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Phase diagram of three-flavor quark matter under compact star constraints
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The phase diagram of three-flavor quark matter under compact star constraints is investigated within a
Nambu–Jona-Lasinio model. Global color and electric charge neutrality is imposed for �-equilibrated
superconducting quark matter. The constituent quark masses and the diquark condensates are determined
self-consistently in the plane of temperature and quark chemical potential. Both strong and intermediate
diquark coupling strengths are considered. We show that in both cases, gapless superconducting phases do
not occur at temperatures relevant for compact star evolution, i.e., below T � 50 MeV. The stability and
structure of isothermal quark star configurations are evaluated. For intermediate coupling, quark stars are
composed of a mixed phase of normal (NQ) and two-flavor superconducting (2SC) quark matter up to a
maximum mass of 1:21 M�. At higher central densities, a phase transition to the three-flavor color flavor
locked (CFL) phase occurs and the configurations become unstable. For the strong diquark coupling we
find stable stars in the 2SC phase, with masses up to 1:33 M�. A second family of more compact
configurations (twins) with a CFL quark matter core and a 2SC shell is also found to be stable. The twins
have masses in the range 1:30 . . . 1:33 M�. We consider also hot isothermal configurations at temperature
T � 40 MeV. When the hot maximum mass configuration cools down, due to emission of photons and
neutrinos, a mass defect of 0:1 M� occurs and two final state configurations are possible.
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I. INTRODUCTION

Theoretical investigations of the QCD phase diagram at
high densities have recently gained momentum due to
results of nonperturbative low-energy QCD models [1–3]
of color superconductivity in quark matter [4,5]. These
models predict that the diquark pairing condensates are
of the order of 100 MeV and a remarkably rich phase
structure has been identified [6–9]. The main motivation
for studying the low-temperature domain of the QCD
phase diagram is its possible relevance for the physics of
compact stars [10–12]. Observable effects of color super-
conducting phases in compact stars are expected, e.g., in
the cooling behavior [13–18], magnetic field evolution
[19–22], and in burst-type phenomena [23–27].

The most prominent color superconducting phases with
large diquark pairing gaps are the two-flavor scalar diquark
condensate (2SC) and the color-flavor locking (CFL) con-
densate. The latter requires approximate SU(3) flavor sym-
metry and occurs therefore only at rather large quark
chemical potentials, �q > 430–500 MeV, of the order of
the dynamically generated strange quark massMs, whereas
the 2SC phase can appear already at the chiral restoration
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transition for �q > 330–350 MeV [28–31]. Note that the
quark chemical potential in the center of a typical compact
star is expected to not exceed a value of �500 MeV, so
that the volume fraction of a strange quark matter phase
will be insufficient to entail observable consequences.
However, when the strange quark mass is considered not
dynamically, but as a free parameter independent of the
thermodynamical conditions, it has been shown that for not
too large Ms the CFL phase dominates over the 2SC phase
[32,33]. Studies of the QCD phase diagram have recently
been extended to the discussion of gapless CFL (gCFL)
phases for fixed Ms in [34–36] and for dynamical Ms at
zero temperature in [31]. The gapless phases occur when
the asymmetry between Fermi levels of different flavors is
large enough to allow for zero energy excitations while a
nonvanishing diquark condensate exists. They have been
found first for the 2SC phase (g2SC) within a dynamical
chiral quark model [37,38].

Any scenario for compact star evolution that is based on
the occurrence of quark matter relies on the assumptions
about the properties of this phase. It is therefore of prior
importance to obtain a phase diagram of three-flavor quark
matter under compact star constraints with self-
consistently determined dynamical quark masses. In the
present paper we will employ the Nambu–Jona-Lasinio
(NJL) model to delineate the different quark matter phases
in the plane of temperature and chemical potential. We also
address the question whether CFL quark matter and gap-
-1 © 2005 The American Physical Society
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less phases are likely to play a role in compact star
interiors.

II. MODEL

In this paper, we consider an NJL model with quark-
antiquark interactions in the color singlet scalar/pseudo-
scalar channel, and quark-quark interactions in the scalar
color antitriplet channel. We neglect the less attractive
interaction channels, e.g., the isospin-singlet channel,
which could allow for weak spin-1 condensates. Such
condensates allow for gapless excitations at low tempera-
tures and could be important for the cooling behavior of
compact stars. However, the coupling strengths in these
channels are poorly known and we therefore neglect them
here. The Lagrangian density is given by

L � �qi��i@6 �ij��� �M
0
ij��� ��ij;���0�qj�

�GS

X8

a�0

�� �q�afq�
2 � � �qi�5�

a
fq�

2	

�GD

X
k;�

�� �qi��ijk����q
C
j��� �q

C
i0�0�i0j0k��0�0�qj0�0 �

� � �qi�i�5�ijk����q
C
j��� �q

C
i0�0i�5�i0j0k��0�0�qj0�0 �	;

(1)

where M0
ij � diag�m0

u; m
0
d; m

0
s� is the current quark mass

matrix in flavor space and �ij;�� is the chemical potential
matrix in color and flavor space. Due to strong and weak
interactions, the various chemical potentials are not inde-
pendent. In the superconducting phases a U�1� gauge
symmetry remains unbroken [39], and the associated
charge is a linear combination of the electric charge, Q,
and two orthogonal generators of the unbroken SU�2�c
symmetry. Hence, there are in total four independent
chemical potentials

�ij;�� � ���ij �Q�Q���� � �T3�3 � T8�8��ij; (2)

where Q � diag�2=3;�1=3;�1=3� is the electric charge
in flavor space, and T3 � diag�1;�1; 0� and T8 �

diag�1=
���
3
p
; 1=

���
3
p
;�2=

���
3
p
� are the generators in color

space. The quark number chemical potential, �, is related
to the baryon chemical potential by � � �B=3. The quark
fields in color, flavor, and Dirac spaces are denoted by qi�
and �qi� � qyi��

0. �af are Gell-Mann matrices acting in
flavor space. Charge conjugated quark fields are denoted
by qC � C �qT and �qC � qTC, where C � i�2�0 is the
Dirac charge conjugation matrix. The indices �, �, and
� represent colors (r � 1, g � 2 and b � 3), while i, j,
and k represent flavors (u � 1, d � 2, and s � 3). GS and
GD are dimensionful coupling constants that must be de-
termined by experiments.

Typically, three-flavor NJL models use a ’t Hooft deter-
minant interaction that induces a UA�1� symmetry breaking
in the pseudoscalar isoscalar meson sector, which can be
065020
adjusted such that the �–�0 mass difference is described.
This realization of the UA�1� breaking leads to the impor-
tant consequence that the quark condensates of different
flavor sectors get coupled. The dynamically generated
strange quark mass contains a contribution from the chiral
condensates of the light flavors. There is, however, another
possible realization of the UA�1� symmetry breaking that
does not arise on the mean-field level, but only for the
mesonic fluctuations in the pseudoscalar isoscalar channel.
This is due to the coupling to the nonperturbative gluon
sector via the triangle anomaly, see, e.g., [40–42]. This
realization of the �–�0 mass difference gives no contribu-
tion to the quark thermodynamics at the mean-field level,
which we will follow in this paper. Up to now it is not
known, which of the two UA�1� breaking mechanisms that
is the dominant one in nature. In the present exploratory
study of the mean-field thermodynamics of three-flavor
quark matter, we will take the point of view that the
’t Hooft term might be subdominant and can be disre-
garded. One possible way to disentangle both mechanisms
is due to their different response to chiral symmetry resto-
ration at finite temperatures and densities. While in heavy-
ion collisions only the finite temperature aspect can be
systematically studied [43], the state of matter in neutron
star interiors may be suitable to probe the UA�1� symmetry
restoration and its possible implications for the quark
matter phase diagram at high densities and low tempera-
tures. A comparison of the results presented in this work
with the alternative treatment of the phase diagram of
three-flavor quark matter including the ’t Hooft determi-
nant term, see [44], may therefore be instructive.

The mean-field Lagrangian is

LMF � �qi��i@6 �ij��� � �M
0
ij � 4GSh �qi�qj�i�ij����

��ij;���0	qj� � 2GS

X
i

h �qiqii2 �
X
k;�

j�k�j
2

4GD

�
1

2
�qi��̂ij;��q

C
j� �

1

2
�qCi��̂yij;��qj�; (3)

�̂ ij;�� � 2GDi�5�����ijkh �qi0�0i�5��0�0��i0j0kqCj0�0 i

� i�5�����ijk�k�: (4)

We define the chiral gaps

	i � �4GSh �qiqii; (5)

and the diquark gaps

�k� � 2GDh �qi�i�5�����ijkq
C
j�i: (6)

The chiral condensates contribute to the dynamical
masses of the quarks and the constituent quark mass matrix
in flavor space is M � diag�m0

u �	u;m
0
d �	d;m

0
s �

	s�, where m0
i are the current quark masses. For finite

current quark masses the U�3�L 
U�3�R symmetry of
-2
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the Lagrangian is spontaneously broken and only approxi-
mately restored at high densities.

The diquark gaps, �k�, are antisymmetric in flavor and
color, e.g., the condensate corresponding to �ur is created
by green down and blue strange quarks. Because of this
property, the diquark gaps can be denoted with the flavor
indices of the interacting quarks

�ur � �ds; �dg � �us; �sb � �ud: (7)

After reformulating the mean-field lagrangian in 8-
component Nambu-Gorkov spinors [45,46] and perform-
ing the functional integrals over Grassman variables [47]
we obtain the thermodynamic potential

��T;�� �
	2
u �	2

d �	
2
s

8GS
�
j�udj

2 � j�usj
2 � j�dsj

2

4GD

� T
X
n

Z d3p

�2
�3
1

2
Tr ln

�
1

T
S�1�i!n; ~p�

�
��e ��0: (8)

Here S�1�p� is the inverse propagator of the quark fields at
four momentum p � �i!n; ~p�,

S�1�i!n; ~p� �
p6 �M���0 �̂

�̂y p6 �M���0

" #
; (9)

and !n � �2n� 1�
T are the Matsubara frequencies for
fermions. The thermodynamic potential of ultrarelativistic
electrons,

�e � �
1

12
2 �
4
Q �

1

6
�2
QT

2 �
7

180

2T4; (10)

has been added to the potential, and the vacuum contribu-
tion,

�0 � ��0; 0�

�
	2

0u �	
2
0d �	

2
0s

8GS
� 2Nc

X
i

Z d3p

�2
�3

�������������������
M2
i � p

2
q

;

(11)

has been subtracted in order to get zero pressure in vacuum.
Using the identity Trln�D� � lndet�D� and evaluating the
determinant (see Appendix A), we obtain

lndet
�

1

T
S�1�i!n; ~p�

�
� 2

X18

a�1

ln
�
!2
n � �a� ~p�

2

T2

�
: (12)

The quasiparticle dispersion relations, �a� ~p�, are the ei-
genvalues of the Hermitian matrix,

M �
��0 ~� � ~p��0M�� �0�̂C

�0C�̂y ��0 ~�T � ~p��0M��

" #
;

(13)
065020
in color, flavor, and Nambu-Gorkov space. This result is in
agreement with [33,44]. Finally, the Matsubara sum can be
evaluated on closed form [47],

T
X
n

ln
�
!2
n � �2

a

T2

�
� �a � 2T ln�1� e��a=T�; (14)

leading to an expression for the thermodynamic potential
on the form

��T;�� �
	2
u �	2

d �	
2
s

8GS
�
j�udj

2 � j�usj
2 � j�dsj

2

4GD

�
Z d3p

�2
�3
X18

a�1

��a � 2T ln�1� e��a=T��

��e ��0: (15)

It should be noted that (14) is an even function of �a, so the
signs of the quasiparticle dispersion relations are arbitrary.
In this paper, we assume that there are no trapped neutri-
nos. This approximation is valid for quark matter in neu-
tron stars, after the short period of deleptonization is over.

Equations (10), (11), (13), and (15) form a consistent
thermodynamic model of superconducting quark matter.
The independent variables are � and T. The gaps, 	i, and
�ij, are variational order parameters that should be deter-
mined by minimization of the grand canonical thermody-
namical potential, �. Also, quark matter should be locally
color and electric charge neutral, so at the physical minima
of the thermodynamic potential the corresponding number
densities should be zero

nQ � �
@�

@�Q
� 0; (16)

n8 � �
@�

@�3
� 0; (17)

n3 � �
@�

@�8
� 0: (18)

The pressure, P, is related to the thermodynamic potential
by P � �� at the global minima of �. The quark density,
entropy and energy density are then obtained as derivatives
of the thermodynamical potential with respect to �, T and
1=T, respectively.

III. RESULTS

The numerical solutions to be reported in this Section
are obtained with the following set of model parameters,
taken from Table 5.2 of Ref. [8] for vanishing ’t Hooft
interaction,

m0
u;d � 5:5 MeV; (19)
-3
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FIG. 2 (color online). Gaps and dynamical quark masses as
functions of � at T � 0 for strong diquark coupling, � � 1.
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m0
s � 112:0 MeV; (20)

GS�2 � 2:319; (21)

� � 602:3 MeV: (22)

With these parameters, the following low-energy QCD
observables can be reproduced: m
 � 135 MeV, mK �
497:7 MeV, f
 � 92:4 MeV. The value of the diquark
coupling strength GD � �GS is considered as a free pa-
rameter of the model. Here we present results for � � 0:75
(intermediate coupling) and � � 1:0 (strong coupling).

A. Quark masses and pairing gaps at zero temperature

The dynamically generated quark masses and the di-
quark pairing gaps are determined self-consistently at the
absolute minima of the thermodynamic potential, in the
plane of temperature and quark chemical potential. This is
done for both the strong and the intermediate diquark
coupling strengths. In Figs. 1 and 2 we show the depen-
dence of masses and gaps on the quark chemical potential
at T � 0 for � � 0:75 and � � 1:0, respectively. A char-
acteristic feature of this dynamical quark model is that the
critical quark chemical potentials where light and strange
quark masses jump from their constituent mass values
down to almost their current mass values do not coincide.
With increasing chemical potential the system undergoes a
sequence of two transitions: (1) vacuum ! two-flavor
quark matter, (2) two-flavor ! three-flavor quark matter.
The intermediate two-flavor quark matter phase occurs
within an interval of chemical potentials typical for com-
pact star interiors. While at intermediate coupling the
asymmetry between the up and down quark chemical
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FIG. 1 (color online). Gaps and dynamical quark masses as
functions of � at T � 0 for intermediate diquark coupling, � �
0:75.
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potentials leads to a mixed NQ-2SC phase below tempera-
tures of 20–30 MeV, at strong coupling the pure 2SC phase
extends down to T � 0. Simultaneously, the limiting
chemical potentials of the two-flavor quark matter region
are lowered by about 40 MeV. Three-flavor quark matter is
always in the CFL phase where all quarks are paired. The
robustness of the 2SC condensate under compact star con-
straints, with respect to changes of the coupling strength, as
well as to a softening of the momentum cutoff by a form
factor, has recently been investigated with a different pa-
rametrization [48]. The results at low temperatures are
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FIG. 3 (color online). Chemical potentials �Q and�8 at T � 0
for both values of the diquark coupling, � � 0:75 and � � 1.
All phases considered in this work have zero n3 color charge for
�3 � 0. Hence �3 is omitted in the plot.
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similar: for � � 0:75 and the NJL form factor the 2SC
condensate does not occur for moderate chemical poten-
tials, while for � � 1:0 it occurs simultaneously with
chiral symmetry restoration. Figure 3 shows the corre-
sponding dependences of the chemical potentials conju-
gate to electric (�Q) and color (�8) charges.

B. Dispersion relations and gapless phases

In Fig. 4 we show the quasiparticle dispersion relations
of different excitations at two points in the phase diagram:
(I) the CFL phase (left panel), where there is a finite energy
gap for all dispersion relations; (II) the gCFL phase (right
panel), where the energy spectrum is shifted due to the
assymetry in the chemical potentials, such that the CFL
gap is zero and (gapless) excitations with zero energy are
possible. A necessary condition for the occurrence of gap-
less superconducting phases is that the chemical potential
difference of the quark species to be paired equals or
exceeds the corresponding pairing gap. In the present
model, this phenomenon occurs only at rather high tem-
peratures, where the condensates are diminished by ther-
mal fluctuations. A smaller diquark coupling constant, as
in Ref. [44], would lead to a smaller pairing gap and could
therefore entail the occurrence of gapless phases even at
zero temperature.
0 200 400
p [MeV]

0

100

200

300

400
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E
 [

M
eV

]

ur-dg-sb
ub-sr, db-sg
ug-dr, ur-dg-sb
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FIG. 4 (color online). Quark-quark quasiparticle dispersion
relations. For � � 0:75, T � 0, and � � 465 MeV (left panel)
there is a forbidden energy band above the Fermi surface. All
dispersion relations are gapped at this point in the �� T plane,
see Fig. 5. There is no forbidden energy band for the db� sg
quasiparticles for � � 0:75, T � 59 MeV, and � � 500 MeV
(right panel). This point in the �� T plane constitutes a part of
the gapless CFL phase of Fig. 5.
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C. Phase diagram

The thermodynamical state of the system is character-
ized by the values of the order parameters and their depen-
dence on T and �. Here we illustrate this dependency in a
phase diagram. We identify the following phases:
(1) N
1

2

3

4

5

6

7

8

T
 [

M
eV

]

FIG. 5
quark m
order p
lines, w
bounda
The vo
NQ-2S
constit

-5
Q: �ud � �us � �ds � 0;

(2) N
Q-2SC: �ud � 0, �us � �ds � 0, 0<�2SC<1;

(3) 2
SC: �ud � 0, �us � �ds � 0;

(4) u
SC: �ud � 0, �us � 0, �ds � 0;

(5) C
FL: �ud � 0, �ds � 0, �us � 0;
and their gapless versions. The resulting phase diagrams
for intermediate and strong coupling are given in Figs. 5
and 6, respectively, and constitute the main result of this
work, which is summarized in the following statements:
(a) G
apless phases occur only at high temperatures,
above 50 MeV (intermediate coupling) or 80 MeV
(strong coupling).
(b) C
FL phases occur only at rather high chemical
potential, well above the chiral restoration transi-
tion, i.e., above 462 MeV (intermediate coupling) or
419 MeV (strong coupling).
(c) T
wo-flavor quark matter for intermediate coupling
is at low temperatures (T < 20–30 MeV) in a mixed
NQ-2SC phase, at high temperatures in the pure
2SC phase.
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(color online). Phase diagram of neutral three-flavor
atter for intermediate diquark coupling, � � 0:75. First-
hase transition boundaries are indicated by bold solid
hile bold dashed lines correspond to second-order phase
ries. The dotted lines indicate gapless phase boundaries.
lume fraction, �2SC, of the 2SC component of the mixed
C phase is denoted with thin dash-dotted lines, while the
uent strange quark mass is denoted with bold dotted lines.
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(d) T
wo-flavor quark matter for strong coupling is in the
2SC phase with rather high critical temperatures of
�100 MeV.
2500
(e) T
2000
he critical endpoint of first-order chiral phase tran-
sitions is at�T;�� � �65 MeV; 328 MeV� for inter-
mediate coupling and at (82 MeV, 307 MeV) for
strong coupling.
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FIG. 8 (color online). Equation of state for three-flavor quark
matter at T � 0 with first-order phase transitions. For intermedi-
ate diquark coupling (� � 0:75): from the mixed NQ-2SC phase
to the CFL phase. For strong diquark coupling (� � 1): from the
2SC phase to the CFL phase.
D. Quark matter equation of state

The various phases of quark matter presented in the
previous section have been identified by minimizing the
thermodynamic potential, �, in the order parameters, �ij

and 	i. For a homogenous system, the pressure is P �
��min, see Fig. 7, where the �-dependence of �min is
shown at T � 0 for the different competing phases. The
lowest value of �min corresponds to the negative value of
the physical pressure. The intersection of two curves cor-
responds to a first-order phase transition. All other thermo-
dynamic quantities can be obtained from the
thermodynamic potential by derivatives. At intermediate
coupling, we have a first-order transition from the NQ-2SC
phase to the CFL phase, whereas at strong coupling the
first-order transition is from the 2SC phase to the CFL
phase, with a lower critical energy density. In Fig. 8 the
equation of state for cold three-flavor quark matter is given
in a form suitable for the investigation of the hydrody-
namic stability of gravitating compact objects, so-called
quark stars. This is the topic of the next Subsection.

E. Quark star configurations

The properties of spherically symmetric, static configu-
rations of dense matter can be calculated with the well-
065020
known Tolman-Oppenheimer-Volkoff equations for hydro-
static equilibrium of self-gravitating matter, see also [49],
dP�r�
dr

� �
�"�r� � P�r�	�m�r� � 4
r3P�r�	

r�r� 2m�r�	
: (23)
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Here "�r� is the energy density and P�r� the pressure at
distance r from the center of the star. The mass enclosed in
a sphere with radius r is defined by

m�r� � 4

Z r

0
"�r0�r02dr0: (24)

These equations are solved for given central baryon
number densities, nB�r � 0�, thereby defining a sequence
of quark star configurations. For the generalization to finite
temperature configurations, see [50]. Hot quark stars have
been discussed, e.g., in [25,26,51–53]. In Fig. 9 we show
the stable configurations of quark stars for the three-flavor
quark matter equation of state described above. The ob-
tained mass-radius relations allow for very compact self-
bound objects, with a maximum radius that is less than
10 km. For intermediate diquark coupling, � � 0:75, sta-
ble stars consist of a NQ-2SC mixed phase with a maxi-
mum mass of 1:21 M�. With increasing density, a phase
transition to the CFL phase renders the sequence unstable.
5 10
n

B
 [n

0
]

0.6

0.9

1.2

1.5

M
 [

M
su

n]

6 8 10
R [km]

η = 0.75 
η = 1.0

T=0

FIG. 9 (color online). Sequences of cold quark stars for the
three-flavor quark matter equation of state described in the text.
The rising branches in the mass-central density relation (left
panel) indicate stable compact object configurations. The mass-
radius relations (right panel) show that the three-flavor quark
matter described in this paper leads to very compact self-bound
objects. For intermediate diquark coupling, � � 0:75, stable
stars consist of a mixed phase of NQ-2SC matter with a maxi-
mum mass of 1:21 M� (dashed line). At higher densities a phase
transition to CFL quark matter occurs, which entails a collapse
of the star. For strong coupling, � � 1, the low-density quark
matter is in the 2SC phase and corresponding quark stars are
stable up to a maximum mass of 1:33 M� (solid line). The phase
transition to CFL quark matter entails an instability, which at
T � 0 leads to a third family of stable stars for central densities
above 9n0 and a mass twin window of 1:30–1:33 M�.
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For the strong diquark coupling, � � 1, quark matter is
in the 2SC phase at low densities and the corresponding
sequence of quark stars is stable up to a maximum mass
of 1:33 M�. The phase transition to CFL quark matter
entails an instability that leads to a third family of stable
stars, with masses in-between 1.30 and 1:33 M�. For non-
accreting compact stars the baryon number is an invariant
during the cooling evolution. By comparing the masses of
cold and hot isothermal configurations of quark stars of
equal baryon number, the maximum mass defect (energy
release due to cooling) can be calculated. The result for the
strong diquark coupling, � � 1, is shown if Fig. 10. For
an initial temperature of 40 MeV and a given baryon
number of N � 1:46 N�, the initial mass is M �
1:41 M�. By cooling this object down to T � 0, a mass
defect of �M � 0:1 M� occurs. For the chosen baryon
number, N � 1:46 N�, there are two possible T � 0 con-
figurations (twins). A hot star could thus evolve into the
more compact mass-equivalent (twin) final state, if a fluc-
tuation triggers the transition to a CFL phase in the core of
the star. The structures of these two twin configurations
are given in Fig. 11. The energy release of 0:1 M� is of
the same order of magnitude as the energy release in
supernova explosions and gamma-ray bursts. Disre-
garding the possible influence of a hadronic shell and the
details regarding the heat transport, the cooling induced
first-order phase transition to the CFL phase could serve as
1.0

1.1

1.2

1.3

1.4

1.5

M
 [

M
su

n]

T = 0
T = 40 MeV

2 4 6 8 10 12 14
n

B
(0) [n

0
]

1.2

1.3

1.4

1.5

N
B

 [N
su

n]

∆M = 0.1 M
sun

η = 1

FIG. 10 (color online). Cooling an isothermal quark star con-
figuration with initial mass M � 1:41 M� at temperature T �
40 MeV under conservation of the given baryon number N �
1:46 N� down to T � 0 leads to a mass defect �M � 0:1 M�
for the strong coupling case (� � 1:0). Because of the twin
structure at T � 0, two alternatives for the final state can be
attained, a homogeneous 2SC quark star or a dense 2SC-CFL
quark hybrid star.
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FIG. 11 (color online). Structure of two quark star (QS) con-
figurations with M � 1:31 M� (mass twins) for the three-flavor
quark matter equation of state described in the text in the case of
strong coupling (� � 1). The low-density twin has a radius of
9 km and is a homogeneous 2SC quark star, the high-density
twin is more compact with a radius of 8 km and consists of a
CFL quark matter core with 4.65 km radius and a 2SC quark
matter shell.
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a candidate process for the puzzling engine of these ener-
getic phenomena [25,26,53].

IV. CONCLUSIONS

We have investigated the phase diagram of three-flavor
quark matter within an NJL model under compact star
constraints. Local color and electric charge neutrality is
imposed for �-equilibrated superconducting quark matter.
The constituent quark masses are self-consistently deter-
mined. The model refrains from adopting the ’t Hooft
determinant interaction in the mean-field Lagrangian as a
realization of the UA�1� symmetry breaking. Instead, it is
assumed that the �� �0 mass difference originates from
an anomalous coupling of the pseudoscalar isosinglet fluc-
tuation to the nonperturbative gluon sector, which gives no
contribution to the quark thermodynamics at the mean-
field level. The resulting parametrization of this SUf�3�
NJL model results in a stronger coupling than NJL models
with a ’t Hooft term and thus in different phase diagrams,
cf. Ref. [44]. The diquark condensates are determined self-
consistently by minimization of the grand canonical ther-
modynamic potential. The various condensates are order
parameters that characterize the different phases in the
plane of temperature and quark chemical potential. These
phases are in particular the NQ-2SC mixed phase, the 2SC,
uSC, and CFL phases, as well as the corresponding gapless
phases. We have investigated strong and intermediate di-
065020
quark coupling strengths. It is shown that in both cases
gapless superconducting phases do not occur at tempera-
tures relevant for compact star evolution, i.e., below
�50 MeV. Three-flavor quark matter phases, e.g., the
CFL phase, occur only at rather large chemical potential,
so the existence of such phases in stable compact stars is
questionable. The stability and structure of isothermal
quark star configurations are evaluated. For the strong
diquark coupling, 2SC stars are stable up to a maximum
mass of 1:33 M�. A second family of more compact stars
(twins) with a CFL quark matter core and masses in
between 1.30 and 1:33 M� are found to be stable. For
intermediate coupling, the quark stars are composed of a
mixed NQ-2SC phase up to a maximum mass of 1:21 M�,
where a phase transition to the CFL phase occurs and the
configurations become unstable. When the isothermal star
configuration with an initial temperature of 40 MeV cools
under conservation of baryon number, the mass defect is
0:1 M� for the strong diquark coupling. It is important to
investigate the robustness of these statements, in particular,
by including nonlocal form factors [30,54,55] and by going
beyond the mean-field level by including the effects of a
hadronic medium on the quark condensates. Finally, any
statement concerning the occurrence and stability of quark
matter in compact stars shall include an investigation of the
influence of a hadronic shell [56–58] on the solutions of
the equations of compact star structure.
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from Hacettepe University Research Fund, Grant No. 02
02 602 001. D. B. thanks for partial support of the
Department of Energy during the program INT-04-1
on QCD and Dense Matter: From Lattices to Stars at the
University of Washington, where this project has been
started. This work has been supported in part by the
Virtual Institute of the Helmholtz Association under
Grant No. VH-VI-041. We are grateful to our colleagues
in Darmstadt and Frankfurt who made the results of their
study in Ref. [44] available to us prior to submission.
APPENDIX: DISPERSION RELATIONS

The dispersion relations of the quasiparticles that appear
in the expression for the thermodynamic potential (15) are
the eigenvalues of the Nambu-Gorkov matrix (13). For
each color and flavor combination of the eight component
Nambu-Gorkov spinors, there is a corresponding 8
 8
entry in this matrix. For three flavors and three colors
(13) is a 72
 72 matrix. The explicit form of this matrix
can be represented by a table, where the rows and columns
-8
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denote the flavor and color degrees of freedom
qur qug qub qdr qdg qdb qsr qsg qsb q†
ur q†

ug q†
ub q†

dr q†
dg q†

db q†
sr q†

sg q†
sb

q†
ur A ur 0 0 0 0 0 0 0 0 0 0 0 0 Dud 0 0 0 Dus

q†
ug 0 A ug 0 0 0 0 0 0 0 0 0 0 − Dud 0 0 0 0 0

q†
ub 0 0 A ub 0 0 0 0 0 0 0 0 0 0 0 0 − Dus 0 0

q†
dr 0 0 0 A dr 0 0 0 0 0 0 − Dud 0 0 0 0 0 0 0

q†
dg 0 0 0 0 A dg 0 0 0 0 Dud 0 0 0 0 0 0 0 Dds

q†
db 0 0 0 0 0 A db 0 0 0 0 0 0 0 0 0 0 − Dds 0

q†
sr 0 0 0 0 0 0 A sr 0 0 0 0 − Dus 0 0 0 0 0 0

q†
sg 0 0 0 0 0 0 0 A sg 0 0 0 0 0 0 − Dds 0 0 0

q†
sb 0 0 0 0 0 0 0 0 A sb Dus 0 0 0 Dds 0 0 0 0

qur 0 0 0 0 D †
ud 0 0 0 D †

us B ur 0 0 0 0 0 0 0 0

qug 0 0 0 − D †
ud 0 0 0 0 0 0 B ug 0 0 0 0 0 0 0

qub 0 0 0 0 0 0 − D †
us 0 0 0 0 B ub 0 0 0 0 0 0

qdr 0 − D †
ud 0 0 0 0 0 0 0 0 0 0 B dr 0 0 0 0 0

qdg D †
ud 0 0 0 0 0 0 0 D †

ds 0 0 0 0 B dg 0 0 0 0

qdb 0 0 0 0 0 0 0 − D †
ds 0 0 0 0 0 0 B db 0 0 0

qsr 0 0 − D †
us 0 0 0 0 0 0 0 0 0 0 0 0 B sr 0 0

qsg 0 0 0 0 0 − D †
ds 0 0 0 0 0 0 0 0 0 0 B sg 0

qsb D †
us 0 0 0 D †

ds 0 0 0 0 0 0 0 0 0 0 0 0 B sb

. (A1)
Each entry is a 4
 4 Hermitian matrix in Dirac space. The
diagonal submatrices are

Ai� �

p��i� 0 �Mi 0
0 �p��i� 0 �Mi

�Mi 0 �p��i� 0
0 �Mi 0 p��i�

26664
37775;

(A2)
Bj� �

�p��j� 0 Mj 0
0 p��j� 0 Mj

Mj 0 p��j� 0
0 Mj 0 �p��j�

26664
37775;

(A3)
065020
whereas the off-diagonal blocks are given by
Dij �

0 0 0 i�ij

0 0 �i�ij 0
0 i�ij 0 0

�i�ij 0 0 0

2
6664

3
7775: (A4)
The eigenvalues of (A1) are the quasiparticle energies,
�a, that enter the thermodynamic potential (15), i.e., the 72
dispersion relations of the various quark-quark and
antiquark-antiquark excitations. These eigenvalues can be
calculated using a standard numerical library. However, in
order to reduce the computational cost, the matrix can be
decomposed into a block-diagonal matrix by elementary
row and column operations.
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qur qdg qsb q†
ur q†

dg q†
sb qug q†

dr qdr q†
ug qub q†

sr qsr q†
ub qdb q†

sg qsg q†
db

q†
ur A ur 0 0 0 Dud Dus 0 0 0 0 0 0 0 0 0 0 0 0

q†
dg 0 A dg 0 Dud 0 Dds 0 0 0 0 0 0 0 0 0 0 0 0

q†
sb 0 0 A sb Dus Dds 0 0 0 0 0 0 0 0 0 0 0 0 0

qur 0 D †
ud D †

us B ur 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qdg D †
ud 0 D †

ds 0 B dg 0 0 0 0 0 0 0 0 0 0 0 0 0

qsb D †
us D †

ds 0 0 0 B sb 0 0 0 0 0 0 0 0 0 0 0 0

q†
ug 0 0 0 0 0 0 A ug − Dud 0 0 0 0 0 0 0 0 0 0

qdr 0 0 0 0 0 0 − D †
ud B dr 0 0 0 0 0 0 0 0 0 0

q†
dr 0 0 0 0 0 0 0 0 A dr − Dud 0 0 0 0 0 0 0 0

qug 0 0 0 0 0 0 0 0 − D †
ud B ug 0 0 0 0 0 0 0 0

q†
ub 0 0 0 0 0 0 0 0 0 0 A ub − Dus 0 0 0 0 0 0

qsr 0 0 0 0 0 0 0 0 0 0 − D †
us B sr 0 0 0 0 0 0

q†
sr 0 0 0 0 0 0 0 0 0 0 0 0 A sr − Dus 0 0 0 0

qub 0 0 0 0 0 0 0 0 0 0 0 0 − D †
us B ub 0 0 0 0

q†
db 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A db − Dds 0 0

qsg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − D †
ds B sg 0 0

q†
sg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A sg − Dds

qdb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − D †
ds B db

(A5)

This matrix has one 24
 24 and six 8
 8 independent submatrices. Expressing these submatrices explicitly, using
(A2)–(A4), the 24
 24 matrix can be decomposed into two independent 12
 12 submatrices by elementary row and
column operations. Similarly, the six 8
 8 matrices can be transformed into 12 independent 4
 4 submatrices. There is a
two-fold degeneracy due to the Nambu-Gorkov basis, each matrix appears both as M and My, so there are only one
independent 12
 12 matrix and six 4
 4 matrices. The 12
 12 matrix is

M 12�

p��ur 0 0 �Mu 0 0 0 i�ud i�us 0 0 0

0 p��dg 0 0 �Md 0 i�ud 0 i�ds 0 0 0

0 0 p��sb 0 0 �Ms i�us i�ds 0 0 0 0

�Mu 0 0 �p��ur 0 0 0 0 0 0 i�ud i�us

0 �Md 0 0 �p��dg 0 0 0 0 i�ud 0 i�ds

0 0 �Ms 0 0 �p��sb 0 0 0 i�us i�ds 0

0 �i�ud �i�us 0 0 0 �p��ur 0 0 Mu 0 0

�i�ud 0 �i�ds 0 0 0 0 �p��dg 0 0 Md 0

�i�us �i�ds 0 0 0 0 0 0 �p��sb 0 0 Ms

0 0 0 0 �i�ud �i�us Mu 0 0 p��ur 0 0

0 0 0 �i�ud 0 �i�ds 0 Md 0 0 p��dg 0

0 0 0 �i�us �i�ds 0 0 0 Ms 0 0 p��sb

26666666666666666666666666666664

37777777777777777777777777777775

;

(A6)
065020-10
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and the 4
 4 matrices are

M 4 �

p��i� �i�ij �Mi 0
i�ij �p��j� 0 Mj
�Mi 0 �p��i� �i�ij

0 Mj i�ij p��j�

2
6664

3
7775

(A7)

for spinor products ug� dr, ub� sr, db� sg, dr� ug,
sr� ub, and sg� db, respectively.

The eigenvalues of the 12
 12 matrix appear in �
pairs. For the 4
 4 matrices, the dispersion relations of
the i�� j� and j�� i� quasiparticles have the same
065020
magnitude but opposite signs. Thus, there are in general
nine independent dispersion relations for quark-quark ex-
citations and nine for antiquark-antiquark excitations. Each
dispersion relation is two-fold degenerate due to the
Nambu-Gorkov basis and two-fold ‘‘degenerate’’ due to
the � pairs. The eigenvalues of (A6) must be calculated
numerically. The eigenvalues of (A7) can be obtained
analytically by solving for the roots of the quartic charac-
teristic polynomial,

�4 � a3�3 � a2�2 � a1�� a0 � 0; (A8)

where
a0 � P4 � �M2
i �M

2
j � 2�2

ij ��
2
i� ��

2
j��P

2 � ��i��j� �MiMj ��2
ij ��i�Mj ��j�Mi�


 ��i��j� �MiMj ��2
ij ��i�Mj ��j�Mi�;

a1 � 2��i� ��j��P
2 � 2�2

ij��i� ��j�� � 2��i�M
2
j ��j�M

2
i ��

2
i��j� ��

2
j��i��;

a2 � �2
i� ��

2
j� � 2P2 �M2

i �M
2
j � 2�2

ij � 4�i��j�;

a3 � �2��i� ��j��:
In the limit when Mi � Mj � M, which is approxi-
mately valid for the ug� dr and dr� ug quasiparticles,
the four solutions are

� �
�i� ��j�

2
�

�������������������������������������������������������i� ��j�

2
� E

�
2
��2

ij

s
; (A9)

where E �
�������������������
p2 �M2

p
. This result is in agreement with

[44]. More generally, the solutions of the quartic equation
can be found in textbooks, see, e.g., [59]. In this work the
eigenvalues of the 4
 4 matrices were calculated with the
exact solutions of the quartic equation and the eigenvalues
of the 12
 12 matrix were calculated with LAPACK. The
momentum integral in (15) was calculated with a Gaussian
quadrature. The minimization of the thermodynamic po-
tential was performed with conjugate gradient methods,
choosing the initial values of the variational parameters
carefully, and then comparing the free energies of the
various minima. The color and electric charges were neu-
tralized with a globally convergent Newton-Raphson
method in multidimensions.

Gapless quasiparticle excitations are characterized by a
nonzero gap, �ij, and a corresponding dispersion relation
that is zero for at least one value of the quasiparticle
momentum, i.e., the dispersion relation reaches the Fermi
surface and there is no forbidden energy band.
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