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Liouville decoherence in a model of flavor oscillations in the presence of dark energy
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We study in some detail the master equation, and its solution in a simplified case modelling flavor
oscillations of a two-level system, stemming from the Liouville-string approach to quantum space-time
foam. In this framework we discuss the appearance of diffusion terms and decoherence due to the
interaction of low-energy string matter with space-time defects, such as D-particles in the specific model
of ‘‘D-particle foam,’’ as well as dark-energy contributions. We pay particular attention to contrasting the
decoherent role of a cosmological constant in inducing exponential quantum damping in the evolution of
low-energy observables, such as the probability of flavor oscillations, with the situation where the dark-
energy relaxes to zero for asymptotically large times, in which case such a damping is absent. Our findings
may be of interest to (astrophysical) tests of quantum space-time foam models in the not-so-distant future.
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I. INTRODUCTION AND MOTIVATION

In recent years there has been a debate on whether
microscopic black holes can induce quantum decoherence
at a microscopic level. The presence of quantum-
fluctuating microscopic horizons, of radius of the order
of Planck length (10�35 m), may give space-time a
‘‘foamy’’ structure, causing decoherence of matter propa-
gating in it. In particular, it has been suggested [1] that such
Planck-scale black holes and other topological fluctuations
in the space-time background cause a breakdown of the
conventional S-matrix description of asymptotic scattering
in local quantum field theory. This may lead to experimen-
tally testable predictions, at least in principle, for instance
as regards the so-called sensitive particle-physics probes of
quantum mechanics [2–4].

It must be pointed out that this suggestion is invalidated
if there is holography in quantum gravity [5], such that any
information of quantum numbers of matter, that at first
sight appears to be lost into the horizon, is somehow
reflected back on the horizon surface, thereby maintaining
quantum coherence. This may happen, for instance, in
some highly supersymmetric effective theories of strings
[6], which however do not represent realistic low-energy
theories of quantum gravity. Supersymmetry breaking
complicates the issue, spoiling complete holography.
Recently, S. Hawking, inspired by the above recent ideas
in string theory, has also argued against the loss of coher-
ence in a Euclidean quantum theory of gravity. In such a
model, summation over trivial and nontrivial (black-hole)
space-time topologies in the path over histories makes an
asymptotic observer ‘‘unsure’’ as to the existence of the
microscopic black-hole fluctuation thus resulting in no loss
of quantum coherence. However, this sort of argument is
plagued not only by the Euclidean formalism, with its
concomitant problems of analytic continuation, but also
by a lack of a concrete rigorous proof, at least up to now.

Therefore, for our purposes we still consider the matter
of quantum-gravity-induced decoherence as wide open and
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worthy of further phenomenological exploitation. This is
the point of view we shall take in this work. We shall
restrict ourselves to a specific framework for analyzing
decoherent propagation of low-energy matter in foamy
space-time backgrounds in the context of string theory
[7,8], the so-called Liouville-string [9] decoherence [10].
Our motivation for using string theory is that it appears at
present to be the best controlled theory of quantum gravity
available to date. In this respect we also mention that there
are other interesting approaches to quantum space-time
foam, which also lead to experimental predictions, for
instance the ‘‘thermal bath’’ approach advocated in [11],
according to which the foamy gravitational environment
may behave as a thermal bath, inducing decoherence and
diffusion in the propagating matter, as well as quantum
damping in the evolution of low-energy observables, fea-
tures which are, at least in principle, testable experimen-
tally. As we shall see later on, similar behavior is exhibited
by the specific models of foam that we study here, which
may characterize modern versions of string theory [8],
specifically the D-particle foam model of [12,13], based
on pointlike membrane defects in space-time (D-particles).

In the presence of decoherence the S-matrix of the
effective low-energy field theory would then have to be
replaced by a linear nonfactorizable superscattering opera-
tor S6 relating initial and final-state density matrices [1]

�out � S6 �in: (1)

If this is correct then the usual formulation of quantum
mechanics has to be modified. Arguments have been put
forward for this modification of the Liouville equation to
take the form [2]

@t� �
i
@
��;H� � �6 H�: (2)

Equations of this form are encountered in the description of
the time evolution of the state of open quantum mechanical
systems where �6 H� has a Lindblad form [14]. In such
systems observable degrees of freedom are coupled to
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unobservable components which are effectively integrated
over. Initial pure states evolve into mixed ones and so

S6 � SSy (3)

where S � eiHt. In these circumstances Wald [15] has
shown that CPT is violated, at least in its strong form,
i.e. there is no unitary invertible operator � such that

��in � �out: (4)

Such considerations have more recently again come to
the fore because of current neutrino data including LSND
data [16]. There is experimental evidence, that the neutrino
has mass which leads to neutrino oscillations. However
LSND results appear consistent with the dominance of
antineutrino oscillations �e! �� over neutrino oscillations.
In particular, provided LSND results turn out to be correct,
which is unclear at present, there is evidence for CPT
violation. It has been suggested recently [17] that Planck-
scale quantum decoherence may be a relevant contribution
to the CPT violation seen in the experiments of LSND.
Other examples of flavor oscillating systems with quite
different mass scales are furnished by BB and KK systems
[3]. The former, because of the large masses involved,
provides a particularly sensitive system for investigating
the Planck-scale fluctuations embodied by space-time
foam. In all these cases experiments, such as CPLEAR
[4], provide very low bounds on CPT violation which are
not inconsistent with dimensional analysis estimates for
the magnitudes of effects from space-time foam. These
systems have been analyzed within a dynamical semigroup
approach to quantum Markov processes. Once the frame-
work has been accepted then a master equation for finite-
dimensional systems ensued which can be characterized by
a small set of parameters. This approach is somewhat
phenomenological and is primarily used to fit data. Con-
sequently it is important to obtain a better understanding of
the nature of decoherence from a more fundamental
viewpoint.

An additional, and perhaps more plausible [18], reason
for considering quantum decoherence models of quantum
gravity, comes from recent astrophysical evidence on a
current-era acceleration of our Universe. Indeed, observa-
tions of distant supernovae [19], as well as WMAP data
[20] on the thermal fluctuations of the cosmic microwave
background (CMB), indicate that our Universe is at present
in an accelerating phase, and that 73% of its energy-density
budget consists of an unknown substance, termed dark
energy. Best-fit models of such data include Einstein-
Friedman-Robertson-Walker Universes with a nonzero
cosmological constant. However, the data are also cur-
rently compatible with (cosmic) time-dependent vacuum-
energy-density components, relaxing asymptotically to
zero [21]. In colliding brane-world models the dark-energy
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component of the Universe is considered to be a nonequi-
librium energy density of the (observable) brane world
[12,22]. This density is identified with the central charge
surplus of the supercritical �-models describing the (re-
coil) string excitations of the brane after the collision. The
relaxation of the dark-energy-density component can be a
purely stringy feature of the logarithmic conformal field
theory [23] describing the D-brane recoil [24] in a (pertur-
bative) �-model framework. We shall discuss below how
the theory of noncritical strings deals with the twin prob-
lems of cosmological constant, and dark energy. It is worth
pointing out that the noncritical (Liouville) string [9] pro-
vides a rather unified formalism for dealing not only with
Universes with a nonzero cosmological constant in string
theory, but in general with decoherent quantum space-time
foam backgrounds, that include microscopic quantum-
fluctuating black holes [10].

II. LIOUVILLE-DECOHERENCE:
GENERAL FORMALISM

Given the very limited understanding of gravity at the
quantum level, the analysis of modifications of the quan-
tum Liouville equation implied by noncritical strings can
only be approximate and should be regarded as circum-
stantial evidence in favor of the dissipative master equa-
tion. In the context of two-dimensional toy black holes [25]
and in the presence of singular space-time fluctuations
there are believed to be inherently unobservable delocal-
ized modes which fail to decouple from light (i.e. the
observed) states. The effective theory of the light states
which are measured by local scattering experiments can be
described by a noncritical Liouville string. This results in
an irreversible temporal evolution in target space with
decoherence and associated entropy production.

The following master equation for the evolution of
stringy low-energy matter in a nonconformal �-model
can be derived [10]. Moreover a nonzero cosmological
constant amounts to contributions to the effective central
charge of the two-dimensional world-sheet field theory.

@t� � i��;H� � :�iGij�gj; ��: (5)

where t denotes time (Liouville zero mode), the H is the
effective low-energy matter Hamiltonian, gi are the quan-
tum background target space fields, �i are the correspond-
ing renormalization group � functions for scaling under
Liouville dressings and Gij is the Zamolodchikov metric
[26,27] in the moduli space of the string. The set fgig
includes the graviton fields gMN where M and N are target
space-time indices. The double colon symbol in (5) repre-
sents the operator ordering :AB: � �A;B� . The index i
labels the different background fields as well as space-
time. Hence the summation over i; j in (5) corresponds
to a discrete summation as well as a covariant inte-
gration

R
dD�1y

�������
�g
p

where y denotes a set of �D�
1�-dimensional target space-time coordinates and D is
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FIG. 1. Schematic picture of the scattering of a string matter
state on a D-particle, including recoil of the latter. The sudden
impulse at t � 0, implies a backreaction onto the space-time,
which is described by a logarithmic conformal field theory. The
method allows for the perturbative calculation of the induced
space-time distortion due to the entangled state in (b).
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the space-time dimensionality of the original noncritical
string.

A. D-particle foam and master equation

The discovery of new solitonic structures in superstring
theory [8] has dramatically changed the understanding of
target space structure. These new nonperturbative objects
are known as D-branes and their inclusion leads to a
scattering picture of space-time fluctuations. The study
of D-brane dynamics has been made possible by
Polchinski’s realization [8] that such solitonic string back-
grounds can be described in a conformally invariant way in
terms of world sheets with boundaries. On these bounda-
ries Dirichlet boundary conditions for the collective target
space coordinates of the soliton are imposed. Heuristically,
when low-energy matter given by a closed (or open) string
propagating in a �D� 1�-dimensional space-time collides
with a very massive D-particle embedded in this space-
time, the D-particle recoils as a result. Since there are no
rigid bodies in general relativity the recoil fluctuations of
the brane and their effectively stochastic backreaction on
space-time cannot be neglected.

Based on these considerations, a model for a supersym-
metric space-time foam has been suggested in [12]. The
model is based on parallel brane worlds (with three spatial
large dimensions), moving in a bulk space-time which
contains a ‘‘gas’’ of D-particles. The number of parallel
branes used is dictated by the requirements of target space
supersymmetry in the limit of zero-velocity branes. One of
these branes represents allegedly our observable Universe.
As the brane moves in the bulk space, D-particles cross the
brane in a random way. From the point of view of an
observer in the brane the crossing D-particles will appear
as space-time defects which flashing on and off , i.e.
microscopic space-time fluctuations. This will give the
four-dimensional brane world a ‘‘D-foamy’’ structure.

Closed and open strings propagate on the brane. Each
time these strings cross with a D-particle, there is a possi-
bility of being attached to it, as indicated in Fig. 1. The
entangled state causes a backreaction onto the space-time,
which can be calculated perturbatively using the formalism
of logarithmic conformal field theory [24]. Details are
reviewed in Appendix B.

Using this model for space-time fluctuations we will
obtain an expression for the induced space-time distortion
as a result of D-particle recoil. In the weakly coupled string
limit we can show for the gravitational fields that

g‘m � �‘m; g00 � �1;

g0‘ � "�"y‘ � u‘t��"�t�; ‘ � 1; . . . ; D
(6)

where the suffix 0 denotes temporal (Liouville) compo-
nents and

�"�t� �
1

2�i

Z 1
�1

dq
q� i"

eiqt; u‘ � �k1 � k2�‘; (7)
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with k1�k2� the momentum of the propagating closed-string
state before (after) the recoil; yn are the spatial collective
coordinates of the D-particle and "�2 is identified with the
target Minkowski time t for t� 0 after the collision [24]
(see Appendix B). These relations have been calculated for
nonrelativistic branes where un is small and require the
machinery of logarithmic conformal field theory. Now for
large t, to leading order

g0‘ ’ u‘ 	
u‘
"
/

�p‘
MP

; (8)

where �p‘, ‘ � 1; . . . ; D, is the momentum transfer dur-
ing a collision and MP is the Planck mass (actually, to be
more precise, MP � Ms=gs, where gs < 1 is the (weak)
string coupling, and Ms is a string mass scale); so g0i is
constant in space-time but depends on the energy content
of the low-energy particle and RMN � 0 . Since we are
interested in fluctuations of the metric the indices i will
correspond to the pair M;N.

However, as already mentioned in the introduction, re-
cent astrophysical observations from different experiments
all seem to indicate that 73% of the energy of the Universe
is in the form of dark energy. Best-fit models give the
positive cosmological constant Einstein-Friedman
Universe as a good candidate to explain these observations.
For such de Sitter backgrounds RMN / �gMN with �> 0
a cosmological constant. Also in a perturbative derivative
expansion (in powers of �0 where �0 � l2s is the Regge
slope of the string and ls is the fundamental string length)
in leading order
-3
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��� � �0R�� � �0�g�� (9)

and

G ij � �ij: (10)

This leads to

@t� � i��;H� � �0�:gMN�gMN; ��: : (11)

For a weak-graviton expansion about flat space-time,
gMN � 	MN � hMN , and

h0‘ ’ u‘ 	
u‘
"
/

�p‘
MP

: (12)

If an antisymmetric ordering prescription is used, then the
master equation for low-energy string matter assumes the
form

_@t�Matter � i��Matter; H� ���h0‘; �h0‘; �Matter�� (13)

(when �0 is absorbed into �). In view of the previous
discussion this can be rewritten as

_@t�Matter � i��Matter; H� ���u‘; �u
‘; �Matter��; (14)

thereby giving the master equation for Liouville decoher-
ence in the model of a D-particle foam with a cosmological
constant.

III. DESTRUCTION OF INTERFERENCE

The master equation which has been derived is of rele-
vance to the study of general features of gravity induced
decoherence. The above D-particle inspired approach deals
with possible nonperturbative quantum effects of gravita-
tional degrees of freedom. The analysis is totally unrelated
to the phenomenology of dynamical semigroups which
does not embody specific properties of gravity. Indeed
the phenomenology is sufficiently generic that other
mechanisms of decoherence such as the MSW effect can
be incorporated within the same framework. Consequently
an analysis which is less generic and is related to the
specific decoherence implied by noncritical strings is
necessary.

It is sufficient to study a massive nonrelativistic particle
propagating in one dimension to establish qualitative fea-
tures of D-particle decoherence. The environment will be
taken to consist of both gravitational and nongravitational
degrees of freedom; hence we will consider a generaliza-
tion of quantum Brownian motion for a particle which has
additional interactions with D-particles. This will allow us
to compare qualitatively the decoherence due to different
environments. The nongravitational degrees of freedom in
the environment (in a thermal state) are conventionally
modeled by a collection of harmonic oscillators with
masses mn, frequency !n and coordinate operator bqn
coupled to the particle coordinate bx by an interaction of
the form

P
ngnbxbqn. The master equation which is derived

can have time-dependent coefficients due to the competing
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timescales, e.g. relaxation rate due to coupling to the
thermal bath, the ratio of the time scale of the harmonic
oscillator to the thermal time scale etc. However an ab
initio calculation of the time-dependence is difficult to do
in a rigorous manner. It is customary to characterize the
nongravitational environment by means of its spectral
density I�!���

P
n��!�!n�

g2
n

2mn!n
�. The existence of

the different time scales leads in general to nontrivial
time dependences in the coefficients in the master equation
which are difficult to calculate in a rigorous manner [28].
The dissipative term in (15) involves the momentum trans-
fer operator due to recoil of the particle from collisions
with D-particles ([13]). This transfer process will be mod-
eled by a classical Gaussian random variable r which
multiplies the momentum operator bp for the particle:

ux !
r
MP

p̂: (15)

Moreover the mean and variance of r are given by

hri � 0 and hr2i � �2: (16)

On amalgamating the effects of the thermal and D-particle
environments, we have for the reduced master equation for
the matter (particle) density matrix � (on dropping the
Matter index)

i
@
@t
� �

1

2m
�bp2; �� � i��bx; �bx; ��� � 


2
�bx; fbp; �g�

� i�r2�bp; �bp; ��� (17)

where �; 
 and � are real time-dependent coefficients. As
discussed in Appendix B (B18) a possible model for ��t� is

��t� � �0 �
e


a� t
�

e�
1� bt2

; (18)

where �0, e
, a, e�, and b are positive constants, including
appropriate powers of �0. The quantity e
 < 1 contains
information on the density of D-particle defects on a
four-dimensional world. From the earlier derivation of
the master equation it is clear that the last term of the
right-hand side of (18) represents a time-dependent cos-
mological constant contribution. The form of this time
dependence, just as other issues to do with the cosmologi-
cal constant, is a matter of debate. Arguments, for example,
arising from quintessence [29] and cosmon scalar fields
lead to a behavior which is compatible with (18). Similar
behavior is also obtained in dark-energy relaxation models
in the context of noncritical strings (linear-dilaton models
[30,31] or colliding brane worlds (recoil) [12,22]). The
time dependence of 
 and � can be calculated in the
weak coupling limit for general n (i.e. Ohmic, n � 1 and
non-Ohmic n � 1 environments) where

I�!� �
2

�
m
0!

�
!
$

�
n�1

e�!
2=$2

(19)
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and $ is a cutoff frequency. The precise time dependence
is governed by ��t� �

R
t
0 ds��s� and 
�t� �

R
t
0 ds��s�s

where ��s� �
R
1
0 d!I�!� coth��@!=2� cos�!s�. For the

Ohmic case, in the limit @$
 kBT followed by $ !
1, �, and 
 are given by m
0kBT and 
0 respectively
after a rapid initial transient. For high temperatures � and

 have a powerlaw increase with t for the sub-Ohmic case
whereas there is a rapid decrease in the supra-Ohmic case.
However for our considerations it is adequate to restrict
attention to the Ohmic high temperature limit [32].

IV. SOLUTION OF THE MASTER EQUATION

The master equation of (18) can be solved. It is useful to
introduce the operatorbD � exp�i�kbx��bp�� (20)

and the transforme���;�� � Tr�� exp�i��bx� �bp���: (21)

The master equation then takes the form fgig

@
@t
e�� �

�
�
m
� 
�

�
@
@�

e� � ���2e����t�r2�2e�:
(22)

This is solved by [33]

e���;�; t� � F
�
e�
t

�
��

�
m


�
; �
�
P I��;�; t�; (23)

where P I is a particular solution of (23) and F �e�
t���
�
m
�; �� is an arbitrary solution of

@
@t
e�� �

�
�
m
� 
�

�
@
@�

e� � 0: (24)

for an arbitrary F .
We can write

P I��;�; t� � exp�f1�t��2 � f2�t��2 � f3�t����: (25)
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It is then necessary that

d
dt
f1 �

f3

m
� �r2��t� (26)

d
dt
f2 � 2
f2 � �� (27)

d
dt
f3 �

2

m
f2 � 
f3 � 0: (28)

Now (26) is a stochastic differential equation. We can
consider r�t� to be a (finite variance) Gaussian variable
with variance �2 and vanishing mean. In the Ohmic high
temperature limit and in the mean we can solve these
coupled equations, for initial conditions f1�0� � f2�0� �
f3�0� � 0 to give

f1�t� �
1

2m
2
���
b
p �kBT

���
b
p
��2
t� �1� e�2
t�

� 4�1� e�
t�� � 2m�2
2e�tan�1�
���
b
p
t�� (29)

f2�t� �
1

2
mkBT�e

�2
t � 1� (30)

f3�t� �
kBT


�2�e�
t � 1� � �1� e�2
t�� (31)

on taking �0 � e
 � 0. In order to study interference we
need to understand the behavior of ��x; x0�. � and e� are
related by

��x; x0; t� �
1

2�

Z 1
�1

d�e�i��x�x
0�=2e���; x� x0; t�: (32)

For an initial state which is a linear superposition jk1i �
jk2i of momentum eigenstates
e���;�; t � 0� � �ei��=2������ei�k1 � ei�k2� � ���� k2 � k1�e
i�k2 � ���� k1 � k2�e

i�k1� (33)

and so

F��; �� � �ei��=2������=�m
��� �����ei�����=�m
���k1 � ei�����=�m
���k2� � ���� k2 � k1�ei�����=�m
���k2

����� k1 � k2�e
i�����=�m
���k1

 !
: (34)

This implies that

��x; x��; t� �
1

2

ef2�t��2�ik1g�t;0;�� � ef2�t��2�ik2g�t;0;���

ef1�t��k1�k2�
2�f2�t��2�f3�t��k1�k2��ei��k1�k2��

�
2�x��

�k1�k2�
2 g�t;k1�k2;����

ef1�t��k2�k1�
2�f2�t��2�f3�t��k2�k1��ei���k1�k2��

�
2�x��

�k1�k2�
2 g�t;k2�k1;���

0B@
1CA; (35)
where g�t; �;�� � e�
t��� �
m
� �

�
m
 .
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The form of interference manifests itself in ��x; x; t�:

��x; x; t� � 1� exp�f1�t��k1 � k2�
2�

�

�
cos

�
�k1 � k2�x�

�k2
1 � k

2
2�

2m

�1� e�
t�

��
:

(36)

Clearly from the form of f1�t� (29) the above indicates
that the reduction in contrast is not exponential with t;
hence the interference is qualitatively of a milder form than
that due to conventional baths which includes the approach
due to quantum semigroups.

V. FLAVOR OSCILLATION

In order to understand the effect of decoherence on
flavor oscillations we can for simplicity consider two
flavors and flavors created with a sharp momentum.
Consequently for any momentum ket jki there will be
065016
two possible quantum numbers corresponding to the two
mass eigenstates with mass eigenvalues m1 and m2. To
reflect this the density matrix will have a 2� 2 matrix
structure

� � �01� �i�i; (37)

where �i; i � 1 . . . 3 are the Pauli matrices and 1 is the
identity matrix and a summation convention over repeated
indices is assumed. In terms of

m12 �
m2 �m1

m2 �m1
;

1

m
�

1

2

�
1

m1
�

1

m2

�
(38)

we can write the kinetic energy as H0 �
bp2

2m �1�m12�3�.
Because the decoherence is gravitational it will be sensitive
to masses; hence we can take it to have in general a
structure with r no longer a scalar function. A random 2�
2 matrix structure r � r01� ri�i would be natural. The
previous master equation generalizes to
i
d
dt
��01� �j�j� � �H0; �01� �j�j� � i��bp�r01� ri�i�; �bp�r01� rj�j�; �01� �k�k�� (39)
We now introduce

e����;�� � tr��� bD� (40)

for � � 0; 1; 2; 3:
The equations arising for �� are given in the appendix.

In order to draw qualitative conclusions it is sufficient to
simplify by requiring only r0 and r3 as being the only
nonzero random variables. The analysis then simplifies
and is given in Appendix A.

The flavor mixing unitary matrix is

U �
cos� sin�
� sin� cos�

� �
(41)

and relates flavor to mass eigenstates through j�i � U�jjji
( where the Latin indices apply to mass eigenstates and
Greek indices to flavor eigenstates). The initial density
matrix will represent a particle in flavor eigenstate 1 with
momentum p. Its matrix elements are

�11�t � 0� � cos2�jpihpj

�22�t � 0� � sin2�jpihpj

�12�t � 0� � sin� cos�jpihpj

�21�t � 0� � sin� cos�jpihpj:

(42)

The corresponding elements for e� are

e�0�t � 0� � �ei��p��=2�����e�3�t � 0� � � cos�2��ei��p��=2�����e�1�t � 0� � � sin�2��ei��p��=2�����e�2�t � 0� � 0

The solution at a general time (c.f. Appendix A) is
e�0�t� �
�
2
ei��p��=2�����

(
�1� cos�2��� exp��t��r0 � r3�

2�2 I�t�
t � i

�1�m12���2p���
2m ���

�1� cos�2��� exp��t��r0 � r3�
2�2 I�t�

t � i
�1�m12���2p���

2m ��

)

e�3�t� �
�
2
ei��p��=2�����

(
�1� cos�2��� exp��t��r0 � r3�

2�2 I�t�
t � i

�1�m12���2p���
2m ���

�1� cos�2��� exp��t��r0 � r3�
2�2 I�t�

t � i
�1�m12���2p���

2m ��

)

e�1�t� � � sin�2��ei��p��=2����� cos
�
m12

m
p2t

�
exp��4r2

3p
2I�t�

�
e�2�t� � � sin�2��ei��p��=2����� sin

�
m12

m
p2t

�
exp��4r2

3p
2I�t��

(43)
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where (c.f. (A13)):

I �t� 	
Z t

0
��t0�dt0

� �0t� e
 ln�1� t=a� �
e����
b
p tan�1�

���
b
p
t�: (44)

The probability for the transition of flavor 1 to flavor 2 at
time t is tr��f����t�� where

�f0 �
1

2
jpihpj; �f1 � �

1

2
sin2�jpihpj; �f2 � 0; �f3

� �
1

2
cos2�jpihpj:

From (43) and (44) it is clear that decoherence affects
this probability with an exponential damping only if the
cosmological term � is the constant �0. In particular, in

the absence of the �0 term, and in the limit e� � 0, the
decoherence due to the D-particle foam results in power
damping for large times t! 1, the terms e�i � t��2

i , i �
0; 3, while e�i � t�p2�2

i , i � 1; 2, i.e. the scaling power
depends on the probe’s momentum (with �i appropriate
constants depending on the term we look at in (44). With
the general ��t� of (19) the probability for flavor oscilla-
tion, P1!2, is proportional to

P1!2 / �sin2��2�1� exp��4�2p2I�t��� cos
�
m12p2t
m

�
:

(45)

with �t� given by (44).
We remark at this stage that, in view of the fundamental

CPT violation inherent in the master Eq. (14) or (18), as a
result of the microscopic time irreversibility under t! �t
of the entanglement terms of this equation, it is also
possible (but not necessary) to consider models of D-
foam in which the momentum transfer (16), (17) differs
between particle and antiparticle sectors. In such a case,
one would then obtain different decoherence coefficients
for particles and antiparticles, a model which was already
used in [17] in order to fit LSND data [16].

Although our simplified model for flavor oscillations,
using a nonrelativistic bosonic two-level system, is too
simplified for realistic phenomenology of (neutrino)
flavor oscillations, nevertheless we believe that it captures
the basic features induced by Liouville-decoherence,
which are expected to persist in the relativistic neutrino
case. The important point is the damping factor
exp��4�2p2I�t�� in front of the oscillatory term, which
depends on the square of the momentum of the probe, as
well as the space-time foam characteristics, such as the
dispersion �2 (17) in the momentum transfer during the
interaction of the matter probe with the D-particle defect.

In this respect, it is interesting to compare the general
form (45) of the Liouville decoherence, in which the en-
tanglement is time dependent in general, with the generic
065016
models of Lindblad decoherence, based on the approach of
[2], in which the environmental entanglement is charac-
terized by a constant decoherence matrix. For instance,
consider for definiteness the two-flavor oscillation case,
in the completely-positive neutrino decoherence model of
[34,35], for which there is only one real and positive,
constant in time, but possibly probe-energy dependent,
decoherence parameter 
 to characterize the quantum-
gravity entanglement. In the case where the energy and
lepton number of the neutrino are assumed conserved (on
average, at least) in the presence of quantum-gravity fluc-
tuations, the oscillation probability reads in that model:

P��!�� �
1

2
�sin2��2

�
1� exp��
L� cos

�
�m2

1 �m
2
2�L

2E�

��
(46)

where L � t is the neutrino oscillation length, and E� is the
average energy of the neutrino beam.

First of all let us concentrate in the form of the oscil-
latory terms. To understand the difference between our
case (45) and (46), we should remind the reader that flavor
oscillations can be analyzed in two ways: the first involves
flavors with sharp momentum, in which case one considers
oscillations in time, as done in the present work, while the
other involves flavor with sharp energy, in which case the
oscillations are in space. This is the conventional neutrino
case, leading to (46). The conclusions should not change,
however, qualitatively. For our purposes it is not necessary,
therefore, to consider the second case in order to get a
qualitative description of the D-foam effects. This will be
important only when we embark on a detailed phenome-
nology, by looking at specific experiments, in which case
complications involving wave packets and the joint pres-
ence of the above effects must be incorporated. One should
also take into account that the neutrino is a highly relativ-
istic system, with a very small mass, in contrast to our
nonrelativistic bosonic system examined in this section for
simplicity. One expects, therefore, that when we consider
in our approach relativistic systems, with sharp energy, a
similar form for the oscillatory term as in (46) will be
obtained. Qualitatively, however, in both (45) and (46),
the main reason for oscillations is the conventional mass
difference between the mass eigenstates, which agrees with
the present phenomenology.

The exponential damping (with time or oscillation
length) induced by the decoherence term is only present
in our case in the case of a cosmological constant. The
generic D-foam effects are time dependent in the way
indicated in (44), which does not introduce exponential
damping. The important feature, however, is the quadratic
momentum dependence p2 of the exponent of these
‘‘damping’’ terms, which persists in the relativistic case,
since it originates from the specific �p; �p; ��� diffusion
term of the master Eq. (18), as well as their dependence on
the specific characteristics of the foam, such as the disper-
-7
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sion � (17) for the momentum transfer during the interac-
tion of the particle probe with the foam. Experimentally,
therefore, one should be able to bound this dispersion by
comparing the oscillation probability (45) as a function of
the oscillation length (time) with the corresponding experi-
mental curve. Currently there are stringent limits from
neutrino physics on quantum decoherence terms [36],
and one can envisage that such bounds provide important
restrictions on our D-particle foam characteristic disper-
sion �, when the model is applied to relativistic neutrino
beams. We postpone a detailed phenomenological analysis
of our effects for a future publication, due to the compli-
cations mentioned above.

It is also worth noticing at this stage that damping
factors, which resemble those due to decoherence, can
arise simply [37] by conventional uncertainties in the
energy (or momentum, depending of the formalism
adopted) of the neutrino beam. If �E denotes the corre-
sponding dispersion, then, for the two-flavor oscillation
problem one finds:

P��!�� �
1

2
�sin2��2

�
1� exp��2�2

E�m
2
1 �m

2
2�

2�

� cos
�
�m2

1 �m
2
2�hLi

2hE�i

��
: (47)

The reader is invited to compare (47) with (45) and (46).
We note that by writing [37]: �E �

L
4E�
r, with r� �E=E

(ignoring, as negligible, uncertainties in oscillation
lengths), then one may rewrite (47) in a decoherence
form (46) with the decoherence coefficient 
� �m2

1 �
m2

2�
2Lr2=8E2

�. For atmospheric neutrinos, this yields the
bound 
atm 
 10�24 GeV, assuming r2 � �1�. Similar
bounds can be obtained for the D-foam decoherence damp-
ing factor (45), which notably is independent of the mass
difference. Indeed, one can also formally rewrite the damp-
ing factor in (45) as a decoherence (46) term, with 
 �
4�2p2I�L�=L, with L � t. However, for reasons explained
above this formula is not quite precise, and for quantitative
comparison one should repeat the analysis with relativistic
neutrino systems, in the sharp energy formalism. This is
left for future work.

Finally, before closing this section we would like to
compare our result (45) with the energy-driven Lindblad
decoherence models for two-flavor oscillations considered
in [38]. In the latter case, the pertinent master equation for
the density matrix of matter propagating in a self-adjoint
Lindblad environment, spanned by operators Dyn � Dn,
with �Dn;H� � 0, reads (in units @ � 1 � c):

@t� � i��;H� �
X
n

�Dn; �Dn; ���: (48)

When specialized to a two-level system, Adler [38] asserts
that the only possible choices that commute with H are

Dn � �nb1, with b1 the identity operator, and Dn � 
nH,
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with �n; 
n appropriate constants. In the relativistic mas-
sive neutrino case, with fixed energy E for the neutrino
beam, H ’ p� m2

2p , from which, by projecting onto mass
eigenstates, and concentrating on the nondiagonal density-
matrix elements, Eq. (48) yields the following leading-
order estimate for the decoherence coefficient 
 [38]:


�
�m2

1 �m
2
2�

2

4E2MP
(49)

where 1=MP �
P
n


2
n is a characteristic quantum gravity

scale. In the nonrelativistic case at hand, from the rest-mass
terms in the expansion of the Hamiltonian H ’ m� p2

2m ,
we obtain the following estimate for the decoherence term

nr � �m1 �m2�

2=MP �O�p4�m1 �m2�
2=4m2

1m
2
2MP�.

These estimates are much more suppressed than the esti-
mates of [34], who allowed for the decoherence coeffi-
cients (in the relativistic case) to be of orderE2=MP, with E
a fixed neutrino energy.

We now note that this latter, quadratic in energy, depen-
dence of the decoherence coefficient appears to be the case
of our Liouville decoherence, and owes its form to the
peculiar (quadratic) momentum dependence of the
Liouville environmental decoherening entanglement term
of the master Eq. (17). The form of this term is independent
of the relativistic or nonrelativistic nature of the
Hamiltonian H, while the form of (48) and (49) depends
crucially on the form of the Hamiltonian H.

In the Liouville decoherence case of the D-particle
foam, examined in the present work, the Lindblads, given
by u / rbp (c.f. (15)), although self-adjoint and commuting
with the Hamiltonian of the nonrelativistic system, never-
theless are not proportional to it. This is due to the fact that
the Lindblad operators in this case are proportional to the
metric tensor (13), as a result of the underlying general
coordinate invariance of the Liouville-string system, which
is not taken into account in the simple quantum mechanical
case of [38]. This leads to an entirely different energy
(momentum) dependence ( / p2) of the decoherence co-
efficient in the Liouville case, as we have seen above. With
these comments we conclude our phenomenological analy-
sis on Liouville decoherence.
VI. CONCLUSIONS

In this work we have examined phenomenological con-
sequences of a decoherence master equation describing the
propagation of low-energy string matter in a space-time
foam background. The basic machinery was the Liouville-
string approach to decoherence.

We have restricted ourselves in a specific model for the
space-time foam, involving the interaction of strings with
space-time D-particle defects. We have seen that the perti-
nent master equation exhibits diffusion terms and decoher-
ence, but that there is not always exponential damping. The
reason is the time dependence of some of the decoherence
-8
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terms. The Liouville decoherence involves a term which is
quadratic in the momentum transfer encountered during
the interaction of the particle probe with the space-time
defect. By considering a specific model of random foam,
characterized by the dispersion of such a momentum trans-
fer, we have been able to solve the pertinent decoherence
equation rather simply, and give the form of the corre-
sponding probability for the oscillation from one flavor to
another, in a toy nonrelativistic bosonic model of two-
flavor oscillations. Our formalism also allows for the con-
sideration of possible decoherence effects arising from
dark-energy contributions in the space-time. Such effects
have also been taken into account in the expression for the
final oscillation probability

Although the model is not strictly appropriate for neu-
trino physics, nevertheless it exhibits the basic properties
of Liouville decoherence that one expects to persist in the
fully relativistic neutrino case. The basic feature is a damp-
ing looking factor exp��4p2�2I�t��, in front of the con-
ventional oscillation terms that are due to the mass
difference of the pertinent mass eigenstates. The damping
factor depends on the characteristics of the foam, but leads
to exponential damping (with the time t) only in case there
is a cosmological constant term in space-time.

The simplified analysis presented in the current article
demonstrates that generic phenomenological analyses,
based on constant decoherence coefficients, might be mis-
leading, yielding sometimes incorrect bounds of the rele-
vant space-time foam effects. One should resort, whenever
possible, to rather detailed microscopic models of space-
time foam, as we have done here, before embarking on
detailed phenomenological analyses. One should also be
careful to disentangle conventional matter effects, or ef-
fects related simply to uncertainties in the energy or oscil-
lation lengths, before concluding on the possible rôle of
fundamental physics effects in particle processes, such as
flavor oscillation. We hope to return to a detailed phenome-
nological analysis of D-particle foam effects in neutrinos
and other particle probes, taking into account of the appro-
priate spin structures as well, in a future publication.
APPENDIX A: DETAILED SOLUTION OF THE
MASTER EQUATION

By multiplying (39) with �� and taking traces the
following equations arise:
@
@t
e�0 �

�
m

�
@
@�

e�0 �m12
@
@�

e�3

�
���2�r�r�e�0 � 2r0rje�j� (A1)
and
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@
@t
e�j � �

m12

m
"3lj � 4�hlj

��
i
@
@�
�
�
2

�
2e�l

� 4i��flj

�
i
@
@�
�
�
2

�e�l
�
�
m

�
m12�j3

@
@�

e�0 � ��ij � im12"3lj�
@
@�

e�l�
���2�2r0rje�0 � �rlrj � r

2
0�jl � ir0"lkjrk

� iflj�e�l� (A2)

where fjp � r0rs"jps � irlrl�jp � irjrp.
When r0 and r3 are the only nonzero components of r�

then the above equations become

@
@t
e�0 �

�
m

�
@
@�

e�0 �m12
@
@�

e�3

�
���2��r2

0 � r
2
3�e�0 � 2r0r3e�3�; (A3)

@
@t
e�1 � �

�
i
@
@�
�
�
2

�
2
�
m12

m
e�2 � 4�r2

3e�1

�
� 4i��

�
i
@
@�
�
�
2

�
��r0r3e�2 � ir

2
3e�1�

�
�
m

�
@
@�

e�1 � im12
@
@�

e�2

�
���2��r2

0 � r
2
3�e�1 � 2ir0r3e�2�; (A4)

@
@t
e�2 �

�
i
@
@�
�
�
2

�
2
�
m12

m
e�1 � 4�r2

3e�2

�
� 4i��

�
i
@
@�
�
�
2

�
�r0r3e�1 � ir

2
3e�2�

�
�
m

�
@
@�

e�2 � im12
@
@�

e�1

�
���2��r2

0 � r
2
3�e�2 � 2ir0r3e�1�; (A5)

@
@t
e�3 �

�
m

�
@
@�

e�3 �m12
@
@�

e�0

�
���2�2r0r3e�0 � �r

2
0 � r

2
3�e�3�: (A6)

The Eqs. (A3)–(A6) form two decoupled sets, one in-
volving e�0 and e�3, the other e�1 and e�2. In order to solve

these equations we introduce the Fourier transforms ee��
defined by

ee����; 	� �
Z 1
�1

e����;��e�2�i	�d� (A7)

(so that e����;�� � R
1
�1

ee����;	�e2�i	�d	).
We then have

i
@
@t

ee�0ee�3

0@ 1A � M
ee�0ee�3

0@ 1A; (A8)

where
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M �
� 2��	

m � i��2�r2
o � r2

3� � 2��	m12

m � 2i��2r0r3

� 2��	m12

m � 2i��2r0r3 � 2��	
m � i��2�r2

o � r
2
3�

 !
:

Now for

C �
1 �1
1 1

� �

C �1MC �

1 0
0 
2

� �
where


1 � �
�
m
�2�1�m12��	� im�r0 � r3�

2���;


2 � �
�
m
�2�1�m12��	� im�r0 � r3�

2���:
(A9)

Notice that so far � has been kept arbitrary provided it is a
slowly varying function ��t� of (cosmic) time.

On introducing

b�0b�3

� �
� C�1

ee�0ee�3

0@ 1A
we have to a good approximation

b� 0�t� � e�i
R
t

0

1�t0�dt0 b�0�0�;

b�3�t� � e�i
R
t

0

2�t0�dt0 b�3�0�:

(A10)

Similarly

i
@
@t

ee�1ee�2

0@ 1A � N
ee�1ee�2

0@ 1A
where

N11 � N22 � �
2�	�
m
� 16i�2r2

3	
2�� ir2

3�
2�

� i�r2
0 � r

2
3��

2�

and

N21 � �N12 �
4im12�

2	2

m
�
im12�

2

4m
� 8�r0r3	��:

For

D �
�i i
1 1

� �

D�1ND �
�1 0
0 �2

� �
and so, on defining

b�1b�2

� �
�D�1

ee�1ee�2

0@ 1A
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we have

b� 1�t� � e�i
R
t

0
�1�t0�dt0 b�1�0�;

b�2�t� � e�i
R
t

0
�2�t0�dt0 b�2�0�:

(A11)

This analysis can be summarized as follows:

ee� 0�t� �
1

2
�e�i

R
t

0

1�t0�dt0 � e�i

R
t

0

2�t0�dt0 �ee�0�0� �

1

2

��e�i
R
t

0

1�t0�dt0 � e�i

R
t

0

2�t0�dt0 �ee�3�0�;ee�3�t� �

1

2
�e�i

R
t

0

1�t0�dt0 � e�i

R
t

0

2�t0�dt0 �ee�0�0� �

1

2

��e�i
R
t

0

1�t0�dt0 � e�i

R
t

0

2�t0�dt0 �ee�3�0�;ee�1�t� �

i
2
��i�e�i

R
t

0
�1�t0�dt0 � e�i

R
t

0
�2�t0�dt0 �ee�1�0�

� �e�i
R
t

0
�2�t0�dt0 � e�i

R
t

0
�1�t0�dt0 �ee�2�0��;ee�2�t� �

i
2
���e�i

R
t

0
�2�t0�dt0 � e�i

R
t

0
�1�t0�dt0 �ee�1�0�

� i�e�i
R
t

0
�1�t0�dt0 � e�i

R
t

0
�2�t0�dt0 �ee�2�0��

(A12)

For the specific case where ��t� has the time dependence
indicated in (19), the corresponding time integral is ele-
mentary:

I �t� 	
Z t

0
��t0�dt0

� �0t� e
 ln�1� t=a� �
e����
b
p tan�1�

���
b
p
t� (A13)

which, in the limit of constant �, i.e. e�; e
! 0 yields the

standard term I�t; e
 � 0; e� � 0� � �0t, responsible for
the usual exponential damping. The above results are used
in Sec. IV, where we discuss Liouville decoherence in a toy
two-generation oscillation system.
APPENDIX B: CALCULATION OF
BACKREACTION IN D-PARTICLE FOAM

B. D-particle foam contributions to master equation for
Liouville-decoherence

The material in this appendix is a review based on [24],
where we refer the reader for further details. Let us con-
sider a D-particle, located at yi�t � 0� 	 yi of the spatial
coordinates of a �d� 1�-dimensional space-time (which
could be a D3-brane world), which at a time t � 0 expe-
riences an impulse, as a result of scattering with a matter
-10
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string state (see Fig. 1). In a �-model framework, the
trajectory of the D-particle yi�t�, i � 1; 2; . . . d; a spatial
index, is described by inserting the following vertex op-
erator in the �-model of a free string:

V �
Z
@�
gijyj�t�@nXi (B1)

where gij denotes the spatial components of the metric, @�
denotes the world-sheet boundary, @n is a normal world-
sheet derivative, Xi are �-model fields obeying Dirichlet
boundary conditions on the world sheet, and t is a �-model
field obeying Neumann boundary conditions on the world
sheet, whose zero mode is the target time. The space-time
prior to Liouville dressing is assumed Euclidean for formal
reasons (convergence of the corresponding �-model path
integral). We note, however, that the final Liouville-
dressed target space-time acquires Minkowski signature
as a result of the timelike signature of the Liouville mode
[10,22].

We will consider the nonrelativistic approximation
which is appropriate for a heavy D-particle defect of
mass Ms=gs with Ms the string scale and g5 the string
coupling (assumed to be weak); the path yi�t� correspond-
ing to the impulse is given by

yi�t� � �"yi � uit��"�t�; ui � �k1 � k2�i; (B2)

with k1�k2� the momentum of the propagating string state
before (after) the recoil (see Fig. 1); yi are the spatial
collective coordinates of the D-particle, and the regularized
Heaviside functional operator �"�t� is given by (7) in the
text [24]:

�"�t� �
1

2�i

Z 1
�1

dq
q� i"

eiqt; (B3)

Equation (B2) contains actually a pair of deformations
corresponding to the �-model couplings yi and ui.
These deformations are relevant in a world-sheet
renormalization-group sense, having anomalous scaling
065016
dimension� "2

2 , i.e. to leading order in a coupling constant
expansion their renormalization-group �-functions read

�y
i
� �

"2

2
yi; �u

i
� �

"2

2
ui: (B4)

The deformations form a logarithmic conformal algebra
(superconformal algebra in the case of superstrings) which
closes if and only if one identifies [24] the regulating
parameter "�2 with the world-sheet renormalization-group
scale ln jL=aj2 (L�a� is the infrared (ultraviolet) world-
sheet scale):

"�2 � 	 ln jL=aj2 (B5)

where 	 denotes the signature of time t of the target space
manifold of the �-model (prior to Liouville dressing). For
Euclidean manifolds, assumed here for path-integral con-
vergence, 	 � �1.

Upon the identification (B5) the rescaled couplings yi 	
yi
" and ui 	

ui
" are marginal, that is independent of the scale

". It is these marginal couplings that are connected to target
space quantities of physical significance, such as the space-
time backreaction of recoil, which we now proceed to
calculate.

In what follows we shall concentrate only on the limit
"! 0. In this limit the dominant contributions come from
the ui recoil deformation in (B2), which we shall restrict
our attention to from now on. The corresponding two-point
correlation function of the vertex operator associated with
the deformation ui (Zamolodchikov metric in u-space Guu)
has the leading-order behavior [24]:

G uu �
1

"2 � finite terms as "! 0: (B6)

The corresponding deformations contribute the following
terms in the master Eq. (5):
Liouville entanglement in Eq.�5� �: �uiGuiuj�u
j; �� :� �

"2

2

�
ui

1

"2 �ij; �u
j; ��

�
� �

1

2
�ui; �u

i; ��� � �"2 1

2
�ui; �u

i; ��� (B7)
upon selecting antisymmetric operator ordering to ensure
the validity of the Lindblad properties of the evolution, and
expressing the final result in terms of marginal u velocities.
The (relative) negative sign in front of the entanglement
term in the Liouville master Eq. (B7) is important for
exponential damping, and it was assumed in the text.
Finally one identifies "2 with the inverse of the
(Minkowski) target time 1=t.

This procedure will therefore yield a master equation for
Liouville decoherence in a Minkowski space-time environ-
ment of the form:
_@t�Matter � i��Matter; H� �
e

t
�uj; �u

j; �Matter��; (B8)
where the (positive) constant e
 has been incorporated in
order to take into account situations in which the density of
D-particles on the brane world is less than one per Planck
volume, assumed above. Lacking a detailed microscopic
theory, which would in principle determine this density
from first principles, we have to resort to phenomenologi-
cal considerations, which are subject in principle to experi-
-11
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mental tests. Thus, for us the parameter 0< e
 < 1 will be a
free parameter to be bounded by experiment.

In the above derivation the identification t� 1="2 ! 1
has been used and so the form of (B8) is valid for large
times after the scattering of the matter string with the
defect. Formally, in order to avoid unphysical singularities
as t! 0, we may replace the 1=t term by 1=�a� t�, with a
a positive constant, i.e.

_@t�Matter � i��Matter; H� �
e


a� t
�uj; �uj; �Matter�� (B9)

with a > 0. But we stress again, that at short times after the
collision our �-model perturbation theory breaks down. It
is also for this reason that the above-derived master equa-
tion is considered as rather ‘‘phenomenological.’’

B. Vacuum Energy contribution to the master equation
for Liouville decoherence

The above-described effects is not the only contribution
to decoherence. If there is a vacuum energy in the space-
time over which the noncritical string propagates, then the
above-described foam effects will also contribute to a
novel type of decoherence, associated with the vacuum
energy.

To determine this effect we first notice that the
renormalization-group relevant deformations (B1) require
Liouville dressing in order to restore the conformal invari-
ance of the �-model. There are two ways one can proceed
in this matter. As we shall demonstrate below, the two
approaches are physically equivalent, as far as the (pertur-
bative) calculation of the backreaction onto space-time is
concerned.

Method I—The first method concerns dressing of the
boundary operator (B1)

VL;boundary �
Z
@�
e�i�yi�t�@nXi;

�i � �
Q
2
�

�����������������������������
Q2

2
� �1� hi�

s (B10)

where hi is the boundary conformal dimension, and Q2 is
the induced central charge deficit on the boundary of the
world-sheet. In what follows we deal first with Euclidean
target spaces prior to Liouville dressing.

The rate of change of Q2 with respect to world-sheet
scale T 	 ln jL=aj2 � ��2 is given by means of
Zamolodchikov’s c-theorem [26], and it is found to be of
order [13] u2

i �
4, as being proportional to the square of the

renormalization-group �i functions (i � ui):
@Q2

@T
/

��iGij�j, where Gij �
1
"2 �ij � . . . , is the

Zamolodchikov metric in coupling constant u-space. This
implies that Q2�t� � Q2

0 �O��2�, where Q2
0 is constant.

We shall distinguish two cases forQ0. The first concerns
the case where Q0 � 0 (and by appropriate normalization
may be assumed to be of order O�1�). This is the case of
065016
strings living in a noncritical space-time dimension. The
other pertains to the case where the only source of non-
criticality is the impulse deformation, i.e. Q0 � 0. In the
former case, one has a Liouville dimension �i � �2, while
in the latter �i � �.

We next rewrite the boundary operator (B10) as a bulk
operator, using Stokes’ theorem, and then manipulate it as
follows:

VL;boundary �
Z

�
@��e

�i�yi�t�@
�Xi�

�
Z

�
�ie

�i�yi�t�@��@
�Xi

�
Z

�
e�i�@��yi�t�@�Xi�: (B11)

The first term in the last line describes an off-diagonal
metric contribution (in our chosen coordinate system) of
the form (6):

g0i � �iyi�t� (B12)

Method II—In the second method [13], one rewrites the
boundary operator (B1) as a bulk total world-sheet deriva-
tive operator, and then Liouville-dresses the bulk operator
i.e.

VL;bulk �
Z

�
e�i�@��yi�t�@

�Xi�;

�i � �
Q
2
�

������������������������������
Q2

2
� �2� �i�

s
;

(B13)

where �i is the conformal dimension of the bulk operator.
The central charge deficit Q is of the same order Q2 �
Q2

0 �O��2� as in the boundary case, which implies again
that �i � �2 if Q0 � 0, and �i � � if Q0 � 0.

For the bulk operator (B13) one has

VL;bulk �
Z

�
@��e�i�yi�t�@�Xi�

�
Z

�
�ie�i�yi�t�@��@�Xi

�
Z
@�
e�i�yi�t�@nX

i �
Z

�
�ie

�i�yi�t�@��@
�Xi:

(B14)

From the second term of the last line of (B14) one obtains
an induced target space metric contribution

g0i � ��iyi�t� (B15)

which differs from the induced metric (B12) by an overall
minus sign. The latter is innocuous, and can be absorbed in
a rescaling of the coordinates. Moreover, since in the
respective master Eqs. (15) the metric appears quadrati-
cally, the sign is irrelevant in this respect.

We now mention that [24] the logarithmic algebra im-
plies a nontrivial infrared fixed point, which in the case
-12
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Q0 � 0 is determined by �0 � ��2 � ln�L=a�2 ! 1,
where �0 is the Liouville field world-sheet zero mode.
Thus, �i�0 is finite as �! 0�. Therefore, as expected
from the restoration of the conformal invariance by means
of the Liouville dressing, one can now take safely the infra-
red limit �! 0� in the above expressions. It is then easy to
see that one is left in both cases with the target space metric
[13], thereby proving the equivalence of both approaches at
the infrared fixed point.

In the case Q0 � 0, the running central charge deficit
Q2 � O��2�. Recalling [9] that the above formulæ imply a
rescaling of the Liouville mode by Q� �, so as to have a
canonical kinetic �-model term1, and that in this case it is
the �0=Q which is identified with ln�L=a�2 � ��2 as per-
taining to the covariant world-sheet cutoff, one observes
that again �i� is finite as �! 0�, and hence similar
conclusions are reached concerning the equivalence of
the two methods of Liouville dressing of the impulse
operator (B1).

The recoil-induced metric (B12) (or, equivalently
(B15)), implies novel decoherence contributions to the
master equation. As discussed in the text, if there are
such contributions, then they show up as entanglement
contributions for the case that the string propagates in a
de Sitter background. In such a case the space-time is not
Ricci flat, since the corresponding Ricci tensor reads

R�� � �g�� (B16)

where � denotes vacuum energy, which may even be
allowed to depend on cosmic time. From a �-model view
point, such backgrounds are not conformal, since the cor-
responding graviton �-function is precisely given by the
Ricci tensor to leading order in the Regge-slope (�0)
perturbative expansion. From the master Eq. (5), then,
one obtains in this case the specific master Eq. (14) in
the text.

Combining the two types of effects, D-particle foam
(B9) and Vacuum energy contributions (B16), one may
arrive at the following master equation to be used in the
text:

_@t�Matter � i��Matter; H� ��total�uj; �u
j; �Matter��; (B17)

where

�total�t� � �0 �
e


a� t
�

e�
1� bt2

(B18)

with the various forms having been defined in the text.
The constant �0 > 0 has been added to take possible

account of other types of foam, or cosmological constant
contributions. It is only this constant (positive) part that is
responsible for exponential damping factors in physical
quantities such as oscillation probabilities.
1Notice that this rescaling becomes a trivial one in the case
where Q0 � 0.
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Subleading Ohmic-type contributions of the D-particle
foam to the master equation

Before closing this discussion we would like to com-
ment briefly on the form of subleading effects (as "! 0)
associated with the operators pertaining to the D-particle
coordinates yi in (B2). Note that the relevant world-sheet
operator associated with this is "�"�t�.

Such terms would contribute the following environmen-
tal entanglement in the master Eq. (5):

Subleading Liouville entanglement in Eq. �5�

� :�yiGyiyj
�yj; �� � :�yiGyiuj

�uj; ��: (B19)

Such terms are additional to the leading-order terms
exhibited in (B9) above. The components of the
Zamolodchikov’s metric in �ui; yi� ‘‘space’’ can be found
by means of explicit computation using the (logarithmic)
conformal algebra of the pertinent deformations [24]. To
leading order in "! 0 they read:

G yiyj ��"
2�ij; Gyiuj � �ij (B20)

where we note the relative minus sign of the first correlator.
The above expressions refer to Euclidean formalism, with
"2 > 0. On using (B4) and passing into exactly marginal
couplings yi 	

yi
" , uj 	

uj
" , with i; j � 1; . . . d spatial in-

dices, we obtain for the entanglement terms (B19) (assum-
ing antisymmetric quantum operator ordering throughout):

Subleading Liouville entanglement in Eq. �5�

�
"6

2
�yi �y

i �
"4

2
�yi �u

i: (B21)

Taking into account that "�2 � t is the (Minkowski) target
time, and using (15), we may rewrite the entanglement
(B21) as follows (again formally regularizing for short
times, where our approach is not valid):

Subleading Liouville entanglement in Eq. �5�

�
1

2�a1 � t
3�
� �yi; � �yi; ��� �

1

2MP�a2 � t
2�
r� �yi; �p̂i; ���;

(B22)

where a1;2 are appropriate positive cutoff constants, serv-
ing as regulators in the t! 0 limit. Upon noting that the D-
particle coordinate operator yi can be identified with the
(stringy) probe coordinate operator bxi in the entangled
state, one observes that the first term in (B22) acquires a
conventional Ohmic form �bx; �bx; ��� of the type considered
in (18), with a time-dependent coefficient given by (B22)
above. This motivates the amalgamated form of the master
equation considered in this work, combining Ohmic and
D-particle foam effects.

The randomness assumption (16) eliminates the second
term of (B22), which would otherwise constitute an addi-
tional entanglement term in the master equation, of a type
-13
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also encountered in customary decoherent systems.
However, this term may be present in models of foam in
which there is an ordered bulk current of D-particle defects
crossing the D3 brane world, which could contribute an
average recoil velocity huii � 0 on the three-dimensional
brane world. The latter type of models would result in
modified dispersion relations for low-energy probes, but
these need to satisfy severe phenomenological constraints
[39]; however, it has been argued[40] that only photons,
and probably gauge bosons, could exhibit entanglement
with the D-particle foam, for purely stringy reasons that we
065016
shall not discuss in this work. These latter types of probes
suffer less severe phenomenological restrictions at present.

This completes our semirigorous (rather phenomeno-
logical) analysis of D-particle foam effects and their rôle
in inducing decoherence of quantum matter propagating
in it.
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