theory,
i.e. (4). The variations of �i are obtained from (39)

��i��� � � _
i �
Z
d�0d�00Cikj��

0; �00; ���k��
0�
j��

00�

(43)

where Cikj��
0; �00; �� are given by

f�
���;����
0�g �

Z
d�00C
�

���; �0; �00�����
00� (44)

Observe that the structure function Vab does not appear in
(43) since Hc � 0 for the NG theory. The nontrivial struc-
ture functions C
�

���; �0; �00� are obtained from the N-G
constraint algebra (6).

Cb00 � 4� �h �hab���� �0� � �h �hab���0 � �00��@af���� �0�g

(45)

C0
a0 � ����� �

00� � ���0 � �00��@af���� �
0�g (46)

Ccab � ����� �
00�@af���� �

0�g�cb

� ���0 � �00�@bf���� �
0�g�ca� (47)
-5
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and using the structure functions (45)–(47) we calculate
the required gauge variations by applying Eq. (43)

��a � � _
a � �
b@b�
a � �b@b
a�

� 4 �h �hab�
0@b�0 � �0@b
0�

��0 � � _
0 � �
0@a�
a � �a@a
0�

� �
a@a�0 � �0@a
a� (48)

Now we will systematically investigate and explicitely
establish the parallel between gauge symmetry and repar-
ametrization symmetry of the p-brane actions. To start with
we require to find a correspondence between the trans-
formation parameters in both the cases. A particular use-
fulness of the interpolating Lagrangean formalism can be
appreciated now. It is not required to find the gauge varia-
tions of gij from scratch. The identification (17) allows us
to find the required gauge variations from the correspond-
ing transformations of �0 and �a (48). The Polyakov action
offers the most appropriate platform to test this proposi-
tion. Indeed, the complete equivalence between the two
concepts (i.e. gauge variation and reparametrization) can
be demonstrated from the Polyakov action by devising an
exact mapping between the reparametrization parameters
and gauge parameters by comparing the changes of �0 and
�a from the alternative approaches using the identification
(17).

Under infinitesimal reparametrization of the world vol-
ume coordinates

�0i � �i ��i (49)

where �i are arbitrary functions of �i, the variations of the
fields X� and gij are

�X� � �i@iX� � �0 _X� ��a@aX� (50)

�gij � Di�j �Dj�i (51)

where the covariant derivative is defined as usual,

Di�j � @i�j � �kij�k (52)

with �ij
k being the Christoffel symbols [14].

The infinitesimal parameters �i characterizing repara-
metrization correspond to infinitesimal gauge transforma-
tions and will ultimately be related with the gauge
parameters 
k introduced earlier such that the symmetry
transformations on X� agree from both the approaches.
Since the metric gij is associated with �0 and �a by the
correspondence (17), Eq. (51) will enable us to establish
the complete equivalence between the variations due to the
gauge transformation and the reparametrizations.

To compare variations of X� from these alternative
approaches we proceed as follows. From the Lagrangean
corresponding to (8) we find

�� � �
�������
�g
p

g00 _X� �
�������
�g
p

g0a@aX� (53)
066015
Substituting _X� from (53) in (50) we get after some
calculation

�X� � �0

�������
�g
p

gg00 �� �

�
�a �

g0a

g00 �0

�
@aX� (54)

Now the variation of X� in (12) under (42) is

�X� � fX�;Gg � �
a@aX� � 2
0��� (55)

Comparing the above expression of �X� with that of (54)
we find the mapping

�0 � �

0

�0
; �a � 
a �

�a
0

�0
(56)

With this mapping the gauge transformation on X� in both
the formalism agree. The complete equivalence between
the transformations can now be established by computing
��a and ��0 from the alternative approach. The mapping
(17) yields,

�a �
g0a

g00 (57)

We require to express these in terms of gij. To this end we
start from the identity

gijgjk � �ik (58)

and obtain the following equations for �a

�agab � �g0b (59)

which gives

�a � � �gabg0b (60)

Taking variation on both sides of (59)we get

��agab � ��g0b � �a�gab (61)

Rearranging the terms conveniently we write

��a � ��g0b �gab � �c�gcb �gba (62)

Now using (51) we compute �g0b and �gab and simplify
using relation (63) and the fact that �gab is the inverse of the
spatial metric gab. This gives the variations of �a under
reparametrization as

��a � �@0�a � �a@0�0 � �b@b�a � �a�b@b�0

��k@k�a � �g00 � gc0 �gcbg0b� �gad@d�0 (63)

We further simplify the last term using a relation4

1

�0
2 �h00 � h0c

�hcbh0b� � �h � 0 (64)

and (9) to get
-6
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��a � �@0�a � �a@0�0 � �b@b�a � �a�b@b�0

��k@k�a � �2
0

�h �had@d�0 (65)

Now introducing the mapping (56) in (65) we find that the
variations of �a are identical with their gauge variations in
(48). Finally we compute the variation of �0. This can be
conveniently done by taking the expression of �0 in (26)
and using the variations (51). We get the expression of ��0

in terms of the reparametrization parameters �i as

��0��0@i�
i��k@k�0�2�0@a�a�2�0�

a@a�0 (66)

Again using the mapping (56) we substitute �i by 
i and
the resulting expression for ��0 agrees with that given in
(48). The complete matching, thus obtained, illustrates the
equivalence of reparametrization symmetry with gauge
symmetry for the generic p-brane.

V. CONCLUSION

We have discussed in the context of the bosonic p-brane
how an independent metric can be generically introduced
in the world volume of the brane. This has been done with
the help of an interpolating action based on the first-class
constraints. The specific method adopted here leads to the
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introduction of the metric in a very special way, namely, we
have achieved a segregation of the �p� 1� dimentional
world volume in the p dimentional spatial part and the
Lagrange multipliers analogous to the lapse and shift var-
iables of classical gravity. Using this correspondence we
have shown that the Arnowitt-Deser-Misner like decom-
position of the brane world volume emerges from our
analysis. A comprehensive analysis of the gauge symme-
tries of the interpolating action has been elaborated and
equivalence of gauge and reparametrisation invariances
has been established.
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