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We study the effect of dense quarks in a SU(N) matrix model of deconfinement. For three or more
colors, the quark contribution to the loop potential is complex. After adding the charge conjugate loop, the
measure of the matrix integral is real, but not positive definite. In a matrix model, quarks act like a
background Z(N) field; at nonzero density, the background field also has an imaginary part, proportional
to the imaginary part of the loop. Consequently, while the expectation values of the loop and its complex
conjugate are both real, they are not equal. These results suggest a possible approach to the fermion sign

problem in lattice QCD.

DOI: 10.1103/PhysRevD.72.065008

I. INTRODUCTION

At nonzero temperature, numerical simulations in lattice
QCD have provided fundamental insight into the transition
from a hadronic, to a deconfined, chirally symmetric
plasma [1]. At nonzero quark density, however, at present
simulations are stymied by the ‘“fermion sign problem”
[2-18]. Even in the limit of high temperature, and small
chemical potential, only approximate methods can be used
[19-28].

In this paper we consider deconfinement in a mean field
approximation to a model of thermal Wilson lines [29,30],
which is a matrix model [31-42]. In Sec. II we discuss
general features of SU(N) matrix models at nonzero quark
density [32]. In Sec. III, this is briefly contrasted with the
(trivial) case of a U(1) model [5]. Numerical results for
three colors are presented in Sec. IV. In Sec. V, we con-
clude with some remarks about some methods which might
be of use for dense quarks in lattice QCD.

II. SU(N) MATRIX MODEL

In a gauge theory at nonzero temperature, a basic quan-
tity is the thermal Wilson line, L = Pexp(ig [Aod7),
where g is the gauge coupling, A, is the timelike compo-
nent of the vector potential, and the integral over the
imaginary time, 7, runs from 0 to 1/7T, where T is the
temperature [29]. An effective theory of thermal Wilson
lines, interacting with static magnetic fields, can be con-
structed, and is valid in describing correlations over spatial
distances > 1/T [31,33-38,40—42].

Opver large distances, we use a mean field approximation
to this effective theory. This gives an integral over a single
Wilson line, L, with the partition function that of a matrix
model:

z- ] dL exp(—(N? = (VL) + V@) (1)

L is an SU(N) matrix, satisfying LTL = 1 and detL = 1.
Under gauge transformations (), it transforms as L —
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QTLQ, so that gauge invariant quantities are formed by
taking traces of L. These are Polyakov loops. In the matrix
model, the effects of gluons and quarks are represented by
potentials, V(L) and "V (L), which are (gauge invari-
ant) functions of the Wilson line. The effects of fluctua-
tions, which are not included in the matrix model, can also
be included in a systematic fashion [38,43].

The pure glue theory is invariant under a global sym-
metry of Z(N), and so this must be a symmetry of the gluon
loop potential, Vy(L). The simplest form for the gluon
loop potential is a type of mass term,

V a(L) = —m*5ly, Cy = % trL, (2)
where €y, and {3 = €}, are the Polyakov loops in the
fundamental, and antifundamental, representations. Up to
a constant, this gluon potential is proportional to the
Polyakov loop in the adjoint representation.

In general, the gluon potential is a sum over all loops in
Z(N) neutral representations [38]; this can be written as a
power series in terms like (|€y|?)?, etc. These terms are
invariant under a larger global symmetry of U(1). The first
term which is invariant under Z(N), but not U(1), is

)N + (LN, 3)
Another such term is
(€N = (EpN), “)

where the factor of i is added to ensure that in all, the term
is real.

While (3) certainly appears in the gluon loop potential,
terms such as (4) should not arise in effective theories of
relevance to QCD. Gluons are invariant under the discrete
symmetry of charge conjugation, C, under which A, —
—Aj, [taking A, = A¢ %, and Hermitian generators ¢ for
SU(N)] [44]. Under C, the Wilson line transforms into its
complex conjugate, L — L™, so that (3) is even under C,
and (4), odd.
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Quarks in the fundamental representation of SU(N) are
not invariant under the global Z(N) symmetry. Thus quarks
tend to induce a background Z(N) magnetic field, which
we characterize by a parameter 4. The simplest contribu-
tion to the quark loop potential is then [13-15,31-
33,35,36]

h
V(L) =— E(eﬂeN + e Fly). (5)

At finite N, h # 0 affects the deconfining transition in
the standard manner of a background magnetic field
[31,35]. If the deconfining transition is of first order in
the absence of quarks, then their presence tends to weaken
the transition. Eventually, it disappears at a critical end
point, for some value of h; above this value, there is no
phase transition, just a smooth crossover. If the deconfining
transition is of second order in the absence of quarks, then
any background field, 2 # 0, washes out the transition.

At infinite N, if one is away from the Gross-Witten
(GW) point, then the behavior is like that at finite N.
Precisely at the Gross-Witten point [37,38], correlation
lengths diverge at the transition. Then like a second order
transition, any background field changes the order: from
first order at the Gross-Witten point, into one of third order
when i # 0 [38,40].

We have also added a parameter, w, to represent the
quark chemical potential; x should be understood as the
true quark chemical potential, divided by temperature. The
quark chemical potential is associated with a conserved
charge for the global U(1) symmetry of the baryon number.
This dictates that the chemical potential enters in the above
form, like the imaginary component of a U(1) gauge field
[3].

Under charge conjugation, the Wilson line transforms
into its complex conjugate, and the chemical potential
changes sign:

C:L—-L" m— — M. (6)
The term in (5) is invariant under C, as should be all terms
in the quark loop potential.

Implicitly, we have integrated out the quarks to obtain
the loop potential in (5). For example, if one computes the
quark determinant in a background gauge field,
~trlog(}) + m,), one will obtain a term such as (5):
see, for example, the calculations of Langfeld and Shin
[12] and Schnitzer [41]. Other discussions of loop poten-
tials with quarks include those of [13,33—-36]; at nonzero
quark density, see [14,15,32,36]. These calculations show
that at a temperature 7, the background field of massive
quarks behaves as i ~ exp(—m,,/T), reaching some finite
value as the quark mass vanishes. As with the gluon loop
potential in (2), there are many other terms besides that of
(5) in qu. These involve all possible traces of

e*L and e #L", @)

PHYSICAL REVIEW D 72, 065008 (2005)

in such combinations which are invariant under charge
conjugation, (6). These two matrices represent, respec-
tively, the propagation of a particle forward in imaginary
time, and an antiparticle backward in time. Of course,
charge conjugation symmetry is violated by a given value
of w # 0: C just implies that, neglecting electroweak
interactions, a Fermi sea of quarks behaves similarly to
one of antiquarks.
The quark contribution to the loop potential equals

qu(L) = —h(cosh(u)Rely + isinh(u)Im€y), (8)

where Re and Im denote the real and imaginary parts,
respectively. At zero chemical potential, quarks generate
a real background Z(N) field for the real component of the
loop, ~Refy. When the chemical potential is nonzero,
however, the background Z(N) field not only contains a
piece proportional to the imaginary part of the loop,
~Im¢y, but with a coefficient which is itself imaginary.

The case of two colors is special. For two colors, loops in
any representation are real, and for any u, the background
field generated by quarks is always real. For three or more
colors, however, loops have imaginary parts, and the po-
tential generated by quarks is manifestly complex, (8).
This is how the fermion sign problem appears in a matrix
model.

In this case, though, it is easy to reduce the sign problem,
which appears to be one of complex phases, to one in
which the phases are always real. If a given matrix, L,
contributes to the partition function, then so does its charge
conjugate, L*. Adding the contributions of L and L*
together, we can rewrite the partition function in a form
which is manifestly real,

Z = f dLe™ VL) cos(i Tmly), )
where

V(L) = (V2 — 1)(Vy(L) — hcosh(u)Rey),  (10)

h = (N* — 1)h sinh(w). (11)

The potential i/(L) is even under charge conjugation of
the gluons, while 7 Im¢€y is odd. We can use this to write
the expectation value of the fundamental loop as

1 Y -
) = > dee*V(L)(cos(h Im{€y)Rel
— sin(i Im€y)Imdy), (12)
while that of the charge conjugate loop is
1 g -
(ty) = > dee_V(L)(cos(h Im¢,y)Ref )y

+ sin(h Im€y)Imey). (13)

Because dense quarks induce an imaginary background
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field for the imaginary part of €, the expectation values of
¢y and €5 are not equal to one another, although they are
both real.

Physically, this is natural. A loop is proportional to the
(trace of the) wave function of a quark; the complex
conjugate loop, to that of an antiquark. A Fermi sea rep-
resents a net excess of quarks over antiquarks, so at u # 0,
quarks and antiquarks propagate differently. In a matrix
model, this manifests itself as unequal expectation values
for €, and 5.

Karsch and Wyld performed numerical simulations for a
model of SU(3) matrices, living on sites of a three-
dimensional lattice, at nonzero density [4]. Our matrix
model represents a mean field approximation to their the-
ory. They were the first to observe that the expectation
values of €y and {5 differ at nonzero density. This also
happens for a Potts model at nonzero density [14,15].

This contrasts with what would happen if the back-
ground field which coupled to the imaginary part of L
was real; i.e., for u = ifi. This corresponds to a U(1)
rotation of L, so that both expectation values are complex,
and satisfy (€y) = (({x))*. In a U(N) theory, this just
rotates the vacuum by an angle = f&; for SU(N), because
of the Z(N) symmetry, the vacuum structure is more
involved.

In Sec. IV we present numerical calculations of the
expectation values of the fundamental and antifundamental
loops for N = 3. Even without explicit calculation, how-
ever, we can understand the qualitative nature of the
solutions.

Consider first the limit about zero chemical potential.
Taking the derivatives of the expectation values in (12) and
(13) with respect to u,

oew)
o

o)
I
— —h(N? = 1)((mEP)], .

()
n=0 ©n=0

(14)

About p = 0, then, as u increases, so does ({3), while
(€y) decreases. Qualitatively, this result is valid generally,
including with dynamical quarks: about . = 0, one of the
two expectation values, ({3) or ({y), is not monotonic in
M.
It is also easy to understand the behavior of the expec-
tation values in the limit of large w. This corresponds to a
very strong background field, proportional to ~€. Taking
the Wilson line L. = exp(iw), the real part of €y is ~trw?,
while the imaginary part is ~trw3. For a large background
field, then, the potential is dominated by the real part,
~hexp(u)trw?; fluctuations in the imaginary part are sup-
pressed, by ~ exp(—u/2) relative to the real part. Thus as
f — oo, the expectation values of €y and €5 both approach
unity, (€y) = (€x) — 1.

(The parameter w is the quark chemical potential di-
vided by temperature, so naively, T — O corresponds to
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M — oo, Remember, though, that our effective theory is
only valid for distances > 1/T. We believe that the large
M behavior is an artifact of the model, and is not indicative
of what happens in the full theory at low temperature; see,
also, Sec. V.)

We can thus anticipate the behavior of the expectation
values of the loops as a function of w. Because of the
background Z(N) field of the quarks, both loops are equal
at u = 0. As p increases, at first the two expectation
values split: one increases, while the other decreases. As
p — oo, they come together and approach unity. For N =
3, this is illustrated in Sec. IV by Fig. 2.

It is customary to interpret the expectation value of the
Polyakov loop as the “free energy” of a test quark [30]. At
nonzero density, this implies that the expectation value of
the fundamental loop is the free energy of a test quark, and
that of the conjugate loop is the free energy of an antiquark

[4]:
(Ey) =exp(=F,/T),  (ty)=exp(=Fg/T).

Any free energy, however, should decrease monotonically
with w; because (€y) decreases about u = 0, though, the
free energy for a test quark increases with w. This quan-
dary is resolved by recognizing that the expectation values
of the loops are not free energies, but just the traces of test
propagators [33,37]. As such, they need not behave mono-
tonically with u.

(15)

IIL. U(1) MATRIX MODEL

Before going into numerical results for SU(3), we briefly
discuss what happens in a U(1) model, as first proposed by
Gibbs [5].

For U(1), the loop is just € = exp(if), where 0 runs from
—ar to 7. At a nonzero density u, we take the partition
function as

+a h
z = / dﬁexp<§(e“€ + e‘“€*)>. (16)
—TT
Like SU(N), the fermion contribution to the loop potential
is complex at the nonzero chemical potential. Summing
over a given 6, plus its charge conjugate, which is just — 6,
the partition function becomes

+ar
Z = f d@elreoshwicost cog(p sinh(u) sing),  (17)

which is real.

When g = 0, the partition function is proportional to a
modified Bessel function of the first kind, Z = 27[,(h).
When u # 0, like an SU(N) theory the expectation value
of a loop, and its charge conjugate, are unequal. However,
in the original integral, (16), we can shift the integration by

0—0+iu (18)

Doing so, we find that the partition function is completely
independent of w. In terms of expectation values, this
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implies that
e'u<€>,u,¢0 = e_#<€*>,u,¢0 = <€>M:O‘ (19)

This is an immediate consequence of the change in varia-
bles possible in a U(1) model, (18).

For SU(N) loops, we found that both loops approach
unity at large w. This is not true for U(1) loops, (19): as
u — oo, (£) is very small, while (€*) is large. The differ-
ence arises because for U(1), the real part of the loop is
cosf, while the imaginary part is sinf. At large u, the real
partis ~1 — 62/2 + - - -, while the imaginary part is ~6.
At large w, then, for U(1) the imaginary part of the loop
dominates, instead of the real part, as for SU(N).

There is a simple physical reason why, for U(1), the
partition function is independent of the fermion chemical
potential [5]. With a U(1) gauge field, there is no way of
forming baryons: the only states which are neutral under
U(1) are trivial, having an equal number of fermions,
exp(if), and antifermions, exp(—i#0).

There is a less trivial consequence of this observation.
Consider a SU(N) gauge theory. Up to corrections ~1/N,
at large N, there is no difference between the measure for
SU(N) and that for U(N). For a U(N) gauge theory, how-
ever, we can rotate the quark chemical potential away. To
the extent that SU(N) is close to U(N), then, at large N the
effects of the quark chemical potential appear only in terms
which are subleading.

Put more directly, assume that deconfinement, and chiral
symmetry restoration, occurs at some temperature 7; =
T, when p = 0. Then the natural scale at which the quark
chemical potential matters is larger than T, by some (frac-
tional) power of N, which can be computed in a matrix
model [43].

IV. N = 3 MATRIX MODEL

In this section we present numerical results for three
colors, where the SU(3) matrix model is just a two dimen-
sional integral. When the chemical potential w is real, and
the background field # is large, the integrands of (9), (12),
and (13) oscillate strongly. Nevertheless, we show that the
value of these integrals are not sensitive to large cancella-
tions of positive and negative contributions, and can be
computed numerically without great difficulty.

For three colors, the loop potential is a function of the
triplet and antitriplet loops,

1

(3 = 3 trL,
We straightforwardly extend the analysis of [38], going
into some detail in order to avoid confusion. Previously, we
assumed that the expectation values of the triplet and
antitriplet loops are equal; now we must allow that they
can differ. In the partition function of (1), we introduce two
fields, A and A, which are the values of these loops for a
given matrix, L:

1
;= 3 trLT. (20)
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z - de fd/\* [d/\é()\* — )80 — €5)
X exp(_g(VgI(A*A) + ‘qu()l*: )\))) (21)

We then exponentiate the constraints by introducing fields
w. and o,

Z = fdA*]dE*]dAde]dL exp(—8 Veons )»

Vcons. = Vgl + qu + lw*(/L - ei) + 15()\ - €3)
(22)

At all stationary points iw and iw. are real, so we define
w=1Iiwand w, = (©,.
Next, we define the matrix integral

Z owlws, ©) = f dL exp(8(w.b5 + wl).  (23)

For given values of w.. and w, the expectation values of the
fields are

O, 0) = 5 f dL € exp(8(als + w.05))
) (24)
O @) = ] dL G exp(B(als + .05)).

We introduce the Vandermonde potential, as a function of
two fields, € and €., through Legendre transformation,

Z ow(ws, @) = f de, f 40 expB(w.l, + wl
—= Vyam(s, €))). (25)
The stationary point of this integral is for

OV yams, €)

at. (€, =0, (=()
Vyam(£s, € 20
a *y
(€9, ¢0) = M ]
o€ (€.=€0,(=¢0)
This satisfies the consistency condition
0 g0 dw (€9, £°
dw, (€3, €7) _ w( ) @7)

000 a€Y

For given values of w, and w, we numerically computed
the integrals in (24), to obtain €2 and €°. We then invert
them, to obtain w, and w, as a function of €2 and ¢°. The
Vandermonde potential then follows:

(4 ("
V van(ls, €) = f 40000, €0) + [ 400w, (€0, ©).
0 0
(28)

We have chosen a definite path to go from (0,0) to (€., €),
but because of (27), the integral is independent of the path
chosen.
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The complete effective potential is the sum of the gluon,
quark, and Vandermonde potentials:

Ver = Va+ Vg + Vyim (29)
The Vandermonde potential, Vg (€., €), represents the
effects of the SU(3) measure, and so is invariant under Z(3)
transformations, { — exp2mi/3)¢ and £, —
exp(—2i/3)€.. In contrast, the quark loop potential is
not Z(3) invariant.

As a check on our numerical analysis, we first discuss
the case where u is purely imaginary, u = ifi, which is a
U(1) rotation of the Wilson line:

qu(L) = —g(e’“€3 + e ). (30)
If the overall symmetry were U(3), instead of SU(3), then
the Vandermonde potential is independent of . For a
SU(3) theory, however, the Z(3) symmetry only requires
that the potential is degenerate when & = 0 and *=27/3.

As fi represents an ordinary background field, the anti-
triplet loop is the complex conjugate of the triplet loop.
Defining 6 as the phase of €, £ = exp(i6)|{|, then €, =
exp(—if)|€|, and the Vandermonde potential is a function
of |€] and 6.

To illustrate the physics, in Fig. 1 we show three ex-
amples, with 7 = 0.0 or 0.1, and |€| = 0.2. When there is
no background field, 4 = 0O, there are three degenerate
minima at € =0 and *27/3. When h # 0 and i =
—21r/3, the background field “tilts” the potential so that

0.09
0.08
0.07
0.06

— h=0
--- h=0.1, u=in/3
h=0.1, p=-2ir/3

0.0
-m 27/3 -w/3 0
0

FIG. 1 (color online). The effective potential V. for the
SU(3) matrix model at imaginary u; there is no gluon loop
potential. In all curves, [€| = 0.2, with # the phase of the loop:
the solid curve is & = 0, the dotted curve 7 = 0.1 and u =
—2mi/3, the dashed curve h = 0.1 and u = i7/3.

m/3 27/3 7
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the expectation value is along the opposite direction, for
0 = 27/3. Lastly, when h # 0, and for the special choice
of fi = m/3, the background field points exactly in the
direction opposite to the minimum at 277/3; then there are
two degenerate minima, for § = 0 and —2/3. The po-
tential for other values of § and € follows similarly. Also, it
is clear that, as a function of fi, the expectation value of 6 is
discontinuous at & = /3, jumping from 0 to —2/3.
Analytic continuation of Z to real w is therefore possible
only for |u| < 7/3.

When the chemical potential is real, as noted from (12)
and (13), (€) and (€*) are unequal but real. Figure 2 shows
the expectation values of the loop and of its conjugate for a
background field 2 = 0.1 (again without a gluon loop
potential). For small 4 and & = 0, an analytical discussion
of the N = oo potential at the Gross-Witten point shows
that (€) =~ h/2, cf. Sec. I B in [38]. From Fig. 2 one
observes that this remains approximately true also for three
colors.

At nonzero u then, (€) and (€*) split, which is due to the
imaginary part of the fermion contribution (8) to the loop
action. While (€*) increases monotonically with u, {(€)
initially decreases from its value at uw = 0, cf. Eq. (14).
Finally, both expectation values approach 1 at large u, in
accord with our discussion in Sec. II.

In Sec. IIl we saw that in a U(l) model, the
o dependence of the expectation values is entirely given
by a factor exp(*u), (19). We have checked numerically
that this is approximately valid for SU(3) when the chemi-
cal potential is very small. Figure 2 shows, however, that
this fails when p ~ 1.

In a matrix model, €5 and {5 are traces of matrices. One
could also consider a Polyakov loop model [33], where €5
and {5 are just scalar fields. To reduce the global symmetry
from U(1) to Z(3), it is necessary to include cubic terms,
such as (€3)° + (¢3)°, (3). As for the matrix model, one
finds that the expectation values of €5 and {5 differ when

1.0 !
_— exp(ﬂ) <(*>/l,=0 /.
—_— <> /

° 0.8 N

=

T@ """"" eXP(‘/J) <€>[L=0

> 0.6

g

R

" 04

+~

15}

o)

£02

)

0.0 F 7 mm e m tssssss
00 05 1.0

1.5 20 25 30 35 40 45 50
1L

FIG. 2 (color online). The expectation values (£) and (€*) as
functions of w for & = 0.1 and m? = 0.
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m # 0. Their exact form depends upon the details of the
loop potential, although as in (14), one of the two expec-
tation values is not monotonic about . = 0.

We now turn to a discussion of the effective potential
V (€, €.), for real chemical potential. We also include the
gluon loop potential from Eq. (2). The solutions of the
stationarity conditions

DVerlt t) _ Vel ) _
2 L,

determine the expectation values of the triplet and anti-
triplet loops, (£3) and (€3). Because of (26), these equations
can be rewritten as

0, 31

d
w(€2, €0) == — ﬁ[vgl(& &) + qu(f, 6*)]|€:€0’€*:€2

h
= m2¢9 + Ee“, (32)

d
w*(€9; 60) = - W[Vgl(& g*) + qu(& g*)]lf:ﬂ),{’*:{g

h
= m2¢0 + Ee*/‘. (33)

These equations have to be solved simultaneously with
(24). Note that at the stationary point both @ and w, are
real. Also, these equations, unlike (12) and (13) above,
make it obvious that the expectation values of the loops are
not determined by cancellations of positive and negative
contributions: (32) and (33) do not involve any oscillating
functions.

To show the shape of the effective potential we fix € —
€. to its expectation value given in Egs. (12) and (13) or in
Egs. (32) and (33) above. We then study V. as a function
of the remaining degree of freedom, € + ¢..

The behavior of the effective potential with nonzero h
and p is customary of a first-order transition in a back-
ground magnetic field. Figure 3 shows the effective poten-
tial for 2 =0.01 and w =0, 2, 3, respectively, as a
function of € + €,. For each curve, the coupling m?> =
m?2(u, h) is adjusted to maximize the susceptibility d{{5 +
€3)/9m?. For such a weak background field, the first-order
phase transition persists at 4 = 0. As u increases, the two
minima of Vg approach each other and the barrier de-
creases. The first-order phase transition ends in a critical
point at w = wg. The transition is of second order at wg,
as the mass of the real part of the triplet loop vanishes.
From Fig. 3, ug = 2.0. As the chemical potential increases
above up, the mass increases again, and there is no phase
transition.

To date, Monte Carlo simulations have been performed
for large T and small p [19-25]. A matrix model predicts
that (€) # (€*) when u # 0. The inequality of these two
expectation values should remain valid in simulations with
dynamical quarks. This was seen in the simulations of
Allton er al. [21], who found that (€) changes when the
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0.03

0.02

= 0.01
5]

0.0

-0.01

FIG. 3 (color online). The effective potential at the peak of the
Polyakov loop susceptibility for # = 0.01 and various .

sign of u is flipped; for a given sign of u, this is equivalent
to (€) # (€*). Further, the result of (14) also generalizes to
dynamical quarks: about u = 0, (€*) increases, while (€)
decreases (or vice versa). This follows because at u = 0,
a€)/du = —a{(€*)/du, and is proportional to the expec-
tation value of Im€ times the imaginary part of the quark
determinant. This was not seen in the simulations of Allton
et al. [21]: for the values of w studied, (€) is always greater
than its value at u = 0, for either sign of x. We presume
that the nonmonotonic behavior, as in (14), only arises for
values of w smaller than those studied in [21].

The analysis of the present paper is most applicable for
heavy quarks. At u = 0, the lattice gives us an outline of
the phase transition for three degenerate flavors of massive
quarks. The deconfining transition only persists for rela-
tively heavy quarks, m > mgﬁd [1]: [13] finds that this
disappears for a pseudoscalar mass of = 1.4 GeV; [34]
finds = 1.8 GeV. There is no phase transition for inter-
mediate quark masses, with a first-order chiral transition
appearing for light quark masses. In all cases at u = 0, the
rise in the Polyakov loop appears to coincide with the
decrease in the chiral order parameter.

The case of heavy quarks at u # 0 is then similar to that
of Fig. 3: a first-order transition at u = 0, ending in a
critical end point at some wg. (See, also, Fig. 1 of [16].)
For quarks lighter than mg‘]’(d, there is no deconfining tran-
sition, and the correlation length of the Polyakov loop
decreases monotonically as w increases from zero. In the
plane of u and 7, there may be a critical end point at . #
0, where the correlation length for the sigma meson di-
verges [45]; that for the Polyakov loop will remain finite,
except from its coupling to the sigma.

To describe the region of small quark masses, and the
chiral transition, it is necessary to introduce a chiral order
parameter, and couple that to the Wilson line. A mean field
approximation can be analyzed in a matrix model with two
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coupled matrices [46]. Because of the large N argument
mentioned at the end of Sec. III, it is possible that for three
colors, the coincidence of the chiral and deconfining “‘tran-
sitions,” ubiquitous at u = 0, breaks down at some finite
value of wu. That is, for intermediate quark densities,
hadronic matter exists as a Fermi sea of “confined,” but
chirally symmetric, nucleons.

V. LATTICE QCD AND THE FERMION SIGN
PROBLEM

We conclude by discussing how the results of the matrix
model may be of use for numerical simulations of dense
quarks in lattice QCD.

In Euclidean spacetime, the quark part of the action is

Sy = f dXPB + py Fmp (34
We follow the conventions of [44], with ) = (9 w
igA,)y" the covariant derivative for a gluon field A,,. In
this section, and in contrast to previous notation, here w is
the quark chemical potential (not w/T), and m is the quark
mass (not mgy).

We need to use two symmetries. By a combination of
Hermitian conjugation, plus a s transformation,

(det(P + uy°® + m))* = det(P — uy° + m);

see, e.g., (13) of [26]. At zero chemical potential, P is
purely anti-Hermitian; as J} anticommutes with the matrix
vs, the eigenvalues pair up, and the quark determinant is
real. At nonzero chemical potential, the quark operator is a
sum of an anti-Hermitian operator, /3, and a Hermitian
operator, uy,. While the eigenvalues form pairs with
opposite sign, (35) shows that the quark determinant is
complex when p # 0. This is the fermion sign problem in
dense QCD.

We can perform a charge conjugation transformation on
the quarks [44]. This is a change of variables in the
Grassman integration over the quarks, and so it does not
change the determinant. This gives

det(P + wy® + m) = det(P. — uy° + m),

where B, = (9, + igAj},)y* is the covariant derivative for
the charge conjugate gluon field, —A’,. By itself, this is not
of much help, as we have changed the sign of the chemical
potential, and turned the gluon field into its charge con-
jugate. In the matrix model, this symmetry is manifest in
(5).

‘We now combine these two relations, to obtain
det(P, + uy" + m) = (det(P + uy° + m))*.

This shows that for the same sign of w, the quark determi-
nant for charge conjugate gluons is the complex conjugate
of the quark determinant in the original gluon field. This
generalizes what is obvious in the matrix model.

(35

(36)

(37
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Thus while the quark determinant in the presence of a
given gluon field is complex, by adding the contribution of
the charge conjugate gluons, we immediately obtain a
partition function whose measure is manifestly real. This
extends immediately to the lattice. There, gluons live on
links, with link fields U, = exp(igaA,), where “a” is the
lattice spacing. A configuration of links is given by some
set of U, ’s; the charge conjugate lattice is simply given by
replacing each U, by Uj,. That one can, in this way, obtain
a real measure of the functional integral was known from
the work of the Glasgow group (see, e.g., the discussion
just before Eq. (8) in the last reference of [7]).

However, all this does is to reduce the problem from one
of complex phases, to one of real phases. There are still
configurations in the functional integral with both positive
and negative weight. This still leaves the problem of how to
decide whether to sum over configurations with both signs.
Also, how does one include the effects of a Fermi sea of
quarks in weighting configurations?

The matrix model provides clues to both of these ques-
tions. It is true that configurations of both signs contribute
to the integral of the matrix model. However, at zero
density, the background Z(N) field which quarks induce
provides an expectation value along a definite direction in
the complex plane, for real values (this is related to the sign
of the quark masses). Further, at nonzero quark density, the
field for the imaginary part of the loop has an imaginary
coefficient, so that the expectation values of both € and €*
remain real and positive. We have checked that even at
nonzero w, the dominant configurations of the matrix
model are those in which the measure is positive.

It is reasonable to conjecture that this remains true with
dynamical quarks. This suggests that in Monte Carlo simu-
lations, that one accept configurations in which the quark
determinant is positive, and drop those in which it is
negative.

In weighting configurations, the effects of a Fermi sea
might be included through a type of tadpole improvement.
Suppose that one works out from zero chemical potential,
to increasingly large values. To represent the effects of
m # 0, one would expand not about the bare link variables,
but about links equal to the expectation value of the loop.
For a link going forward, one would use (f); for a link
going backward, (€*). This will explicitly bias one to
configurations which include, approximately, the effects
of the Fermi sea.

This is supported by numerical simulations of Blum,
Hetrick, and Toussaint for heavy quarks [10]. Using their
results, de Forcrand and Laliena [11] showed that the phase
of the (heavy) quark determinant is proportional to the
phase of the Polyakov loop, times the spatial volume.

These results illustrate a more general problem. The
parameters of a matrix model are just numbers. This rep-
resents, however, a mean field approximation to the theory
in a spatial volume, V. For example, the background field
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induced by quarks is itself proportional to V. For a measure
which is always real and positive, this is of no concern:
even if h ~ V, an error of order 1 is inessential relative
to the dominant term, which is exp(—#h) ~ exp(—#V).
The integrals which enter at nonzero density, however,
are those in which the measure includes oscillatory terms,
as in (9), (12), and (13). In this case, it is necessary to
determine the phase accurately not just to ~V, but to ~1.
In essence, this is the true fermion sign problem: not
that the measure is not positive definite, but that one
must determine the phase of the quark determinant very
accurately. We note that similar oscillations in the quark
determinant have been derived, using random matrix the-
ory in the € regime, by Osborn, Splittorff and Verbaarschot
[27].

Nevertheless, we suggest that these techniques might be
of use in numerical simulations of dense QCD on the
lattice. By their nature, they are most suited for heavy
quarks, starting from the region of zero density, and work-
ing out to nonzero density. Even if one accepts configura-
tions whose overall weight is positive, it is certainly
necessary to use cluster algorithms to include regions in
which the phase is negative [17].

We have used an effective model which is, implicitly,
valid only for distances >> 1/T. When the temperature is
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small, it is also imperative to include fluctuations in the
expectation values of timelike links, as they wander about
in (imaginary) time.

Lastly, these ideas are strongly motivated by the heavy
quark limit [10,11], where quarks only propagate upward
in imaginary time. Light quarks also propagate in space, so
that at nonzero density, one will have to expand about
modified expectation values for propagation which is “for-
ward” or “‘backward” in proper time.

There is now a wealth of results available at nonzero
temperature and small chemical potential [19-28]. This is
the first place to test our admittedly speculative remarks, as
a way of avoiding difficulties with simulations at nonzero
density [28].
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