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In a previous paper [1] we constructed wave functions of a D-instanton and vertex operators in type IIB
matrix model by expanding supersymmetric Wilson line operators. They describe couplings of a D-
instanton and type IIB matrix model to the massless closed string fields, respectively, and form a multiplet
of D � 10 N � 2 supersymmetries. In this paper we consider fermionic backgrounds and condensation
of supergravity fields in IIB matrix model by using these wave functions. We start from the type IIB matrix
model in a flat background whose matrix size is �N � 1� � �N � 1�, or equivalently the effective action
for �N � 1� D-instantons. We then calculate an effective action for N D-instantons by integrating out 1 D-
instanton (which we call a mean-field D-instanton) with an appropriate wave function and show that
various terms can be induced corresponding to the choice of the wave functions. In particular, a Chern-
Simons-like term is induced when the mean-field D-instanton has a wave function of the antisymmetric
tensor field. A fuzzy sphere becomes a classical solution to the equation of motion for the effective action.
We also give an interpretation of the above wave functions in the superstring theory side as overlaps of the
D-instanton boundary state with the closed string massless states in the Green-Schwarz formalism.
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I. INTRODUCTION

Type IIB (IKKT) matrix model has been proposed as a
nonperturbative formulation of superstring theory of type
IIB [2]. As an evidence for the nonperturbative formula-
tion, the Schwinger-Dyson equation of Wilson lines is
shown to describe the string field equation of motion of
type IIB superstring in the light-cone gauge under some
plausible assumptions about the continuum limit [3].
Although there are still many issues to be resolved, the
model has an advantage to other formulations of super-
strings that we can discuss dynamics of space-time more
directly [4–7]. The action of the model is given by

SIKKT � �
1

4
tr�A�; A��2 �

1

2
tr � ���A�;  �; (1.1)

where A� (� � 0; 	 	 	 ; 9) and ten-dimensional Majorana-
Weyl fermion  are N � N bosonic and fermionic
Hermitian matrices. The action was originally derived
from the Schild action for the type IIB superstring by
regularizing the world-sheet coordinates by matrices. It is
interesting that the same action describes the effective
action for N D-instantons [8]. This suggests a possibility
that D-instantons can be considered as fundamental objects
to generate the space-time itself as well as the dynamical
fields (or strings) on the space-time. The bosonic matrices
represent noncommutative coordinates of D-instantons and
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the distribution of eigenvalues of A� is interpreted to form
space-time. The fermionic coordinates  are collective
coordinates associated with broken supersymmetries of
D-branes but in the matrix model interpretation they de-
scribe internal structures of our space-time.

If we take the above interpretation that the space-time is
constructed by distribution of D-instantons, how can we
interpret the SO(9,1) rotational symmetry of the matrix
model action? This symmetry can be interpreted in the
sense of mean-field. Namely we can consider that the
system of N D-instantons is embedded in larger size �N �
M� � �N �M� matrices as

ND��1�
MD��1� as background for ND��1�

� �
;

(1.2)

and consider the action (1.1) as an effective action in the
background where the rest, M eigenvalues, distribute uni-
formly in 10 dimensions. If the M eigenvalues distribute
inhomogeneously, we may expect that the effective action
for N D-instantons is modified so that they live in a curved
space-time. This is analogous to a thermodynamic system.
In a canonical ensemble, a subsystem in a heat bath is
characterized by several thermodynamic quantities like
temperature and pressure. Similarly a subsystem of N D-
instantons in a ‘‘matrix bath’’ can be considered to be
characterized by several ‘‘thermodynamic quantities’’ in
a certain large N limit.

Since the matrix model has the N � 2 type IIB super-
symmetry
-1 © 2005 The American Physical Society
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8<:�A� � i ��1�� ;

� � � i
2 �A�; A���

���1 � �21N;
(1.3)

we can expect that the configuration of the M background
D-instantons describes condensation of massless fields of
the type IIB supergravity and the thermodynamic quanti-
ties of the matrix bath are characterized by the values of the
condensation.

In the following, we consider the simplest case that the
background is represented by a wave function of 1 D-
instanton (namely M � 1 with an appropriate wave func-
tion introduced). This simplification can be considered as a
mean-field approximation that the configuration of M D-
instantons is represented by a mean-field wave function
described by a single D-instanton. We call this extra D-
instanton a mean-field D-instanton. This kind of idea was
first discussed by Yoneya in [9]. In the previous paper [1],
we constructed a set of wave functions for the mean-field
D-instanton. This wave functions have a stringy interpre-
tation, namely, as we see in this paper, they can be inter-
preted as overlaps of D-instanton boundary states with
closed string massless states.

In this paper, we calculate the effect of the mean-field D-
instanton on the N D-instantons. We first start from the IIB
matrix model with a size �N � 1� � �N � 1�, or equiva-
lently a system of �N � 1� D-instantons, and integrate the
mean-field D-instanton with an appropriate wave function.
This corresponds to condensation of supergravity fields
and the effective action for the N D-instantons is modified.
We particularly consider two types of wave functions,
namely, those describing an antisymmetric tensor field or
a graviton field. In the former case, a Chern-Simons like
term is induced in the leading order of the perturbation.
(This term vanishes if we assume that the N D-instantons
satisfy the equation of motion for the original IIB action.)
With this term, a fuzzy sphere becomes a solution to the
equation of motion. This phenomenon is similar to the
Myers effect [10]. In both cases for the antisymmetric
tensor field and the graviton, if we assume that the con-
figuration satisfies the classical equation of motion, the
modification of the effective action is given by a vertex
operator for each supergravity field.

The content of the paper is as follows. In the next
section, we review the results of the previous paper [1]
on the wave functions of a D-instanton and the vertex
operators for closed string massless states in IIB matrix
model. In Sec. III, we give a stringy interpretation of the D-
instanton wave functions as overlaps of D-instanton
boundary states with massless states of the closed string.
In Sec. IV, we calculate the one-loop effective action in
general fermionic backgrounds. In Sec. V, we apply this
calculation to a system of �N � 1� D-instantons and inte-
grate the mean-field D-instanton to obtain an effective
action for the restN D-instantons. We particularly consider
the wave functions of the antisymmetric tensor field and
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the graviton field. We summarize our results in Sec. VI. In
the appendix, we review the boundary states in the Green-
Schwarz formalism.
II. WAVE FUNCTIONS AND VERTEX OPERATORS

In this section we summarize our previous results on
wave functions for a D-instanton and vertex operators in
type IIB matrix model. Wave functions are functions of a
d � 10 coordinate (or its conjugate momentum) and d �
10 Majorana-Weyl spinor and contain information on the
couplings of a D-instanton to the closed string massless
states. Their physical meaning in superstring theories will
be clarified in the next section. On the other hand, in the
matrix model, interactions corresponding to the supergrav-
ity modes are induced as quantum effects and their cou-
plings to these modes are described through the vertex
operators.

A. Supersymmetric Wilson line operator

The degrees of freedom of a D-instanton are described
by its coordinate, a ten-dimensional vector y� and a
Majorana-Weyl fermion �, and thus information of its state
is encoded in functions of y� and �, that is, wave functions.
Here we give wave functions corresponding to the super-
gravity modes in the form of fA���e�ik	y with a momentum
k, where the index A specifies each mode. Wave functions
are defined to form a multiplet of the following d � 10
N � 2 supersymmetry transformations

��1�f��� � � ��1q1; f���� � �1
@
@�
f���; (2.1)
��2�f��� � � ��2q2; f���� � � ��2k6 ��f���; (2.2)

where �i�i � 1; 2� are the Majorana-Weyl spinors.
The Majorana-Weyl fermion � contains 16 degrees of

freedom and there are 216 independent wave functions for
�. To reduce the number, we impose the massless condition
for the momentum k6 ; k2 � 0. Then, since k6 � in (2.2) has
only 8 independent degrees of freedom, the supersymmetry
can generate only 28 � 256 independent wave functions
for �. They form a massless type IIB supergravity multiplet
containing a complex dilaton �, a complex dilatino ~�, a
complex antisymmetric tensor B��, a complex gravitino
��, a real graviton h�� and a real 4th-rank self-dual
antisymmetric tensor A����. A physical meaning of the
wave functions in string theories is given by using bound-
ary states of a D-instanton in Sec. III.

Vertex operators VA�A�;  ; k� covariantly transform
under the following N � 2 supersymmetry of the IIB
matrix model,
-2
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(
��1�A� � i ��1�� ;

��1� � � i
2 �A�; A���

���1;(
��2�A� � 0;

��2� � �21N:

(2.3)

We denote the generator of ��i��i � 1; 2� as Qi�i � 1; 2�,
respectively. Since the N � 2 supersymmetry algebra
closes only on shell, in this section we assume that the N �
N matrices A� and  satisfy the equations of motion for the
IKKT action (1.1),

�A�; �A�; A��� �
1

2
��0����	f �;  	g � 0; (2.4)

���A�;  � � 0: (2.5)

In order to construct vertex operators systematically, we
start from a supersymmetric Wilson line operator first
introduced in [11] for the IIB matrix model;

!�C� � tr
Y
j

e ��jQ1e�i�k
�
j A�e� ��jQ1 : (2.6)

Since we are interested in the massless multiplet, we here
consider the simplest straight Wilson line operator with a
global momentum k;

!��; k� � e ��Q1 treik	Ae� ��Q1 : (2.7)

Here, though the Majorana-Weyl spinor � is a parameter of
the supersymmetry transformation, it is eventually inter-
preted as a fermionic collective coordinate of a D-
instanton.

This supersymmetric Wilson line operator !��; k� is
invariant under simultaneous supersymmetry transforma-
tions for N � N matrices A�;  and the parameters ��; k�
as

� ��1Q1; !��; k�� � � ��1q1; !��; k�� � 0; (2.8)

� ��2Q2; !��; k�� � � ��2q2; !��; k�� � 0: (2.9)

By expanding !��; k� in terms of the wave functions for �,
which are constructed in the manner stated above, as

!��; k� �
X
A

fA���VA�A�;  ; k�; (2.10)

it is understood from Eqs. (2.8) and (2.9) that VA�A�;  ; k�
correctly transform under the N � 2 supersymmetry.
Therefore VA�A�;  ; k� can be regarded as candidates for
the vertex operators. Indeed it will be shown explicitly in
Sec. V that a system of N D-instantons couples to the
supergravity modes through these vertex operators.

B. Wave functions of a D-instanton

We here summarize our results of the wave functions for
the massless multiplet and their supersymmetry transfor-
066001
mations. In constructing wave functions which transform
covariantly under the supersymmetries, we first assume
that the dilaton wave function is proportional to exp��ik 	
y�, namely fA��� � 1. It is annihilated by the supersym-
metry transformation q1. Then the other wave functions
can be determined by supersymmetry transformations. For
more details, see [1].

By defining a fermion bilinear as b�� � k� �������, the
supersymmetry multiplet of the wave functions is given as
follows:
(a) d
-3
ilaton
���; k� � 1; (2.11)
(b) d
ilatino
~���; k� � k�; (2.12)
(c) a
ntisymmetric tensor field

B����; k� � �
1

2
b�����; (2.13)
(d) g
ravitino

����; k� � �
i

24
�k������b�����; (2.14)
(e) g
raviton

h����; k� �
1

96
b��b�����; (2.15)
(f) 4
th rank self-dual antisymmetric tensor field

A������; k� � �
i

32�4!�2
b���b������; (2.16)
(g) g
ravitino (charge conjugation of (2.14))

�c
���; k� � �

i
4 	 5!

k�����b��b�����; (2.17)
(h) a
ntisymmetric tensor field (charge conjugation of
(2.13))

Bc����; k� � �
1

6!
b��b��b�����; (2.18)
(i) d
ilatino (charge conjugation of (2.12))

~� c��; k� �
1

8!
k������b��b

��b�����; (2.19)
( j) d
ilaton (charge conjugation of (2.11))

�c��; k� �
1

8 	 8!
b��b��b��b

�
����: (2.20)
In these expressions we have chosen a specific gauge for
each wave function. These wave functions can be inter-
preted as overlaps of D-instanton boundary states and
closed string massless states as we will see in the next
section. In the usual convention of superstrings, the first
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dilaton (2.11) corresponds to a wave function of (dilaton
�i axion) and the second one (2.20) corresponds to (dila-
1Similar calculations were performed in the Banks, Fischler,
Shenker, Susskind (BFSS) matrix model in [14,15].
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ton�i axion). The other complex fields also have the same
structure.
The supersymmetry transformations (2.1) and (2.2) lead to the following transformations between these wave functions:

�� � ��2
~�; � ~� � k�1��

i
24

�����2H���; �B�� � � ��1��� ~�� 2i� ��2������ � k������;

��� �
1

24 	 4
�9����1H��� � ������1H���� �

i
2

���k�h���2 �
i

4 	 5!
��1			�5 ���2F�1			�5

� k�
; �h��

� �
i
2

��1������ �
i
2

��2����c
�� � k��
��;

�A���� � �
1

�4!�2
��1�������� �

1

�4!�2
��2������c

�� � k��
����;

��c
� �

i
2

���k�h���1 �
i

4 	 5!
��1			�5 ���1F�1			�5

�
1

24 	 4
�9����2H

c
��� � ����� �2H

c
���� � k�


c;

�Bc�� � 2i� ��1����c
�� � k���c

��� � ��2��� ~�c; � ~�c � �
i

24
�����1Hc

��� � k�2�c; ��c � ��1
~�c;

(2.21)
where 
; 
c; 
�; 
���;�� and �c
� are gauge parameters.

H���;H
c
��� and F�1			�5

are the field strengths of B��; Bc��
and A����, respectively. This supersymmetry transforma-
tion is the same as that in [12] up to normalizations.

C. Vertex operators

Construction of the vertex operators can be done sys-
tematically by expanding the supersymmetric Wilson line
operator in terms of the wave functions fA��� given in the
previous subsection. In Sec. V, we will show that these
vertex operators indeed describe couplings of type IIB
matrix model to the supergravity modes. The derivation
itself is systematic but the complete calculation is cumber-
some. Partial results were obtained in [13]. More complete
analysis was given in [1]1. The results are as follows.
(a) d
ilaton

V� � treik	A; (2.22)
(b) d
ilatino

V ~� � treik	A � ; (2.23)
(c) a
ntisymmetric tensor field

VB�� � Str eik	A
�

1

16
k�� � 	 ���� � �

i
2
�A�; A��

�
;

(2.24)
(d) g
ravitino

V�
� � Str eik	A

�
�

i
12
k�� � 	 ���� � � 2�A�; A��

�
	 � ��; (2.25)
(e) g
-4
raviton

Vh�� � 2Str eik	A
�
�A�; A

�� 	 �A�; A�� �
1

4
� 

	 ����A��;  � �
i
8
k� � 	 ����� 	 �A��; A��

�
1

8 	 4!
k�k�� � 	 ���� � 	 � � 	 ���� �

�
;

(2.26)
(f) 4
-th rank self-dual antisymmetric tensor field

VA���� � �iStr eik	A
�
F��� 	 F��� � c � 

	 ������A��;  � �
3i
4
ck� � 	 ����� 	 F���

�
1

8 	 4!
k�k�� � 	 ����� � 	 � � 	 ����� �

�
;

(2.27)
where c � �1=3. We fixed the value of c by another
calculation (See Sec. IV E in [1]).

Hereafter we write down only the leading order terms of
vertex operators.
(a) c
harge conjugation of gravitino

V�c

� � Str eik	A
�
�A�; A�� 	 �A�; A�� 	 ����� 

�
2

3
� 	 ���A�;  � 	 �� 

�
; (2.28)
(b) c
harge conjugation of antisymmetric tensor field

Str eik	A
�
�A�; A�� 	 �A

�; A�� 	 �A�; A��

�
1

4
�A�; A�� 	 �A�; A�� 	 �A�; A��

�
; (2.29)
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(c) c
harge conjugation of dilatino

V ~�c
� Str eik	A

��
�A�; A�� 	 �A�; A�� 	 �A�; A��

�
1

4
�A�; A�� 	 �A

�; A�� 	 �A�; A��
�
	 ��� 

�
1

24
�A�; A�� 	 �A�; A�� 	 �A�; A��

	 ������� 
�
; (2.30)
(d) c
harge conjugation of dilaton

V�c
� Str eik	A

�
�A�; A�� 	 �A

�; A�� 	 �A�; A��

	 �A�; A�� �
1

4
�A�; A�� 	 �A�; A��

	 �A�; A�� 	 �A�; A�� � �A�; A�� 	 �A�; A��

	 � ����� 	 �A�;  �
�
: (2.31)
Str means a symmetrized trace which is defined by

Streik	AB1 	B2 			Bn�
Z 1

0
dt1

Z 1

t1
dt2 			

Z 1

tn�2

dtn�1

� treik	At1B1eik	A�t2�t1�B2 			

�eik	A�tn�1�tn�2�Bn�1e
ik	A�1�tn�1�Bn

��permutations of B0is

��i�2;3;			 ;n��: (2.32)

The center-dot on the left hand side means that the opera-
tors Bi are symmetrized. In the first term in (2.26), for
example, B1 and B2 correspond to �A�; A�� and �A�; A��,
respectively. See the appendix of [1] for various properties
of the symmetrized trace. For notational simplicity we
sometimes use Str also for a single operator like
Str �eik	AB� which is equivalent to the ordinary trace.

III. STRINGY INTERPRETATION OF WAVE
FUNCTIONS

In this section we show that the wave functions obtained
in the previous section can be interpreted as overlaps of D-
instanton boundary states and closed string massless states
in the Green-Schwarz formalism of type IIB superstring.
The ordinary D-instanton is known to be coupled only with
the dilaton and the axion states [16] and becomes a source
for these closed string modes only. But the D-instanton is a
half-BPS state and breaks a half of the supersymmetries
and we can construct a supersymmetry multiplet by acting
broken supersymmetry generators successively on the sim-
plest D-instanton boundary state. Namely the D-instanton
has an internal structure and these multiplet states are
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coupled also to the other closed string massless states
such as gravitons or antisymmetric tensor fields. Hence
they become a source for these fields, although the cou-
plings contain higher derivatives. Such internal structures
of D-branes were discussed in various papers [14,17–23].
In the following, we show that the wave functions in the
previous section are nothing but overlaps of such D-
instanton boundary states with the closed string massless
states.

We adopt the Green-Schwarz formalism of type IIB
superstring and take the light-cone gauge. Our notations
and brief summaries of a construction of boundary states in
the Green-Schwarz formalism are given in the appendix.
Definitions of the supercharges and a boundary state for the
D-instanton are obtained by setting

� � �1; Mij � �ij;

Mab � �ab; M _a _b � � _a _b;
(3.1)

in the corresponding equations in the appendix (A45)–
(A65).

The type IIB superstring has N � 2 supersymmetries
with 32 supercharges. A boundary state for the D-instanton
is defined by the boundary conditions in Eqs. (A45)–(A47)
with (3.1),

@�X
ijBi � 0; Q�ajBi � 0; Q� _ajBi � 0; (3.2)

and a solution of these conditions is given in Eq. (A60) as

jBi � e

P
n>0

�1n�
i
�n ~�i�n�iS

a
�n

~Sa�n�
jB0i; (3.3)

where San and ~San are fermionic modes and �in and ~�in are
bosonic modes of the type IIB superstring. From
Eq. (A61), the zero-mode part becomes

jB0i � C�jiijii � ij _aij _ai�; (3.4)

where C is a normalization constant. The D-instanton
boundary state preserves a half of supersymmetries Q�a

andQ� _a, and breaks the other halfQ�a andQ� _a which are
defined in (A64) and (A65). The broken and unbroken
supercharges satisfy the algebra

fQ�a; Q�bg � 4p��ab; fQ�a; Q� _bg � 2
���
2
p

i
a _b
pi;

fQ� _a; Q�bg � 2
���
2
p

i_abp

i;

fQ� _a; Q� _bg � 2�P� � ~P��� _a _b:

(3.5)

The other anticommutators vanish.

A. Coupling of D-instanton boundary states to
supergravity modes

States obtained by acting the broken generators
Q�a; Q� _a on the D-instanton boundary states couple to
the supergravity modes. Here we concentrate on massless
modes and ignore massive excitations.
-5
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The zero-mode part of the boundary state of the D-
instanton is given by

jD��1�i �
1���
2
p �jiijii � ij _aij _ai�; (3.6)

where we set the normalization constant C � 1=
���
2
p

for
simplicity. This state couples to a linear combination of
the dilaton and axion,

j�i 

1���
2
p �jiijii � ij _aij _ai�: (3.7)

The coupling is given by

h�jD��1�i � 1: (3.8)

Acting the broken charge �aQ�a on jD��1�i, we obtain
the fermionic state

�aQ�ajD��1�i �
���������
2p�

q

ia _a�

a�j _aijii � ijiij _ai�: (3.9)

This couples to the following linear combination of dila-
tino states

j ~�ai �
�������
p�

q

ia _a�j _aijii � ijiij _ai�; (3.10)

and the coupling is given by

h ~�aj�bQ�bjD��1�i � p��a: (3.11)

The normalizations of states for the supergravity modes are
fixed so that the supersymmetry transformations of them
satisfy Eq. (2.21).

By further acting the broken supersymmetry charges, we
can construct the following state

�a1�a2Q�a1Q�a2 jD��1�i � 2
���
2
p
p�
ija1a2

�a1�a2 jiijji

�
���
2
p
ip��
ia1 _a


i
a2

_b

� 
ia2 _a

i
a1

_b
��a1�a2 j _aij _bi:

(3.12)

This state couples to the antisymmetric tensor field B��,

jBiji � jiijji � jjijii �
i
2

ij

_a _b
j _aij _bi: (3.13)

The coupling between these states is given by

hBijj�a1�a2Q�a1Q�a2 jD��1�i � p��
ija1a2
�a1�a2�:

(3.14)

Since the coupling contains momentum p�, the boundary
state (3.12) has a derivative-coupling to the antisymmetric
tensor field.
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The state multiplied by three broken charges is given by

�a1�a2�a3Q�a1Q�a2Q�a3 jD��1�i

� �2p��3=2

�

ja1 _a


ji
a2a3
�

1

2

i
a1

_b
�
ja2 _a


j
a3

_b
� 
ja3 _a


j
a2

_b
�

�
� �a1�a2�a3�j _aijii � ijiij _ai�: (3.15)

This state couples to a linear combination of gravitino
states

j� _a
i i�

�������
p�

q �
j _aijii� ijiij _ai�

1

8

i_ab


j
b _b
�j _bijji� ijjij _bi�

�
:

(3.16)

Hence the coupling between the boundary state (3.15) and
the gravitino state (3.16) becomes

h� _a
i j�

a1�a2�a3Q�a1Q�a2Q�a3 jD��1�i

� �p��2
j_aa1
�a1�
jia2a3

�a2�a3�: (3.17)

A boundary state which is obtained by acting four
broken generators on jD��1�i becomes

�a1 	 	 	�a4Q�a1 	 	 	Q�a4 jD��1�i

� 8
���
2
p
�p��2��
ika1a2

�a1�a2��
kja3a4
�a3�a4�jiijji

� i�
ija3a4
�a3�a4��
ia1 _a


j
a2

_b
�a1�a2�j _aij _bi�: (3.18)

This state couples to the graviton state

jhiji � jiijji � jiijji �
1

4
�ijjkijki; (3.19)

and its coupling is given by

hhijj�
a1 	 	 	�a4Q�a1 	 	 	Q�a4 jD��1�i � �p��2

��
ika1a2
�a1�a2��
kja3a4

�a3�a4�: (3.20)

The coupling contains two derivatives.
We can similarly construct states by acting more broken

supersymmetry generators. They couple to the other mass-
less states of type IIB closed string through derivative
couplings2.

B. Wave functions with light-cone momentum

In order to compare the wave functions of the mean-field
D-instanton in Sec. II B to the results in the previous
subsection, we take the light-cone momentum and rewrite
the wave functions in Sec. II B.

Let us take the frame where the momentum is repre-
sented as

k� � �E; 0; 	 	 	 ; 0; E�; (3.21)
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namely, only the k� component is nonvanishing. Then the
following relations hold:

k6 � E��0 � �9� � �E��0 � �9� � �
���
2
p
E��;

k6 � � 2iE��a; 0;��a; 0�T; bij � 4E�
ijab�
a�b�;

bi� � 4
���
2
p
E�
i_aa�

_a�a�; bi� � 0:

By using these relations, transverse components of the
wave functions in section II B become

� � 1; ~� � 2iE��a; 0;��a; 0�T; ��11
~� � � ~��

Bij � �2E�
ijab�
a�b�;

�i � 4iE2�
ijbc�
b�c��0;�
j_aa�

a; 0; 
j_aa�
a�T;

hij �
1

6
E2�
ikab�

a�b��
kjcd�
c�d�;

(3.22)

They are the same as the overlaps in the previous subsec-
tion with the identification p� �

���
2
p
E, up to normaliza-

tions. Hence we have shown that the wave functions of the
mean-field D-instanton represent couplings of a supersym-
metry multiplet of a D-instanton to closed string massless
states.

C. Fermionic coherent state of D-instanton

So far we have constructed boundary states by acting a
fixed number of broken supersymmetry generators on
jD��1�i so that they form an ordinary set of a supersym-
metry multiplet. In order to see the above interpretation
more systematically, we construct a fermionic coherent
state by acting the unitary operator exp���aQ�a� on
jD��1�i;

j�i � exp���aQ�a�jD��1�i: (3.23)

Because of the commutation relations (3.5), this state
satisfies modified boundary conditions

Q�aj�i � 4p��aj�i (3.24)

Q� _aj�i � 2
���
2
p
pi
i_aa�

aj�i: (3.25)

In the IIB matrix model, the bosonic coordinates are in-
terpreted as the coordinates of space-time. From the con-
sideration here, the fermionic coordinates can be
interpreted as the fermionic parameters which bestow an
internal structure on the space-time constructed from the
bosonic coordinates.

The wave functions for the mean-field D-instanton can
be written as

fA��� � hAj�i; (3.26)

for each supergravity state A. In the previous subsection,
this relation has been shown separately for each state jAi
up to normalization. It can be understood more directly as
follows. When the momentum k is taken as (3.21), the
066001
supercharges q1 and q2 for a D-instanton, (2.1) and (2.2),
have the following forms,

qa1 � �i
@
@�a

; qa2 � 2iE�a; (3.27)

and satisfy the algebra

fqa1 ; q
b
2g � 2E�ab; others � 0: (3.28)

On the other hand, as far as massless states are concerned,
this algebra is equivalent to the ones among the super-
charges Q�a and Q� _a with pi � P� � ~P� � 0, Eq. (3.5).
Actually actions of qai on the wave functions (3.26) can be
regarded as insertions of Q�a and Q�a which act on the
massless state of the supergravity modes jAi as follows,

qa1fA��� � �i
@
@�

fA��� � i�hAjQ�a�j�i;

qa2fA��� � 2iE�afA��� �
i

2
���
2
p �hAjQ�a�j�i;

where we have used Eqs. (3.24) and (3.25). Hence a
construction of the supergravity multiplet by acting Q�a

on the closed string massless state hAj corresponds to the
one by acting qai on wave functions fA��� and the wave
functions we constructed describe the (derivative) cou-
plings between a D-instanton and various supergravity
modes.
IV. ONE-LOOP EFFECTIVE ACTION

In the latter half of the paper, we discuss condensation of
massless supergravity fields in type IIB matrix model. We
consider a matrix model of size �N � 1� � �N � 1� and
integrate over 1 D-instanton with the wave functions given
in Sec. II. In this way, we can obtain a modified effective
action in a weak supergravity background of N D-
instantons.

In this section we first give a systematic evaluation of the
one-loop effective action with general fermionic back-
grounds. The results were partly given in [24,25]. Similar
calculations were performed in the BFSS matrix model in
[14]. Since we are interested in condensation, we do not
use the matrix model equation of motion in this section.

We start from the type IIB matrix model with a size
�N � 1� � �N � 1� and write �N � 1� � �N � 1� bosonic
and fermionic Hermitian matrices as A0��� � 0; 	 	 	 ; 9�
and  0. We then decompose them into backgrounds
�X�;�� and fluctuations �a�; ’� around them as

A0� � X� � a�;  0 � �� ’: (4.1)

In order to perform perturbative calculations, we fix a
gauge and add the following terms to the action (1.1),

Sg:f:�ghost � � tr
�
1

2
�X�; a���X

�; a�� � �X�; b��A
0�; c�

�
;

(4.2)
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where c and b are ghost and antighost fields, respectively. Substituting the decompositions (4.1) into the action (1.1) and
(4.2), we obtain the following expression up to the 2nd order of the fluctuations,

SIKKT � Sg:f:�ghost � SIKKT�X;�� �
1

2
tr �a��X�; �X�; a��� � 2a���X�; X��; a���

�
1

2
tr �’���X�;’� � tr �����a�; ’� � trb�X�; �X

�; c��

� SIKKT�X;�� �
1

2
tr a�

�
��� ~X2 � 2 ~F�� �

~����
1

� 	 ~X
�� ~�

�
a�

�
1

2
tr
�

�’� � ��; a����
1

� 	 ~X

�
�� 	 ~X�

�
’�

1

� 	 ~X
���a�;��

�
� tr b ~X2c� higher orders; (4.3)
where we defined F�� � �X�; X��, � 	 X 
 ��X� and
denoted the adjoint action of a general operator O as ~OS 

�O; S�. Then the one-loop partition function of the IIB
matrix model becomes

Z�X;���
Z
da�d’dbdce

��SIKKT�Sg:f:�ghost�

�e�SIKKT�X;��det�1=2

�
��� ~X2�2 ~F��

� ~����
1

� 	 ~X
�� ~�

�
�det1=4

��
~X2�

1

2
��� ~F��

�

�
1��11

2

�
det� ~X2�: (4.4)

Thus the free energy is given by

F�X;�� � � lnZ�X;�� � SIKKT�X;�� � Fb � Ff;

(4.5)

Fb �
1

2
T r ln���� ~X2 � 2 ~F���

�
1

4
T r ln

��
~X2 �

1

2
��� ~F��

�
1� �11

2

�
�T r ln ~X2;

(4.6)

Ff �
1

2
T r ln

�
��� �

�
1

~X2 � 2 ~F

�
��

~����
1

� 	 ~X
�� ~�

�
;

(4.7)

where T r is the trace of the adjoint operators.
We first expand Ff formally with respect to the inverse

powers of ~X. To this end we use the following formulas:

1
~X2 � 2 ~F

�
1

1� 2
~X2

~F

1
~X2
; (4.8)

1

� 	 ~X
�

1

1� 1
2 ~X2 � 	 ~F

1
~X2

� 	 ~X (4.9)
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�
1

2

1

1� 1
2 ~X2 � 	 ~F

1
~X2

� 	 ~X�
1

2
� 	 ~X

1

1� 1
2 ~X2 � 	 ~F

1
~X2
;

(4.10)

where

�� 	 ~X�2 � ~X2 �
1

2
� 	 ~F; (4.11)

and � 	 ~F 
 ��� ~F��. In the following we expand the free
energy with respect to 1= ~X. Since the leading part of ~X is a
distance between N D-instantons and a single D-instanton,
this expansion is valid when the single D-instanton is far
separated from the other N D-instantons.

A. Second order terms of �

First let us focus on the terms with two fermions. As is
seen in Sec. V, these terms are relevant for condensation of
the antisymmetric tensor field. After using Eqs. (4.8) and
(4.10), the second order terms of the fermionic background
� are given by

Ffj�2 �
1

4
T r

��
1

1� 2
~X2

~F

�
��

1
~X2

~����
1

1� 1
2 ~X2 � 	 ~F

�
1
~X2
�� 	 ~X��� ~��

�
1

1� 2
~X2

~F

�
��

1
~X2

~������ 	 ~X�

�
1

1� 1
2 ~X2 � 	 ~F

1
~X2

�� ~�
�
: (4.12)

We now expand the effective action with two �’s (4.12)
with respect to 1= ~X.

1. ~X�3

The leading order starts from 1= ~X3 and is given by

1

4
T r

�
1
~X2

~��
1
~X2

���� 	 ~X��� ~��
1
~X2

~������ 	 ~X���
1
~X2

~�
�

� �2T r
1
~X2

~��
1
~X2

��� ~X�; ~��: (4.13)

This is proportional to the equation of motion for the
fermion.
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2. ~X�5

The next-to-leading order is proportional to 1= ~X5. At
this order we have the following terms,

1

4
T r

��
�

2
~X2

~F��

�
1
~X2

~����
1
~X2
�� 	 ~X��� ~�

�
1
~X2

~����

�
�

1

2 ~X2
� 	 ~F

�
1
~X2
�� 	 ~X��� ~�

�

�
�

2
~X2

~F��

�
1
~X2

~������ 	 ~X�
1
~X2

�� ~�

�
1
~X2

~������ 	 ~X�
�
�

1

2 ~X2
� 	 ~F

�
1
~X2

�� ~�
�
: (4.14)

After some calculations, these terms are rewritten as

�
1

2
T r

1
~X2

~F��
1
~X2

~��
1
~X2

��� 	 ��� ~X�; ~��

�
1

2
T r

1
~X2

~F��
1
~X2
� ~��; ~X���� 	 ���

1
~X2

~�

�T r
1
~X2

~F��
1
~X2

~��
1
~X2

�� ~X� ~�

�T r
1
~X2

~F��
1
~X2

~��
1
~X2

�� ~� ~X�

�T r
1
~X2

~F��
1
~X2

~X�
~��

1
~X2

�� ~�

�T r
1
~X2

~F��
1
~X2

~�� ~X�
1
~X2

�� ~�: (4.15)
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The first two terms are proportional to the equation of
motion. It is noted that the terms in Eq. (4.15) vanish if
~X� is replaced with d�. Here d� is a vector directed to the
center of the N D-instantons from the single D-instanton.
Therefore these terms are actually O�d�6� in the 1=d
expansions.

3. ~X�7

The terms of the order ~X�7 are given by

1

4
T r

��
2
~X2

~F��

��
2
~X2

~F��

�
1
~X2

~����
1
~X2
�� 	 ~X��� ~�

�
1
~X2

~����

�
1

2 ~X2
� 	 ~F

��
1

2 ~X2
� 	 ~F

�
1
~X2
�� 	 ~X��� ~�

�

�
2
~X2

~F��

�
1
~X2

~����

�
1

2 ~X2
� 	 ~F

�
1
~X2
�� 	 ~X��� ~�

�

�
2
~X2

~F��

��
2
~X2

~F��

�
1
~X2

~������ 	 ~X�
1
~X2

�� ~�

�
1
~X2

~������ 	 ~X�
�

1

2 ~X2
� 	 ~F

��
1

2 ~X2
� 	 ~F

�
1
~X2

�� ~�

�

�
2
~X2

~F��

�
1
~X2

~������ 	 ~X�
�

1

2 ~X2
� 	 ~F

�
1
~X2

�� ~�
�
:

(4.16)

These are rewritten as
1

4
T r

1
~X2

~F��
1
~X2

~��
1
~X2

~F��
1
~X2

�������� ~X�; ~�� �T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~��
1
~X2

������ ~X�; ~��

�T r
1
~X2

~F��
1
~X2

~F��
1
~X2
� ~��; ~X�������

1
~X2

~��T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~��
1
~X2

��� ~X�; ~�� �T r
1
~X2

~F��
1
~X2

~F��
1
~X2

� � ~��; ~X����
1
~X2

~��
1

2
T r

1
~X2

~F��
1
~X2

~��
1
~X2

~F��
1
~X2

��� ~X�; ~�� �
1

2
T r

1
~X2

~F��
1
~X2

~F��
1
~X2

~X�
~������

1
~X2

~�

�
1

2
T r

1
~X2

~F��
1
~X2

~F��
1
~X2

~X�
~������

1
~X2

~��
1

2
T r

1
~X2

~F��
1
~X2

~F��
1
~X2

~������
1
~X2

~� ~X�

�
1

2
T r

1
~X2

~F��
1
~X2

~F��
1
~X2

~������
1
~X2

~� ~X� �
1

2
T r

1
~X2

~F��
1
~X2

~��
1
~X2

~F��
1
~X2

~X����� ~�

�
1

2
T r

1
~X2

~F��
1
~X2

~�� ~X�
1
~X2

~F��
1
~X2

���� ~�� 2T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~��
1
~X2

�� ~X� ~�

� 2T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~�� ~X�
1
~X2

�� ~��T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~����
1
~X2

~� ~X� �T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~����
1
~X2

~� ~X�

�T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~X�
~����

1
~X2

~��T r
1
~X2

~F��
1
~X2

~F��
1
~X2

~X�
~����

1
~X2

~��T r
1
~X2

~F��
1
~X2

~��
1
~X2

~F��
1
~X2

~X��� ~�

�T r
1
~X2

~F��
1
~X2

~�� ~X�
1
~X2

~F��
1
~X2

�� ~�: (4.17)

The first six terms vanish if the fermionic background satisfies the equation of motion.

4. ~X�9

The terms of the order ~X�9 are given by
-9



ISO, SUGINO, TERACHI, AND UMETSU PHYSICAL REVIEW D 72, 066001 (2005)
T r
�
�2

1
~X2

~F��
1
~X2

~F��
1
~X2

~F��
1
~X2

~����
1
~X2
�� 	 ~X��� ~��

1

32

1
~X2

~����
1
~X2
�� 	 ~F�

1
~X2
�� 	 ~F�

1
~X2
�� 	 ~F�

1
~X2
�� 	 ~X��� ~�

�
1

2

1
~X2

~F��
1
~X2

~F��
1
~X2

~����
1
~X2
�� 	 ~F�

1
~X2
�� 	 ~X��� ~��

1

8

1
~X2

~F��
1
~X2

~����
1
~X2
�� 	 ~F�

1
~X2
�� 	 ~F�

1
~X2
�� 	 ~X��� ~�

� 2
1
~X2

~F��
1
~X2

~F��
1
~X2

~F��
1
~X2

~������ 	 ~X�
1
~X2

�� ~��
1

32

1
~X2

~������ 	 ~X�
1
~X2
�� 	 ~F�

1
~X2
�� 	 ~F�

1
~X2
�� 	 ~F�

1
~X2

�� ~�

�
1

2

1
~X2

~F��
1
~X2

~F��
1
~X2

~������ 	 ~X�
1
~X2
�� 	 ~F�

1
~X2

�� ~��
1

8

1
~X2

~F��
1
~X2

~������ 	 ~X�
1
~X2
�� 	 ~F�

1
~X2
�� 	 ~F�

1
~X2

�� ~�
�
:

(4.18)
B. Fourth order terms of �

Now let us consider four-fermion terms. These terms are
relevant for condensation of gravitons. The fourth order
terms of � are given by

Ffj�4 � �
1

4
T r

�
1

1� 2
~X2

~F

�
��

1
~X2

~����
1

1� 1
2 ~X2 � 	 ~F

�
1
~X2
�� 	 ~X��� ~�

�
1

1� 2
~X2

~F

�
��

�
1
~X2

~����
1

1� 1
2 ~X2 � 	 ~F

1
~X2
�� 	 ~X��� ~�: (4.19)

1. ~X�6

The leading order term is proportional to 1= ~X6. The term
of this order is given by

�
1

4
T r

1
~X2

~����
1
~X2
�� 	 ~X��� ~�

1
~X2

~����
1
~X2
�� 	 ~X��� ~�:

(4.20)
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2. ~X�8

The next order terms are proportional to 1= ~X8 and given
by
�
1

2
T r

��
�

2
~X2

~F��

�
1
~X2

~����
1
~X2
�� 	 ~X��� ~�

�
1
~X2

~����
1
~X2
�� 	 ~X��� ~��

1
~X2

~����

�

�
�

1

2 ~X2
� 	 ~F

�
1
~X2
�� 	 ~X��� ~�

�
1
~X2

~����
1
~X2
�� 	 ~X��� ~�

�
: (4.21)
3. ~X�10

The terms of the order 1= ~X10 become
�T r
�

2
1
~X2

~F��
1
~X2

~F��
1
~X2

~����
1
~X2
�� 	 ~X��� ~�

1
~X2

~����
1
~X2
�� 	 ~X��� ~��

1

8

1
~X2

~����
1
~X2

��� ~F��
1
~X2

��� ~F��

�
1
~X2
�� 	 ~X��� ~�

1
~X2

~����
1
~X2
�� 	 ~X��� ~��

1

2

1
~X2
F��

1
~X2

~����
1
~X2

��� ~F��
1
~X2
�� 	 ~X��� ~�

1
~X2

~����
1
~X2
�� 	 ~X��� ~�

�
1

2

1
~X2
F��

1
~X2

~����
1
~X2
�� 	 ~X��� ~�

1
~X2

~����
1
~X2

��� ~F��
1
~X2
�� 	 ~X��� ~��

1
~X2
F��

1
~X2

~����
1
~X2
�� 	 ~X��� ~�

�
1
~X2
F��

1
~X2

~����
1
~X2
�� 	 ~X��� ~��

1

16
~����

1
~X2

��� ~F��
1
~X2
�� 	 ~X��� ~�

1
~X2

~����
1
~X2

��� ~F��
1
~X2
�� 	 ~X��� ~�

�
: (4.22)
V. CONDENSATION OF THE SUPERGRAVITY
MODES

In this section, we discuss modifications of the effective
actions for the IIB matrix model by condensation of D-
instantons with appropriate wave functions. They corre-
spond to condensation of massless type IIB supergravity
fields. We here consider backgrounds produced by a mean-
field D-instanton. As we saw in Secs. II and III, a D-
instanton forms a supersymmetry multiplet by acting bro-
ken supersymmetry generators on the ordinary D-instanton
boundary state. These states couple to the closed string
massless states through derivative couplings and become a
source for these fields.

Now we write �N � 1� � �N � 1� matrices in the de-
composition (4.1) as follows:

X� �
x�1N � A� 0

0 y�

� �
; � �

 0
0 


� �
; (5.1)

a� �
0 ��
�y� 0

� �
; ’ �

0 �
�y 0

� �
: (5.2)
-10
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A� and  are N � N traceless matrices. y� is a bosonic
coordinate of a (mean-field) D-instanton. 
 is a fermionic
coordinate and a Majorana-Weyl spinor. They represent
degrees of freedom of the mean-field D-instanton. Off-
diagonal components �� and � are N-vectors correspond-
ing to interactions between the diagonal blocks, which we
have integrated out at the one-loop order in the previous
section. Hence the free energy (4.5) is a function of these
diagonal components, F�X;�� � F�A; x;  ; y; 
�. By
choosing wave functions fk�y; 
� for the mean-field D-
instanton and integrating over y; 
, we can obtain a modi-
fied effective action Seff�A; x;  ; fk� by condensation of the
massless modes;

e�Seff �A;x; ;fk� �
Z
dyd
e�F�A;x; ;y;
�fk�y; 
�: (5.3)

In what follows, we mainly look at terms without fer-
mionic matrices  and replace all fermionic variables by
the D-instanton fermionic coordinate 
.

A. Condensation of the dilaton

In order to express condensation of dilaton in terms of
the wave function of the mean-field D-instanton, we put
fk�y; 
� as

fD�y; 
� �
Z
d10keik	y ~fD�k; 
�

�
Z
d10keik	yf�k�

�Y16


�1





�
: (5.4)

Then the 
 integration is already saturated by the wave
function. The leading contribution to the effective action is
easily shown to be proportional to (the charge conjugation
of ) the dilaton vertex operator (2.31).

B. Condensation of the antisymmetric tensor B��

We now calculate the effective action with an insertion
of a wave function describing the antisymmetric tensor
field B��. In the present calculation, the supersymmetry
multiplet starts from the dilaton wave function (5.4) and
the other functions in the multiplet can be constructed by
acting a derivative operator @=@
.

By replacing � in Eq. (2.13) with @=@
 and applying the

differential operator on
�Q16


�1 



�
, we obtain the wave

function for the antisymmetric tensor field;

fB�y; 
� �
Z
d10keik	y ~fB�k; 
�

�
Z
d10keik	y�����k�k� � ����k�k� � ����k�k��

� ������0��	
@
@
�

@
@
	

�Y16


�1





�
;

(5.5)
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where ����k� is a polarization tensor, ����k� � �����k�.
Since our SUSY algebra closes only on shell, ~fD�k; 
� and
~fB�k; 
� fall into the supergravity multiplet for the case
k2 � 0. Hereafter we, however, formally extend the wave
functions to the off-shell and integrate over the whole
momentum region.

1. Contribution at O�1=d8� and Myers-like effect

Let us first look at contributions from the second order
terms of �. In these terms we can simply replace � with 

and thus the terms of the order ~X�3 and ~X�5 vanish. The
terms of the order ~X�7, Eq. (4.17), become

1

2
� �
����
�T r

�
� ~F��

1
~X2

~F��
1
~X2

~X�

�
1
~X2

�
2

� ~F��
1
~X2

~X�

�
1
~X2

�
2

~F��
1
~X2
� ~F��

�
1
~X2

�
2

~X�
1
~X2

~F��
1
~X2

� ~F��
1
~X2

~F��

�
1
~X2

�
2

~X�
1
~X2
� ~F��

�
1
~X2

�
2

~F��
1
~X2

~X�
1
~X2

� ~F��
1
~X2

~X�
1
~X2

~F��

�
1
~X2

�
2
�
: (5.6)

We then expand these terms with respect to the inverse
powers of d� 
 x� � y�. For example, 1= ~X2 is expanded
as follows,

1
~X2
�

1

d2

�
1� 2

d 	 A

d2

�
�O

�
1

d4

�
: (5.7)

It is easily realized that the leading terms with 1=d7 vanish.
The 1=d8 term has the following simple form

�
1

2d8 �
�
����
� tr �A�; F���F��: (5.8)

The 1=d8 dependence of the term indicates that the inter-
action is induced by an exchange of massless antisymmet-
ric field.

We then integrate over y� and 
 with the wave function
(5.5) in order to derive the effective action under conden-
sation of the antisymmetric tensor field. In this calculation,
we take our wave function (5.5) such that it damps at the
infrared region where jy� xj ! 1. Such a choice of wave
function is natural from the view point of the dynamics of
the eigenvalues in the matrix model. It was indeed shown
that the distributions of the eigenvalues of A� are bounded
in a finite region dynamically [4]. It is therefore natural to
consider that the wave function damps far from the D-
instantons. The size of the eigenvalue distribution is a
function of N. If the eigenvalues are distributed on d-dim
hypersurface uniformly, it is proportional to N1=d. The
natural scale of the infrared cutoff of the wave function
depends on the dynamics of the matrix models, which we
do not discuss in the present paper.
-11
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The integration over 
 and y can be easily performed asZ
d10yd16
fB�y;
�

�1

2�x�y�8
�
����
 tr�A�;F���F��

�
Z
d10yd10keik	y�����k�k������k�k������k�k��

�
�1

2�x�y�8
tr�A�;F���F��

��
�5

3

Z
d10k

eik	x

k2 �����k�k������k�k�

�����k�k�� tr�A�;F���F��: (5.9)

Because of our choice of the wave function, ����k� damps
at small k.

We therefore obtain the following effective action

Seff�A; x;  ; fB� � SIKKT

� i
Z
d10kf����k�eik	x tr �A�; F���F��;

(5.10)

where f����k� � �
i�5

3 �k���� � k���� � k�����=k
2.

This effective action shows that the Chern-Simons-like
term is induced by an effect of condensation of the anti-
symmetric tensor. This phenomenon is similar to the Myers
effect [10], but there is a difference. In the case of the
Myers effect for D0-branes, a cubic term of bosonic ma-
trices is induced in the Ramond-Ramond variational prin-
ciple (RR) three-form background. This term can be
interpreted as a vertex operator for the RR potential. In
our case, however, the leading order of the induced term in
Eq. (5.10) is different from the expected vertex operator for
the charge conjugation of the antisymmetric tensor field
(2.29). Such a term appears at the next order in the 1=d
expansion as shown in the next subsection. The reason can
be understood as follows. If we also calculate the fermionic
term containing  , we would expect to obtain a term like
tr � � �� �F�� and the leading order term in (5.10) with this
fermionic term would be cancelled by using the equation of
motion (2.4) of the original IKKT action. This kind of
terms can not be seen in the vertex operators since we
have assumed the equation of motion (2.4) and (2.5) in their
construction. Here, since we are interested in investigating
the effective actions under condensation of the antisym-
metric tensor fields, we do not want to use the equations of
motion of the original IKKT action and the term in (5.10)
should not be omitted.

Let us see an effect of the induced term in (5.10) for a
particular form of the polarization tensor. Assuming that
the coefficient

R
d10kf����k�eik	x is proportional to �ijk

with a specific direction �i; j; k� � �1; 2; 3� and that the
region k� 0 is dominant in the k-integration, the modified
matrix model action becomes

Seff�A; x;  ; fB� � SIKKT � i��ijk tr �A�; Fi��Fjk; (5.11)
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with a constant coefficient �. This action has a fuzzy
sphere classical solution;

Ai �
1

10�
Li; �i � 1; 2; 3�

Aa � 0; �for the other directions�;

 � 0:

(5.12)

The radius of the fuzzy sphere is in inverse proportion to
the coefficient � and in the �! 0 limit the fuzzy sphere is
expanded and becomes a flat plane. It contrasts with matrix
models with the ordinary cubic Chern-Simons term (see,
for example [26]) where the radius of the fuzzy sphere is
proportional to the coefficient of the Chern-Simons term.

In addition to the fuzzy sphere solution, flat D-branes

�A�; A�� � i���1N; ���� � �����: (5.13)

with a constant ��� are also classical solutions of the
effective action (for an infinite N). It will be interesting
to compare stabilities of these solutions to the fuzzy sphere
solution by calculating loop corrections around them.

2. Contribution at O�1=d9� and B�� vertex operator

The induced term in the previous subsection vanishes if
we use the equation of motion for the configuration A�.
Then the next order O�1=d9� term becomes the leading
order. From the dimensional analysis, it is expected that the
vertex operator corresponding to the charge conjugation of
the antisymmetric tensor field (2.29) would appear at the
order of 1=d9.

Expanding the O� ~X�7� term (5.6) with respect to 1=d,
we obtain O�1=d9� terms

2d�
d10 �

�
����
� tr �F��F��F�� � F��F��F���

�
2

d10 �
�
����
� tr ��A�; F����d 	 A�F��

� �A�; F���F���d 	 A��: (5.14)

The same order terms with O�1=d9� can be obtained also
from Eq. (4.18) as

�12
d�
d10 �

�
����
� tr
�
F��F��F�� �

1

4
F��F��F��

�

� 2
d�
d10 �

�
����
� tr �F��F��F�� � F��F��F���:

(5.15)

Therefore the interaction terms between the mean-field D-
instanton and the N � N block are given at this order by

� 12
d�
d10 �

�
����
� tr
�
F��F��F�� �

1

4
F��F��F��

�

�
2

d10 �
�
����
� tr��A�; F����d 	 A�F��

� �A�; F���F���d 	 A��: (5.16)
-12
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The first line represents an interaction through the vertex
operator for (the charge conjugation of) the antisymmetric
tensor field (2.29). The second term is similar to the
Eq. (5.8) except for the insertion of d 	 A. By integrating
over y� and 
 with the wave function (5.5), the following
terms are added to the effective action,

�i
Z
d10kf����k�eik	x

�
�3ik� tr

�
F��F��F��

�
1

4
F��F��F��

�
�

1

2
tr��A�; F����ik 	 A�F��

� �A�; F���F���ik 	 A��
�
: (5.17)

The first term represents a derivative coupling of D-
instantons to the vertex operator of the antisymmetric
tensor field. The second term can be combined with
Eq. (5.10) into a form

�i
Z
d10kf����k�eik	xStr eik	A�A�; F��� 	 F��: (5.18)

If we calculate higher order terms in the 1=d expansion, we
would expect to obtain higher order terms of (5.18) with
respect to the number of bosonic fields A�.

C. Condensation of the graviton

Effects of the condensation of gravitons can be seen
from the fourth order terms of 
. The term Eq. (4.20)
vanishes by substituting 
 for � because of the identity
for the Majorana-Weyl spinor, � �
����
��

��
 � 0.
Therefore the leading contribution in the 1=d expansion
comes from the ~X�8 terms, Eq. (4.21) by replacing � with

 as

� �
����
�� �
����
�T r
1
~X2

~F��

�
1
~X2

�
2

~X�

�
1
~X2

�
2

~X�: (5.19)
1. Contribution at O�1=d8� and O�1=d9�

Order O�1=d8� terms vanish

d�d�
d10
� �
����
�� �
����
� trF�� � 0; (5.20)

since d�d�� �
����
�� �
����
� is symmetric under an ex-
change of ��; ��.

Similarly order O�1=d9� terms also vanish

1

d10
� �
����
�� �
����
� tr�d�F��A� � d�F��A�� � 0:

(5.21)
2. Contribution at O�1=d10�

Hence the leading order terms start from O�1=d10�
terms. Contributions from the above ~X�8 term (5.19) are
given by
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1

2d10
� �
����
�� �
����
� trF��F��

�
4

d12 d��
�
����
�c���
� trF��F��; (5.22)

where c���
� 
 d�� �
����
�. The same order terms are
also obtained from the ~X�10 terms (4.22) as

�
1

8d10 �
�
����
�� �
����
� trF��F��

�
1

2d12 c��c�� trF��F�� �
3

2d12 c��c�� trF��F��

�
9

2d12 c��c�� trF��F��

�
3

2d12 d�c���
�
����
� trF��F��: (5.23)

By using the following Fierz identity,

c��c�� �
1

3
�c��c�� � c��c�� � c��c���

�
1

6
�g��c��c�� � g��c��c�� � g��c��c��

� g��c��c��� �
1

6
�d�c��� �
����
�

� d�c��� �
����
� � d�c��� �
����
�

� d�c��� �
����
�� �
d2

6
� �
����
�� �
����
�:

(5.24)

the sum of these two terms, Eqs. (5.22) and (5.23), can be
simplified and depends on 
 only in the form of c���
� as

(5.22) and (5.23) � �
1
12 c��c�� trF��F��: (5.25)

d

It represents a derivative coupling of a single D-instanton
to the graviton vertex operator constructed from the N D-
instantons. If we insert the graviton wave function and
integrate over the single D-instanton coordinates, we can
obtain the graviton vertex operator as an induced term in
the effective action.

Similarly interactions mediated by the 4th rank self-dual
antisymmetric tensor field would appear, but such terms
vanish in the leading order because of the cyclic property
of the trace and the Jacobi identity,

c��c�� tr�F��F�� � F��F�� � F��F���

� c��c�� trA���A�; �A�; A��� � �A�; �A�; A���

� �A�; �A�; A���� � 0: (5.26)

If we calculate higher order terms, we would expect to
obtain the terms which can be produced by expanding the
-13
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exponential in

1

d12
c��c��Str eik	A�F�� 	 F�� � F�� 	 F�� � F�� 	 F���:

(5.27)

VI. CONCLUSION

In this paper, we have considered fermionic back-
grounds and condensation of supergravity fields in the
IIB matrix model. We start from the type IIB matrix model
in a flat background with the size �N � 1� � �N � 1�,
namely, a system of �N � 1� D-instantons. We then inte-
grate 1 D-instanton (which we call a mean-field D-
instanton) and obtain an effective action forN D-instantons
by assuming particular forms of wave functions of the
mean-field D-instanton. If we assume that the configura-
tions of N D-instantons satisfy the equation of motion, we
show that vertex operators obtained in our previous paper
[1] are induced in the effective action as leading contribu-
tions. If we do not assume it, extra terms also appear. In
particular if we take the wave function as that of the
antisymmetric tensor field, a Chern-Simons like term is
induced in the leading order of perturbations. Though this
term is quintic with respect to the field A�, a fuzzy sphere
becomes a solution to the equation of motion. In this sense,
this is a similar mechanism to the Myers effect.

We have also given a stringy interpretation of the wave
functions of the mean-field D-instanton as overlaps of the
D-instanton boundary state with closed string massless
states. The ordinary D-instanton only couples with the
dilaton and the axion states. But since a D-instanton is a
half-BPS state and breaks one half of the supersymmetries,
we can obtain other states by acting broken supersymmetry
generators on the ordinary D-instanton state. They couple
to other supergravity fields through derivative couplings
and form a supersymmetry multiplet in type IIB supergrav-
ity. We showed that the wave functions are nothing but the
overlaps of these D-instanton boundary states with mass-
less closed string states.

It is interesting to investigate effective actions under
condensation of every massless closed string mode sys-
tematically, besides the charge conjugation of the antisym-
metric tensor field and graviton we studied in this paper.
Though it is expected from the analysis of the string theory
side that each mode couples to the vertex operator of the N
D-instanton system through an appropriate derivative cou-
pling, other types of couplings like the quintic term derived
here can also appear. We think that such studies clarify how
the IIB matrix model contains dynamics of closed strings.
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APPENDIX

In this appendix, we briefly review the boundary states
in the Green-Schwarz formalism of type IIB superstrings in
the light-cone gauge.

We first summarize our notations:

(a) S
-14
pace-time quantities (in �9� 1�-dimensions)
Metric:

��� � diag ��1;�1; 	 	 	 ;�1�; (A1)

Gamma matrices (in Majorana representation):

f��;��g � �2���; (A2)

�0 � �2 
 116; (A3)

�i � i�1 
 
i; �i � 1; 2; 	 	 	 ; 8�; (A4)

�9 � i�3 
 116; (A5)

�11 � �0�1 	 	 	�9 � ��1 

18 0
0 �18

� �
; (A6)


i �
0 
ia _a

i_aa 0

� �
; 
ia _a � 
i_aa; (A7)


ia _a

j
_ab � 


j
a _a


i
_ab � 2�ij�ab; (A8)


ia _a

i
b _b
� 
ib _a


i
a _b
� 2�ab� _a _b; (A9)

Spinors:

� � ��a1 ; �
_a

1 ; �
a
2 ; �

_a
2�
T; (A10)

Weyl spinors:

�11� � � ���! � � ��a; � _a;��a; � _a�T; (A11)

�11� � �� ���! � � ��a; � _a; �a;�� _a�T; (A12)
(b) W
orld-sheet quantities
Metric:

��	 � diag ��1;�1�: (A13)

Gamma matrices:

f��; �	g � �2��	; (A14)

�0 � �2; �1 � i�1: (A15)

Antisymmetric tensor ��	:

�01 � �1: (A16)
In the Green-Schwarz formalism, the IIB superstring
theory is described by ten real bosons X��� �
0; 1; 	 	 	 ; 9� and two Majorana-Weyl fermions �A�A �
1; 2� with the same chirality �11�A � ��A. Here we take
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the light-cone gauge;

���A � 0 ���! �A � ��Aa; 0; �Aa; 0�; (A17)

X� � x� � p��: (A18)

The light-cone components are defined as

�� �
1���
2
p ��0 � �9�; (A19)

X� �
1���
2
p �X0 � X9�: (A20)

The explicit forms of �� are

�� �
i���
2
p

1 �1
1 �1

� �

 116; (A21)

�� �
i���
2
p

�1 �1
1 1

� �

 116: (A22)

The world-sheet action in the light-cone gauge is given
by

Sl:c: � �
1

4�

Z
d2��@�X

i@�Xi � i �Sa��@�S
a�

� �
1

4�

Z
d2����@�X

i�2 � �@�X
i�2

� iS1a�@� � @��S
1a � iS2a�@� � @��S

2a�; (A23)

where SAa are proportional to �Aa; SAa /
�������
p�

p
�Aa. The

coordinates are expanded with respect to the Fourier modes
as

Xi � xi � pi��
i���
2
p

X
n�0

1

n
��ine�in����� � ~�ine�in������;

(A24)

S1a �
X
n

Sane
�in�����; (A25)

S2a �
X
n

~Sane�in�����: (A26)

Under the quantization, the mode operators satisfy the
hermiticity conditions

�yn � ��n; ~�yn � ~��n;

�San�y � Sa�n; �~San�y � ~Sa�n:
(A27)

Also the commutation relations among them are given by

�xi; pj� � i�ij; ��im; �
j
n� � m�ij�m�n;0;

�~�im; ~�jn� � m�ij�m�n;0;
(A28)

fSam; Sbng � �ab�m�n;0; f~Sam; ~Sbng � �ab�m�n;0:

(A29)
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The action (A23) has the N � 2 supersymmetry con-
sisting of the kinematical SUSY

�SAa �
���������
2p�

q
�Aa; (A30)

�Xi � 0; (A31)

and the dynamical SUSY

�S1a �
1�������
p�

p �@� � @��Xi
ia _a�
1 _a; (A32)

�S2a �
1�������
p�

p �@� � @��Xi
ia _a�
2 _a; (A33)

�Xi � �
i�������
p�

p �A _a
i_aaS
Aa: (A34)

These transformations are generated by the following
supercharges

Q1a �
Z 2�

0

d�
2�

���������
2p�

q
S1a �

���������
2p�

q
Sa0 ; (A35)

Q2a �
Z 2�

0

d�
2�

���������
2p�

q
S2a �

���������
2p�

q
~Sa0 ; (A36)

Q1 _a �
Z 2�

0

d�
2�

1�������
p�

p �@� � @��Xi
i_aaS
1a

�
1�������
p�

p 
i_aa

�
piSa0 �

���
2
p X

n�0

�inSa�n

�
; (A37)

Q2 _a �
Z 2�

0

d�
2�

1�������
p�

p �@� � @��Xi
i_aaS
2a

�
1�������
p�

p 
i_aa

�
pi ~Sa0 �

���
2
p X

n�0

~�in ~Sa�n

�
; (A38)

which satisfy the algebra

fQAa;QBbg � 2p��AB�ab; (A39)

fQ1 _a; Q1 _bg � 2P�� _a _b; (A40)

fQ2 _a; Q2 _bg � 2 ~P�� _a _b; (A41)

fQAa;QB _ag �
���
2
p

ia _ap

i�AB; (A42)

with

P� �
1

p�

�
pipi

2
�
X
n�0

�nSa�nSan � �i�n�in�
�
; (A43)

~P� �
1

p�

�
pipi

2
�
X
n�0

�n~Sa�n ~San � ~�i�n ~�in�
�
: (A44)
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A boundary state is usually defined by a set of the
boundary conditions on a constant � surface:

��@� � @��X
i �Mij�@� � @��X

j�jB;�i � 0; (A45)

Q�a� jB;�i 
 �Q
1a � i�MabQ

2b�jB;�i � 0; (A46)

Q� _a
� jB;�i 
 �Q1 _a � i�M _a _bQ

2 _b�jB;�i � 0; (A47)

where � is a parameter ��2 � 1�, and Mij is an element of
SO(8). For the Neumann directionsMij � ��ij and for the
Dirichlet directions Mij � �ij. Mab and M _a _b are deter-
mined by consistency requirements as follows. Taking
the surface � � 0, the conditions (A45)–(A47) are written
in terms of the mode operators as

�pi �Mijp
j�jB;�i � 0; (A48)

��in �Mij ~�j�n�jB;�i � 0; (A49)

�Sa0 � i�Mab
~Sb0�jB;�i � 0; (A50)

�

i_aap

iSa0 � i�M _a _b

i
_ba

~Sa0

�
���
2
p X

n�0

�
i_aa�
i
nSa�n � i�M _a _b


i
_ba

~�in ~Sa�n�
�
jB;�i � 0:

(A51)

Let us determine Mab and M _a _b. From fQ�a; Q�bgjB;�i �
0, we find

MacMbc � �ab; (A52)

meaning that Mab is an orthogonal matrix. Next,
fQ�a; Q� _agjB;�i � 0 leads to

�
ia _ap
i �MabM _a _b


i
_bb
pi�jB;�i � 0: (A53)

Comparing this with (A48), we have


ia _aMij �MabM _a _b

j
_bb
� 0: (A54)

The consistency between Eq. (A45) and Eq. (A47) requires

�
i_aaS
a
n � i�MijM _a _b


j
_bb

~Sb�n�jB;�i � 0 for n � 0;

(A55)

by using (A54), which are rewritten as


i_aa�S
a
n � i�Mab

~Sb�n�jB;�i � 0 for n � 0: (A56)
066001
Since Mij is an element of SO(8), it can be written as
Mij � �e�kl�

kl
�ij with ��kl�ij � �ki �

l
j � �

l
i�
k
j being gener-

ators of SO(8). Equation (A54) can be solved in terms of
�ij as

Mab � �e
�1=2��ij
ij�ab; (A57)

M _a _b � �e
�1=2��ij ~
ij� _a _b; (A58)

where


ijab �
1

2
�
ia _a


j
_ab � 


j
a _a


i
_ab�;

~
ij
_a _b
�

1

2
�
i_aa


j
a _b
� 
j_aa


i
a _b
�:

(A59)

The boundary state jB;�i can be expressed in the form

jB;�i � e

P
n>0

��1=n�Mij�i�n ~�j�n�i�MabSa�n ~Sb�n�
jB0; �i (A60)

with the zero-mode part

jB0; �i � C�Mijjiijji � i�M _a _bj _aij _bi�: (A61)

C is a normalization constant, and the ground states jii and
j _ai are defined by

�jnjii � Sanjii � �inj _ai � Sanj _ai � 0; �for n > 0�;

(A62)

Sa0jii �

ia _a���

2
p j _ai; Sa0j _ai �


ia _a���
2
p jii: (A63)

Broken supercharges are given by

Q�a� 
 Q1a � i�MabQ
2b; (A64)

Q� _a
� 
 Q1 _a � i�M _a _bQ

2 _b; (A65)

and the algebra of broken and unbroken supercharges
becomes

fQ�a� ; Q�b� g � 4p��ab; (A66)

fQ�a� ;Q� _b
� g �

���
2
p

i
a _b
�pi �Mijp

j�; (A67)

fQ� _a
� ;Q�b� g �

���
2
p

i_ab�p

i �Mijpj�; (A68)

fQ� _a
� ; Q� _b

� g � 2�P� � ~P��� _a _b � 2P�cl� _a _b; (A69)

and the other anticommutators vanish.
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