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Scattering amplitudes for particles and strings in six-dimensional (2,0) theory
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We study the scattering of low-energy tensor multiplet particles against a Bogomol’nyi-Prasad-
Sommerfield (BPS)-saturated cosmic string. We show that the corresponding S matrix is largely
determined by symmetry considerations. We then apply a specific supersymmetric model of (2,0) theory
and calculate the scattering amplitudes to lowest nontrivial order in perturbation theory. Our results are
valid as long as the energy of the incoming particle is much lower than the square root of the string
tension. The calculation involves the quantization of a (2,0) tensor multiplet and the derivation of an
effective action describing the low-energy particles in the presence of a nearly BPS-saturated string.
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I. INTRODUCTION

The six-dimensional (2,0) theories [1] offer a very in-
teresting arena to study strings and quantum field theory in
higher dimensions, without having to take the effects of
dynamical gravity into account. In spite of this simplifica-
tion, the theories are quite difficult to approach, especially
in the most interesting superconformal fixed point where
the strings are tensionless: We do not even know what a
tensionless string really is. If we instead restrict our atten-
tion to a generic point in the moduli space, where the con-
formal symmetry is broken, the (2,0) superalgebra has a
realization in both a massless tensor particle multiplet and
a tensile string vector multiplet [2]. This indicates that the
degrees of freedom should consist of both massless parti-
cles and strings, the tension of which is given by the norm
of the vacuum expectation values of the scalar moduli
fields. Furthermore, the tensor multiplet contains a two-
form gauge field with self-dual threeform field strength,
which couples naturally to strings and not to particles.
Supersymmetry then suggests that none of the fields in
the tensor multiplets couple directly to each other. Instead,
all particle interactions are mediated by the strings. A final
intricate property of these theories follows by combining
the self-duality of the threeform field strength with Dirac
quantization effects: The ‘‘electromagnetic’’ coupling con-
stant is of order unity. This is a substantial problem, since it
seems to render a perturbative approach impossible.

Our research is based on the fact that an infinitely long
tensile string (propagating in six-dimensional Minkowski
spacetime) has infinite energy, and therefore cannot be
pair-created in any processes where the involved energies
E are finite. Hence, the Hilbert space is divided into differ-
ent sectors characterized by the kinds of strings they con-
tain. Each of these sectors constitute a separate unitary
quantum theory. By further restricting the energy E to be
much smaller than the square root of the string tension T,
neither closed strings can be pair-created in any scattering
events. This is because, on dimensional grounds, the en-
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ergy of a closed string must be of the order
����
T
p

. We
may therefore neglect the influence of closed strings in a
perturbative approach, using the dimensionless quantity
E=

����
T
p

as the expansion parameter. The different sectors
of the perturbative part of the Hilbert space are then
characterized by the number of infinitely long strings they
contain. The ground state of each sector of the Hilbert
space consists of Bogomol’nyi-Prasad-Sommerfield
(BPS)-saturated strings, meaning that they are exactly
straight. The possible excitations of the ground states are
twofold, namely, string waves propagating on the world
sheet and tensor multiplet particles. In the limit where T is
infinite, the string waves and particles decouple, and we are
left with the well-understood theory of a free tensor parti-
cle multiplet and a nontrivial two-dimensional conformal
theory of string waves [3].

To further investigate the perturbative part of the Hilbert
space, it is natural to consider the Smatrix for scattering of
low-energy particles and tensile strings. In this paper we
content ourselves with studying processes in which the in-
state consists of a single particle and a BPS-saturated string
in the infinite past, and the out-state consists of another
particle and the same kind of BPS-saturated string, in the
infinite future. We show in Sec. II that the Smatrix for such
scattering processes is highly constrained by symmetry
considerations. In fact, it is determined up to a single
arbitrary function that depends only on the dimensionless
ratio E2=T together with the angle between the momentum
of the incoming particle and the string and the angle
between the momenta of the incoming and outgoing par-
ticles. To determine this function we must make use of a
specific model, though. The interaction terms constructed
in [4] are precisely what we need. They describe a string
coupled to an on-shell tensor multiplet background. By
integrating out the dependence on the string waves, we
obtain an effective action describing small fluctuations of
the background in the presence of a nearly straight infi-
nitely long string. It is then fairly straightforward to obtain
the desired S matrix elements from this effective action.
These calculations show perfect agreement with the sym-
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metry analysis. Furthermore, they make evident that the
scattering process of a single tensor multiplet particle
against a string takes two fundamentally different ways:
Some particles are first converted into off-shell string
waves, which live for a short while and then reconvert
into other tensor multiplet particles. Other particles simply
bounce off the string without exciting any string waves.
Finally, we note that the calculated cross section for this
kind of scattering is remarkably simple to lowest nontrivial
order.
II. KINEMATICS OF PARTICLE-STRING
SCATTERING

As described in the Introduction, we will consider the
amplitudes for scattering a single tensor multiplet particle
off a string in one of its ground states. In this section, we
will determine the restrictions on such amplitudes that
follow from the symmetry of the problem. To begin with,
we will focus our attention on the bosonic subalgebra of the
�2; 0� superconformal algebra. This is isomorphic to
so�6; 2� � so�5�R, where the first factor is the conformal
algebra in six dimensions, and the second factor is the
R-symmetry algebra. This symmetry is partly spontane-
ously broken, though, as we will now review.

First of all, a (2,0) tensor multiplet consists of five scalar
fields � transforming as a vector under the SO�5�
R-symmetry group. It also contains a twoform gauge field
b with self-dual threeform field strength h, both of which
are singlets under the SO�5� R symmetry. Upon quantiza-
tion, these fields yield eight bosonic degrees of freedom,
and supersymmetry requires that there should be equally
many fermionic ones. These are realized as a symplectic
Majorana spinor  , which is a Weyl spinor under SO�5; 1�
and a spinor also of SO�5�R.

Furthermore, the values of the scalar fields at spatial
infinity, i.e. the vacuum expectation values, constitute the
moduli of (2,0) theory. Let us denote the direction of this
SO�5�R vector by �1 and its magnitude by T. It then
follows that a nonvanishing value of T breaks the confor-
mal group to the six-dimensional Poincaré group R5;1 �
SO�5; 1�. It also breaks the R-symmetry group to a sub-
group SO�4�R. In a situation with such nonzero moduli, we
may also introduce tensile strings. The presence of a
straight static string along the spatial direction given by
the unit vector n breaks the Poincare group further to an
R1;1 � SO�1; 1� � SO�4�n subgroup, where the first two
factors constitute the world-sheet Poincaré group, and the
last factor consists of spatial rotations in the directions
transverse to n. (There is, in fact, a degenerate multiplet
of various polarization states of straight static strings [2],
but this degeneracy will not play any role in the present
paper. The string polarization does not change in a particle
scattering process, and does not affect the scattering
amplitudes.)
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Next, we consider a massless tensor multiplet particle of
momentum p. (We now disregard the symmetry breaking
by moduli fields and strings discussed in the previous
paragraph.) This breaks the Lorentz group to the group
SO�4�p of spatial rotations in the directions transverse to p.
There is a degenerate multiplet of orthonormal particle
states jp; si, where the polarization label s transforms
under SO�4�p � SO�5�R as

�1; 5� � �2; 4� � �3�; 1�: (2.1)

(The scalar, chiral spinor, antichiral spinor, self-dual ten-
sor, anti-self-dual tensor, and vector representations of
SO�4� are denoted as 1, 2, 20, 3�, 3�, and 4. The scalar,
spinor, and vector representations of SO�5� are denoted as
1, 4, and 5.) In a field theory description of these polar-
izations, the three terms in Eq. (2.1) correspond to the fields
�,  , and b, respectively.

We need to describe more explicitly how various sym-
metry transformations act on the particle states jp; si. By a
scale transformation, we can restrict ourselves to the case
where the momentum p is a unit vector. In the presence of a
string along the direction n, we may define a symmetry
transformation L�p� as the spatial rotation in the plane
spanned by n and p by the angle � between n and p. We
now define the particle state jp; si in terms of the particle
state jn; si as

jp; si � L�p�jn; si: (2.2)

Let � now be an element of SO�4�n, i.e. the group of
spatial rotations in the directions transverse to n. It acts
on a state of the form jn; si by a transformation of the s
quantum number:

�jn; si � jn;�si: (2.3)

Its action on an arbitrary state jp; si can now be computed
as

�jp; si � �L�p�jn; si � L��p��jn; si � L��p�jn;�si

� j�p;�si; (2.4)

where we have used that L�1��p��L�p� � �, in the
second step.

To construct a basis for the polarization label s, it is
convenient to use, in addition to the string direction n and
the momentum p of e.g. an incoming particle, also the
momentum p0 of an outgoing particle. We then define Ĵ as
the generator of the group SO�2�n;p;p0 of spatial rotations in
the plane orthogonal to n, p, and p0 normalized so that
expi�Ĵ is a rotation by an angle �. The particle polariza-
tion s can now be characterized by giving the representa-
tion of SO�4�R, with the Ĵ eigenvalue as a subscript. The
only ambiguity is that there are two SO�4�R singlet states
with Ĵ eigenvalue zero. To distinguish between them, we
denote the states that originate from the �3�; 1� represen-
tation of SO�4�p � SO�5�R as 10�1, 100, and 10�1, whereas
the states that originate from the (1,5) representation are
-2
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denoted as 10 and 40. As an orthonormal basis for the states jp; si, we can then use

jp; 10�1i

jp; 20�1=2i jp; 2�1=2i
1��
2
p �jp; 10i � jp; 100i� jp; 40i

1��
2
p �jp; 10i � jp; 100i�

jp; 2�1=2i jp; 20
�1=2i

jp; 10�1i

: (2.5)
1The part corresponding to the antichiral spinor contains the
generators of special supersymmetry.
Our aim is now to compute the S-matrix elements
inhp; sjp0; s0iout that describe how a tensor multiplet parti-
cle is scattered off a string along the direction n. We define
� as the angle of incidence, i.e. the angle between n and p.
We also define � through the relation

cos’ � sin2� cos�� cos2�; (2.6)

where ’ is the scattering angle, i.e. the angle between p
and p0. Scaling properties, conservation of momentum
along n, conservation of energy, and rotational invariance
(almost) implies that the probability amplitude for an in-
state jp; siin to become an out-state jp0; s0iout must be of the
form

P �p; s! p0; s0� � jpj2��jpj � jp0j���p � n� p0 � n�

� �ss0 ~f�jpj2=T; �; �; s� (2.7)

for some function ~f. The only exception appears to be a
possible transition between the states 1��

2
p �jp; 10i � jp; 100i�

and 1��
2
p �jp0; 10i � jp0; 100i�, or between the states 1��

2
p �

�jp; 10i � jp; 100i� and 1��
2
p �jp0; 10i � jp0; 100i�. As we will

see below, this does not occur. This is the reason for our
choice of basis for the polarization label s.

We now focus on the Smatrix, the elements of which we
write as

Sp0;s0:p;s�
out
hp0; s0jp; siin � ��5��p� p0��ss0 � iTp0;s0:p;s:

(2.8)

From the above, it then follows that the T-matrix elements
must be of the form

Tp0;s0:p;s �
1

�2�jpj�3
��jpj � jp0j���p � n� p0 � n�

�Mss0 �jpj2=T; �; ��; (2.9)

where the factor jpj�3 is needed to get the dimensions
right. According to Eq. (2.7), the matrix M is diagonal [for
the basis in (2.5)]. Its elements are commonly referred to as
the invariant matrix elements. Further constraints on M
follow from considering fermionic symmetries. The fermi-
onic generators of the (2,0) superconformal algebra trans-
form as a spinor under the R-symmetry group SO�5�R.
They transform as a chiral spinor under the SO�6; 2� con-
formal group, which amounts to a Dirac spinor under the
SO�5; 1� Lorentz group, but we will only be interested in
the part which transforms as a chiral spinor under the latter
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group, containing the generators of supersymmetry.1 With
respect to the subgroup SO�4�n � SO�4�R, we find that the
fermionic generators transform in the representation

�2; 2� � �20; 20� � �2; 20� � �20; 2�: (2.10)

We will first consider the action of such a fermionic
generator Q0 on a particle state of the form jn; si, describ-
ing a particle propagating along the string direction. We
denote this as

Q0jn; si �
X
s0
�Q0�ss0 jn; s0i; (2.11)

where �Q0�ss0 are the matrix elements of the operator Q0

relative to our basis. For Q0 in the representation �20; 2� or
�20; 20�, these are in fact all zero, i.e. the BPS-saturated
states jn; si are annihilated by such a generator. For Q0 in
the (2,2) and �2; 20� representations, we may label the
generators by the representation of SO�4�R with the Ĵ
eigenvalue as a subscript and arrange them as follows:

2�1=2 - % 20
�1=2

20
�1=2 . & 2�1=2

: (2.12)

The arrows indicate the direction of the action of the
generator if the states jn; si are arranged as described
above. All nonvanishing matrix elements of Q0 are given
by �Q0�ss0 �

������
jpj

p
� 1, so that the supersymmetry algebra

fQ;Qg � P is fulfilled.
The action of a fermionic generator Q0 on an arbitrary

state jp; si can now be computed as

Q0jp; si � Q0L�p�jn; si � L�p�Qjn; si

� L�p�
X
s0
�Q�ss0 jn; s0i �

X
s0
�Q�ss0 jp; s0i; (2.13)

where the fermionic generator Q is given by

Q � L�1�p�Q0L�p�; (2.14)

i.e.Q is obtained by acting with the spatial rotation L�p� on
Q0. Obviously, we also have that

Q0jp0; si �
X
s0
�Q0�ss0 jp0; s0i; (2.15)

where
-3
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Q0 � L�1�p0�Q0L�p0�: (2.16)

Note that, when acting on a spinor,

L�p� � exp�i�J� � cos
�
2
� 2iJ sin

�
2
;

L�p0� � exp�i�J0� � cos
�
2
� 2iJ0 sin

�
2

(2.17)

where J and J0 are the generators of rotations in the plane
spanned by n and p and n and p0, respectively. They are
normalized so that expi�J or expi�J0 is a rotation by the
angle �. In the spinor representation, this means that J2 �

J02 � 1
4 . When acting on a spinor with a definite chirality in

the directions transverse to n, the first term in L�p� or L�p0�
preserves the chirality, whereas the second term reverses it.

We will only consider generators Q0 in the representa-
tion

�2; 20� � �20; 2� (2.18)

that are unbroken by the presence of the BPS-saturated
string. Given such a fermionic generator Q0, we now wish
to find the relationship between the corresponding rotated
generators Q and Q0 described above. In fact, since we are
only interested in the action of these generators on particle
states, which are annihilated by generators in the �20; 2� and
�20; 20� representations, it is sufficient to consider the
equivalence classes 	Q
 and 	Q0
 ofQ andQ0 modulo these
parts.

Consider first the case when Q0 is in the �2; 20� repre-
sentation. We then get that

	Q
 �
��

cos
�
2
� 2iJ sin

�
2

�
Q0

�
� cos

�
2
	Q0
;

	Q0
 �
��

cos
�
2
� 2iJ0 sin

�
2

�
Q0

�
� cos

�
2
	Q0
:

(2.19)

In this case, 	Q
 and 	Q0
 can thus both be represented by
generators in the �2; 20� representation, and are in fact equal
to each other:

	Q0
 � 	Q
: (2.20)

Consider then the case when Q0 is in the �20; 2� repre-
sentation. We now get that

	Q
 �
��

cos
�
2
� 2iJ sin

�
2

�
Q0

�
� 2i sin

�
2
	JQ0
;

	Q0
 �
��

cos
�
2
� 2iJ0 sin

�
2

�
Q0

�
� 2i sin

�
2
	J0Q0
:

(2.21)

In this case, 	Q
 and 	Q0
 can thus both be represented by
generators in the (2,2) representation, but they are not
equal to each other. Indeed, since

J0 � �cos�� 2iĴ sin��J; (2.22)

we find that
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	Q0
 � �cos�� 2iĴ sin��	Q
: (2.23)

So 	Q0
 � e�i�	Q
 for Q of type 2�1=2, whereas 	Q0
 �
ei�	Q
 for 	Q
 of type 2�1=2.

We can arrange Q or Q0 according to their SO�4�R
representation and eigenvalue of Ĵ:

2�1=2 - % 20
�1=2

20�1=2 . & 2�1=2
: (2.24)

(This looks precisely like the arrangement previously given
forQ0, but it is important to notice that the labels now refer
toQ orQ0.) Our results then amount toQ0 being given byQ
times the following numerical factor:

e�i� - % 1
1 . & ei�

: (2.25)

We are now ready to formulate the relationships between
various amplitudes that follow from supersymmetry. The
matrix M must take the form

M ss0 �jpj2=T; �; �� � �ss0f�jpj2=T; �; ��g��; s�; (2.26)

where f is some function, and the factor g��; s� is given by

e�i�

e�i� 1
e�i� 1 ei�

1 ei�

ei�

(2.27)

relative to the basis (2.5). All the amplitudes are thus
determined e.g. by the amplitude f�jpj2=T; �; �� for scat-
tering the particles of type jp; 40i into particles of type
jp0; 40i. This is as far as we get by only using symmetry
arguments. To determine the function f requires more
information, such as the specific interaction discussed in
the next section.

Finally, we remark that, with respect to a basis in which
1��
2
p �jp; 10i � jp; 100i� have been replaced by the orthonor-

mal vectors jp; 10i and jp; 100i, the scattering amplitude is
no longer diagonal, but

inhp; 10 j p0; 10iout inhp; 10 j p0; 100iout

inhp; 1
0
0 j p0; 10iout inhp; 1

0
0 j p0; 100iout

� �

�
cos� i sin�
i sin� cos�

� �
: (2.28)

Allow us to briefly review the manner in which we will
proceed in order to determine the unknown function
f�jpj2=T; �; �� to lowest order in jpj2=T. Our approach
consists of four steps: The first step is to find a suitable
model, or interaction, describing the degrees of freedom,
being the fields of the tensor multiplet together with the so-
called bosonic and fermionic string waves �X;��. This
interaction was constructed in [4] and is a sum of a
Nambu-Goto type term, which involves an integral over
the string world-sheet � and a Wess-Zumino type term.
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The latter contains an integral over the world volume of a
Dirac membrane, having � as its boundary. We give a short
presentation of this action in Sec. III C.

The second step is to rewrite the Wess-Zumino term as
an integral over � and to collect only the terms contribut-
ing to lowest nontrivial order in the scattering processes of
our concern. In order to do so we will make various gauge
choices and rewrite the degrees of freedom in a suitable
manner. These choices are discussed in Secs. III A and
III B. The end result of these calculations is a rather nice
action for the string waves coupled to an on-shell tensor
multiplet background; see Eq. (3.84).

The third step is to integrate out the string waves by
means of path integrals. This is described in Sec. IVA. We
then obtain an effective action describing small fluctua-
tions of the tensor multiplet background in the presence of
a nearly straight and static infinitely long (i.e. BPS-
saturated cosmic) string.

As the final fourth step, in Sec. IV B, we insert the
Fourier expansions of the on-shell tensor multiplet fields
into the effective action. (The Fourier expansions are thor-
oughly described in Sec. III B.) It then follows immediately
that the sought function f�jpj2=T; �; �� � jpj2=T, but car-
ries no angular dependence at all, to lowest order in jpj2=T.

We end the paper by obtaining also the differential cross
section for scattering of a particle against a string. The
result is very simple; see Eq. (4.20).
III. THE MODEL

In this section we review the supersymmetric model of
[4], describing a self-dual, spinning string coupled to an
on-shell (2,0) tensor multiplet background. We start by
describing the degrees of freedom living on the string
world sheet. We then move on to the fields of the tensor
multiplet and go through their Fourier expansions in some
detail. Having done that, it is straightforward to quantize
the tensor multiplet and, in particular, obtain the Fock
space of one-particle states. Finally, we present the string
action and expand it to sufficient order in perturbation
theory, when restricting the string to be approximately
straight and infinitely long.

Notice that in our model, all interactions take place on
the string world sheet. So, in the absence of a string, the
tensor multiplet fields are free. The mere fact that it is
possible to construct such interaction terms in a super-
symmetric fashion seems to suggest that the tensor multi-
plet fields do not interact directly with each other. And, as
was mentioned in the Introduction, this is also what we are
to expect of a tensor multiplet, since it is unnatural for a
twoform gauge field to couple to particles; a twoform
couples naturally to strings. Supersymmetry then implies
that all fields should interact only on the string world sheet.

From now on, we drop the index-free notation of the
previous section and make use of SO�5; 1� Weyl indices
�̂; �̂ � 1; . . . ; 4 (see Appendix A 1 for details) and SO�5�
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spinor indices â; b̂ � 1; . . . ; 4. The latter indices can be
raised and lowered from the left by the SO�5� invariant
tensor �â b̂ � ��b̂ â and its inverse �â b̂ � ��b̂ â.
Consistency then requires that �â b̂�b̂ ĉ � �âĉ . We choose
not to use conventional vector indices, although they can
sometimes be advantageous, since this is really the way to
go when working in the supersymmetric theory.

A. The string

The presence of a string in six-dimensional Minkowski
spacetime breaks the translational symmetry in the four
directions transverse to the string world sheet, �. This
gives rise to four Goldstone bosons on �, which describe
the fluctuations of the string in the transverse directions.
However, since the string is not necessarily straight, differ-
ent parts of the string may break different parts of the
translational symmetry. This imposes some difficulties in
working with the Goldstone bosons, since one would have
to consider different sets of Goldstone bosons on different
parts of the string. It would be preferable to keep the full
Lorentz covariance somehow and describe the whole string
using the same set of Goldstone bosons. This can be done
by adding two extra bosonic fields on �, which combine
with the Goldstone bosons to form a Lorentz vector
X�̂ �̂��; 	� � �X�̂ �̂��; 	�, where �; 	 parametrizes �.
The extra degrees of freedom can be fixed by a choice of
parametrization of the string world sheet. Furthermore, the
breaking of supersymmetry gives rise to four fermionic
degrees of freedom realized by eight Goldstone fermions
living on the world sheet. Analogously to the bosonic case,
we add eight extra fermionic fields, which combine with
the Goldstone fermions to yield an antichiral Lorentz
spinor ��̂

â ��; 	� being a spinor also under the SO�5�
R-symmetry group and obeying the following symplectic
Majorana condition:

���̂
â �
 � �C�̂

�̂
�â b̂��̂

b̂
: (3.1)

In this equation, C�̂�̂ is the (complex conjugate of the)

charge conjugation matrix obeying C�̂
̂C

̂
�̂ � ��

�̂
�̂. We

also have that ��â b̂� � ��â b̂. The redundancy of fermi-
onic degrees of freedom can be fixed by a local fermionic �
symmetry of the action [4]. We will return to this issue
shortly. In the remainder of this paper we refer to X and �
as the bosonic and fermionic string waves, respectively.

In the scattering problem we restrict our attention to an
approximately straight and infinitely long string. We then
work perturbatively in the parameter E=

����
T
p

, where E is the
energy of the incoming tensor multiplet particle and T is
the string tension. Let us therefore present a suitable way of
describing the string waves for this specific problem. To
begin with, we note that a straight infinitely long string
pointing in the spatial direction n spontaneously breaks the
Lorentz group as
-5
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SO�5; 1� ! SO�1; 1� � SO�4�n

’ SO�1; 1� � SU�2� � SU�2�: (3.2)

Here, SO�4�n is the subgroup of spatial transformations
that leave the string world sheet invariant. It is natural to
make use of the isomorphism above and introduce the
SU�2� indices �;� � 1; 2 and _�; _� � 1; 2 in such a way
that �̂ � ��; _��. The Lorentz vector X�̂ �̂ then decomposes
into X��, X _� _�, and X� _�. Without loss of generality we
suppose that the string is pointing in the x5 direction, i.e.
n � �0; 0; 0; 0; 1�, which means that the string world sheet
� fills the entire x0x5 plane. We then interpret X� _���; 	� as
the fluctuations of � in the transverse directions x1; . . . ; x4.
Furthermore, we choose the parametrization � � x0 and
	 � x5. It is convenient to introduce light-cone variables
on �,

	� � �� 	; (3.3)

	� � �� 	 (3.4)

and the derivatives

@� �
1

2
�@� � @	�; (3.5)

@� �
1

2
�@� � @	�: (3.6)

It follows that @�	� � @�	� � 1 and from the identifi-
cations � � X0, 	 � X5 together with the conventions in
Appendix A 2 we find the very useful equalities

@�X
�� �

1

2
���; (3.7)

@�X _� _� � �
1

2
� _� _�; (3.8)

@�X
_� _� � @�X

�� � 0: (3.9)

Bearing this is mind, it is natural to separate X into two
parts; X0 describing the zero modes and X̂ describing the
fluctuations of the string world sheet. We may then expand
the bosonic string waves as

X�̂ �̂��;	� � X�̂ �̂0 ��; 	� �
1����
T
p X̂�̂ �̂��; 	�; (3.10)

where the zero modes of X are

X�
_�

0 � 0; (3.11)

X��0 �
1

2
���	�; (3.12)

X _� _�
0 � �

1

2
� _� _�	�; (3.13)
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because of the parametrization. X̂ describes the fluctua-
tions of the string world sheet in the transverse directions;
hence X̂�� � X̂ _� _� � 0 at all times. The factor 1=

����
T
p

is
natural to include, since in the action the kinetic term for X̂
will be multiplied by T. We therefore call X̂�

_� the canoni-
cally normalized bosonic string waves. Eventually, we will
see that the string waves are suppressed by precisely a
factor 1=

����
T
p

in the scattering processes that we are inter-
ested in.

To deal with the world-sheet fermions we first notice that
the introduction of a string breaks the R symmetry as

SO�5� ! SO�4� ’ SU�2� � SU�2�: (3.14)

This is because the string tension T is given by the norm of
the scalar moduli fields, which are given by a certain SO�5�
vector, as discussed in Sec. II. [See also Eq. (3.18).] The
SO�4� is the subgroup of SO�5� which leaves this vector
invariant. Using the isomorphism above, we may decom-
pose the SO�5� spinor index â � 1; . . . ; 4 as â � �a; _a�,
where a � 1; 2 and _a � 1; 2 are two different sets of SU�2�
indices. It is possible to break the SO�5� R symmetry in
such a way that the SO�5� invariant tensor decomposes as
�a _a � 0, �ab � i�ab, and � _a _b � i� _a _b, where

�ab�cb � �ac; (3.15)

� _a _b� _c _b � � _a
_c (3.16)

and �12 � 1 for both �ab and � _a _b.
The world-sheet fermions ��̂

â then decompose into ��
a ,

� _�
_a , ��

_a , and � _�
a . However, we fix the � symmetry by

choosing ��
_a � � _�

a � 0.
Similarly to the bosonic case, we introduce the canoni-

cally normalized fermionic string waves as

��̂
â ��; 	� �

1����
T
p �̂�̂

â ��; 	�: (3.17)
B. The tensor multiplet in Fourier space

We start by presenting the tensor multiplet fields in
terms of SO�5; 1� Weyl indices and SO�5� spinor indices.
The scalar fields, transforming as an SO�5� vector, are
then �â b̂ � ��b̂ â, subject to the algebraic constraint
�â b̂�â b̂ � 0. We know that the string tension is given
by the norm of the vacuum expectation values of the scalar
fields:

T � jh�â b̂ij: (3.18)

This can be calculated as h�â b̂i � limx!1�â b̂�x�, which
we choose to be independent of the direction in which the
limit is taken. We can then introduce a constant SO�5� unit
vector �â b̂

1 � h�
â b̂i=T, such that the inner product is

�â ĉ�b̂ d̂�
â b̂
1 �ĉ d̂

1 =4 � 1. It is useful to rewrite the scalar
fields as
-6



SCATTERING AMPLITUDES FOR PARTICLES AND . . . PHYSICAL REVIEW D 72, 066010 (2005)
�â b̂
TOT�x� � T�â b̂

1 ��â b̂�x�; (3.19)

where �â b̂�x� now denotes the dynamic part (with zero
vacuum expectation value). The four freely adjustable
parameters in �â b̂

1 together with T constitute the moduli
of the A1 version of (2,0) theory. We may choose �â b̂

1 such
that

�ab
1 � i�ab; (3.20)

� _a _b
1 � �i�

_a _b; (3.21)

�a _b
1 � 0 (3.22)

under the decomposition of â into a and _a, discussed at the
end of the previous subsection. One may explicitly check
that �â b̂

1 �â b̂ � 0, as required. The twoform gauge field is
b�̂
�̂

, where b�̂�̂ � 0. Its threeform field strength h separates

into a self-dual part h�̂ �̂ � h�̂ �̂ and an anti-self-dual part

h�̂ �̂ � h�̂ �̂,

h�̂ �̂ � @�̂ 
̂b

̂
�̂
� @�̂ 
̂b


̂
�̂; (3.23)

h�̂ �̂ � @�̂ 
̂b�̂
̂ � @
�̂ 
̂b�̂
̂ : (3.24)

As already mentioned, only h�̂ �̂ is part of the tensor

multiplet. Hence, we have that h�̂ �̂ � 0. The field strength
obeys the Bianchi identity

@�̂ 
̂h�̂ �̂ � @�̂ �̂h
�̂ 
̂ � 0: (3.25)

Finally, the fermionic fields are  �̂â , subject to the sym-
plectic Majorana condition

� â�̂�
 � C�̂�̂�â b̂ 

b̂
�̂
: (3.26)

The dynamics of a single tensor multiplet background is
governed by a free action. However, it is well known that
there does not exist a Lagrangian description for a self-dual
threeform in six dimensions [5]. We can remedy this by
including also the anti-self-dual part of h as a ‘‘spectator
field.’’ (An alternative solution to this problem can be
found in [6].) Up to an overall constant, the supersymmet-
ric and SO�5� invariant action for a free tensor multiplet in
six dimensions can then be written as [4]

STM �
Z
d6x	�@�̂ �̂�

â b̂@�̂ �̂�â b̂ � 2h�̂ �̂h
�̂ �̂

� 4i�â b̂ 
â
�̂@

�̂ �̂ b̂
�̂

; (3.27)

and the supersymmetry transformations are

��â b̂ � i
�
�â ĉ�̂ĉ  

b̂
�̂ ��b̂ ĉ�̂ĉ  

â
�̂ �

1

2
�â b̂�̂ĉ  

ĉ
�̂

�
;

(3.28)
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� â�̂ � �â b̂�̂
b̂
h�̂ �̂ � 2�̂

b̂
@�̂ �̂�

â b̂; (3.29)

�h�̂ �̂ � �i

̂
â �@�̂ 
̂ 

â
�̂
� @�̂ 
̂ 

â
�̂�; (3.30)

where  is a constant fermionic parameter.
We will now derive the equations of motion that follow

from this action and write down the general solutions to
these by means of Fourier expansions. The seemingly
arbitrary constants in the following expansions are chosen
such that upon a canonical quantization, the Hamiltonian
that follows from the free action (3.27) is correct.

1. The scalar fields

We start by varying the action with respect to the scalar
fields. This yields the Klein-Gordon equation of motion:

@�̂ �̂@
�̂ �̂�â b̂ � 0; (3.31)

which has the general solution

�â b̂�x� �
1

4

Z d5p

�2��5=2

1�����
jp

p
j
�aâ b̂�p�eip�x

� aâ b̂�p�e�ip�x�: (3.32)

The momentum p�̂ �̂ is lightlike (i.e. p�̂ �̂p�̂ �̂ � 0) since

the scalar fields are massless. The coefficients aâ b̂�p� and
aâ b̂�p� � �â ĉ�b̂ d̂a

ĉ d̂
�p� are functions in Fourier space

that parametrize the solutions. They are subject to the same
tracelessness condition as �â b̂, i.e. �â b̂a

â b̂ � �â b̂a
â b̂
�

0. It is easy to check that �â b̂ obeys the reality condition

��â b̂� � �â ĉ�b̂ d̂�
ĉ d̂ � �â b̂: (3.33)

It will be useful to define also a real scalar field�k as being
the projection of �â b̂ on the specific SO�5� unit vector
�â b̂
1 , i.e.

�k �
1

4
�â b̂
1 �â b̂: (3.34)

Its Fourier expansion becomes

�k�x� �
1

4

Z d5p

�2��5=2

1�����
jp

p
j
�a�k �p�e

ip�x � a�k �p�e
�ip�x�;

(3.35)

where a�k �p� �
1
4�

â b̂
1 aâ b̂�p�. This particular scalar field

describes the polarization 10 of Sec. II. The other four
polarizations 40 are contained in �a _b.

2. The fermionic fields

The same analysis for  leads to the Dirac equation of
motion
-7
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@�̂ �̂ b̂
�̂
� 0: (3.36)

It is straightforward to show that the solutions to the Dirac
equation are chiral spinors under the SO�4� little group of
transformations that leave invariant the momentum of the
spinor. Such spinors carry two polarizations, which were
labeled � 1

2 ;�
1
2 in the previous section. Since each spinor

also has an SO�5�R spinor index taking four values, we end
up with eight different fermionic polarizations. It now
follows that the general form of  is

 â�̂�x� �
1

2

Z d5p

�2��5=2

X
s

�u�̂�p; s�aâ�p; s�eip�x

� v�̂�p; s�aâ�p; s�e�ip�x�; (3.37)

where the summation is over s � � 1
2 ;�

1
2 . Comparing

with Sec. II, we have that aa�p; s� and a _a�p; s� correspond
to the polarizations 20s and 2s, respectively. We also have
that aâ � �â b̂a

b̂
and that the momentum p�̂ �̂ is lightlike.

Furthermore, the fields u�̂�p; s� and v�̂�p; s� independently
span the two-dimensional vector space of linearly indepen-
dent solutions to the Dirac equation, hence

p�̂ �̂u�̂�p; s� � 0; (3.38)

p�̂ �̂v�̂�p; s� � 0: (3.39)

However, they are related to each other by the symplectic
Majorana condition (3.26), which implies that

u�̂�p; s� � C�̂�̂v�̂�p; s�; (3.40)

v�̂�p; s� � �C
�̂
�̂u�̂�p; s�: (3.41)

The minus sign in one of these relations is needed in order
for �u�̂� � u�̂, since the charge conjugation matrix obeys

C�̂
̂C

̂
�̂ � ��

�̂
�̂. We also have that

�aâ�p; s�� � aâ�p; s�; (3.42)

�aâ�p; s��
 � aâ�p; s�: (3.43)

Because of the reality conditions on u and v, we can write
the inner product on the space of solutions to the Dirac
equation as

p�̂ �̂

jpj
u�̂�p; s�v�̂�p; s

0� � �
1

2
�ss0 : (3.44)

The functions u�̂�p; s� and v�̂�p; s� for a generic momen-
tum p are obtained from u�̂�n; s� and v�̂�n; s� for the
specific momentum n � �0; 0; 0; 0; 1� as

u�̂�p; s� � L�̂
�̂�p�u�̂�n; s�; (3.45)

v�̂�p; s� � L�̂
�̂�p�v�̂�n; s�; (3.46)
066010
where L�̂
�̂�p� is the transformation induced by the stan-

dard rotation L�p� when acting on a spinor. This was
described in the previous section; see Eq. (2.17).

Chirality implies that the reference basis functions only
have nonzero components for the dotted indices.
Furthermore, they obey

�J12��̂
�̂u�̂

�
n;�

1

2

�
� �

1

2
u�̂

�
n;�

1

2

�
; (3.47)

�J12��̂
�̂u�̂

�
n;�

1

2

�
� �

1

2
u�̂

�
n;�

1

2

�
(3.48)

where �J12��̂
�̂ � � i

2 �1

̂ �̂�2
̂ �̂ is the generator of spatial

rotations in the x1x2 plane.

3. The chiral gauge field

Finally, we turn to h: Varying the action with respect to b
leads to the following equation of motion:

@�̂ 
̂h�̂ �̂ � @�̂ �̂h
�̂ 
̂ � 0: (3.49)

Applying the self-duality constraint, the equation of mo-
tion coincides with the Bianchi identity (3.25)

@�̂ �̂h�̂ 
̂ � 0; (3.50)

which is the Maxwell equation for a self-dual threeform.
We want to write down the most general chiral twoform
b whose field strength obeys this equation. We note that
a chiral twoform in six dimensions carries 3 degrees of
freedom, or polarizations. (These were labeled 100; 1

0
�1; 1

0
�1

in Sec. II.) As it stands, b�̂�̂ obeying b�̂�̂ � 0 has 15 com-
ponents. We thus need to gauge fix the twoform: We start
by choosing the Lorentz gauge

@
̂ �̂b

̂
�̂
� @
̂ �̂b


̂
�̂ � 0: (3.51)

This fixes five of the components of b. (In vector index
notation, this gauge choice is written @�b�� � 0.) We then
also choose the condition that

��0�
̂ �̂b

̂
�̂
� ��0�
̂ �̂b


̂
�̂ � 0: (3.52)

(This amounts to setting b0� � 0.) Hence, this seems to fix
another five components of b. But in fact it only fixes four,
because one of the five conditions overlaps with one of the
Lorentz gauge conditions. We are then left with six com-
ponents of b, but these are halved to three by restricting b
to be chiral, i.e.

h�̂ �̂ � @�̂ 
̂b�̂
̂ � @
�̂ 
̂b�̂
̂ � 0: (3.53)

The three remaining degrees of freedom in b are to be
interpreted as the three different polarizations of the gauge
field. It is thus natural to expand b as
-8
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b�̂�̂�x� �
1

2

Z d5p

�2��5=2

1�����
jp

p
j

X
s

�a�p; s�u�̂�̂�p; s�e
ip�x

� a�p; s�v�̂�̂�p; s�e
�ip�x�; (3.54)

where the summation is over 0;�1;�1, and p�̂ �̂ is light-
like. (Hence, a�p; s� correspond to the polarizations 10s.)

The Fourier fields u�̂�̂�p; s� and v�̂�̂�p; s� independently span
the three-dimensional vector space of solutions to the
equation of motion in Fourier space that are consistent
with the gauge conditions and the chirality property.
They are related to each other by a reality condition which
makes it possible to write the inner product in this vector
space as

u�̂�̂�p; s�v
�̂
�̂
�p; s0� �

1

2
�ss0 : (3.55)

The fields u�̂
�̂
�p; s� and v�̂

�̂
�p; s� for a generic momentum p

are obtained from u�̂
�̂
�n; s� and v�̂

�̂
�n; s� for the specific

momentum n as

u�̂�̂�p; s� � L�̂

̂�p�L�̂

�̂
�p�u�̂
̂�n; s�; (3.56)

v�̂�̂�p; s� � L�̂

̂�p�L�̂

�̂
�p�v�̂
̂�n; s�: (3.57)

As in the case of the fermions, chirality (or, likewise, the
self-duality of h) implies that the reference basis functions

are nonzero only for dotted indices, i.e. u���n; s� �
u

_�
��n; s� � u�_��n; s� � 0. [For an antichiral gauge field,

the functions u�n; s� would have had only undotted indi-
ces.] Most importantly, we have that

�J12� _�

̂u�̂
̂ �n; s� � �J

12��̂
̂u

̂
�̂�n; s� � su�̂�̂�n; s�: (3.58)

In the corresponding relations for v�̂�̂�n; s�, the right-hand
side is multiplied by minus one. In one of the calculations
to be done, one must also use that

�J12� _�
_
u

_�
_
 �n; 0� � �

1

4
�

_�
_�: (3.59)
4. Quantizing the tensor multiplet

To make further connection to Sec. II, we show how to
quantize a free tensor multiplet. The various functions a�p�
and their complex conjugates a�p� then become annihila-
tion and creation operators [a�p� and ay�p�] acting on a
Fock space of particle states. We impose the following
commutation relations on these ladder operators:

	a�k �p�; a
y
�k
�p0�
 � ��5��p� p0�; (3.60)

	aa _b�p�; ay
c _d
�p0�
 � 2��5��p� p0��ac�

_b
_d
; (3.61)
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	aâ�p; s�; ay
b̂
�p0; s0�
 � ��5��p� p0��â

b̂
�ss0 ; s � �

1

2
;

(3.62)

	a�p; s�; ay�p0; s0�
 � ��5��p� p0��ss0 ; s � �1; 0:

(3.63)

The Fock space of particle states is then constructed by
acting on the vacuum j0i with the creation operators. In
particular, comparing with the one-particle states of (2.5)
we have the following relations:

jp; 10i $ ay�k �p�j0i; (3.64)

jp; 40i $
1���
2
p ay

a _b
�p�j0i; (3.65)

jp; 10si $ ay�p; s�j0i; s � �1; 0; (3.66)

jp; 20si $ aya �p; s�j0i; s � �
1

2
; (3.67)

jp; 2si $ ay_a �p; s�j0i; s � �
1

2
: (3.68)
C. The action

In this subsection, we present shortly the action of [4].
We continue with a description of how it can be rewritten
by means of a perturbative expansion. Finally, we give the
end result of this expansion. At first, the action might seem
a bit complicated, but it will simplify greatly when put in
the expanded form, tailor made for our scattering problem.

Let us begin by introducing a superspace with both
bosonic coordinates x�̂ �̂ � �x�̂ �̂ and fermionic coordi-
nates ��̂â [7]. The bosons and fermions on the string world
sheet �X;�� may then be interpreted as the coordinates of
the string in this superspace. The action for a string coupled
to an on-shell tensor multiplet background is

S � �
Z

�
d2	

��������������������������������������������������������������
�â ĉ�b̂ d̂�â b̂�X;���ĉ d̂�X;��

q ��������
�G
p

�
Z
D

F: (3.69)

Here, �â b̂�X;�� is a certain superfield evaluated at �.
Explicitly, we have

�â b̂�x; �� � �â b̂
TOT � i�

�̂
ĉ

�
�ĉ â b̂�̂ ��b̂ ĉ â�̂ �

1

2
�â b̂ ĉ�̂

�

� i��̂ĉ �
�̂
d̂

�
h�̂ �̂

�
�d̂ â�b̂ ĉ �

1

4
�d̂ ĉ�â b̂

�

��d̂ â@�̂ �̂�
b̂ ĉ ��d̂ b̂@�̂ �̂�

ĉ â
�
�O��3�:

(3.70)
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A priori, the final term of this superfield is of order �16.
However, when evaluating it on � each � is suppressed by
a factor T�1=2 [see Eq. (3.17)], so we need not bother with
terms of higher order in our perturbative approach.

Furthermore, G is the determinant of the induced metric
on �,

Gij �
1

2
��̂ �̂ 
̂ �̂�@iX

�̂ �̂ � i�â b̂�	�̂â @i�
�̂

b̂
�

� �@jX

̂ �̂ � i�ĉ d̂�	
̂ĉ @i�

�̂

d̂
�; (3.71)

where i; j � �;�.
In the last term of the action, the integral is over the

world volume of a ‘‘Dirac membrane’’ D, which has � as
its boundary, i.e. @D � � [8]. This is analogous to the
Dirac string in four dimensions. The integrand is the pull-
back to D of a certain closed super threeform (first intro-
duced in [9]):

F �
1

3
e
̂1
̂2 ^ e�̂1�̂2 ^ e�̂1�̂2��̂2�̂2
̂1
̂2

H�̂1�̂1

� ie
̂1
̂2 ^ e�̂1�̂2 ^ d��̂â ��̂2�̂
̂1
̂2
�â
�̂

� ie
̂1
̂2 ^ d��̂â ^ d�
�̂
â ��̂ �̂ 
̂1
̂2

�â b̂ (3.72)

where

e�̂ �̂ � dx�̂ �̂ � i�â b̂�	�̂â d�
�̂

b̂
; (3.73)

and dx�̂ �̂, d��̂â are superspace differentials. Furthermore,
�â
�̂ is a superfield obtained from �â b̂ as

�â
�̂ � �

2i
5

�âb̂
�@â�̂ � i�

â ĉ�
̂ĉ @�̂ 
̂��
b̂ ĉ (3.74)

with  â�̂ as its lowest component. Finally, H�̂ �̂ is a super-
field obtained from �â

�̂ as

H�̂ �̂ �
1

4
�â b̂�@

â
�̂ � i�

â ĉ�
̂ĉ @�̂ 
̂��
b̂
�̂

(3.75)

with h�̂ �̂ as its lowest component. The fact that the super
threeform F is closed implies that it should be possible to
rewrite the final term in the action as an integral over �
instead of over D by means of Stokes’ theorem. This is
indeed what we will do, but we will not be able to preserve
the full Lorentz covariance.

Using the free equations of motion for the tensor mul-
tiplet fields, it follows that the two terms in the action
(3.69) are both supersymmetric, with

�X�̂ �̂ � i�â b̂	�̂â ��̂

b̂
; (3.76)

���̂
â � �

�̂
â (3.77)

and the fields of the tensor multiplet transforming accord-
ing to Eqs. (3.28), (3.29), and (3.30). We recall that  is a
constant fermionic parameter. [Notice that Eqs. (3.76) and
066010
(3.77) are not the transformation properties for the canoni-
cally normalized string waves.] The sum of the two terms
is also invariant under the following � transformations:

�X�̂ �̂ � i�â b̂�	�̂â ��̂

b̂
; (3.78)

���̂
â � ��̂â ; (3.79)

where � is a local fermionic parameter. It is subject to the
following constraint:

��̂
�̂
��̂â � 
â

b̂��̂
b̂
; (3.80)

where

��̂
�̂
�

1��������
�G
p �ij�@iX�̂ 
̂ � i�â ĉ�	�̂â @i�


̂

ĉ �

� �@jX�̂ �̂ � i�d̂ ê�	�̂
d̂
@j�

�̂

ê ���̂ 
̂ �̂ �̂; (3.81)


â
b̂ �

1��������������������
1
4 �ĉ d̂�ĉ d̂

q �â ê�
ê b̂: (3.82)

It is clear that ��̂�̂ � 
â
â � 0. Furthermore, one can show

that ��̂
�̂

��̂
̂ � ��̂
̂ and 
â
b̂


b̂
ĉ � �ĉâ. This means that we

can use the � symmetry to eliminate half of the compo-
nents of �, as argued in Sec. III A.

Despite the rather nice form of Eq. (3.69), the action is
very complicated when writing out the superfields explic-
itly. In order for us to read off any scattering amplitudes,
we need to massage it somehow, and we let perturbation
theory guide us.

To begin with, we choose to consider a straight and
infinitely long string, pointing in the x5 direction. We
then apply the specific parametrization and � fixing of
Sec. III A. We also do the change of variables discussed
in that section, X ! X0 � X̂=

����
T
p

and �! �̂=
����
T
p

. Having
done all that, we Taylor expand the fields of the tensor
multiplet. Consider the gauge field as an example:

b�̂
�̂
�X� � b�̂

�̂
�X0� � 2

1����
T
p @
 _�b

�̂
�̂
�x�
��������x�X0

X̂

_� �O�T�1�:

(3.83)

To collect no more than the terms relevant for our
scattering problem, let us pause here for a moment and
discuss the dynamics of a typical scattering process: The
in-state consists of a tensor multiplet particle with energy
E, and a straight string at rest with string tension T. When
the particle hits the string it will be absorbed and a number
of string waves will be excited. However, each string wave
will be suppressed by a factor E=

����
T
p

. [Or, rather, the
probability amplitude for creating N string waves will be
suppressed by a factor �E=

����
T
p
�N .] Hence, the leading con-

tribution to the scattering amplitude comes from a process
where only one string wave is excited. In this process, both
-10
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the momentum parallel to the string and the energy of the
incoming particle will be preserved. It follows that the
string wave cannot be on shell, and that this is not a stable
state. Hence, the string wave will only live for a short while
and then emit another tensor multiplet particle. This latter
process will be suppressed by an additional factor E=

����
T
p

.
So the total amplitude for one-particle to one-particle
scattering via string wave excitations will be suppressed
by at least a factor E2=T. Any such process comes from
terms in the action which are linear in tensor multiplet
fields and linear in string waves. They will include a factor
T�1=2. Note that we will not have to take pure string wave
interactions into account, since only one string wave at a
time will be excited, and therefore it has no other string
wave to interact with.

However, there may also be terms in the action which
are bilinear in tensor multiplet fields, but that do not
involve any string waves. They correspond to direct scat-
tering of a particle against the string. Since no string waves
are excited, these terms can be suppressed by a factor T�1

and still contribute to the scattering amplitude to the same
order in perturbation theory as the ones just described.

Hence, we are to collect all terms in the action of order
T�1=2 which are linear in tensor multiplet fields and linear
in string waves, but also all terms of order T�1 that are
quadratic in tensor multiplet fields, but lacking string
waves. We are then sure to find all terms contributing to
the desired scattering amplitudes to order E2=T. Doing this
is quite laborious, but not very difficult. We therefore
choose to skip all the details and instead present the final
form of these calculations:

S �
Z

�
d2	

�
4@�X̂

� _�@�X̂� _� � 2����ab�̂�
a@��̂�

b

� 2� _� _��
_a _b�̂ _�

_a @��̂
_�
_b
�

1����
T
p ��2@� _��k�X0�X̂

� _�

� h� _��X0�X̂
� _� � i a��X0��̂

�
a � i 

_a
_��X0��̂

_�
_a �

�
1

4T
�a _b�X0��a _b�X0�

�
� � � � : (3.84)

The dots in this action indicate terms that contribute to the
scattering amplitudes to higher orders in the parameter
E=

����
T
p

. We recall that �k is defined as the projection of
�â b̂ on the SO�5�R unit vector �â b̂

1 .
The first three terms in this action are evidently the

kinetic terms for the string waves, then follow the interac-
tion terms. We see that both types of terms discussed above
are present. Finally, we stress that we have not yet applied
the gauge conditions on b. However, we have made use of
the self-duality of the field strength h.
IV. SCATTERING

In this section we obtain an effective action describing
small fluctuations of the background in the presence of a
066010
nearly BPS-saturated string. It is obtained by integrating
out the string waves from the action in Eq. (3.84). To lowest
order in perturbation theory, we can read off the desired
scattering amplitudes from this effective action. By quan-
tizing the tensor multiplet, one may also calculate the T
matrix from it (recall that S � 1� iT). We end this section
by obtaining an expression for the differential cross sec-
tions, which turns out to be remarkably simple.

A. The effective action

The effective action is defined by

eiSeff �
Z	S

Z	S0


; (4.1)

where

Z	S
 �
Z

DX̂�
_�D�̂�

aD�̂ _�
_a eiS: (4.2)

In this notation, S is the action (3.84) and S0 is the part of
the action that involves only the kinetic terms for the string
waves. To be able to integrate out the string waves from the
action, we want to complete the square in it. In order to do
so, we introduce the string wave propagators

DF�	;	0� � i
Z d2k

�2��2
eik��	�	

0�

k2 � i�
; (4.3)

S�F �	;	
0� � �

Z d2k

�2��2
eik��	�	

0�

k� � i�
; (4.4)

S�F �	;	
0� � �

Z d2k

�2��2
eik��	�	

0�

k� � i�
; (4.5)

where � is a small parameter. Notice that we use a notation
in which 	 denotes the set �	0; 	1� and 	0 � �	00; 	01� is
another set of parameters on the string world sheet.
Furthermore, k � �k0; k1� are the momentum space varia-
bles for the string waves. It follows that

k� �
1

2
�k0 � k1�; (4.6)

k� �
1

2
�k0 � k1�; (4.7)

from our conventions in Appendix A 2. One can check that

@2DF�	� 	
0� � �i��2��	� 	0�; (4.8)

@�S�F �	� 	
0� � �i��2��	� 	0�; (4.9)

@�S
�
F �	� 	

0� � �i��2��	� 	0�; (4.10)

where the differential operators (acting on 	) are the two-
dimensional Klein-Gordon operator together with the chi-
ral and antichiral Dirac operators, respectively. We now
introduce the following shifts of variables in the action:
-11
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X̂0�
_��	� � X̂�

_��	� �
i

2
����
T
p ��
� _� _�

Z
d2	0DF�	� 	0�

� �h
 _
�	0� � 2@
 _
�k�	0��; (4.11)

�̂0�a �	� � �̂�
a �	��

1

4
����
T
p ����ab

Z
d2	0S�F �	�	

0� b��	
0�;

(4.12)
066010
�̂
_0�
_a �	� � �̂ _�

_a �	��
1

4
����
T
p � _� _�� _a _b

Z
d2	0S�F �	�	

0� _b
_�
�	0�;

(4.13)
where e.g. �k�	0� � �k�X0�	0��. Using Eqs. (4.8), (4.9),
and (4.10) we can then rewrite the action in the following
form:
S �
Z

�
d2		4@�X̂

0� _�@�X̂
0
� _� � 2����

ab�̂0�a @��̂0�b � 2� _� _��
_a _b�̂

_0�
_a @��̂

_0�
_b



�
Z

�
d2	

Z
�
d2	0

�
�

1

4T
�a _b�	��2�	� 	0��a _b�	

0� �
i

4T
��
� _� _��h� _��	� � 2@� _��k�	��DF�	� 	0��h
 _��	

0�

� 2@
 _��k�	
0�� �

i
8T
����ab a��	�S�F �	� 	

0� b��	
0� �

i
8T
� _� _�� _a _b 

_a
_��	�S

�
F �	� 	

0� _b
_�
�	0�

�
: (4.14)
The first line in this expression contains the kinetic terms
for the shifted string waves. Since the shifts of variables do
not affect the measure in Z	S
, we find from the definitions
in Eqs. (4.1) and (4.2) that the effective action simply
equals the last two lines of the action (4.14) above. It is
not difficult to check that Seff is invariant under the super-
symmetry transformations Eqs. (3.28), (3.29), and (3.30)
for the generators  _a

a and �_a which are left unbroken by a
BPS-saturated string. Terms in the effective action involv-
ing a string wave propagator of course correspond to
scattering processes in which string waves are participat-
ing, as described in Sec. III C. The first term in Seff corre-
sponds to a particle of type 40 simply bouncing of the
string. It is indeed interesting to see that we have these
two fundamentally different kinds of interaction processes
for the tensor multiplet particles.
B. The differential cross section

To read off the desired scattering amplitudes, we now
insert the Fourier expansions of Sec. III B. After some
tedious calculations, we then end up with the following
form of the effective action:
Seff � �
�2��2

16T

Z d5p

�2��5=2

Z d5p0

�2��5=2

1

jpj
��jpj � jp0j���p � n� p0 � n�

�

�
1

2
a
a _b
�p0�aa _b�p� �

1���
2
p �a�k �p

0� � a�p0; 0��
1���
2
p �a�k �p� � a�p; 0��e

i� �
1���
2
p �a�k �p

0�

� a�p0; 0��
1���
2
p �a�k �p� � a�p; 0��e

�i� � a�p0;�1�a�p;�1�ei� � a�p0;�1�a�p;�1�e�i�

� aa

�
p0;�

1

2

�
aa
�

p;�
1

2

�
ei� � aa

�
p0;�

1

2

�
aa
�
p;�

1

2

�
e�i� � a_a

�
p0;�

1

2

�
a _a
�

p;�
1

2

�
� a_a

�
p0;�

1

2

�
a _a
�
p;�

1

2

��
:

(4.15)
We see that the angular dependence agrees perfectly with
the scattering diamond (2.27) of Sec. II. To get a better
feeling for the angle �, note that

p0
� _�
p� _� �

1

2
jp0jjpjsin2� cos�; (4.16)

given that p0 � n � p � n. This means that � is the angle
between the parts of p0 and p that are orthogonal to the
string direction n.
To obtain the T matrix from this effective action we
quantize the theory by means of Sec. III B 4, so that the
functions a�p� become operators on a Fock space. It is then
a straightforward exercise to calculate the elements of the
T matrix by squeezing the effective action between two
one-particle states. For example, the T matrix for scattering
between an incoming particle with polarization 2�1=2 and
momentum p and an outgoing particle with the same
polarization and momentum p0 is calculated as
-12
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�
0

��������ab
�
p0;�

1

2

�
Seffa

y
a

�
p;�

1

2

���������0
�

� �
jpj2

16T�2�jpj�3
�ba��jpj � jp0j���p � n� p0 � n�ei�:

(4.17)

The factor� 1
16 has no significance, since it is an artifact of

the overall constant in the free tensor multiplet action
(3.27). (In principle, there is a correct choice of that
constant. Its determination would presumably involve
some kind of topological argument. At the moment, it is
not clear to us exactly how to do this and therefore we have
made no effort in getting it right.)

Proceeding like this, we reproduce exactly the results of
Sec. II; see especially Eqs. (2.26), (2.27), and (2.28). Most
importantly, we find that the function f�jpj2=T; �; �� in
Eq. (2.26) is proportional to jpj2=T, but does not depend on
the angles � and �. We stress that these results are valid
only to lowest order in perturbation theory.

We can also obtain an expression for the differential
cross sections of the scattering processes in question. In
five spatial dimensions, this cross section is a volume. Let
us start by rewriting slightly the relation between the T
matrix and the invariant matrix elements in Eq. (2.9) as

T�p; s! p0; s0� �
1

�2�jpj�3
��jpj � jp0j���p � n� p0 � n�

�M�p; s! p0; s0�; (4.18)

where, according to the above together with Eq. (2.26),

M�p; s! p0; s0� � �ss0f�jpj2=T; �; ��g��; s�

� �ss0
jpj2

T
g��; s�: (4.19)

The functions g��; s� are given in (2.27). It is now fairly
easy to derive the following expression for the desired
differential cross sections:

d	
d�3

�
2

�2�jpj�3
jM�p; s! p0; s0�j2 �

2

�2�jpj�3
jpj4

T2 �ss0 :

(4.20)

Here, d�3 is an infinitesimal element of the three-
dimensional unit sphere that is orthogonal to the string.
In the final step, we have used that jg��; s�j � 1 for all
polarizations s. A priori one would have expected the
differential cross section to depend on both the angles
�; � as well as on the polarization label s. However, with
the particular choice of polarization basis (2.5) we get the
very simple expression in (4.20) for all values of s.
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APPENDIX A: NOTATION AND CONVENTIONS

1. SO�5; 1�Weyl indices

We introduce Weyl spinor indices �̂; �̂ � 1; . . . ; 4. A
subscript (superscript) index denotes the (anti) Weyl rep-
resentation. Single Weyl indices cannot be raised or low-
ered, however antisymmetric pairs of indices can. We then
make use of the totally antisymmetric SO�5; 1� invariant
tensors ��̂ �̂ 
̂ �̂ and ��̂ �̂ 
̂ �̂ in the following way:

A�̂ �̂ �
1

2
��̂ �̂ 
̂ �̂A
̂ �̂; (A1)

A�̂ �̂ �
1

2
��̂ �̂ 
̂ �̂A


̂ �̂; (A2)

where A�̂ �̂ � �A�̂ �̂ is a Lorentz vector. Note that
��̂ �̂ 
̂ �̂��̂0�̂ 
̂ �̂ � 6��̂�̂0 .

We relate the Lorentz vector A�̂ �̂ to the familiar vector
index notation as

A�̂ �̂ �
1

2
�����̂ �̂A�; (A3)

A�̂ �̂ �
1

2
��̂ �̂ 
̂ �̂A


̂ �̂ �
1

2
�����̂ �̂A�; (A4)

where the Gamma matrices obey the Clifford algebra

�����̂ �̂��
���̂ 
̂ � �����̂ �̂��

���̂ 
̂ � 2�
̂
�̂
��: (A5)

As usual, �; � � 0; . . . ; 5 and �� is the flat Minkowski
spacetime metric with signature ��;�; . . . ;��.

These definitions imply that @�̂ �̂x
�̂ �̂ � @�x

� � 6.

2. Light-cone notation

For any Lorentz vector A�, � � 0; . . . ; 5 we write

A� � A0 � A5; (A6)

A� � A0 � A5; (A7)

)

A� �
1

2
�A0 � A5�; (A8)

A� �
1

2
�A0 � A5�: (A9)

To relate this to the notation of SU�2� indices introduced in
Sec. III A, we start by defining ��� and � _� _� as

��� _� _� � ���� _� _�; (A10)
-13
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where

����
� � ��
; (A11)

� _� _�� _
 _� � � _�
_
; (A12)

and �12 � 1 for both ��� and � _� _�.
It then follows from (A2) that

A� _� � ����� _� _�A
� _�; (A13)

���A�� � � _� _�A
_� _�: (A14)

The SU�2� notation is now related to the light-cone nota-
tion by the following conventions:

A�� � ���A�; (A15)

A�� �
1

2
���A�: (A16)
066010
Then, by the condition that A� � �2A� and A� � �2A�,
we find that

A _� _� � �� _� _�A�; (A17)
A _� _� � �
1

2
� _� _�A�: (A18)

Finally, we note that

@�̂ �̂x
�̂ �̂ � @��x�� � @ _� _�x

_� _� � 2@� _�x
� _� � 1� 1� 4;

(A19)

where we have used that @� _�x
� _� � ����

_�
_�
=2 in the last

step.
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