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Effective actions for the SU�2� confinement-deconfinement phase transition
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We compare different Polyakov-loop actions yielding effective descriptions of finite-temperature SU�2�
Yang-Mills theory on the lattice. The actions are motivated by a simultaneous strong coupling and
character expansion obeying center symmetry and include both Ising and Ginzburg-Landau type models.
To keep things simple we limit ourselves to nearest-neighbor interactions. Some truncations involving the
most relevant characters are studied within a novel mean-field approximation. Using inverse Monte Carlo
techniques based on exact geometrical Schwinger-Dyson equations we determine the effective couplings
of the Polyakov-loop actions. Monte Carlo simulations of these actions reveal that the mean-field analysis
is a fairly good guide to the physics involved. Our Polyakov-loop actions reproduce standard Yang-Mills
observables well up to limitations due to the nearest-neighbor approximation.
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I. INTRODUCTION

The finite-temperature confinement-deconfinement
phase transition in SU�2� Yang-Mills theory originally
conjectured by Polyakov [1] and Susskind [2] is by now
fairly well established. The order parameter is the
Polyakov loop,

Lx �
1

2
trT exp

�
i
Z �T

0
d�A0�x; ��

�
; (1)

a traced Wilson line that winds around the periodic
Euclidean time direction parameterized by �, 0 � � �
�T where �T � 1=T is the inverse temperature. In the
confined phase the expectation value hLi is zero, while it
becomes nonvanishing in the broken, deconfined phase.
The Polyakov loop transforms nontrivially under the center
symmetry,

Lx ! zLx; z � �1 2 Z�2�: (2)

Thus, above the critical temperature, T � Tc, this symme-
try becomes spontaneously broken. Lattice calculations
have shown beyond any doubt that the phase transition is
second order with the critical exponents being those of the
3d Ising model [3–6]. This is in accordance with the
Svetitsky-Yaffe conjecture [7,8] which states, in particular,
that SU�2� Yang-Mills theory (in 4d) is in the universality
class of a Z�2� spin model (in 3d) with short-range inter-
actions. Hence, it should be possible to describe the
confinement-deconfinement transition by an effective the-
ory formulated solely in terms of the Polyakov loop Lx.
The most general ansatz is given by a center–symmetric
effective Polyakov-loop action (PLA) of the form [9]
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�4�
xyuvLuLv

	 . . . : (3)

There is a potential term V, a power series in L2
x living on

single lattice sites x, plus hopping terms with kernels K�2n�

connecting more and more lattice sites x; y; . . . . It is im-
portant to note that L is a dimensionless and compact
variable, Lx 2 �
1; 1�. Thus, in principle, one is con-
fronted with a proliferation of possible operators that
may appear in the PLA (3). One simplification arises due
to the Svetitsky-Yaffe conjecture implying that the kernels
K�2n� should be short ranged. Hence, upon expanding like
for instance,

K�2�xy �
X
r

�r�y;x	r; (4)

one expects that the first few terms with small r � jx
 yj
will dominate, i.e. will have the largest couplings �r. To
check this expectation one needs a reliable method to
calculate the kernels K�2n� or, equivalently, the coupling
parameters inherent in them. A particularly suited ap-
proach is introduced in the following section.

II. INVERSE MONTE CARLO METHOD

Inverse Monte Carlo (IMC) is a numerical method to
determine effective actions [10–12]. The latter are generi-
cally defined via

exp�
Seff�X�� �
Z

DU��X
 X�U�� exp�
S�U��; (5)

where the U’s represent some ‘‘microscopic’’ degrees of
freedom and the X’s the effective ‘‘macroscopic’’ ones. In
the spirit of Wilson’s renormalization group, these are
obtained by integrating out the U’s in favor of the X’s. It
-1 © 2005 The American Physical Society
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is important to distinguish this ‘‘Wilsonian’’ notion of an
effective action from the 1-particle-irreducible (1PI) effec-
tive action which will later on be employed as well (cf. the
recent remarks in [13]).

Of course, the problem with (5) is to do the integration
nonperturbatively which in general is not possible. In this
case, one has to resort to choosing an ansatz like (3) as
dictated by symmetry and dimensional counting or to do
the integration numerically. The huge number of degrees of
freedom involved clearly suggests to use Monte Carlo
(MC) methods. However, this amounts to calculating ex-
pectation values rather than integrals like (5). Hence, one
needs a recipe to get from expectation values to effective
actions. This is exactly what IMC is supposed to do (see
Fig. 1).

Our particular IMC method is based on the Schwinger-
Dyson equations that must hold in the effective theory once
a particular ansatz is chosen [11,12] (for an alternative see
[10]). In our case, the macroscopic degrees are given by the
Polyakov loops Lx distributed according to the PLA (3)
which we rewrite as

SPL�L� �
XNa
a�1

�aSa�L�; (6)

with Z�2� symmetric operators Sa and coupling parameters
�a to be determined from the Schwinger-Dyson equations.
To derive these, we proceed as follows.

On a lattice with spacing a and temporal extent Nt
(hence temperature T � 1=Nta) the Polyakov line is given
by the product of temporal links,

P x �
YNt
t�1

Ux;t;0 2 SU�2�: (7)

This SU�2� matrix may be diagonalized whereupon it can
be written as

P x �
exp�i�x� 0

0 exp�
i�x�

� �
;

conf’s {U}

act ion S [U]

eff. conf’s {X }

eff. act ion S eff[X ]

calculate

X = X [U]

integrate out

U

MC IMC

FIG. 1. Illustration of the IMC procedure.
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with 
� � �x � �. This representation immediately
yields the trace (divided by two),

Lx �
1

2
trPx � cos�x; (8)

which contains all the gauge invariant information con-
tained in the group variable Px. As an aside, we remark
that this peculiar feature will no longer be true for higher
SU�N� groups [14,15]. In this more general case, traces of
N 
 1 different powers of P are required.

With (5) the action (6) leads to the partition function

Z �
Z

DL exp�
SPL�L��; (9)

where the integration is performed with the reduced Haar
measure h of SU�2�,

DL �
Y
x

dh�Lx�; dh�u� �
2

�

��������������
1
 u2

p
du: (10)

Since SPL depends on the Polyakov loop only via the class
function Lx in (8) we may use the left-right invariant Haar
measure DP in (9) instead of the reduced Haar measure.
The enhanced symmetry of the measure yields the follow-
ing geometrical Schwinger-Dyson equations [16],

0 �
Z

DL exp�
SPL��3LxG
 �1
 L2
x��G0x 
GS0PL;x��:

(11)

Here, G�L� represents some set of functions of the
Polyakov loop to be chosen appropriately (see below). In
addition, we have defined the derivative G0x � @G=@Lx
and analogously for SPL.

Switching to expectation value notation, (11) can be
rewritten as a linear system for the couplings in (6),X

a

h�1
 L2
x�GS0a;xi�a � h�1
 L2

x�G0xi 
 3hLxGi: (12)

The coefficients of this system are expectation values
which are calculated in the full Yang–Mills ensemble
obtained by MC simulation based on the SU�2� Wilson
action. Numerically, it is of advantage to have more equa-
tions than unknown couplings �a. This is achieved by
choosing G out of the following set of local functions,

Ga;y 2 f@Sa=Ly; a � 1; . . . ; Nag; (13)

which represent the operators present in the equation of
motion for Ly. For fixed y, (12) then yields as many
equations as there are couplings, namely Na. These equa-
tions relate different two-point functions labeled by lattice
sites x and y of distance r. Additional relations are ob-
tained by letting the distance r run through (half of) the
spatial lattice extent, r � 1; . . . ; Ns=2. Altogether, the
overdetermined system (12) consists of Na � Ns=2 equa-
tions which are solved by least-square methods. We would
like to stress that having more equations than unknowns
-2
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(by a factor Ns=2) together with the special choice (13)
greatly enhances the stability of the IMC algorithm. In
particular, we do not encounter any ill-conditioned matri-
ces. For more details the reader is referred to Appendix B
and [16].
III. CHARACTER EXPANSION

To find a reasonable choice of operators for the ansatz
(6) we use the beautiful analytical results of Billó et al.
[17]. These authors have evaluated the integral (5) for the
case at hand (S�U� being the Wilson action, X � L the
Polyakov loop) by combining the strong coupling with a
character expansion. For the benefit of the reader we briefly
recapitulate their approach before we adopt it for our
purposes.

Recall that a character is the trace of a group element in
an irreducible representation. If j denotes the spin of an
SU�2� representation such that p � 2j is the length of the
corresponding Young tableau, then the associated character
is

�p�U� � trp�U� �
sin��p	 1���

sin�
; p � 0; 1; 2; . . . :

(14)

The characters can be entirely expressed as orthogonal
polynomials in the traced loop L, namely, the Chebyshev
polynomials of the second kind [18],

�p�U� �
X�p=2�

k�0

�
1�k�p
 k�!
k!�p
 2k�!

�2L�p
2k:

This representation manifestly shows that �p is a polyno-
mial in L of order p. The first few characters are

�0 � 1; �1 � 2L; �2 � 4L2 
 1;

�3 � 8L3 
 4L:
(15)

To determine the PLA SPL (6) in the strong-coupling limit
of the underlying SU�2� gauge theory Billó et al. [17]
allowed for different couplings in temporal and spatial
directions, denoted �t and �s, respectively. In terms of
these couplings the original Wilson coupling becomes

� �
4

g2 �
�����������
�t�s

p
:

The formula for the temperature,

T �
1

Nt

������
�t
�s

s
;

shows that the high-temperature limit (for �t fixed) corre-
sponds to Nt or �s being small. An expansion in terms of
�s results in the PLA [17]
065005
SPL �
X
hxyi

log
�
1	

X1
p�1

�p�p�Lx��p�Ly�
�
	 . . . (16)

where all orders in �t have been summed up in terms of
coupling coefficients �p � �p��t�. The terms not written
explicitly contain higher orders in �s and interactions of
characters of plaquette type. The leading-order action (16)
involves only nearest-neighbor (NN) interactions with the
couplings given explicitly by

�p��t� � 

�Ip	1��t�

I1��t�

�
Nt
: (17)

Asymptotically, for small �t, this is

�p � 
cp�
pNt
t 	O��pNt	2

t �; cp � �2
p�p	 1�!�
Nt :

(18)

This concludes our brief discussion of [17]. In order to
make the operator (i.e. character) content of the action (16)
more explicit we expand the log in (16) in powers of �t.
From the small-�t behavior (18), we infer that a product of
n �’s behaves as

�p1
. . .�pn � O��pNtt �; p �

Xn
i�1

pi: (19)

Thus we reshuffle the expansion of (16) such that, for fixed
p, we first sum over all partitions of the integer p, then
increase p by one unit, sum again etc. up to some maximal
value, say p � 3. In this way we obtain

SPL � S�1� 	 S�2� 	 S�3� 	O��4Nt
t �; (20)

where S�p� isO��pNtt �. Accordingly, we have a hierarchy of
actions S�p� that become more and more suppressed (for
small �t) as p increases. We thus refer to S�1� as being of
leading order (LO), S�2� of next-to-leading order (NLO)
and so on. Abbreviating �px � �p�Lx� the actions S�p�

read explicitly

S�1� �
X
hxyi

�1�1x�1y;

S�2� �
X
hxyi

�
�2�2x�2y 


1

2
�2

1�
2
1x�

2
1y

�
;

S�3� �
X
hxyi

�
�3�3x�3y 
 �1�2�1x�2x�1y�2y

	
1

3
�3

1�
3
1x�

3
1y

�
:

The product of characters at the same site may be further
reduced by the SU�2� ‘‘reduction formula,’’

�p1
�p2
� �p1	p2

	 �p1	p2
2 	 . . .	 �jp1
p2j
:

Note that our conventions are such that the subscripts get
reduced by two units from left to right. Using this formula
-3
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in the above expressions we end up with

S�1� �
X
hxyi

��1�11�1x�1y; (21)

S�2� �
X
hxyi

��2�22�2x�2y 	 2d
X
x

��2�20�2x; (22)

S�3� �
X
hxyi

���3�11�1x�1y 	 �
�3�
33�3x�3y 	 �

�3�
13 ��1x�3y

	 �3x�1y��: (23)

The new couplings �pq are combinations of the �’s,
namely

��1�11 � �1; ��3�11 � 
�1�2 	
4

3
�3

1; (24)

��2�22 � �2 

1

2
�2

1; ��2�02 � 

1

2
�2

1; (25)

��3�33 � �3 
 �1�2 	
1

3
�3

1; (26)

��3�13 � 
�1�2 	
2

3
�3

1: (27)

In the asymptotic regime, �t � 1, the �’s may be ex-
panded with the help of (18) (see Sec. V below). The
results (21)–(23) from combining character and strong-
coupling expansion suggest the following ansatz for the
PLA,

SPL �
X

hxyi;�pq�

�pq�px�qy �
X
�pq�

Spq: (28)

The couplings �pq are symmetric with respect to their
indices pq, and p
 q is even. The ansatz (31) coincides
with the one suggested by Dumitru et al. [15] which was
entirely based on center symmetry. It is obvious that the
action (31) is center-symmetric as the �p are even/odd
functions for p even/odd, �p�
L� � �
1�p�p�L�.

The terms which product pq � 0 are localized at single
sites and correspond to ‘‘potentials‘‘. Hence the action
splits into hopping terms T and potential terms V in
accordance with (3),

SPL �
X
�pq�
pq�0

Spq 	 2
X
p

Sp0 � T 	 V: (29)

With �0 � 1 the potential V has the explicit form

V � 2d
X
p even

�0p

X
x

�px: (30)

For what follows we need some notation. We will, of
course, truncate our actions at some maximum ‘‘spin’’ p,
say at p � r. Thus we define the truncated actions
065005
Sr �
Xr
�pq�

Spq �
Xr
�pq�
pq�0

Spq 	 2
Xr
p�2

Sp0 � Tr 	 Vr; (31)

where all summations are cut off at p � r. Explicitly, the
first few terms are

S1 � S11; (32)

S2 � �S11 	 S22� 	 2S20 � T2 	 V2; (33)

S3 � �T2 	 S31 	 S33� 	 2S20 � T3 	 V3: (34)

Note that actually V3 � V2. In the strong-coupling expan-
sion the action Sr is of orderO��rNt�. As before, we refer to
p � 1 (fundamental representation) as the LO, to p � 2
(adjoint representation) as NLO and so on. In this paper we
will not go beyond p � 3, a truncation that neglects terms
which are NNNLO in the strong-coupling expansion.

According to (36) the first potential term arising in the
strong-coupling character expansion is of NLO (�2Nt) and
quadratic in the Polyakov-loop L,

V2 � 2d�02

X
x

�2x: (35)
IV. MEAN-FIELD APPROXIMATION

A. Generalities

Before we actually relate the PLAs (31) to Yang-Mills
theory let us analyze their critical behavior which is inter-
esting in itself. Both via mean-field (MF) analysis and MC
simulation we will see that the models typically have a
second order phase transition at certain critical couplings.
Obviously, this should match with the Yang-Mills critical
behavior.

The models involving more than a single hopping term
also show a first-order transition at which the order pa-
rameter hLi jumps. For the SU�2� case discussed here this
transition is not related to Yang-Mills. Matching to the
latter hence implies that the effective couplings should
stay away from the first-order critical surface.

To develop a MF approximation for the Polyakov loop L
with its nontrivial target space �
1; 1� we use a variational
approach based on the text [19]. Our starting point is the
effective action � for the Polyakov-loop dynamics. This
time, the term ‘‘effective action’’ refers to the generating
functional for the 1PI correlators of the Polyakov loop. The
former represents the complete information of the quantum
field theories based on the PLAs SPL. This is obvious from
the fact that � is the Legendre transform of the Schwinger
functional W,

�� �L� � �LW�� �L�; W�J� � logZ�J�; (36)

Z�J� �
Z

DL exp�
SPL�L� 	 �J; L��: (37)
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These are the standard definitions to be found in any text
book on quantum field theory. For an alternative, varia-
tional characterization of � [19] we consider the following
probability measures on field space,

d	�L� �DLp�L�; (38)

with nonnegative function p�L� and DL as in (10).
Averages are calculated with 	. For example, the mean
PLA is

hSPLi	 �
Z
d	�L�SPL�L�; (39)

while the Boltzmann-Gibbs-Shannon entropy is given by
the average of logp,

SBGS�	� � 
hlogpi	 � 

Z
d	�L� logp�L�: (40)

The relevant variational principles are obtained as follows.
By subtracting (40) from (39) one forms

F�	� � hSPL 	 logpi	 � F�p�: (41)

This analog of the free energy is varied with respect to p
under appropriately chosen constraints. These are added
via Lagrange multipliers. If one just requires normalization
to unity, h1i	 � 1, one finds that the probability p for
which (41) becomes extremal is given by the standard
measure, p � exp�
SPL�=Z�0�. Inserting this into (41)
yields the infimum

inf
	
F�	� � 
 logZ�0� � 
W�0�: (42)

Comparing with (36) this may be interpreted as the effec-
tive action for J � �L � 0. If we vary F in (41) keeping the
expectation value of L fixed at �Lx by means of a Lagrange
multiplier Jx, we find the probability

p�L� �
e
S	�J;L�

Z�J�
; (43)

where J is to be viewed as a function of �L, obtained via
inverting the implicit relation �L � �W=�J. Plugging (43)
into (41) yields a new variational infimum which is pre-
cisely the effective action,

inf
	
fF�	�jhLxi	 � �Lxg � �J; �L� 
W�J� � �� �L�: (44)

In the MF approximation for the effective action one
minimizes only with respect to all product measures 
 2
P ,

d
�L� �
Y
x

d
�x�Lx�; d
x�u� � px�u�dh�u�; (45)

where h is the reduced Haar measure from (10). Hence, the
exact expression (44) is replaced by its MF version accord-
ing to

inf

2P
�F�
� j hLxi
 � �Lx� � UMF� �L�: (46)
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Clearly, from the variational principle, the MF effective
action UMF bounds the effective action � from above.
Since the set of all product measures is not convex (unlike
the set of all probability measures), the MF action need not
be convex. We may, however, use its convex hull given by
the double Legendre transformation, �MF � L2�UMF�,
which for non–convexUMF will be a better approximation,
� � �MF � UMF.

For a product measure the entropy and mean action
entering F in (46) turn into sums (of products) of single-
site expectation values. With the abbreviationZ

d
x�u�f�u� � hfix; (47)

we find for the general class of character actions (28),

F�
� �
X

hxyi;�pq�

�pqh�pixh�qiy 	
X
x

hlogpxix: (48)

In order to find the extrema of this expression with respect
to the measure px we have to introduce an external source
Jp;x for every character �p;x. Again, these may be viewed
as Lagrange multipliers fixing the expectation values h�pix
at the mean fields ��p;x. As we are interested in the effective
potential rather than the effective action we set all expec-
tation values constant

h�pix � h�pi: (49)

Then the single-site measures 
x are identical implying
that the source is constant, Jp;x � jp: For what follows it is
thus sufficient to consider densities or single-site expres-
sions. With this in mind (48) becomes extremal for the
(single-site) measure

p�u� �
expf
V�u� 	 j  ��u�g

z�j�
; (50)

where we have collected the sources j1, j2; . . . and charac-
ters �1; �2; . . . into vectors such that j  � �

P
jp�p. Here

V denotes the potential introduced in (33), and the normal-
ization factor is the single-site partition function,

z�j� �
Z
dh�u� expf
V�u� 	 j  ��u�g: (51)

This measure replaces (43). In accordance with the dis-
cussion following (43) the components of j have to be
eliminated from the single-site measure p. This is done by
inverting the relations

���j� � rjw�j�; w�j� � log z�j�; (52)

which yields j � j� ���. Since the Schwinger function w�j�
is strictly convex, this relation between the mean charac-
ters and sources is one-to-one. At this point it is convenient
to introduce the convex Legendre transform � of the
Schwinger function,
-5
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�� ��� � sup
j
fj  �� 
 w�j�g: (53)

It yields the inverse relation

j � ��� � r ���� ���: (54)

For product measures and constant mean characters the
infimum of (48) becomes the MF potential

uMF� ��� � d
X
�pq��0

�pq ��p ��q 	 �� ���: (55)

We mention in passing that uMF bounds the exact effective
potential from above and so does its convex hull,

�MF � L2�uMF�: (56)

To make contact with the MF potential (46) depending
solely on the order parameter �Lwe use �1 � 2L and define
the new MF potential (density)

uMF� �L� � inf
��2; ��3;...

uMF�2 �L; ��2; ��3; . . .�: (57)

Using results from [20] one can show that uMF is the MF
approximation to the constraint effective potential [21].
The formula (55) for the MF potential is still rather implicit
as the expectation values h�pi depend on the sources which
have to be eliminated via (52).

To calculate the mean characters we only need the
critical values of uMF, and those are determined by the
gap equations. Thus, to calculate the mean characters one
may proceed as follows:
(1) B
ecause of (54) the sources and mean characters at a
critical point of uMF� ��� are related as

jp � 
2d
X
q

�pq ��q: (58)
(2) W
e use these relations to eliminate the sources in the
formula (55) for the mean characters, which read
explicitly

�� r �

R
dh�r�u� expfj  ��u� 
 V�u�gR
dh expfj  ��u� 
 V�u�g

; (59)

with dh � dh�u� from (10).

(3) T
hese constitute a nonlinear transcendental system

�� r � Fr� ���; (60)

with the right-hand side given explicitly by the
integral expression

Fr �

R
dh�r�u� expf
2d

P
�pq ��q�p�u� 
 VgR

dh expf
2d
P
�pq ��q�p�u� 
 Vg

:

(61)

which in principle yield ��. In general, the solution
of these gap equations can only be determined nu-
merically. The gap Eqs. (60) are to be viewed as a
065005-6
system of nonlinear equations which determine the
critical points ��p of uMF as functions of the cou-
plings �pq. This dependence approximates the true
behavior of the vacuum expectation values h�pi.
B. Examples

In general the integrals (61) involved in the gap equa-
tions cannot be done analytically. Things become simple,
however, if the PLA contains only two hopping terms as in
(33),

T2 �
X
hxyi

��11�1x�1y 	 �22�2x�2y�: (62)

In what follows we will concentrate on this particular case
corresponding to NN interactions of Polyakov loops in the
fundamental and adjoint representation, respectively. We
are particularly interested in the behavior of the adjoint
loop �2. This is center symmetric by itself and hence,
strictly speaking, does not constitute an order parameter.
On the other hand, if the symmetric phase is dominated by
the Haar measure (corresponding to equipartition, i.e.
Spq ’ 0) all nontrivial characters have vanishing expecta-
tion value due to orthogonality. In the broken phase, the
higher characters may then develop expectation values
driven by the fundamental loop and serve as approximate
order parameters. For gauge group SU�3� this was ob-
served recently in [15].

For the effective action T2 the gap Eqs. (60) are

�� 1 � F1� ��1; ��2; �11; �22�; (63)

�� 2 � F2� ��1; ��2; �11; �22�: (64)

In the symmetric phase ( �L � 0) and close to the phase
transition we may linearize (63) and (64) to leading order
around ��1 � 0,

�� 1 ’ ��1
@
@ ��1

F1� ��1; ��2�

�������� ��1�0
; (65)

�� 2 ’ F2�0; ��2�: (66)

Discarding the trivial solution ��1 � 0 and evaluating the
integrals F1;2 the gap Eqs. (65) and (66) become

1 � 
2d�11�1	 F2�0; ��2��; (67)

�� 2 � F2�0; ��2�; (68)

with

F2�0; ��2� �
I1�j� 
 2d�22 ��2�I0�j� 	 I1�j��

2d�22 ��2�I0�j� 	 I1�j��
; (69)

and j � 4d�22 ��2 being the argument of the modified
Bessel functions I0, I1. The result (69) shows that (66) is
independent of the coupling �11 and thus determines
��2��22� near ��1 � 0. The numerical solution yields the
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critical line of Fig. 3.

EFFECTIVE ACTIONS FOR THE SU�2� . . . PHYSICAL REVIEW D 72, 065005 (2005)
typical bifurcation behavior shown in Fig. 2. For �22 <

0:127 there are generically three solutions for ��2��22�,
the trivial one, ��2 � 0, and two nontrivial ones.

Obviously, we still have to determine which solution
corresponds to the absolute minimum of the MF potential
as a function of ��2. To proceed analytically, we approxi-
mate the latter by simply integrating the gap Eqs. (63) and
(64) with respect to the characters. This results in the
approximate MF potential

u� ��1; ��2; �11; �22� � 
d
X
p�1;2

�pp ��2
p


 w� ��1; ��2; �11; �22�; (70)

which coincides with the MF potential at the critical points.
For ��1 � 0 the relevant integrals can be done analytically
and again lead to modified Bessel functions. One finds that
the absolute minimum of u�0; ��2; 0; �22� is located at ��2 >
0 for sufficiently negative values of �22. At the ‘‘critical’’
value �22 � 
0:133 its locus suddenly jumps from ��2 �
1:671 to ��2 � 0 (the dashed line in Fig. 2) where it stays
for �22 growing larger.

Combining (65) and (66) yields the critical coupling
�11c as a function of ��2��22�,

�11c � 

1

2d�1	 ��2�
: (71)

For the trivial solution, ��2 � 0, we find the universal
critical coupling
065005
�11c � 

1

2d
; (72)
which only depends on the dimension d.
Plugging the numerical solution ��2��22� from Fig. 2

corresponding to the absolute minimum of the MF poten-
tial into (71) we finally obtain the critical line in the plane
of couplings �11 and �22 displayed in Fig. 3. The disconti-
nuity in ��2 translates into the sudden drop of �11 at �22 �

0:133.

We have checked the results above by calculating the
behavior of the character expectation values numerically
without using the approximations (65) and (66) to elimi-
nate the sources. The results for �L � ��1=2 and ��2 as a
function of the couplings are shown in Figs. 4 and 5.
-7
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Most notable are the following features. First, the critical
line of Fig. 3 approximates the phase boundary of Fig. 4
very well (except for the neighborhood of the critical value
�22c ’ 
0:133). Second, for �22 < �22c there is indeed a
first–order phase transition at �11 ’ 
0:04 where �L sud-
denly jumps to a finite value.

To assess the quality of the MF approximation we have
performed a direct MC simulation of the PLA (62). In
Fig. 6 we have plotted the MC results for the order pa-
L̄

uMF
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0.5− 0.5

− 1
5

− 1
6

λ11 = − 1
7 1

FIG. 7. MF prediction for the effective potential and orde
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rameter �L as a function of the couplings. Shown is �L for
several thousand sample points in the ��11; �22� plane.
Near the phase boundary about 2.5 M updates were suffi-
cient for �22 * 
0:1, whereas for �22 & 
0:1 at least
50 M updates were required. We interpret this slow con-
vergence as a signal for a first-order phase transition as
predicted by the MF approximation, see Fig. 4. The con-
tinuous behavior across the phase boundary for �22 &


0:1 thus presumably represents a hysteresis effect. With
our local MC algorithm we have not been able to check this
in detail.

Resuming thus far it seems fair to say that the phase
structure of the PLAs becomes quite involved if more than
just one character (i.e. Polyakov loops in higher represen-
tations) are included.

In order to make contact with known results we con-
clude this subsection with a few remarks on the simplest
PLA with only one character. This is straightforwardly
obtained from (62) by setting �22 � 0,

S1 � T1 �
X
hxyi

�11�1x�1y: (73)

Note that our sign-convention is such that negative �11

corresponds to ‘‘ferromagnetism.’’ The Ising-type model
(73) has first been studied by Polónyi and Szlachányi [22]
who also derived it using a strong-coupling expansion.
According to (72) the MF critical coupling is �11c �

1=2d locating a second-order phase transition. The MF
potential of the model (73) is

uMF�‘� � 4d�11‘
2 	 ‘j
 w0�j�; (74)

where the relation 2‘ � @w0=@j has to be inverted to trade
the source j for the Polyakov loop ‘ via j � j�‘�. This
potential is minimal for ‘ � �L which solves

j� �L� � 
8d�11
�L; (75)

implying the self-consistency condition

2 �L � �
8d�11
�L�
I1�j� 
 I3�j�
I0�j� 
 I2�j�

; (76)

with the argument j � j� �L� from (75). The effective po-
tential and order parameter are plotted in Fig. 7. Near the
critical coupling the order parameter has the typical square
− λ11

L̄

1/ 6

result (77)

r parameter for the Ising-type PLA S1 � T1 from (73).
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TABLE I. Comparison of the critical coupling values for the
LO Ising-type model S1. The ‘‘exact’’ value is obtained via MC
simulation.

Method Critical coupling

MC simulation �11c � 
0:18
MF �11c � 
0:17
Strong coupling �11c � 
0:11
IMC �11��c� � 
0:14
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FIG. 8 (color online). The coupling �11 as a function of �.
Dashed curve for �<�c: asymptotic behavior (80); dashed
lines for �>�c: linear fits � � a�	 b; data points: IMC
results from Tables VI, VII, and VIII in Appendix A.

EFFECTIVE ACTIONS FOR THE SU�2� . . . PHYSICAL REVIEW D 72, 065005 (2005)
root behavior,

�L �

���
3

2

s ������������������
�11

�11c

 1

s
for j�11j & j�11cj; (77)

which is also displayed in Fig. 7.

V. IMC RESULTS FOR �pq���

Employing our IMC method based on the geometrical
Schwinger-Dyson equations of Sec. II we have calculated
the couplings �pq for different PLAs as functions of � (see
[23,24] for earlier IMC results in a similar context). For our
lattice with Ns � 20 and Nt � 4 (the maximum value we
can achieve with our computer resources) the critical
Wilson coupling is �c � 2:30. Below �c we find the
hierarchy

j�11j � j�22j; j�02j � j�33j; j�13j; (78)

in agreement with the strong-coupling expansion (24)–
(26). According to Ogilvie [25], the weak-coupling asymp-
totics of �11 is linear in �,

�11��� � 

�

2NCNt
	 const. ��� �c�;

which in our case (NC � 2) leads to

�11��� � 

�
16
	 const. � 
0:0625�	 const. (79)

We have compared our IMC results for the couplings
�pq��� with the strong-coupling predictions (17) and
(27)–(30), and the weak-coupling result (79). As expected
from our reasoning above, the lowest order PLAs based on
group characters approximate the true Polyakov-loop dy-
namics very well in the strong-coupling regime. For weak
coupling we find the linear relation (79) already for the LO
PLA. For the NLO Ginzburg-Landau-type model with 3
couplings the slope 
0:0614 is very close to the weak-
coupling result
0:0625 in (79). Thus we are confident that
our PLAs describe the true Polyakov-loop dynamics below
and above the critical Wilson coupling very well.

A. Leading-order action

The effective couplings �11 for the LO Ising-type model
(73) for �-values below and above the critical �c � 2:30
are listed in Table VI, Appendix A. We read off the value
�11��c� � 
0:132. If S1 would be the exact PLA then its
critical coupling �11c would be �11��c�. A direct MC
simulation of the action S1 reveals that this model has
critical coupling �11c � 
0:18. The MF prediction �11c �

0:17 comes surprisingly close to the former ‘‘true’’ value.
The critical coupling may alternatively be estimated by
using the strong-coupling results (18) and (24) to calculate
�11��c� (extrapolating them to Nt � 4 and �c � 2:30),

�11 � 
��=4�Nt �
���c


0:11: (80)
065005
The output of the different methods is compiled in Table I.
The values obtained are quite close to each other. The true
value 
0:18 stems from simulating (73) with the MF
approximation coming closest. Somewhat surprisingly,
the strong-coupling result yields the right order of magni-
tude. The discrepancy between direct simulation and IMC
just means that the action (73) represents an oversimplifi-
cation and does not match with Yang-Mills well enough.
The IMC value �11��c� � 
0:14 constitutes a compro-
mise equivalent to a one-parameter fit of the effective to the
Yang-Mills Schwinger-Dyson equations or n-point
functions.

In Fig. 8 we compare the results for �11 from strong- and
weak-coupling expansion with the data of our IMC simu-
lations. Note that the asymptotic formula (83) works up
to � ’ 2. The IMC values for the LO action S1 in (76)
are marked with circles. Note further that the depen-
dence �11��� is indeed linear in the weak-coupling regime,
-9
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�11 � 
0:0392�
 0:0774, in accordance with the pre-
diction (82) for the weak-coupling asymptotics. The slope,
however, turns out being too small. This will be remedied
in what follows by including more couplings.

B. Next-to-leading-order actions

The effective action (73) has been confirmed and ex-
tended by several authors [23–28]. We have also checked
its generalizations by considering the NLO Ising-type
model (62) without potential terms and the ‘‘Ginzburg-
Landau action’’ (33) containing all NLO terms including
the potential V2.

The NLO IMC results for �11��� are displayed in Fig. 8
(crosses and asterisks), those for �22��� in Fig. 9 (same
symbols) and those for �02��� in Fig. 10 (asterisks). The
error bars for the couplings are listed in the tables in
Appendix A. Upon comparing the values for �11 in
Fig. 8 (or Table VI) we note that for�< �c the predictions
for �11 are almost model independent. In the weak-
coupling regime, on the other hand, they are less stable.
Hence, adding terms to the PLA may change the coupling
constants considerably in this regime.

For the NLO actions the dependence �11��� is linear in
the weak-coupling regime, similarly as for the LO action
S1. However, the slopes a in the linear fits �11��� � a�	
b above �c are model dependent. For the LO and NLO
PLA they are given in Table II together with the weak-
coupling result (79). For the Ising-type models without
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FIG. 9 (color online). The adjoint coupling �22 as a function of
� for the NLO and NNLO actions. Dashed curve: asymptotic
behavior (81); data points: IMC results from Tables VI, VII, and
VIII.
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potential terms the slope is not reproduced very well, and
we conclude that in the weak-coupling or high-temperature
regime potential terms should be included for an accurate
description of the Polyakov-loop dynamics. Indeed, the
slope for the action (33) with potential term V2 is almost
identical to the prediction (79) of the weak-coupling
asymptotics.

Figure 9 shows the dependence of the adjoint coupling
constant �22 on the Wilson coupling �. Also shown is the
prediction (25) of the strong-coupling expansion using
(18),

�22��� � 

113

162

�
�
4

�
8
� 
0:69753

�
�
4

�
8
; (81)

which again reproduces the IMC results for �< 2.
The critical coupling

�22��c� � 0:006�1� (82)

is the same for both PLAs (62) and (33), hence independent
of V2. Up to �c the two actions have almost identical
couplings �22. It seems that for �> �c these couplings
also depend linearly on �, as was the case for �11���. The
positive value for �22 (for ��c) is consistent with earlier
results [29].
TABLE II. Slopes of the linear fits to the weak-coupling
asymptotics (79) of �11.

Model 1=2NCNt S1 T2 S2

Slope 
0:0625 
0:0392 
0:0505 
0:0614
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TABLE III. Effective couplings of different PLAs at � �
�c � 2:30.

Model S1 T2 S2 S3 S�2�GL

�11��c� 
0:133 
0:135 
0:156 
0:156 
0:155
�22��c� 0.006 0.006 0.006
�02��c� 0.011 0.012 0.012

TABLE IV. Effective couplings for NLO actions at � � 2:2.

� � 2:2 �11 �22 �20

T2 0.1033 0.0019
S2 0.1168 0.00042 0.0064
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C. Next-to-next-to-leading order

We have seen that the NLO approximations describe the
Polyakov-loop dynamics very well in the symmetric
strong-coupling phase. In the weak-coupling regime, how-
ever, there is still room for improvement. Hence we have
calculated the five coupling constants �11; �22; �02; �13; �33

appearing in the general NNLO PLA S3 for several values
of the Wilson coupling. This action is the sum of all terms
up to order �3Nt

t in the strong-coupling expansion. As
expected, adding the third order terms S31 and S33 does
not change the lower–order couplings �11; �22; �02 (as
obtained via S2) in the broken phase. This can be seen in
Figs. 8–10, where the IMC results for the NNLO action S3

from (34) are depicted by triangles. The numerical values
for these couplings and the couplings �33 and �13 together
with their statistical errors are given in Appendix A.

D. Ginzburg-Landau models

In his review [9], Svetitsky has suggested to emphasize
the potential term in (3) by specializing to an ansatz of
Ginzburg-Landau type,

SGL � S1 	
X
x

V�Lx�; (83)

with center-symmetric potential (30). Replacing the coef-
ficients �0p of the characters in this potential by

�4 � 2d  42�04; (84)

�2 � 2d  4��02 
 3�04�; (85)

leads for p � 4 to the even polynomial

V�L� � �2L2 	 �4L4 	 const: (86)

In Table IX we have listed the couplings for the models
with quadratic and quartic potentials,

S�1�GL � S1 	 �2

X
x

L2
x; (87)

S�2�GL � S�1�GL 	 �4

X
x

L4
x; (88)

obtained via IMC within our standard range of �. The
values for �11 both for strong and weak coupling are almost
identical to those of the NLO model S2. For this reason we
have refrained from plotting them in Fig. 8. The potential
couplings are important in the broken weak-coupling phase
where they become sizable. The coupling �02 for the
Ginzburg-Landau models (87) and (88) is shown in Fig. 10.

E. Summary

The values for the couplings of the different PLAs
arising at critical Wilson coupling �c � 2:30 are listed in
Table III. They are almost model independent. �11, in
065005
particular, is always close to the MF value 
0:167 (for
the Ising-type models).

The couplings below and above �c and their statistical
errors are compiled in Appendix A. There one may also
find �33; �13 and �04 � �4=32d for different Wilson
couplings.

The stability of the couplings for �< �c is a strong
indication that (in this regime) the Yang-Mills ensemble is
very well approximated already by the NLO models with 2
or 3 couplings. The results of the following section will
further confirm this statement.

The Ising-type coupling �11 becomes a linear function
of � in the weak-coupling regime, in accordance with the
weak-coupling prediction (79). For the NLO action the
slope is 
0:0614 which compares favorably with the
weak–coupling value 
0:0625. For the Ginzburg-
Landau-type actions the slope is almost identical to the
one of the NLO models.

The Ising-type couplings change rapidly at the critical
Wilson coupling �c � 2:30 as demonstrated in Figs. 8 and
9. For example, the coupling �11 decreases from 
0:1
below �c to 
0:2 above �c. This jump of �11 forces the
system into the ferromagnetic phase. For �22 the jump is
even more dramatic, from 0 to 0.04. The potential cou-
plings �02 and �04 change more smoothly when the sys-
tems changes from the symmetric to the broken phase.
VI. TWO-POINT FUNCTIONS

Let us finally check the quality of our PLAs which, after
all, should represent approximations to Yang-Mills theory.
To this end we compare the Yang-Mills two-point function
at different �-values with those of our effective models
inserting the couplings �pq��� obtained via IMC. For the
NLO actions at � � 2:2 these couplings are displayed in
Table IV, while for � � 3:0 we have the NLO and NNLO
couplings of Table V. With these couplings we have simu-
lated the models with actions

T2; S2; S3; S�1�GL; S�2�GL; (89)

and calculated the two-point functions displayed in
-11



TABLE V. Effective couplings for NLO and NNLO actions at
� � 3:0.

� � 3 �11 �22 �20 �33 �31

T2 0.2207 0.0320
S2 0.2361 0.0194 0.0165
S3 0.2506 0.0311 0.0236 0.0035 0.0040
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FIG. 12 (color online). The Yang-Mills (YM) two-point func-
tion compared to the one obtained from the NLO (T2 and S2) and
NNLO (S3) effective actions; �Ns;Nt� � �20; 4�.
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Figs. 11 and 12. As expected, the agreement in the center-
symmetric phase (� � 2:2) is very good, while deep in the
broken phase (� � 3:0) there appears to be room for
improvement. For � � 2:2 the two-point functions of the
three effective models considered are almost identical to
the Yang-Mills two-point function. The data points for S3

and S�2�GL cannot be distinguished from those for the NLO
model S2 and hence are not displayed in Fig. 11.

For � � 3:0 the two-point functions and the expectation
value of the mean field are model dependent. In Fig. 12 we
have plotted the two-point function of Yang-Mills theory
and of the NLO and NNLO effective actions.

For the NLO approximation T2 the value for the con-
densate is approximately 20% below the Yang-Mills value.
Including potential terms (S2) and NNLO terms (S3) im-
proves the approximation somewhat as Fig. 12 shows. The
two-point function for the Ginzburg-Landau action S�2�GL is
almost identical to the one of T2 (and thus has not been
displayed). This implies that also higher-order Ising (or
hopping) terms are important when �> �c.
VII. DISCUSSION

To really obtain satisfactory approximations to Yang-
Mills expectation values (e.g. two-point functions) for all
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FIG. 11 (color online). The Yang-Mills (YM) two-point func-
tion compared to the ones obtained from the NLO effective
actions T2 and S2; �Ns; Nt� � �20; 4�.
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�-values one has to go beyond nearest-neighbor interac-
tions in the effective theory. This has been done in [16]
where operators with r � jx
 yj up to

���
2
p

(‘‘plaquette
operators’’) were included. We briefly recapitulate the
results of this brute-force calculation. By reformulating
the Schwinger-Dyson equations (12) in terms of charac-
ters, the couplings have been determined by our standard
inverse Monte Carlo routines. We found that the couplings
decrease rapidly not only if we go to higher representations
(i.e. larger p) as above, but also if we increase the number
of links within the plaquette operators used. The leading
r � 1 term S1 of (32) with coupling �11 dominates by 1
order of magnitude compared to the terms with r �

���
2
p

.
This clearly indicates that the effective interactions are
short ranged in accordance with the Svetitsky-Yaffe con-
jecture. Simulating the effective action including plaquette
operators with the couplings obtained via IMC we have
calculated the two-point function in both phases. Including
a total of 14 couplings the matching between Yang-Mills
and the effective action becomes perfect both in the broken
and symmetric phase [16]. It should, however, be stressed
that this brute-force numerical calculation does not provide
too much of physical intuition. We believe that the present
paper, in particular, the mean-field analysis, improves upon
[16] in this respect.

The most straightforward generalization of our analysis
obviously is to go to SU�3� Yang-Mills theory where one
expects a first-order phase transition. Work in this direction
is under way.
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TABLE VIII. IMC results for five couplings in S3.

� �11 �22 �20 �33 �31

1.10 
0:004�1� 0.000[1]
0:0011�2� 0.000[1] 0.0003[6]
1.70 
0:029�2� 0.000[1]
0:0006�2� 0.0001[8] 0.0000[6]
2.20 
0:116�1� 0.000[1] 0.0064[2] 0.0015[7] 0.0000[6]
2.28 
0:143�1� 0.002[1] 0.0102[3] 0.0015[8] 0.0002[6]
2.29 
0:148�1� 0.003[1] 0.0108[3] 0.0015[8] 0.0000[6]
2.30 
0:156�1� 0.006[1] 0.0115[3] 0.001[1] 0.0000[6]
2.32 
0:179�1� 0.019[1] 0.0129[3] 
0:0006�9� 
0:0004�5�
2.34 
0:1892�8� 0.026[1] 0.0138[3] 
0:0014�8� 
0:0014�6�
2.38 
0:1999�6� 0.035[1] 0.0148[4] 
0:0032�9� 
0:0026�5�
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APPENDIX A: TABLES

The following Tables VI, VII, VIII, and IX contain the
effective couplings �pq with statistical errors for various
values of �.
2.60 
0:2227�8� 0.040[1] 0.0176[5] 
0:005�1� 
0:0041�4�
2.80 
0:236�1� 0.035[1] 0.0202[8] 
0:0041�9� 
0:0040�4�
3.00 
0:250�1� 0.031[1] 0.0235[8] 
0:0034�8� 
0:0039�4�
3.50 
0:283�1� 0.020[1] 0.032[1] 
0:002�1� 
0:0032�6�
4.00 
0:291�3� 0.003[1] 0.029[2] 
0:0033�9� 0.0029[8]

TABLE VII. IMC results for the three couplings in S2.

� �11 �22 �20

1.10 
0:004�4� 
0:000�2� 
0:0012�5�
1.70 
0:030�4� 
0:001�2� 
0:0007�5�
2.20 
0:116�2� 0.000[2] 0.0064[5]
2.28 
0:144�2� 0.002[2] 0.0101[5]
2.29 
0:148�2� 0.004[2] 0.0108[5]
2.30 
0:156�2� 0.006[2] 0.0114[5]
2.32 
0:178�2� 0.017[2] 0.0125[6]
2.34 
0:187�1� 0.022[2] 0.0130[6]
2.38 
0:195�1� 0.026[2] 0.0130[6]
2.60 
0:212�1� 0.026[2] 0.013[1]
2.80 
0:224�1� 0.022[2] 0.014[1]
3.00 
0:236�1� 0.019[2] 0.016[1]
3.50 
0:267�1� 0.010[2] 0.025[1]
4.00 
0:299�1� 0.003[2] 0.037[1]

TABLE VI. IMC results for the effective coupling �11 in the
LO action S1 and the two couplings �11; �22 in T2.

Yang-Mills-� S1:�11 T2:�11 T2:�22

1.70 
0:0305�4� 
0:030�2� 
0:001�1�
2.20 
0:1040�2� 
0:103�1� 
0:0019�7�
2.28 
0:1231�3� 
0:123�1� 0.000[1]
2.29 
0:1267�4� 
0:127�1� 0.002[1]
2.30 
0:1325�5� 0.135[1] 0.006[1]
2.32 
0:1512�3� 
0:1598�9� 0.023[1]
2.34 
0:1585�2� 
0:1697�6� 0.030[1]
2.38 
0:1658�1� 
0:1799�4� 0.037[1]
2.60 
0:1792�1� 
0:1989�4� 0.0382[8]
2.80 
0:1874�1� 
0:2103�5� 0.0350[8]
3.00 
0:1952�1� 
0:2206�6� 0.0319[8]
3.50 
0:2146�1� 
0:2446�6� 0.0264[6]
4.00 
0:2343�1� 
0:2670�9� 0.0225[6]

TABLE IX. IMC results for the couplings �11; �2; �4 in S�2�GL.

� �11 �2 �4

2.20 
0:110 0.186 
0:002
2.25 
0:119 0.237 
0:003
2.28 
0:127 0.288 
0:006
2.29 
0:128 0.303 
0:007
2.30 
0:157 0.453 
0:020
2.32 
0:173 0.621 
0:057
2.34 
0:176 0.698 
0:093
2.40 
0:190 0.979 
0:256

065005
APPENDIX B: NUMERICAL DETAILS

All MC calculations have been performed on a 203 � 4
lattice for which the critical Wilson coupling is �c � 2:30.
The simulations have been done for � ranging from 1.1 to
4.0. We have used a standard ‘‘pseudoheatbath’’ algorithm
[30,31] due to Miller [32].

The IMC routine has been implemented as follows. For
each action term Spq and site we have chosen the operator

Gpq;z �
1

�pq

�Spq
�Lz

; (B1)

which leads to the Schwinger-Dyson equationsX
�pq�

�pqh�1
 L
2
x�Gpq;zSpq;xi � h�1
 L

2
x�G;x 
 3LxGi:

(B2)

Because of translational invariance the coefficients of Gz
and Gz0 are equal if jx
 zj � jx
 z0j. In order to have a
sufficiently overdetermined system (for fixed pq) we
choose the Ns operators Gpq;d, d � 0 . . .Ns. Independent
of our choice of PLA we have always used the full set of
operators up to truncation values p; q � 5, i.e.

G11; G22; G20; G33; G31; G44; G42; G40; G55 (B3)
-13



THOMAS HEINZL, TOBIAS KAESTNER, AND ANDREAS WIPF PHYSICAL REVIEW D 72, 065005 (2005)
with 0 � d � 8 leading to a total of 81 operators (and
equations). Translational invariance admits to use the spa-
tial average of each Schwinger-Dyson equation and every
configuration. The overdetermined system is then solved
via least-square methods. We have checked that the cou-
plings obtained in this way follow a normal distribution, as
expected. Hence we calculated the standard deviation �
and took 2� as our error. Autocorrelation effects have been
065005
eliminated via binning. Our statistics (5 k to 10 k configu-
rations) entail a statistical error of 10
4 which translates
into an uncertainty for the couplings in the NLO action of
the order of a few percent. The NNLO couplings �33 and
�31, however, have statistical errors of about 20%.

Systematic errors are mainly due to the dependence of
the couplings on the operator bases used in the Schwinger-
Dyson equations.
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