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It is widely believed that the top loop corrections to the Higgs effective potential destabilize the
electroweak vacuum and that, imposing stability, lower bounds on the Higgs mass can be derived. With
the help of a scalar-Yukawa model, we show that this apparent instability is due to the extrapolation of the
potential into a region where it is no longer valid. Stability turns out to be an intrinsic property of the
theory (rather than an additional constraint to be imposed on it). However, lower bounds for the Higgs
mass can still be derived with the help of a criterion dictated by the properties of the potential itself. If the
scale of new physics lies in the TeV region, sizable differences with the usual bounds are found. Finally,
our results exclude the alternative metastability scenario, according to which we might be living in a
sufficiently long lived metastable electroweak vacuum.
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I. INTRODUCTION

The standard model (SM) of particle physics is a very
successful theory which has received a great number of
experimental confirmations. As is well known, however, it
is not complete. Its scalar sector, in particular, poses deep
(and so far unanswered) questions.

The value of the Higgs mass is not fixed by the theory; it
is a free parameter. Nevertheless, in order to get informa-
tion on this fundamental quantity, theorists have tried to
exploit at best the properties of the scalar sector of the SM
(or some of its extensions).

Through the analysis of the scalar effective potential,
upper and lower bounds on the Higgs mass mH have been
obtained as a function of the physical cutoff, the scale of
new physics. The upper bounds come from the triviality of
the quartic coupling [1] (for an alternative point of view,
see [2]), the lower ones from the requirement that the
electroweak (EW) vacuum be stable (or, at least, meta-
stable) [3–12].

For the lower bounds, the analysis is performed with the
help of the renormalization group (RG)-improved effective
potential VRGI���. Because of the tt loop corrections, VRGI

bends down for � larger than v, the EW minimum.
Depending on the value of the physical parameters, the
resulting potential either can be unbounded from below up
to the Planck scale or can rise up again after forming a new
minimum, which is typically deeper than the EW vacuum.
The latter is then said to be metastable.

As the instability occurs for sufficiently large values of
the field, VRGI is approximated by keeping only the quartic
term [9]. Using standard notations:

VRGI��� �
����

24
�4: (1)

In Eq. (1), the dependence of ���� on � is essentially the
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same as that of the corresponding RG-improved quartic
coupling constant ���� on the running scale �, so that the
behavior of the effective potential can be read out from the
���� flow.1

The bending of the potential is due to the quarks-Higgs-
Yukawa couplings, namely, to the minus sign carried by the
fermion loops. Practically, it is sufficient to consider only
the top, as the other (much lighter) quarks give comparably
negligible contributions.

The physical request that the EW vacuum be stable
against quantum fluctuation is seen as an additional phe-
nomenological constraint to be imposed on the effective
potential. This constraint induces a relation between the
physical cutoff and the Higgs mass.

The derivation of the lower bounds goes as follows.
Taking a boundary value for ���� and for the other cou-
plings, typically at � � MZ, the coupled RG equations are
run. As � increases, ���� (initially) decreases. Depending
on its initial value ��MZ�, it may happen that at a certain
scale, � � �, the running coupling � vanishes, becoming
negative for higher values of �. Requiring that the EW
vacuum be stable, � is interpreted as the physical cutoff of
the theory, the scale where new physics appears. From the
matching condition, which relates mH to ��MZ� (at the tree
level it is m2

H � ���MZ�=3�v2), a lower bound for mH as a
function of � is obtained. This is the stability bound.

The possibility of having a minimum deeper than the
EW one is also considered. The argument is that, as far as
the tunneling time between the false (EW) and the true
vacuum is sufficiently large compared to the age of the
Universe, we may well be living in the metastable EW
vacuum. In this case, metastability bounds onmH are found
[4,6,13].

These results, however, are at odds with a property of the
effective potential, Veff���, which, as is well known, is a
1As correctly pointed out in Ref. [12], however, ���� contains
also terms not contained in ����. They are really negligible only
for very large values of �.
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convex function of its argument [14–16]. It is also known
that, when the classical potential is not convex (the phe-
nomenologically interesting case), at any finite order of the
loop expansion, Veff does not enjoy this fundamental prop-
erty. Alternative nonperturbative methods of computing
the effective potential, though, such as lattice simulations
[17], variational approaches [18], or suitable averages of
the perturbative results [19], provide the proper convex
shape. The Wilsonian RG approach also gives a nonper-
turbative convex approximation for Veff [20–24].

One of the main goals of the present work is to show that
Veff is nowhere unstable. Its apparent instability is due to
an extrapolation to values of � which lie beyond its region
of validity. Naively, however, the instability seems to occur
in a region of � where perturbation theory can be trusted
[8], and this explains why previous analyses have missed
this point.2

We also show that, despite the convexity of the potential,
actually thanks to this property, lower bounds for the Higgs
mass can still be derived. Nevertheless, they no longer
come as a result of an additional phenomenological con-
straint on Veff , namely, the requirement of stability; they
are already encoded in the theory. As we shall see, if the
scale of new physics lies in the TeV region, the difference
between our bounds and those obtained with the help of the
usual stability criterion becomes sizable. The metastability
scenario, on the contrary, is definitely excluded.

Finally, in order to shed more light on this (often mis-
treated and misunderstood) subject, we reconsider here
some popular arguments [6,25], sometimes quoted as the
resolution of the instability (convexity) problem, and show
that they are (at least) misleading. In Sec. II we concentrate
mainly on this last point, which gives a good introduction
to the subject and provides further motivation for our
analysis.

To understand the origin of the instability, we do not
need to consider the complete SM. The group and the
gauge structure of the theory are not essential for its
occurrence. As it is due to the top-Higgs coupling (actually
to the minus sign carried by the tt loop), the same insta-
bility occurs in the simpler model of a scalar coupled to a
fermion with Yukawa coupling. To illustrate our argument,
it will be sufficient to limit ourselves to consider this
model. The extension of our results to the SM is
immediate.

The instability of the scalar effective potential is the
subject of many studies. The one-loop (or higher loops)
and the RG-improved potentials are computed with the
help of dimensional regularization. We also begin by com-
puting the effective potential of our model in the modified
minimal subtraction (MS) scheme (Sec. III). However, as
2In addition, the use of RG techniques, which enlarge the
domain of validity of perturbation theory via the resummation of
leading, next to leading, . . . logarithms, leads one to believe that
the derivation of this instability is theoretically sound [8].
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will become clear in the following, dimensional regulari-
zation cannot reveal (in fact, it masks) the origin of the
problem.

The flaw in the usual procedure will be uncovered with
the help of more physical renormalization schemes, the
momentum cutoff regularization and the Wilsonian RG
method. Dimensional regularization is a very powerful
scheme which directly gives the finite results of renormal-
ized perturbation theory. These other schemes allow one to
better follow the steps for the derivation of the renormal-
ized potential from the bare one. This will help in finding
the origin of the instability problem.

While completing our paper, we noted that this issue was
recently considered in Refs. [26,27]. Although our conclu-
sions look similar to those reached by these authors, we
believe that their work differs from ours in some important
aspects, worth being discussed. A comparison will be
presented in the conclusions.

The rest of the paper is organized as follows. In Sec. II
we show how the Bogoliubov criterion of dynamical in-
stability allows one to reconcile the convexity of �eff with
the existence of a broken phase and how the broken phase
Green’s functions can be derived from (the convex) �eff .
Moreover, we show how the dynamical instability criterion
can be implemented within the framework of the
Wilsonian RG method. In Sec. III we compute the MS
one-loop and RG-improved effective potentials for our
model and see that they both are unstable. In Sec. IV the
same problem is considered within the momentum cutoff
regularization scheme. In Sec. V we analyze the results of
the previous section and show that the instability comes
from an illegal extrapolation of the renormalized potential
beyond its range of validity. In addition, consistently with
the stability constraint, we consider a criterion for finding
the physical cutoff of the theory. In Sec. VI we apply this
criterion to the SM, thus getting lower bounds on the Higgs
mass as a function of the scale of new physics, and com-
pare with previous results. In Sec. VII we reconsider the
instability problem within the framework of the nonpertur-
bative Wilsonian RG method. Section VIII is for the sum-
mary and for our conclusions.
II. BROKEN PHASE AND DYNAMICAL
INSTABILITY

Before starting the detailed study of our model, in the
present section we carefully analyze some popular argu-
ments [6,25], often presented as the resolution of the
instability problem, and show that they are misleading.
Moreover, by combining the Bogoliubov criterion of dy-
namical instability with the Wilsonian RG method, we
shall provide further support to our analysis.

In Refs. [6,25], the effective action �eff��� and the
generating functional of the broken phase 1PI vertex func-
tions �1PI��� are presented as two different functionals.
Actually, these authors consider the first order in the @
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expansion of �1PI, �1l
1PI and note that it is not convex. It is

then argued that, when studying the stability of the EW
vacuum, the relevant quantity to consider is V1PI (or, more
generally, its RG-improved version VRGI) rather than the
convex Veff and that, being that V1PI is nonconvex, there is
no convexity (instability) problem [6].3

The argument is the following. Veff��� comes from the
minimization of h jĤj i, where Ĥ is the energy density of
the system and j i is a state which satisfies the constraint
h j�̂j i � �. For a symmetry breaking classical poten-
tial, the states that correspond to values of � in the region
between the classical minima are not localized (more on
this point later). As only localized states are of interest to
us, and V1l

1PI is supposed to correspond to localized states
also in the region between the minima [19], the conclusion
is that V1l

1PI rather than Veff is the appropriate potential to
consider.

It is not difficult to see, however, that these lines of
reasoning are misguiding. Indeed, the instability occurs
for values of � above v. Now, differently from those
related to the region �v � � � v, the states that corre-
spond to this range of� are perfectly well localized and the
above argument does not apply.

Moreover, as we briefly show in Appendix A, the broken
phase zero momentum Green’s functions ��v�n can be ob-
tained from the convex Veff once we consider a physical
procedure [28,29] based on the dynamical instability of the
classical vacua (Bogoliubov criterion), and the usual loop
expansion for Veff can be obtained within this framework.

This will help to further clarify the relation between Veff

and V1l
1PI. In any case, the potential to consider is Veff ,

which is everywhere convex. However, as long as we are
interested only in the broken theory Green’s functions, i.e.
in the local properties of Veff at � � v, it is possible (and,
from a practical point of view, even more convenient) to
consider a nonconvex approximation, such as V1l

1PI (or
higher order ones), which coincides with Veff in the neigh-
borhood of v (see footnote 3 and Appendix A).

Actually, the only range of �’s where a significative
difference between the loop approximation and the exact
effective potential is expected is the internal region,�v �
� � v. The reason is easy to understand. By construction,
the one-loop approximation for the path integral which
defines the effective potential considers the expansion of
the action around a single saddle point. For values of � in
the internal region, however, there are two competing
saddle points having the same weight [16]. Taking into
3Presenting �1PI��� and �eff��� as two different quantities is a
first source of confusion. As we have already said, the convexity
property of the exact �eff cannot be recovered within the loop
expansion. �1l

1PI, which is the quantity considered in Refs. [6,25],
is a nonconvex, O�@�, approximation of �eff . It correctly approx-
imates �eff in the neighborhood of the minima (with some
warnings specified later). In the region where it is nonconvex,
however, it is a bad approximation of �eff .
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account both of these contributions, we get for the effective
potential the known flat (convex) shape between the clas-
sical minima (Maxwell construction). On the contrary, for
� 	 v the path integral is dominated by a single saddle
point. Therefore, no significative difference can occur in
this region between the one-loop (or higher loop) approxi-
mation and the exact effective potential.

A similar argument can be given within the framework
of the Wilsonian RG approach, where it was shown that,
differently from the unbroken phase, the path integral
which defines the infinitesimal RG transformation for the
Wilsonian potential in the broken phase is saturated by
nontrivial saddle points [23].

As is well known, the nonperturbative RG equation for
the Wilsonian effective potential, Uk���, in d � 4 dimen-
sions can be written as [30–32]:

k
@
@k
Uk��� � �

k4

16�2 ln
�
k2 
U00k ���

k2 
U00k �0�

�
; (2)

where the prime indicates derivation with respect to �.
Note that the classical (bare) potential is Vcl��� � U����,
while the effective potential is Veff��� � Uk�0���.

For a theory in the broken phase, however, Eq. (2)
becomes unstable. More precisely, for values of � in the
internal region, this equation develops a singularity at finite
critical values kcr��� of the running scale k. Starting from
k � kcr���, Eq. (2) is no longer valid.

In Ref. [23], a new nonperturbative RG equation for� in
the unstable region was established:

Uk��k��� � min
f%g

�
k2%2 


1

2

Z 1

�1
dxUk��
 2% cos��x��

�
:

(3)

The minimum of Eq. (3), %k���, is the amplitude of the
nontrivial saddle point which dominates the path integral
defining the infinitesimal RG transformation (k! k� �k)
in the internal region. In the external region, on the con-
trary, the path integral is dominated by the trivial saddle
point, i.e. %k��� vanishes.

The case of the symmetric potential (see Fig. 8 in
Appendix A) was considered in Ref. [23], and the
Maxwell construction for Veff was established. Here we
extend the analysis of Ref. [23] to the case of the potential
with an explicit symmetry breaking term (see Appendix A,
in particular, Fig. 9).

In Fig. 1 we show the flow of the Wilsonian potential
U�"�k ���, starting from the critical values kcr���. From this
figure we see that, even in the asymmetric case, there is a
region where the effective potential V�"�eff ��� � U�"�k�0��� is
flat and coincides with the double tangent construction.
The same considerations done for the lowest order result
(see Appendix A) are valid. In particular, the tangent point
is displaced to the left of v" and the derivatives of V�"�eff ���
at v" can be safely taken.
-3
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FIG. 1. RG flow for the potential of the single component
scalar theory with explicit symmetry breaking term. Only the
flow in the internal region is considered, i.e. the flow given by
Eq. (3). The boundary values for the parameters at k � 0:1 are
� � 5� 10�2, m2 � �10�2, and " � 2� 10�3.
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The general conclusion of this analysis is that, with the
help of Eqs. (2) and (3), the Wilsonian potential can be run
all the way down from k � � to k � 0. The result is a
nonperturbative convex approximation for Veff , which
shows the typical flat shape in the internal region [given
by the running of Eq. (3)] while in the external region has
the shape governed by Eq. (2).

We consider now the one-loop potential V1l��; "�. In
view of the previous discussion, it is not difficult to under-
stand that, as far as we limit ourselves to consider a range
of values of � sufficiently close to the absolute minimum,
V1l��; "� provides a good approximation for Veff��; "�.
Clearly, this is true for higher order loops, too.

Before ending this section, we would like to expand, as
anticipated, on the argument according to which, when
studying the stability of the vacuum, the convex Veff is
not the appropriate potential to consider [6].

Let us indicate with jvi and j � vi the vacua constructed
around � � v and � � �v, respectively. The flatness of
Veff in the �v <�< v region implies that all the linear
combinations of states �jvi 
 �j � vi (with j�j2 

j�j2 � 1) are equivalent vacua; they all have the same
energy. Apart from the trivial ones (j�j � 1, � � 0 and
� � 0, j�j � 1), with any of the other nontrivial combi-
nations we would obtain Green’s functions, which violate
the cluster decomposition property. Moreover, the expec-
tation value of the field is not constant all over V, the
quantization volume. In fact, for the generic state �jvi 

�j � vi, the expectation value h�i is given by �j�j2 �
j�j2�v, and V contains a fraction j�j2 of h�i � v and a
fraction j�j2 of h�i � �v. Clearly, these states are not
localized.

The above considerations are viewed as an indication
that the convex Veff is not the appropriate potential with
065017
which to deal. Although correct, these observations have
nothing to do with the instability problem. As we have just
seen, the nonlocalized states correspond to values of � in
the internal region. The instability problem, however, oc-
curs in the external region, where the states are perfectly
well localized. Moreover, with the help of the Bogoliubov
criterion, we have seen how the degeneracy in the internal
region is lifted and (in the infinite volume limit) only one
vacuum is selected.
III. ONE-LOOP AND RGI POTENTIALS.
MS SCHEME

We compute now the one-loop effective potential V1l for
our model in the MS scheme and the corresponding RG-
improved potential VRGI.

The model consists of a single scalar field plus a single
fermion field with scalar quartic interaction and Yukawa
coupling, i.e.:

L��; ;  � �
Z
d4x

�
1

2
@��@��
 i ��@� 


m2

2
�2



�
2
�4 
 g�  

�
: (4)

Straightforward application of the MS prescriptions gives

V1l��� �
1

2
m2�2 


�
24
�4 


1

64�2

�
m2 


�
2
�2

�
2

�

�
ln
�m2 
 �

2�
2

�2

�
�

3

2

�
�
g4�4

16�2

�
ln
g2�2

�2 �
3

2

�
;

(5)

wherem2, �, and g depend on the renormalization scale �:

m2 � m2���; � � ����; g � g���: (6)

In the right-hand side of Eq. (5), the fermionic contri-
bution comes with a negative sign. Therefore, we can
easily find values of � and g (with g4 > �), together with
a range of values of �, which satisfy the perturbative
conditions

� < 1; g < 1; and
g4

16�2 ln
g2�2

�2 < 1; (7)

so that V1l��� bends down and becomes lower than V1l�v�
(see Fig. 2). This is the instability problem for our one-loop
potential.

As is well known, we can improve on this result with the
help of renormalization group techniques. Let us consider
the one-loop RG functions for �, g,m2, and for the vacuum
-4
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energy4 � (for simplicity, we omit the wave-function
renormalization):

�� �
3�2

16�2 �
3g4

�2 ; �g �
g3

8�2 ;

�� �
�m4

32�2 ; �m2 �
�

16�2 :
(8)

The largest logarithmic correction in the right-hand side
of Eq. (5) comes from the last term (the fermion).
According to the RG-improvement logic, we now choose
the running variable t so that we get rid of this term in the
improved potential: t � 1

2 ln�g2�2=�2� � 3
4 . As usual, the

running functions ��t�, g�t�, m2�t�, and ��t� are defined as
the solutions of the differential equations:

d�
dt
� ����; g;�; m2�;

dg
dt
� �g��; g;�; m2�;

dm2

dt
� �m2��; g;�; m2�;

d�

dt
� ����; g;�; m2�;

(9)

with boundary conditions:

��t � 0� � �; g�t � 0� � g;

��t � 0� � 0; m2�t � 0� � m2:
(10)

It is not difficult to see that the differential equations (9)
can be solved analytically. For g�t� and ��t�, for instance,
4When considering the RG improvement, the cosmological
constant term has to be taken into account even if it was
originally absent.
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we have

g�t� � g
�
1�

g2t

4�2

�
�1=2

;

��t� �
2

3
g2�t�

�
1� �
 2�

�
1


�
g�t�2

g2

�
�

�
2g2��
 1� � 3�

2g2��� 1� 
 3�

�
�1
�
;

(11)

with � �
������
37
p

.
Finally, the one-loop RG-improved potential is

VRGI �
1

2
m2�t��2 


��t�
24

�4 
��t�




�
�m2�t� 


���t�
2 �2

64�2

�
2

ln
�m2�t� 


���t�
2 �2

g2�t��2 : (12)

In Figs. 2 and 3 we plot VRGI together with the one-loop
and the classical potentials for a particular choice of the
renormalized parameters. A simple inspection of this fig-
ure shows that VRGI (as well as V1l) is unstable.

Before ending this section, we note that, due to the
competition between the �2 and the g4 terms in �� [first
of Eqs. (8)], ����, after decreasing for a certain range of
energy, finally increases (toward the Landau pole). This
generates a second minimum in the effective potential,
typically lower than the first one.

Now, for certain values of mt and mH, which are com-
patible with the current experimental determinations and
limits, the Higgs effective potential of the SM shows such a
behavior already below the Planck scale. As the tunneling
time between the false (EW) and the true vacuum appears
to be sufficiently large (as compared to the age of the
Universe), the alternative scenario of a metastable EW
FIG. 3. Differently from Fig. 2, here we have implemented the
RG conditions so that the location of the minimum and the
curvature of V1l at this point are the same as for Vcl (see
Appendix B). The parameters are chosen as in Fig. 2.
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vacuum is also considered and lower metastability bounds
on the Higgs mass are derived [6,13]. As we have antici-
pated, however, the proper treatment of the problem will
show that effective potential is nowhere unstable. As a
consequence, this scenario will be excluded.

IV. MOMENTUM CUTOFF SCHEME

In this section, we show how the one-loop renormalized
effective potential of Eq. (5) is obtained by considering the
5When, in Sec. VI, we shall be interested in the derivation of
lower bounds on the Higgs mass, the anomalous dimension will
be appropriately taken into account.

065017
theory defined with a momentum cutoff. To prepare the
discussion of the next section, we follow the computation
in some detail.

The parameters of the Lagrangian are now the bare ones.
Therefore, in Eq. (4) we replace m2, �, and g withm2

�, ��,
and g�, respectively. As in the previous section, for the
sake of simplicity, we neglect the wave function renormal-
ization.5 A straightforward application of perturbation the-
ory gives
V1l��� �
m2

�

2
�2 


��

24
�4 


1

64�2

�
�4 ln

�
�2 
m2

� 

��

2 �
2

�2

�



�
m2

� 

��

2
�2

�
�2 �

�
m2

� 

��

2
�2

�
2

� ln
�
�2 
m2

� 

��

2 �
2

m2
� 


��

2 �
2

��
�

1

16�2

�
�4 ln

�
1


g2
��

2

�2

�

 g2

��
2�2 � g4

��
4 ln

�
�2 
 g2

��
2

g2
��

2

��
: (13)

Considering only values of � small compared to the cutoff,

�
�
< 1; (14)

expanding the right-hand side of Eq. (13) in powers of �� , and neglecting terms which are suppressed by negative powers of
�, we get

V1l��� �
m2

�

2
�2 


��

24
�4 �

1

16�2

�
2g2

��
2�2 � g4

��
4

�
ln
�

�2

g2
��

2

�



1

2

��



1

64�2

�
2
�
m2

� 

��

2
�2

�
�2 �

�
m2

� 

��

2
�2

�
2
�

ln
�

�2

m2
� 


��

2 �
2

�



1

2

��
: (15)
We now move from bare to renormalized perturbation
theory. After performing the splitting of the bare parame-
ters in the usual way:

m2
� � m2 
 �m2; �� � �
 ��; g� � g
 �g;

(16)

we insert Eq. (16) in Eq. (15), neglecting the higher order
terms, i.e. removing �m2, ��, and �g from the quantum
fluctuation contribution. Finally, the counterterms are de-
termined so as to cancel the quadratic and logarithmic
divergences of V1l.

There is an arbitrariness in the determination of the
counterterms (different renormalization conditions) which
is reflected in an arbitrariness in the finite parameters of the
renormalized potential. By choosing

�m2 � �m2
bos 
 �m

2
fer; �� � ��bos 
 ��fer; (17)

with (� is an arbitrary low energy scale)
�m2
bos � �

��2

32�2 

�m2

32�2

�
ln
�

�2

�2

�
� 1

�
;

�m2
fer �

g2�2

4�2 ; ��bos �
3�2

32�2

�
ln
�
�2

�2

�
� 1

�
;

��fer � �
3g4

2�2

�
ln
�
�2

�2

�
� 1

�
;

(18)

we get

V1l��� �
1

2
m2�2 


�
24
�4 


1

64�2

�
m2 


�
2
�2

�
2

�

�
ln
�m2 
 �

2�
2

�2

�
�

3

2

�
�
g4�4

16�2

�
ln
g2�2

�2 �
3

2

�
;

(19)

that is, the one-loop potential of Eq. (5).
As for Eq. (5), the renormalized parameters that appear

in Eq. (19) are defined at the scale �. Now, repeating the
same steps of the previous section, we obtain from Eq. (19)
the RG-improved potential of Eq. (12).
V. STABILITY OF THE EFFECTIVE POTENTIAL

We show now that the effective potential is nowhere
unstable, the claimed (apparent) instability being due to the
-6



-20000

 0

 20000

 40000

 60000

 80000

100000

120000

140000

 0  20  40  60  80  100

φ

V1l (expanded)

FIG. 4. The one-loop effective potential of Eq. (15) (before the
subtraction of the quadratic divergences) for �� � 5� 10�2,
m2

� � �10�2, g� � 0:35, and � � 100. Neglecting, as ex-
plained in the text, the internal region, we see that beyond the
minimum the potential is convex.

EFFECTIVE POTENTIAL (IN)STABILITY AND LOWER . . . PHYSICAL REVIEW D 72, 065017 (2005)
extrapolation of V1l (VRGI) into a region where it is no
longer valid.

Before turning our attention to the renormalized poten-
tial, we begin by considering the bare theory as defined by
the one-loop potential of Eq. (15). For a certain region in
the (m2

�, ��, g�)-parameter space, this potential, as the
classical one, has two minima (Higgs phase). As we have
already explained, the loop expansion is inadequate for the
region between the minima. In the following, we ignore
this region and concentrate our attention only on the ex-
ternal one, where the loop expansion is expected to hold (as
we know, in the internal region the convexity is restored via
the Maxwell construction).

A careful analysis of Eq. (15) shows that, in the external
region and within the range of � where the potential is
defined, i.e. for j�j� < 1, the bare effective potential is
convex (in agreement with exact theorems). Therefore, it
does not present any instability. In Fig. 4 we show a plot of
V1l, Eq. (15), for a particular choice of the parameters.

We now subtract from the bare potential of Eq. (15) the
quadratically divergent terms.6 As illustrated in Fig. 5 for a
specific choice of the parameters, again the resulting po-
6As is well known, a well defined physical meaning can be
attached to this operation. In a nonsupersymmetric scenario, this
cancellation is interpreted as the result of the conspiracy between
unknown degrees of freedom, which live above the cutoff, and
the quantum fluctuations of the fields below the cutoff. This way,
the scalar (Higgs) mass is protected from getting too large
corrections from the quantum fluctuations (this interpretation,
however, poses the problem of the fine-tuning required for the
cancellation, the naturalness problem). In a supersymmetric
scenario, on the contrary, this cancellation is obtained in a
more ‘‘natural’’ way. It is due to the presence of additional
degrees of freedom (fields) below the cutoff.

065017
tential turns out to be convex (once more, only the external
region has to be considered). The bare potential, even after
the subtraction of the quadratic divergences, does not show
any sign of instability.

As an aside remark, we note that, as they describe differ-
ent degrees of freedom, the potentials of Figs. 4 and 5
actually belong to two different effective theories (with or
without the �2 terms). From the point of view of the
phenomenological applications in particle physics, how-
ever, we are typically interested in the theory where the
quadratically divergent terms are subtracted.

We have just seen that the bare potential (before and
after the subtraction of the quadratic divergences) is every-
where stable. How can the renormalized potential show an
instability? To answer this question, let us consider again
Eq. (15) after the subtraction of the quadratically divergent
terms.

As we already know, the instability occurs because the
quantum fluctuations due to the fermions can compensate
and then overwhelm the classical �4 term. Therefore, with
no loss of generality, we can now neglect the bosonic
contribution, as well as other unimportant finite terms,
and limit ourselves to write

V1l��� �
1

2
m2

��
2 


��

24
�4 


g4
��

4

16�2 ln
�2

g2
��

2 : (20)

At a lower scale � (<�) we have

V1l��� �
1

2
m2
��

2 

��
24
�4 


g4
��

4

16�2 ln
�2

g2
��

2 ; (21)

which is the same potential of Eq. (20) written in terms of
the renormalized parameters m2

�, ��, and g�.
Clearly, if Eq. (20) does not show any instability, the

same is true for Eq. (21). However, let us pretend (for the
moment) that we have not made this observation and move
to consider the usual phenomenological application of
Eq. (21), which could have been obtained (Sec. III) within
the MS scheme.

From the first two terms of Eq. (21), the classical vac-
uum

v2 � �
6m2

�

��
(22)

is obtained. The last term can destabilize this vacuum if it
becomes too large and negative. Strictly speaking, the
presence of the last term also modifies the position of the
classical minimum, but this is not a complication. In fact,
although this is not a necessary step, we can slightly
modify the above expressions by adopting renormalization
conditions that keep the position of the minimum un-
changed. With this choice, Eq. (21) is replaced by (see
-7
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Appendix A):

V1l��� �
1

2
m2
v�2 


�v
24
�4 �

g4
v�

4

16�2

�
ln
�2

v2 �
3

2

�

�
g4
vv

2

8�2 �
2: (23)

In Eq. (23) we have defined the parameters m2
v, �v, and

gv at the IR scale v, the classical (and quantum) minimum,
which is now given by:

v2 � �
6m2

v

�v
: (24)

Correspondingly, Eq. (20) is replaced by:

V1l��� �
1

2
m2

��
2 


��

24
�4 �

g4
��

4

16�2

�
ln
�2

�2 �
3

2

�

�
g4

�v
2

8�2 �
2: (25)

Going back to Eq. (23), we now look for values of �v,
gv, and � such that this equation is (expected to be) valid
and, at the same time, gives

V1l���< V1l�v�: (26)

The usual requirements for the validity of Eq. (23) are that
065017
the renormalized coupling constants �v and gv, as well as
the quantum correction �g4

v=16�2� ln��2=v2�, be perturba-
tive, i.e.:

�v < 1; gv < 1; (27)

and �������� g4
v

16�2 ln
�2

v2

��������<1 (28)

[note that Eqs. (27) and (28) are nothing but the perturba-
tive conditions of Eq. (7) adapted to our current choices].

In the following, we show that, contrary to the common
expectation, Eqs. (27) and (28) are not sufficient to guar-
antee that Eq. (23) can be trusted. An additional condition
has to be considered. As we shall see, the apparent insta-
bility of the potential is due to the neglect of this condition.

Let us choose �v and gv so that these couplings, in
addition to Eq. (27), also satisfy the relation:

�v �
3g4

v

4�2 : (29)

Moreover, let us consider � such that:

ln
�2

v2 � 2: (30)
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Being that gv < 1, it is a trivial exercise to see that, by
virtue of Eq. (30), Eq. (28) holds for �. Moreover, insert-
ing Eqs. (29) and (30) in Eq. (23), we find:

V1l���< V1l�v�: (31)

We would conclude that, in the range of � given by v <
�<�, the renormalized potential of Eq. (23) can be
trusted and its instability (see Fig. 2) is theoretically well
established. In fact, this is what is usually stated [8]. In
order to avoid any misunderstanding, it is worth stressing
that the RG improvement cannot change this conclusion. In
the range of � that we consider here, the condition (28)
holds so that, in this region, V1l and VRGI are very close one
to the other.

As solid as they can seem, however, the above conclu-
sions are incorrect.

To understand why, let us first simplify (without any loss
of generality) the discussion by neglecting in the following
the running of m2 and g. From Eqs. (23) and (25), we have
then:

��

24
�4 


g4�4

16�2 ln
�2

�2 �
�v
24
�4 


g4�4

16�2 ln
v2

�2 ; (32)

which immediately gives

�� � �v �
3g4

2�2 ln
�2

v2 : (33)

Inserting now Eqs. (29) and (30) in Eq. (32), we find:

��

24



g4

16�2 ln
�2

�2
�
�v
24



g4

16�2 ln
v2

�2
< 0: (34)

Naturally, for the theory to be defined, it is �� > 0.
Therefore, in order for Eq. (34) to be valid, we should have

�2

�2
� 1: (35)

Equation (35) shows that, contrary to our naive expec-
tation, � lies beyond the range of validity of V1l (VRGI).

We now understand the origin of the apparent instability
of the renormalized potential. If, in order to decide whether
a certain value of � belongs to the region where V1l can be
trusted, we consider only Eqs. (27) and (28), we lose the
information contained in the additional independent con-
dition:

�v
24
�4 


g4�4

16�2 ln
v2

�2 > 0: (36)

When, on the contrary, this condition is taken into
account, the effective potential does not present any insta-
bility. In other words, the instability occurs in a region of
�’s where Eq. (23) for V1l is no longer valid.

Naturally, these same conclusions could have been
reached by looking at the problem the other way around.
In fact, coming back to the observation that we have put
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aside before, we note that, due to the condition �2 <�2,
the combination ���=24� 
 �g4=16�2� ln��2=�2� cannot
be negative. Therefore, Eq. (34) cannot be fulfilled and no
instability can occur.

The above longer discussion, however, is motivated by
the common belief that, in order to ascertain the validity of
the result for V1l, Eqs. (27) and (28) are the only conditions
to be verified. Actually, this is the reason why it is still
believed that the instability of V1l (and VRGI) is a genuine
effect due to the quantum corrections.

We can now deepen our analysis by noting that, as an
elementary exercise shows, the point beyond the minimum
where the effective potential ceases to be convex, i.e. the
inflection point in the external region, �inf , is such that:
�inf 	 �: (37)
Equation (37) is important for two reasons. On the one
hand, it shows that the effective potential is convex wher-
ever it is defined. On the other hand, it provides a criterion
for the derivation of lower bounds on the scalar (Higgs)
mass.

To better understand this last point, let us consider the
usual approach, where a bound on the renormalized � is
obtained from (the equivalent of) Eq. (33). At first, it is
noted that the instability occurs if V1l��0� � V1l�v� at a
certain �0 and V1l���< V1l�v� for �>�0. Then it is
shown that �0 (almost) corresponds to the value of the
running scale where ���� vanishes [see Eq. (1) and foot-
note 1]. Finally, a vanishing �� is taken in Eq. (33) so that
the highest possible physical cutoff �, corresponding to a
given value of the renormalized coupling �v, is derived.

Instead, our analysis suggests that the upper bound for
the range of �’s, which is also the highest self-consistent
value for the physical cutoff, should be taken at the in-
flection point of Eq. (37), the value of � where the poten-
tial ceases to be convex.

Although up to now we have considered a simple scalar-
Yukawa model, it is clear that our results are completely
general. In the next section, we shall see how the above
criterion can be exported into the SM to get lower bounds
on the Higgs mass.

Before we move to this phenomenological application,
however, it is worth stressing that in the usual approach the
requirement of stability appears to be an extra phenome-
nological constraint to be possibly imposed on the theory;
an unstable potential is considered as a legitimate one. In
fact, the metastability scenario, clearly excluded by our
analysis, is based on the possibility of having a second
minimum of the potential lower than the EW vacuum. As
we have seen, however, the stability of the effective poten-
tial is an intrinsic property of the theory. No place is left for
an unstable or metastable potential.
-9
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VI. LOWER BOUNDS ON THE HIGGS MASS

Let us consider now some important phenomenological
implications of our findings for the SM. Clearly, the first
thing to point out is that, contrary to common belief, the
Higgs effective potential does not present any instability.
As for the determination of the lower bounds on mH, we
have seen that the internal consistency of the theory re-
quires that the physical cutoff has to be taken at the
065017
location of the inflection point of the potential (in the
region beyond the minimum).

Implementing this criterion for the determination of the
scale of new physics, lower bounds for the Higgs mass are
found. Our results will be compared with those obtained
with the help of the usual instability criterion.

The well known one-loop potential of the scalar sector of
the SM reads [33]:
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1

2
m2�2 


�
24
�4 


1

64�2

��
m2 


�
2
�2

�
2
�
ln
�m2 
 �

2�
2

�2

�
�

3

2

�

 3

�
m2 


�
6
�2

�
2
�

ln
�m2 
 �

6�
2

�2

�
�

3

2

�


 6
g1

4

16
�4

�
ln
�1

4 g1
2�2

�2

�
�

5

6

�

 3
�g1

2 
 g2
2�2

16
�4

�
ln
�1

4 �g1
2 
 g2

2��2

�2

�
�

5

6

�
� 12g4�4

�
ln
g2�2

�2 �
3

2

��
;

(38)
TABLE I. Lower bounds on the Higgs mass as a function of
the physical cutoff. The values of the physical parameters are
chosen according to Refs. [11,12] (see also Appendix B). The
second and third columns contain the bounds obtained with the
convexity and instability criterion, respectively.

� (TeV) Minf
H (GeV) MH (GeV) �MH (GeV)

1 66 55:5 10:5
5 88 81 7
10 94:5 88:5 6
100 108:5 105:5 3
1000 117 115 2
1016 137:5 137:5 0
where g1 and g2 are the weak interaction coupling con-
stants, while g is the top-Yukawa coupling.

To have a well defined comparison between our criterion
and the usual one, we have chosen to follow the work of
Casas, Espinosa, and Quirós [11,12]. In particular, we have
taken their boundary conditions for g1, g2, mt, . . . at the
scale MZ as well as their matching conditions for the
determination of the physical Higgs and top mass (see
Appendix B and Refs. [11,12] for details).

The RG-improved potential VRGI is obtained following
the same steps of Sec. III. Naturally, the appropriate beta
functions to consider in the RG equations are now the SM
ones. As in Refs. [11,12], we have used the two-loops beta
functions [8]. Note also that, differently from our simpler
model, we now have three additional RG equations,
namely, for g1, g2, and gS (the strong coupling), and that
no analytic solution for the running of the couplings can be
found. Choosing t � 1

2 ln��2=�2�, we get

VRGI��� � m2�t�
�2�t�

2

 �eff�t�

�4�t�
24

��t�; (39)

where ��t� is the scale dependent vacuum energy, ��t� �
	�t��, with 	�t� � exp��

R
t
0 ��t

0�dt0� and ��t� being the
Higgs anomalous dimension, and �eff�t� is given by

�eff�t� � �
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ln
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�
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5

6

��
; (40)

with � � ��t�, g � g�t�, g1 � g1�t�, g2 � g2�t�.
First, we have checked that, when the usual VRGI � 0

criterion is used, meaning that the scale of new physics, �,
is determined as the value of � where [12]
�eff 
 12
m2

	2�2 
 24
�

	4�4 � 0; (41)

the results of Refs. [11,12] are recovered. Then we have
derived the physical cutoff according to our criterion; i.e.
we have looked for the location of the external inflection
point of VRGI.

In Table I we summarize the results obtained with these
two criteria for different values of �. For small cutoffs, the
lower bounds on MH given by our criterion are �10 GeV
larger than the current determinations [12], while for in-
creasing values of � the difference tends to disappear.

The convergence between these two methods (for large
cutoffs) has a simple explanation. Let us neglect, for a
moment, the convexity constraint. As MH increases, the
location of the inflection point moves to higher and higher
values of �. The same, obviously, is true for the point
where the potential vanishes. In this region, VRGI is very
well approximated by Eq. (1) and ���� changes very
slowly with �. Therefore, the two criteria practically
give one and the same value for �.
-10



TABLE II. Lower bounds on the Higgs mass as a function of
the physical cutoff. Differently from Table I, the physical pa-
rameters have been chosen according to their most recent
experimental determinations (see text). As for Table I, the
second and third columns contain the bounds obtained with
the convexity and instability criterion, respectively.

� (TeV) Minf
H (GeV) MH (GeV) �MH (GeV)

1 68:5 57:5 11
5 91:5 84 7:5
10 98 92 6
100 113 109:5 3:5
1000 122 120 2
1016 143:5 143:5 0

EFFECTIVE POTENTIAL (IN)STABILITY AND LOWER . . . PHYSICAL REVIEW D 72, 065017 (2005)
The scope of Table I is to provide a comparison between
the two different methods for the determination of lower
bounds on mH. To this end, the values of the physical
parameters have been chosen according to Refs. [11,12]
(see Appendix B) rather than to their more recent measured
values. The reader can easily verify that the results we have
found with the usual criterion (reported in the third column
of Table I) agree with those of Refs. [11,12].

Now, considering the updated values: MZ � 91:2 GeV,
MW � 80:4 GeV, �s � 0:119 [34], and Mt � 178 GeV
[35], we find for the lower bounds on MH the results
reported in Table II. Note that, taking into account the
present experimental uncertainty on Mt [35], Mt � 178�
4:3, we get MH � 68:5
3

�3:5 for � � 1 TeV up to MH �

143:5� 8:5 for � � 1019 GeV.
VII. WILSONIAN RG

In the previous section, we have considered a phenome-
nological application of our findings. Now, to further sup-
port our results, we come back to the simpler Higgs-
Yukawa model of Eq. (4) and show that, with the help of
the Wilsonian RG method, our analysis can be extended
beyond perturbation theory.

For the Euclidean Wilsonian action of our model at the
running scale k, Sk��; ;  �, we consider the following
nonperturbative ansatz [36]:

Sk��; ;  � �
Z
d4x

�
1

2
@��@��
  ��@� 


Uk��; ;  �
�
: (42)

As for the case of the scalar theory (see Sec. II and [23]),
for the internal region we expect that from Eq. (42) a
nonperturbative flow equation can be obtained which re-
produces the Maxwell construction. Here, however, our
scope is to investigate the possibility of having an insta-
bility of the scalar potential in the region beyond the
minimum. Therefore, we consider only this region, where
the running for the Wilsonian potential of our model is
065017
given by the nonperturbative RG equation [36]:
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�
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2��;
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U00k ��;
�

��
: (43)

Here 
 �   , the prime indicates the derivative with
respect to �, and the dot the derivative with respect to 
.

The bare value of the potential, which is nothing but the
boundary condition for the RG equation (43), is [see
Eq. (4)]

U���;
� �
1

2
m2

��
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��

24
�4 
 g��
: (44)

We now consider for Uk��;
� the additional truncation:

Uk��;
� � Vk��� 
Gk���
; (45)

which means that we neglect the contributions from higher
powers of   .

Inserting Eq. (45) in Eq. (43), we finally get the RG
equations:

@Vk���
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16�2 ln
�
k2 
 V 00k ���

k2 
 V 00k �0�
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4�2 ln
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�
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(46)

From Eq. (44) is clear that the boundary conditions for
Vk and Gk are

V���� �
1

2
m2

��
2 


1

24
���

4; G���� � g��:

(47)

Given m2
�, ��, and g� at k � �, we can run the RG

equations (46) to get for the scalar effective potential
Veff��� the nonperturbative approximation: Vwil��� �
Vk�0���. Choosing �� � 5� 10�2, m2

� � �1� 10�2,
g� � 5� 10�1 at � � 100, i.e. taking the same values
used in Fig. 4, we get for Vwil the result plotted in Fig. 6 [we
remind the reader that the RG equation (43) is valid only in
the external region].

For comparison, we have also plotted the corresponding
V1l (which is nothing but the potential of Fig. 4). As we can
-11
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FIG. 6. The Wilsonian, Vwil � Vk�0, effective potential. The
boundary values of the parameters are as in Fig. 4. Only the
region external to the minimum has to be considered. For
comparison, we have also plotted the one-loop effective potential
of Fig. 4. We see that, as explained in the text, Vwil and V1l are
very close one to the other.
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easily see, Vwil and V1l are very close one to the other. This
result could have been guessed. As we have already said, in
fact, in the external region the path integral that defines the
effective potential is dominated by a single saddle point.
As a consequence, we expect that the loop expansion, and,
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FIG. 7. The bare together with the Wilsonian potential after subtr
parameters are as in Fig. 4. For Vwil, only the external region has to b
effective potential of Fig. 5. We see that, even after subtracting the
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in particular, the one-loop potential, provide a good ap-
proximation for Veff . The close coincidence between V1l

(perturbative) and Vwil (nonperturbative) supports this
expectation.

By its own construction, the Wilsonian method does not
contain any ad hoc subtraction of terms. This is why we
have compared the effective potential found with Eqs. (46)
with the original one-loop result, the potential of Fig. 4,
where the quadratically divergent terms were kept.

If we want to make contact with the perturbative V1l

where the quadratic divergences are subtracted (Fig. 5), we
need to implement this operation in the flow equations.

Performing a polynomial expansion of Vk��� and
Gk���, we easily see that the subtraction of the quadratic
divergences in our flow equations amounts to adding the
term

�
�

�k
32�2 


gk
2

4�2

�
k�2 (48)

to the first of Eqs. (46). In Eq. (48), �k is the coefficient of
�4 in the expansion of Vk���, while gk is the coefficient of
� in the expansion of Gk���. Moreover, at each step of the
RG iteration, �k and gk are determined via a polynomial fit
of Vk and Gk, respectively. Their boundary values, of
course, are �� and g�.

Taking for m2
�, ��, g�, and � the same values consid-

ered above, we now run the modified system of RG equa-
 0

 50000
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 150000

 200000

 250000

 300000

 0  20  40  60  80  100

φ

Vcl

V1l (no quadratic divergences)

Vwil

(b)

action of the quadratic divergences. The boundary values of the
e considered. For comparison, we have also plotted the one-loop
quadratic divergences, Vwil and V1l are quite close.
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tions and get for Vwil the result plotted in Fig. 7. As before,
we note that Vwil and V1l are very close.

The results of the present section strongly support our
previous findings. Even within the nonperturbative frame-
work considered here, the effective potential does not show
any sign of instability.
VII. SUMMARY AND CONCLUSIONS

Starting with the analysis of some popular, but mislead-
ing, arguments, we have studied the instability problem of
the EW vacuum with the help of a Higgs-Yukawa model.

Combining the Bogoliubov approach to symmetry
breaking, namely, the criterion of dynamical instability,
with the Wilsonian RG method, we have shown that
there is no conflict between the convexity of the effective
potential (effective action) and the existence of broken
phase vertex functions. This preliminary step was helpful
in establishing the incorrectness of the above quoted
arguments.

Successively, we have shown that the potential instabil-
ity is due to an illegal extrapolation of the renormalized
effective potential into a region where the results of renor-
malized perturbation theory do not hold. Moreover, in
agreement with what is expected from general theorems,
we have found that the effective potential of the cutoff
Higgs-Yukawa model is convex all over the region where it
is defined.

To establish these results, it was necessary to go beyond
the usual application of the perturbation theory conditions.
In this respect, we note that the dimensional regularization
scheme, by its own construction, directly gives the results
of renormalized perturbation theory. As the subject of this
paper shows, however, the connection between the UVand
the IR sectors of the theory (the relation between bare and
renormalized theory) can present aspects which are hidden
to a naive application of dimensional regularization.

In our case, the consistency constraint for the theory
(� � �) and Eq. (32) imply that the combination
��v=24� 
 �g4=16�2� ln�v2=�2� cannot be negative.
When we blindly jump to the perturbation theory results,
this information is lost. Actually, Eqs. (27) and (28), typi-
cally considered as the only conditions for the renormal-
ized perturbation theory to hold, do not contain the above
independent constraint. The effective potential appears to
be unstable when this condition is ignored.

We started our analysis within the framework of the
momentum cutoff regularization scheme. Successively,
with the help of the Wilsonian RG method, our results
were established in a more general nonperturbative
context.

Moreover, despite the stability of the potential, we have
shown that lower bounds on the Higgs mass can still be
derived. In fact, for a given renormalized value of �, the
corresponding cutoff can be found by looking for the
065017
inflection point of Veff in the external region (�> v). If
the scale of new physics is not too high, a sizable difference
between our bounds and the usual ones is obtained. For �
in the TeV region, we find a value ofmH which is some 10–
11 GeV higher than the current determination.

In addition to these phenomenological applications, it is
worth noting that there is a deep conceptual difference
between our analysis and the usual one. While in our
case the stability of the potential, as well as the bounds
on mH, come as a manifestation of the internal consistency
of the theory, in the usual approach the bounds are the
result of an (apparently) additional constraint to be im-
posed on the potential, the requirement of stability. The
instability is considered as a theoretically legitimate pos-
sibility. In fact, the metastability scenario explores the
consequences of having a minimum lower than the EW
one. Our results exclude this scenario.

In the present work, we have been interested in the
instability issue only. However, we believe that our results
come as a manifestation of a general problem, the (some-
how delicate) connection between the UV and the IR
sectors of a theory and that a similar analysis can be
applied to other cases where this connection is expected
to play an important role. We hope to come to this point in
the future.

As already said, we come now to the comparison of our
work with Refs. [26,27]. First of all, we note that the
instability problem concerns the renormalized effective
potential. Therefore, it is important to perform the analysis
within a range of � where renormalized perturbation the-
ory is (or is supposed to be) valid. In Refs. [26,27], how-
ever, the potential has a minimum at the cutoff, i.e. at
��� � �

a (see Fig. 2 of Ref. [26] and Fig. 4 of
Ref. [27]), and all the relevant scales, namely, the ‘‘low
energy scale’’ �, the cutoff scale �, and the minimum v,
are of the same order. In our opinion, this hardly helps in
understanding the origin of the instability problem.

Moreover, the renormalized potential [see Eq. (2) in
Ref. [27]] is obtained from the (subtracted) bare potential
[see Eq. (5) in Ref. [27]] after expanding in �

� and neglect-
ing negative powers of �. Insisting on the difference
between the bare and the renormalized potentials for val-
ues of� beyond �, as done by the authors, once more does
not help in clarifying the problem.

We believe that we have clearly identified the origin of
the apparent instability of the effective potential. Contrary
to what is stated in Ref. [27], it seems to us that it has
nothing to do with triviality.

To understand this point, it is worth stressing once more
that we are dealing with an effective theory. Triviality
simply means the growing of � for growing values of the
energy scale. Now, as anybody familiar with the problem
knows, the instability can be read from the running of ����
and is due to the contribution of the fermion loops which
drive � to the negative.
-13
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FIG. 8. The Maxwell construction for the classical potential of
the single component scalar theory considered in the text. The
parameters are chosen as � � 5� 10�2 and m2 � �10�2.
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The role of triviality, in the sense explained above,
shows up later on, i.e. for larger values of �. Because of
triviality, in fact, soon or later ���� rises up again, thus
generating a new minimum of Veff . By the way, it is
precisely this (‘‘trivial’’) behavior of � which is invoked
by the proposers of the metastability scenario.

As is well known, this peculiar flow of � is due to the
presence in the beta function of the �g4 term (which
initially drives � to the negative) and to the usual 
�2

term, which takes over later [see the first of our Eqs. (8)].
The conclusion is that triviality has nothing to do with

the instability of Veff . It would occur even if, hypotheti-
cally, �, after being driven negative by the fermion con-
tributions, would happen to saturate to zero or to any other
value for larger values of � (which, by the way, would
require a term different than �2 in the beta function).

Finally, we note that, in Refs. [26,27], in order to avoid
problems with the convexity of Veff (as stated by the
authors), the constrained potential is used. On the contrary,
insisting on the convexity of Veff as a guiding property, we
have found the flaw that artificially makes Veff unstable in
the external region.
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APPENDIX A: MAXWELL CONSTRUCTION AND
BOGOLIUBOV CRITERION

In the present appendix, we briefly show how the ��v�n ’s
are obtained from the convex effective action �eff . For
illustrational purposes, it is sufficient to consider the case
of a constant background field, i.e. to consider Veff rather
than the full effective action. For the sake of simplicity, we
also limit ourselves to the case of a single component
scalar theory.

General theorems [14,37], together with several analyti-
cal and numerical nonperturbative studies [17–24], indi-
cate that Veff is a convex function of � with a flat bottom
between �v and v, the minima of the classical potential.
At the lowest order, Veff coincides with the well known
Maxwell (or double tangent) construction sketched in
Fig. 8.

The (zero momentum) ��v�n ’s should be obtained by
taking the derivatives of Veff at � � v. Because of the
shape of the potential, however, this operation is ambigu-
ous and has to be defined with a certain care.

The approach that we are going to consider now [28,29],
far from being a technical point, has a deep physical mean-
ing. Following Bogoliubov, in fact, we interpret the occur-
rence of symmetry breaking as a manifestation of the
‘‘dynamical instability’’ of the otherwise equivalent vacua
of the potential. Adding to the Lagrangian an infinitesimal
source term which explicitly breaks the classical symmetry
065017
of the theory�"�, we select one of the two classical vacua
(see Fig. 9). More precisely, this additional term creates an
absolute minimum v" close to the old v.

As for the symmetric case, the lowest order for Veff can
be obtained with the help of the double tangent construc-
tion (Fig. 9). A simple inspection of Fig. 9 shows that the
derivatives at � � v" of the resulting modified effective
potential Veff��; "� can be safely taken. In fact, while in the
symmetric case (Fig. 8) the flat region extends from one of
the classical minima to the other (the minima coincide with
the tangent points), in Fig. 9 the effective potential (as the
classical one) has an absolute minimum v", and the flat
-14
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region starts at �t < v". The corresponding ��v";"�
n ’s at this

order are then easily obtained. The successive "! 0 limit7

gives the desired ��v�n ’s.
Clearly, the ��v�n ’s that we get this way are nothing but

the usual tree level ��v�n ’s. To get higher order approxima-
tions, we need to go beyond this lowest order Maxwell
construction. As we have shown in the main text (Sec. II),
with the help of the Wilsonian RG approach, the above
results can be established beyond this lowest order.
APPENDIX B: RENORMALIZATION CONDITIONS

In this appendix, we compute the renormalized potential
of Eq. (23), where the renormalization conditions that keep
the minimum and the curvature around the minimum fixed
at their classical values are implemented. Clearly, these
conditions are

�
dV1l

d�

�
��v
� 0; (B1)
�
d2V1l

d�2

�
��v
�
�v2

3
� �2m2; (B2)

with v �
�������������������
�6m2=�

p
. From Eq. (15) we get
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so that the condition (B1) becomes
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 ��
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Deriving V1l once more with respect to �, we get
7Although in this brief presentation we do not aim at complete
rigor, it is worth pointing out that, to construct the ��v�n ’s, we
begin first with a finite volume system and successively take the
infinite volume limit. The latter has to be taken previous to the
"! 0 limit.
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and the condition (B2) reads:
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From Eqs. (B4) and (B6) we find:
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Inserting Eqs. (B7) and (B8) in V1l, i.e. in Eq. (15), we
finally get
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Finally, neglecting the bosonic contribution to the quantum
fluctuation determinant, we see that Eq. (B9) is nothing but
the renormalized one-loop potential of Eq. (23).
APPENDIX C: RG-IMPROVED POTENTIAL FOR
THE SM

In the present appendix, we provide some useful rela-
tions needed for the computation of the RG-improved one-
loop effective potential of the SM (Sec. VI). Following
Ref. [11], the matching conditions for the Higgs and the
top masses are taken as:

M2
H�t� � m2

H�t

�
	2�t
�

	2�t�

 Re���p2 � M2

H� ���p2 � 0��;

(C1)
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Mt � mt�Mt�

�
1


gs�Mt�
2

3�2

�
; (C2)

where � is the self-energy of the Higgs boson (for the full
explicit expression, see Appendix A of Ref. [11]).
Moreover, although the exact effective potential is scale
independent, for V1l and VRGI this is true only approxi-
mately. The value t
 of the parameter t that appears in
Eq. (C1) is chosen as to minimize the dependence of VRGI

on the choice of the running scale ��t� � MZet. The
corresponding ��t
�, in our case, is ��t
� � 130 GeV.

Accordingly, omitting the Higgs and the Goldstone
(negligible) contributions, the value of m2

H�t

� is secured

as [11]:

m2
H�t

� � 	2�t
�v2

�
��t
�

3



3

64�2

�

�
g4

1�t

�

�
log
g2

1�t

�	2�t
�v2

4�2�t
�



2

3

�



1

2
�g2

1�t

� 
 g2

2�t

��2

�

�
log
�g2

1�t

� 
 g2

2�t

��	2�t
�v2

4�2�t
�



2

3

�

� 8g4�t
� log
g2�t
�	2�t
�v2

2�2�t
�

��
; (C3)

where, in the first term of the right-hand side, we recognize
the tree-level relation for m2

H, while the other terms come
from the loop corrections.

The boundary values for the coupling constants are
chosen as [11]:

g1�MZ� � 0:650; g2�MZ� � 0:355;

gs�MZ� � 1:218; ��MZ� � 0;

��MZ� � 0; g�Mt� �

���
2
p
mt�Mt�

	�Mt�v
� 0:9635;

(C4)
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which correspond to MW � 80 GeV, MZ � 91:2 GeV,
�s � 0:118, and Mt � 175 GeV.

The coupling ��MZ� is kept as a free parameter. As
explained in the text, by considering different values of
��MZ�, we obtain different values for the physical cutoff,
thus getting lower bounds for the Higgs mass as a function
of the scale of new physics.

Note also that, in order to keep the location of the
minimum to its phenomenological value, m2 has to be
fixed by the condition: h��t
�i=	�t
� � v � 246:22 GeV,
which gives [11]
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Now, solving numerically the system of RG equations
for the running coupling constants, we get Eq. (39) of
Sec. VI for VRGI���.

We end this appendix giving the boundary values of the
coupling constants corresponding to the updated values of
MZ,MW , �S, andMt reported in Sec. VI: g1�MZ� � 0:653,
g2�MZ� � 0:349, gs�MZ� � 1:223, and g�Mt� � 0:980.
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