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Deconfinement and color superconductivity in cold neutron stars
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We study the deconfinement transition of hadronic matter into quark matter in neutron star conditions in
the light of color superconductivity. Deconfinement is considered to be a first order phase transition that
conserves color and flavor. It gives a short-lived (�� �weak) transitory colorless-quark-phase that is not in
�-equilibrium. We deduce the equations governing deconfinement when quark pairing is allowed and find
the regions of the parameter space (pairing gap � versus bag constant B) where deconfinement is possible
inside cold neutron stars. We show that for a wide region of (B;�) a pairing pattern is reachable within a
strong interaction timescale, and the resulting ‘‘2SC-like’’ phase is preferred energetically to the unpaired
phase. We also show that although �-stable hybrid star configurations are known to be possible for a wide
region of the (B;�)-space, many of these configurations could not form in practice because deconfinement
is forbidden, i.e. the here studied non-�-stable intermediate state cannot be reached.
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I. INTRODUCTION

A general feature of degenerate Fermi systems is that
they become unstable if there exist any attractive interac-
tion at the Fermi surface. As recognized by Bardeen,
Cooper and Schrieffer (BCS) [1] this instability leads to
the formation of a condensate of Cooper pairs and the
appearance of superconductivity. In QCD any attractive
quark-quark interaction will lead to pairing and color
superconductivity, a subject already addressed in the late
1970s and early 1980s [2,3] which came back a few years
ago since the realization that the typical superconducting
gaps in quark matter may be larger than those predicted in
these early works (� as high as�100 MeV) [4]. The phase
diagram of QCD has been analyzed in the light of color
superconductivity and model calculations suggest that the
phase structure is very rich at high densities. Depending on
the number of flavors, the quark masses, the interaction
channels, and other variables many possible �-stable
color-superconducting phases of quark matter are possible
[5–9].

There is at present some indication that the quark-gluon
plasma might have been produced in laboratory [10].
However, it is not yet established whether deconfinement
happens in nature in the high-density, low-temperature
regime that is relevant for neutron stars. Unfortunately,
first principle calculations are not available in this region
of the QCD phase diagram. In turn we shall base our
analysis on phenomenological considerations which could
delineate at least a broad brush picture of the physics
involved. Matter in compact stars should be electrically
neutral and colorless in bulk. Also, any equilibrium con-
figuration of such matter should remain in �-equilibrium.
Satisfying these requirements impose nontrivial relations
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between the chemical potentials of different quarks.
Moreover, such relations substantially influence the pairing
dynamics between quarks, for instance, by suppressing
some color-superconducting phases and by favoring others
[11].

At not very large densities, the appearance of strange
quarks is suppressed because of their finite mass and quark
matter is composed almost completely by quarks u and d.
Pairing between them would be possible if their Fermi
momenta are not very different. The resulting pairing
pattern is the so-called two-flavor color superconductor
(2SC) in which the up-and-down quarks form Cooper pairs
in the color-antitriplet, flavor-singlet, spin-zero channel. In
the conventional picture of the 2SC phase it is assumed that
pairs are formed by up-red (ur) and down-green (dg)
quarks, as well as by up-green (ug) and down-red (dr)
quarks. The other two quarks (ub and db) do not participate
in pairing. A more recent analysis shows that the ground
state of dense up-and-down quark matter under local and
global charge neutrality conditions with �-equilibrium has
at least four possibilities: normal, regular 2SC, gapless 2SC
phases, and mixed phase composed of 2SC phase and
normal components [6]. A new interesting feature of
some of these phases is that pairing is allowed between
particles even in the case �� >� [6].

At sufficiently large densities the value of the chemical
potential exceeds the mass of the strange quarkms. Strange
quarks appear in the mixture, and Cooper pairing can
happen between up, down and strange quarks. Pairing
involving strange quarks is expected to exist if the resulting
gaps (�us and �ds) are larger than �m2

s=�2��, the differ-
ence between the u and s Fermi momenta in the absence of
pairing. Depending on the value of the strange quark mass,
as well as other parameters in the theory, many different
paired configurations are possible. At very high densities it
seems clear that the color-flavor locked phase (CFL) is the
ground state. However, at not very large densities, it is
-1 © 2005 The American Physical Society
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possible that up-and-down quarks form 2SC matter, while
the strange quarks do not participate in pairing, eventually
forming a <ss> condensate with a much smaller gap.
Finally, even more exotic crystalline phases of 1SC quark
matter have been analyzed.

To the best of our knowledge, all previous works about
color superconductivity in compact stars have dealt with
matter in �-equilibrium. This is the situation expected
to appear in strange stars or hybrid stars as soon as
they settle in a stable configuration. However, during the
deconfinement transition in neutron stars, matter is beac
out of equilibrium with respect to weak interactions.
In fact, the transition from �-stable hadron matter to
quark matter in cold neutron stars should occur trough a
quantum nucleation process [12–17]. Quantum fluctua-
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FIG. 1. Schematic comparison of the free energy of hadronic
matter (H), non-�-stable ‘‘just-deconfined’’ matter (Q�), and
�-stable quark matter (Q) for different cases. In the case of panel
a) the transition can never occur inside neutron stars in spite of
the final state (Q) having a lower energy per baryon. As ex-
plained in the text, a direct transition to Q is strongly suppressed.
Since Q� has a larger energy per baryon than H for all pressures
below the central pressure of the maximum-mass hadronic star
(Pmax

c ), deconfinement cannot occur even if the Q phase has a
lower energy. In panels b) and c) the phaseQ� has a lower energy
per baryon than H for some pressures below (Pmax

c ). Therefore,
deconfinement is possible if pressures between P0 and Pmax

c are
reached inside a given neutron star. The difference between
panels b) and c) is the energy per particle at zero pressure
(indicated with a dot for Q and with an asterisk for H). In
b) quark stars are the so-called strange stars, because they can be
made up of quark matter from the center up to the surface (P �
0). In case c) they are hybrid stars, because at zero pressure H
has a lower energy than Q. For a fixed hadronic equation of state,
these possibilities correspond to different values of the parame-
ters of the quark model (the vacuum energy density B and the
superconducting gap �).
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tions could form both virtual drops of unpaired quark
matter (hereafter the Q�unp phase) or virtual drops of
color-superconducting quark matter (Q�� phase). In both
cases, the flavor content of the quark matter virtual drop
must be equal to that of the confined �-stable hadronic
phase at the same pressure (the central pressure of the
hadronic star). In fact, since quark deconfinement and
quark-quark pairing are due to the strong interaction, the
oscillation time ��1

0 of a virtual quark droplet in the
potential energy barrier separating the hadronic from the
quark phase, is of the same order of the strong interaction
characteristic time (�strong � 10�23 s). The latter is many
orders of magnitude smaller than the weak interaction
characteristic time (�weak � 10�8 s). Thus, quark flavor
must be conserved forming a virtual drop of quark matter
[16–20]. Which one of the two kind of droplets (Q�unp or
Q��) will nucleate depends on the value of the correspond-
ing Gibbs free energy per baryon (gunp, g�). In fact, the
latter quantity enters in the expression of the volume term
of the energy barrier separating the confined and decon-
fined phases (see e.g. Eq. (7) in [17], where the Gibbs free
energy per baryon is denoted by �i; i � Q�; H). Clearly,
when g� < gunp the nucleation of a Q�� drop will be
realized.

The direct formation by quantum fluctuations of a drop
of �-stable quark matter (Q phase) is also possible in
principle. However, it is strongly suppressed with respect
to the formation of the non �-stable drop by a factor
�G2N=3

Fermi being N the number of particles in the critical
size quark drop. This is so because the formation of a
�-stable drop will imply the almost simultaneous conver-
sion of�N=3 up-and-down quarks into strange quarks. For
a critical size �-stable nugget at the center of a neutron star
it is found N � 100� 1000, and therefore the factor is
actually tiny. This is the same reason that impedes that an
iron nucleus converts into a drop of strange quark matter,
even in the case in which strange quark matter had a lower
energy per baryon (Bodmer-Witten-Terazawa hypothesis).
Because of this reason it is assumed that a direct transition
to �-stable quark matter is not possible.1 Therefore, the
�-stable stateQ could be reached only after the �-decay of
the intermediate state Q�. This is in agreement with many
other previous works, see e.g. [16–20].
1Notice that the nucleation of an initial quark droplet might be
induced in principle by external influences such as high energy
cosmic rays or neutrinos [13]. However, estimates of the pro-
duction rates of quark droplets by neutrino sparking [21] show
that this mechanism is not likely to drive a neutron to quark
conversion for realistic values of the minimum center of mass
energy necessary to produce a quark-gluon plasma in heavy ion
collisions. Ultra high energy neutrinos would be also harmless
because the outer crust acts as a shield due to the huge cross
section [21]. In this paper we are assuming that the conversion
must proceed trough an intermediate ‘‘two-flavor’’ phase, but
other possibilities cannot be definitely excluded.
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In this context, one question addressed by the present
work is whether the system settles in a paired or in an
unpaired state just after the deconfinement. On the other
hand, notice that although the above mentioned
non-�-stable quark phase is very short-lived, it constitutes
an unavoidable intermediate state that must be reached
before arriving to the final �-stable configuration, e.g.
CFL quark matter (c.f. [22,23]). The second question we
shall address is whether this intermediate phase can even-
tually preclude the transition to the final �-stable state in
spite of the latter having a lower energy. This is because the
Q-phase can be formed only after the nucleation of a real
(i.e critical size) drop of Q�unp or Q�� matter, and its sub-
sequent ‘‘long term’’ (t� �weak � 10�8 s) weak decay
process.
II. DECONFINEMENT OF HADRONIC MATTER
INTO COLOR-SUPERCONDUCTING QUARK

MATTER

Given the uncertainties in the nature of matter at high
densities, the analysis is based on the extrapolation to
higher densities of an hadronic model valid around the
nuclear saturation density �0, and the extrapolation to �0

of a quark model that is expected to be valid only for �!
1. Within this kind of analysis the (in general) different
functional form of both EOSs, induces the phase transition
to be first order. Notice that from lattice QCD calculations
there are indications that the transition is actually first
order in the high-density and low-temperature regime,
although this calculations involve temperatures that are
still larger than those in neutron stars, and do not include
the effect of color superconductivity [24].

Deconfinement is analyzed here as a first order phase
transition that conserves the flavor abundances in both
phases. Therefore, it gives a transitory colorless-quark-
phase that is not in �-equilibrium.

For describing the just-deconfined quark phase we shall
model it as a free Fermi mixture of quarks and leptons and
we will subtract the pairing and the vacuum energy. The
thermodynamic potential can be written as

� � �free
Q ��gap

Q ��L � B; (1)

with

�free
Q �

X
f;c

1

�2

Z kfc

0
�Ecf ��fc	p

2dp; (2)

where Ecf � �p2 �m2
fc�

1=2, and the sum is to be made
over all colors and flavors of the quark mixture, being f �
u; d; s the flavor index, and c � r; g; b the color index.
Confinement is introduced in Eq. (1) by means of the bag
constant B, and �L is the contribution of leptons. Pairing is
included through the term
065021
�gap
Q � �

A

�2 �2 ��2; (3)

which results from Ecf �
������������������������������
p2 �m2 
 �2

p
, by expanding

in Eq. (2) to O��2=�2�. For simplicity, all particles that
pair are assumed to have the same gap �. The mean
chemical potential in Eq. (3) is defined through �� �
N�1P

f;c�fc where the sum is to be made only over
particles that participate of pairing, and N is the number
of different quarks that pair. The Fermi momenta are kfc �

��2
fc �m

2
fc�

1=2. The binding energy of the diquark con-
densate is included by subtracting �2 ��2=�4�2� for every
quasiparticle with gap � [25]. As we shall see below, the
relevant pairing pattern for the deconfinement transition in
neutron stars is ‘‘2SC-like’’, in which dr and ug quarks pair
yielding two quasiparticles with gap �, and ur and dg
quarks pair, yielding two quasiparticles with gap � (c.f.
[25]). Therefore, we shall set A � 1 along this work. Note
that for color-flavor-locked quark matter it is A � 3.

As already emphasized by Rajagopal and Wilczeck [7],
the exact nature of the interaction that generates � is not
relevant to the order we are working. This means that � is
given by the above prescription regardless of whether the
pairing is due to a point like four-Fermi interaction, as in
Nambu-Jona-Lasinio models [26], or due to the exchange
of a gluon, as in QCD at asymptotically high energies. Of
course, the strength and form of the interaction determine
the value of �, and also its dependence with the density.
Lacking of an accurate calculation for �, which may as
large as �100 MeV (and even larger in the presence of an
external magnetic field [27]), we shall keep it as a free
constant parameter.

The thermodynamic quantities are straightforwardly de-
rived from the standard expressions: the pressure is P �
�� and the energy density at zero temperature is given by
" �

P
Q;L�ini ��, where the sum is to be carried over all

quarks and leptons. In particular, the particle number den-
sities nfc � �@�=@�fc are given by

nfc �
k3
fc

3�2 �
2A

N�2 �2 ��; (4)

for the quarks that participate in pairing, and by

nfc �
k3
fc

3�2 ; (5)

for quarks that do not pair. The number density of each
flavor in the quark phase is given by

nf �
X
c

nfc; (6)

and the baryon number density nB by

nB �
1

3

X
fc

nfc �
1

3

X
c

nc �
1

3

X
f

nf: (7)
-3



G. LUGONES AND I. BOMBACI PHYSICAL REVIEW D 72, 065021 (2005)
In order to close the above equations we need to impose
additional physical conditions describing the composition
of the mixture (e.g. a set of conditions on the chemical
potentials). One possibility, extensively employed in the
literature, is �-equilibrium of the quark phase. This con-
dition describes matter a sufficiently large time after de-
confinement (�� �weak � 10�8 s). However, for studying
deconfinement, the relevant timescale is �� �weak. As
already emphasized in [16–20] the appropriate condition
for �� �weak is flavor conservation between hadronic and
deconfined quark matter. This can be written as

YHf � YQf f � u; d; s; L (8)

being YHf  nHf =n
H
B and YQi  nQf =n

Q
B the abundances of

each particle in the hadron and quark phase, respectively,
(we shall omit the superindexes H and Q in the following).
In other words, the just-deconfined quark phase must have
the same ‘‘flavor’’ composition than the �-stable hadronic
phase from which it originated.

Additionally, the deconfined phase must be locally
colorless; therefore, it must be composed by an equal
number or red, green and blue quarks:

nr � ng � nb (9)

being nr, ng and nb the number densities of red, green and
blue quarks, respectively, given by:

nc �
X
f

nfc: (10)

Color neutrality can be automatically fulfilled by imposing
that each flavor must be colorless separately, i.e. nur �
nug � nub, ndr � ndg � ndb, and nsr � nsg � nsb. But in
general this configuration will not allow pairing with a
significant gap. As already stated, for quarks having differ-
ent color and flavor the pairing gap may be as large as
100 MeV, while for particles having the same flavor the gap
is found to be about 2 orders of magnitude smaller (see [25]
and references therein). Pairing is allowed even in the case
�� >� but the corresponding gaps are small [6,28].
Therefore, in order to allow pairing between quarks with
a non negligible gap, the Fermi momenta of at least ur and
dg quarks must be equal (the choice of these two particular
colors and flavors is just a convention). This implies the
equality of the corresponding number densities

nur � ndg: (11)

The above condition represents a state that fulfills all the
physical requirements of the deconfined phase (e.g. is color
and electrically neutral), and should be the actual state (for
�� �weak) if it has the lowest free energy per baryon.
Energy must be paid in order to equal at least two Fermi
seas, but in compensation the pairing energy is recovered.
The gained energy depends on the value of the pairing gap
� and, at least for sufficiently large �, is expected to be
065021
larger than the energy invested to force a pairing pattern.
Also, notice that color conversion of quarks allows the
adjustment of the Fermi seas within a given flavor in a
very short timescale (� �strong), i.e. several orders of mag-
nitude faster than �-equilibration (�strong � �weak).

We emphasize that this phase is not in flavor equilib-
rium. After a weak interaction timescale this transitory
pairing pattern will be abandoned by the system in favor
of the lowest-energy �-stable configuration. Depending on
the density, the lowest energy state may be LOFF, gapless
2SC, gapless CFL, standard CFL, (to name just some
possibilities) as extensively discussed in the literature.
III. APPLICATION TO SIMPLIFIED EQUATIONS
OF STATE

A. Deconfinement of pure neutron matter

A simple solution can be found in the case of the
deconfinement of pure neutron matter, since strange quarks
and electrons are not present in the hadronic gas. First, we
apply the colorless conditions and flavor conservation in-
troduced in the previous section, in order determine the
abundances of each quark species. In order to allow pairing
of at least two different quarks species in the just-
deconfined phase, we impose the condition of Eq. (11),
i.e. nur � ndg. Using one of the colorless conditions (nr �
ng) it is found that ndr � nug, implying that these quarks
can also pair with a significant gap. From the remaining
colorless condition (nr � nb) it is found nur � ndr �
nub � ndb. The condition of flavor conservation states
nd � 2nu; therefore, ndr � ndg � ndb � 2�nur � nug �
nub�. Introducing the ratio x � nug=nur we find from the
above equations:

nub � 0 (12)

ndb
nur
� 1� x: (13)

Therefore, for massless particles at T � 0 the chemical
potentials are related by:

�ug � �dr � x1=3�dg � x1=3�ur (14)

�ub � 0 (15)

�db � �1� x�1=3�ur: (16)

With this configuration, the pressure P� and the Gibbs free
energy per baryon g� � �

P
fcnfc�fc�=nB take the simple

form

P� �
�2�1� x4=3� � �1� x�4=3	�4

ur

12�2

�
�1� x2=3��2�2

ur

2�2 � B; (17)
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g� �
�2�1� x4=3� � �1� x�4=3	�ur

1� x
: (18)

Minimizing g� � g��P�; x� with respect to x it is found
that the minimum correspond to x � 1. Therefore, quarks
ur � dg and ug � dr pair in a ‘‘2SC-like’’ pattern like the
one shown in Fig. 2.

In order to determine whether the system settles in a
paired or in an unpaired configuration we compare the
Gibbs free energy per baryon of the above configuration
with the Gibbs free energy per baryon of an unpaired quark
gas (both evaluated at the same pressure, and with the same
flavor composition). For unpaired quark matter the ground
state of the colorless mixture (compatible with flavor con-
servation) is shown in Fig. 2, and is described by ndr �
ndg � ndb � 2nur � 2nug � 2nub �

2
3nB. The Gibbs free

energy per baryon reads

gunp � �4�
2�1� 24=3�3�P� B�	1=4: (19)

The results are shown in Fig. 2 where the difference g� �

gunp is plotted as a function of pressure for different values
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FIG. 2. Deconfinement of pure neutron matter. Upper panel:
Sketch of the lowest energy configuration of the paired and
unpaired phases just after the deconfinement. Lower panel:
The difference in the Gibbs energy per particle between paired
and unpaired quark matter. For positive values of g� � gunp the
preferred phase just after the deconfinement is the unpaired one
while for negative values it is the paired one.
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of the parameter �. For large enough values of � the
energy of the pairing gap is able to compensate the increase
of the free energy resulting from equating the Fermi seas of
the particles that pair. It is also worth noting that since we
are comparing the Gibbs energy per baryon of different
phases at equal pressures (alternatively, we could compare
the pressure at fixed Gibbs energy per baryon), the results
depend on the bag constant B. This dependence is not
found in the comparisons for �-stable quark matter made
in [25] because the bag constant B cancels out when
comparing �F at fixed �. Note that �F is not the relevant
thermodynamic function for the analysis of the deconfine-
ment transition in neutron stars performed here.

B. Deconfinement of n-p-e� gas

Next we consider the deconfinement of a charge neutral
uniform system of neutrons, protons and electrons (nn, np
and ne are the associated number densities). As discussed
above, we impose nur � ndg in order to allow pairing.
Then, color charge neutrality imposes ndr � nug and nur �
ndr � nub � ndb. The resulting configuration allows pair-
ing of quarks ur and dg with a gap �, and of ug and dr with
a gap that is assumed to have the same value.

On the other hand, we can put the condition of flavor
conservation in the following simple form

nd � �nu; (20)

being �  YHd =Y
H
u (c.f. Eq. (8)). In the case of the n-p-e�

gas, the parameter � can be expressed in terms of the
proton fraction Yp � np=nB of nuclear matter as � � �2�
Yp�=�1� Yp�. It is easy to check that � � 2 corresponds to
the deconfinement of pure neutron matter, � � 1 to sym-
metric nuclear matter and � � 0:5 to the unrealistic case of
pure proton matter. We emphasize that in the case of
�-stable n-p-e� system, � is a function of density (or
pressure) that depends only on the state of the hadronic
matter that deconfines.

Therefore, flavor conservation states that ndr � ndg �
ndb � ��nur � nug � nub�. In addition, the condition of
Eq. (8) applied to electrons yields:

3ne � 2nu � nd; (21)

which confirms that flavor conservation automatically
guarantees electric charge conservation. Finally, we im-
pose that 1) ndr � nug in order to allow for paring between
quarks dr with ug, and 2) nur � ndg in order to allow for
paring between quarks ur with dg.

Introducing the ratio x � nug=nur, and using Eqs. (20)
and (21) we find the particle number densities of each
flavor and color in the paired phase as a function of one
of the particle densities (e.g. nur), the parameter � that
depends only of the state of the hadronic phase, and the
free parameter x:
-5
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nug � xnur (22)

nub � �1� x�
2� �
1� �

nur (23)

ndr � xnur (24)

ndg � nur (25)

ndb � �1� x�
2�� 1

1� �
nur: (26)

Note that the free parameter x that can be eliminated by
minimizing the Gibbs energy per baryon g� �
n
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ted line).

065021
�
P
fcnfc�fc ��ene�=nB with respect to x at constant

pressure P�. The minimization gives x � 1, which means
that the configuration of the paired phase that is energeti-
cally preferred is the one having ndr � nug � nur � ndg,
as sketched in the upper panel of Fig. 2. In Fig. 3 we
compare the Gibbs energy per baryon of the ‘‘2SC-like’’
paired phase and unpaired matter for different values of the
bag constant B and the pairing gap �. Comparing with the
pure neutron matter case of Fig. 2 it can be noticed that an
increase in the proton fraction of the hadronic phase favors
the formation of a paired quark phase after deconfinement.
IV. DECONFINEMENT OF COLD HADRONIC
MATTER

In the following we analyze the deconfinement of a
general hadronic system including strange hadrons and
then we apply the results to a realistic EOS in order to
study deconfinement inside cold neutron stars.

A. Deconfinement of a general hadronic equation
of state
(i) F
-6
lavor conservation: After deconfinement the par-
ticle densities of quarks u, d and s are the same as
in the hadronic phase and can be determined by
Eqs. (8). Another equivalent way of expressing the
flavor conservation condition is in terms of two
parameters � and 	:

nd � �nu: (27)

ns � 	nu: (28)

where �  YHd =Y
H
u and 	  YHs =YHu depend only

on the composition of the hadronic phase. These
expressions are valid for any hadronic EOS. For
hadronic matter containing n, p, �, ��, �0, ��,
��, and �0, we have

� �
np � 2nn � n� � n�0 � 2n�� � n��

2np � nn � n� � 2n�� � n�0 � n�0

; (29)

	 �
n� � n�� � n�0 � n�� � 2n�0 � 2n��

2np � nn � n� � 2n�� � n�0 � n�0

:

(30)

As typical values, we notice that 	 � 0 corre-
sponds to zero strangeness, and that at the center
of the maximum-mass star (calculated with the
hadronic equation of state of Glendenning and
Moszkowski GM1 [29]) we have � � 1:15 and
	 � 0:85. Notice that � and 	 determine univo-
cally the number of electrons present in the system
through electric charge neutrality of the deconfined
phase:

3ne � 2nu � nd � ns: (31)
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ug, and 2) nur � ndg in order to allow for paring
between quarks ur with dg.
(iii) C
olor neutrality: The condition nr � ng leads im-
mediately to nsr � nsg. Also, nr � nb leads to
2nur � nsr � nub � ndb � nsb.
The above conditions lead to the pairing pattern sche-
matically shown in the upper panel of Fig. 4. Note that
these conditions still leave a degree of freedom that can be
fixed by introducing an additional parameter h relating the
particle number densities of two arbitrary quark species.
Therefore, it is possible to impose the equality of two
arbitrary Fermi seas in order to allow pairing between
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them. We have analyzed the 10 possible combinations
and verified that 6 of them lead to a negative value of the
particle number density of at least one quark species. The
other 4 possibilities allow pairing of particles that do not
have different color and flavor, allowing pairing with a
negligible gap. For this reason, it is more convenient to
introduce h  nsb=nsr, and minimize the free energy with
respect to h.

Using the above Eqs. we find the following linear set of
equations:

2nur � nsr � nub � ndb � nsb (32)

2nur � ndb � ��2nur � nub� (33)

2nsr � hnsr � 	�2nur � nub�; (34)

from which we obtain the number densities of each quark
species in the paired phase as functions of only four
quantities:

nub � 2
4� 	� 2h� 	h� 2�� h�
2� 	� h� 	h� 2�� h�

nur (35)

ndb � 2
�2� 	� h� 	h� 4�� 2h�

2� 	� h� 	h� 2�� h�
nur (36)

nsb �
6	h

2� 	� h� 	h� 2�� h�
nur (37)

nsr �
6	

2� 	� h� 	h� 2�� h�
nur (38)

ne �
2�2� h��2� 	� ��

2� 	� h� 	h� 2�� h�
nur: (39)

Remember that the other particle densities are given by
nug � ndr � ndg � nur, nsg � nsr, and nsb � hnsr.

The pressure and Gibbs energy per baryon of the paired
deconfined phase can also be written in terms of the same
parameters:

P� �
X
fc

k4
fc

12�2 �
�4
e

12�2 �
1

�2 ��2�2 � B; (40)

g� �
X
fc

nfc�fc

nB
�
�ene
nB

; (41)

where kfc � ��2
fc �m

2
fc�

1=2, �� � �ur, the chemical po-
tentials �fc are obtained from

nfc �
�3
fc

3�2 �
2�2 ��

�2 fc � ur; ug; dr; dg (42)

�fc � �3�2nfc�1=3 fc � ub; db (43)

�fc � ��3�2nfc�2=3 �m2
s	

1=2 fc � sr; sg; sb: (44)

The minimization of g� with respect to h gives h � 1
and therefore the number densities are given by the follow-
ing equations:
-7
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FIG. 5. The parameter space � vs B indicating the regions for
which deconfinement is possible inside the maximum-mass
neutron star with the GM1 EOS [29] (Mmax � 1:8M�). We
also indicate whether the final state reached after
�-equilibration of the just-deconfined phase has energy per
baryon less or greater than the neutron mass (i.e. leads to the
formation of strange stars or hybrid stars, respectively). We
adopted ms � 150 MeV for the strange quark mass. If �B;��
fall inside the dashed region, deconfinement is not possible even
at the center of the maximum-mass star with this EOS. For
�B;�� inside the gray region the just-deconfined unpaired phase
has always less energy per baryon than the just-deconfined
paired phase. For �B;�� in the white region the just-deconfined
phase is always paired quark matter. The regions met at a point
of coordinates (B�;��) indicated with an asterisk and shown in
Table I for different values of the strange quark mass ms. The
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nub �
4� 2�
1� �

nur (45)

ndb �
4�� 2

1� �
nur (46)

nsb �
2	

1� �
nur (47)

ne �
2�2� 	� ��

1� �
nur: (48)

with nug � ndr � ndg � nur and nsg � nsr � nsb.
Eqs. (40)–(48) constitute the equations of state for just-
deconfined quark matter. In the lower panel of Fig. 4 we
show �g for particular values of the parameters (� � 1:6,
	 � 0:3).

B. Deconfinement transition in neutron stars

The above conditions allow us to study the regions of the
parameter space � versus B where the deconfinement
transition is possible inside neutron stars (see Figs. 5 and
6). In this analysis we shall employ the equations of state of
Glendenning and Moszkowski GM1 for the hadronic phase
[29]. Depending on the value of B and � there are three
possibilities: 1) deconfinement is not possible at the center
of the neutron star, 2) deconfinement to an unpaired phase
is preferred, and 3) deconfinement to a paired phase is
preferred. These regions are limited by the following
curves:
maximum of the gray region is indicated with a dot, and the
(i) A

corresponding value �max is shown in Table I for different ms.
curve along which the three phases have the same
state, that is, gH�P;	; �� � gunp�P;	; �� �
g��P;	; �� evaluated at the same pressure PH �
Punp � P� and with the same ‘‘quark composi-
tion’’, i.e. 	H � 	unp � 	� and �H � �unp � ��.
This gives the solid line in Figs. 5 and 6 separating
the gray and white regions.
(ii) A
 curve along which g, P, � and 	 of quark matter
has the same value than at the center of the hadronic
neutron star (in Figs. 5 and 6: dashed curve for
paired quark matter and solid vertical line for un-
paired quark matter). The position of this curve
depends on the mass of the neutron star. In Fig. 5
we show the results for the maximum-mass had-
ronic star within the GM1 EOS (1.8 M�), and in
Fig. 6 for a neutron star with 1.6 M�.
FIG. 6. The same as Fig. 5 but for a 1.6 M� neutron star. The
solid curve is the same as in Fig. 5 but the dashed curve is
strongly shifted to the left, i.e., the region of the parameter space
that allows deconfinement for a 1.6 M� neutron star is much
smaller than for a 1.8 M� neutron star. Notice that the larger part
of the available parameter space would lead to the formation of
strange stars rather than hybrid stars.
The regions meet at a point of coordinates (B�;��)
indicated with an asterisk in Figs. 5 and 6. The position
of this point (that characterizes rather well the size of the
regions) depends on the assumed value of the strange quark
mass ms, and on the mass of the neutron star. In Table I we
show the dependence of (B�;��) on the assumed value of
the strange quark mass ms for the 1.8 M� neutron star of
Fig. 5. We also indicate with a dot the maximum of the gray
region (which is the same in Figs. 5 and 6) and give the
corresponding value �max in Table I.
065021-8



TABLE I. We show the coordinates of the point (B�;��)
(indicated with an asterisk in Fig. 5) for different values of the
strange quark mass ms. We also list the coordinate �max of the
point indicated with a dot in Fig. 5. The qualitative shape of
Fig. 5 remains the same in all cases, but the size of each region
changes according with the representative points given here.

ms (MeV) B� (MeV fm�3) �� (MeV) �max (MeV)

0 323 34 78
100 300 37 80
150 275 49 85
200 241 68 97

DECONFINEMENT AND COLOR SUPERCONDUCTIVITY . . . PHYSICAL REVIEW D 72, 065021 (2005)
We have also included in the parameter space the curve
separating the regions in which �-stable quark matter has
an energy per baryon smaller than the neutron mass from
the region in which 
=nB�P � 0�>mn (for simplicity,
paired �-stable quark matter is assumed in all cases to be
CFL). To the left of this curve the final state after
�-equilibration is absolutely stable quark matter leading
to the formation of strange stars. To the right, �-stable
quark matter is restricted to the core of neutron stars
(hybrid stars). The position of this curve also depends on
the value of ms. In Figs. 5 and 6 it is shown for ms �
150 MeV (for more details the reader is referred to [30]).

V. DISCUSSION

In this paper we have analyzed the deconfinement tran-
sition from hadronic matter to quark matter, and investi-
gated the role of color superconductivity in this process.
We have deduced the equations governing deconfinement
when quark pairing is allowed and, employing a realistic
equation of state for hadronic matter, we have found the
regions of the parameter space B versus � where the
deconfinement transition is possible inside neutron stars.
The main results are shown in Figs. 5 and 6 and were
explained in the last section. In the following we discuss
some implications for neutron star structure.

Stars containing quark phases fall into two main classes:
hybrid stars (where quark matter is restricted to the core)
and strange stars (made up completely by quark matter).
This structural characteristic depends on whether the en-
ergy per baryon of �-equilibrated quark matter at zero
pressure and zero temperature is less than the neutron
mass (the so-called ‘‘absolute stability’’ condition). In the
absence of pairing, quark matter in �-equilibrium has an
energy per baryon (at P � 0) smaller than the neutron
mass only if B is in the range 57 MeV fm�3 & B &

90 MeV fm�3. Within this range of B, unpaired �-stable
quark matter is the so-called strange quark matter, and it is
possible the existence of stars made up entirely by the
quark phase. For B * 90 MeV fm�3 unpaired �-stable
quark matter at P � 0 and T � 0 decays into hadrons,
and therefore it can be present only in the core of neutron
stars. The size of the core (if any) depends on the value of
065021
B: the larger the value of B, the smaller the size of the
quark matter core (for a given neutron star mass).

Pairing enlarges substantially the region of the parame-
ter space where �-stable quark matter has an energy per
baryon smaller than the neutron mass [30,31]. Although
the gap effect does not dominate the energetics, being of
the order (�=��2� a few percent, the effect is substantially
large near the zero-pressure point (which determines the
stability and also the properties of the outer layers and
surface of the star). As a consequence, a ‘‘CFL strange
matter’’ is allowed for the same parameters that would
otherwise produce unbound strange matter without pairing
[30]. The line separating strange matter from nonabso-
lutely stable quark matter is shown in dotted line in
Figs. 5 and 6, according to [30].

Concerning just-deconfined quark matter (i.e. not in
�-equilibrium) it has been already shown that the transi-
tion to unpaired quark matter is not possible in a 1.6 M�
neutron star if the Bag constant is B * 126 MeV fm�3,
because the transition pressure is never reached inside the
star, even in the proto-neutron star phase [20]. The results
when pairing is allowed have been shown in the previous
section, where we have shown the ‘‘deconfinement’’ pa-
rameter space for the maximum-mass neutron star with the
GM1 EOS (1.8 M�), and for a 1.6 M� neutron star. As it is
evident from Figs. 5 and 6, deconfinement is facilitated for
large � (i.e. it is possible for a larger range of B). This
result can be roughly understood if we think paired matter
as unpaired matter with an effective bag constant depend-
ing on the chemical potential (or on density): Beff��; �� �

B�A
�2 �2 ��2. The minus sign of the condensation term in

the previous expression allows deconfinement for larger
values of B. Nevertheless, notice that this simple interpre-
tation is not strictly correct because the chemical equilib-
rium is different in paired and unpaired phases. In fact, due
to the more convenient chemical equilibrium, the unpaired
phase is energetically preferred for small �.

For a large part of the deconfined parameter space � vs.
B, �-stable quark matter has (at any pressure) an energy
per baryon smaller than the neutron mass. The situation
corresponds to the one sketched in Fig. 1(b). Therefore, if
quark stars are formed, they would be made up of quark
matter from the center up to the surface. In Figs. 5 and 6
this corresponds to the part of the gray and the white
regions to the left of the dotted line.

To the right of the dotted line of Figs. 5 and 6 stars
containing quark phases are hybrid. The situation corre-
sponds to the one sketched in Fig. 1(c), i.e. the hadronic
phase is preferred at low pressures. From the point of view
of the structural properties, stable hybrid stars have been
found to be possible in a wide region of the parameter
space [32]. Nevertheless, notice that these configurations
could not form in practice if they fall in the region where
deconfinement is forbidden (dashed region of Figs. 5 and
6). That is, for a given hadronic star, there exist a stable
-9
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hybrid star with the same baryonic mass that has a lower
energy (gravitational mass). Nevertheless, the hadronic
star cannot deconfine because the here studied
non-�-stable intermediate state has a larger energy per
baryon, as shown schematically in Fig. 1(a). This is the
case, for example, if B � 153 MeV fm�3 (B1=4 �
185 MeV) as can be seen by comparing with the results
of Fig. 5 of the paper by Alford and Reddy [32]: for ms �
150 MeV, B � 153 MeV fm�3 and any reasonable value
of �, stable hybrid configurations with maximum masses
up to 1.6M� are found in [32]. However, in these cases the
pairs (B;�) fall comfortably inside the dashed region of
Fig. 6 where deconfinement is not allowed. For the same
value of B, heavier stars (� 1:8 M�) could deconfine,
since (B;�) would be inside the gray region of Fig. 5,
but the resulting configuration would be not structurally
stable and would form a black hole (c.f. [32]). Although the
EOSs are different in [32] and in the present work, this
should not affect this generic trend. Notice that qualita-
tively similar results have been found in [17,20] for un-
paired quark matter.
065021
A stated in the Introduction, the transition from nuclear
matter to quark matter proceeds by bubble nucleation.
However, notice that for large B the results with typical
surface tension � � 10–30 MeV fm�2 do not differ much
from the case in bulk [16,17]. This means that we do not
expect that the dashed region of Figs. 5 and 6 will change
significantly when including surface effects. Anyway, even
if the surface tension were very large, the here presented
bulk case is still relevant because it gives a lower limit for
the transition: i.e., if deconfinement is not possible in bulk,
it will be even more difficult when including surface
effects. In other words, the dashed line of Figs. 5 and 6
could move to the left in a more refined study, but not to the
right. A complete study of the astrophysical implications is
in progress and will be published elsewhere.
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